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Abstract

Information Extraction (IE) is one of the im-
portant fields of natural language processing
(NLP) with the primary goal of creating struc-
tured knowledge from unstructured text. In
more than two decades, IE has gained a lot of
attention and many new tasks and models have
been proposed. Moreover, with the prolifera-
tion of deep learning and neural nets in recent
years, the advanced deep models have brought
about a surge in the performance of IE models.
Among others, some of the existing deep mod-
els resort to structure-based modeling whose
goal is to exploit the structure of the text (i.e.,
interactions of different parts of the text) or ex-
ternal structures (e.g., a knowledge base). In
this survey, we will review the structure-based
deep models proposed for various IE tasks and
also other related NLP tasks. Finally, we will
discuss the limitations of the existing models
and the potentials for future work.

1 Introduction

Textual materials such as books and websites are
still one of the major sources of information in hu-
man societies. In the Big Data era and with the
expansion of the world wide web and social net-
works in recent years, the amount of available tex-
tual data has also increased substantially. While on
the one hand the sheer size of these resources pro-
vides valuable information about many topics, on
the other hand, it hinders efficient information look-
up. To address this limitation, one possible solu-
tion is to store the information in pre-defined struc-
tures (i.e., knowledge bases) so it can be quickly
retrieved. Since converting the information avail-
able in textual resources into structured knowledge
bases is tedious and the KB could quickly get ob-
solete, automatic approaches to extract structured
information from free text is necessary. These auto-
matic approaches are called Information Extraction

(IE) methods and consist of several tasks including:
1) Identifying the real-world entities (e.g., person,
company, and dates) that have been mentioned in
text (i.e., Named Entity Recognition) (Nadeau and
Sekine, 2007; Lample et al., 2016; Mikheev et al.,
1999), 2) Assigning unique identity (e.g., entity
IDs in a knowledge base) to the entity mentions
in text (i.e., Entity Linking) (Lin et al., 2012; Liu
et al., 2013b; Hachey et al., 2013), 3) Finding all
expressions (e.g., proper nouns and pronouns) that
refer to the same entity (i.e., Co-reference Reso-
lution) (Ng and Cardie, 2002; Raghunathan et al.,
2010; Lee et al., 2017) 4) Detecting the seman-
tic relationships between entities that are specified
in text (e.g., ownership and marriage) (i.e., Rela-
tion Extraction) (Zelenko et al., 2003; Mintz et al.,
2009; Lin et al., 2016) and 5) Finding information
about incidents referred to in text (e.g., divorce and
attack); this information might answer questions
like “who did what to whom?” (i.e., Event Extrac-
tion) (Ritter et al., 2012; Ahn, 2006; Nguyen et al.,
2016a).

In more than the last two decades, extensive re-
search has been conducted to design effective meth-
ods for each of the aforementioned IE tasks. These
techniques range from rule-based methods (Efti-
mov et al., 2017), to feature-based models (Zhou
et al., 2005a) and recent advanced deep learning
models (Rao et al., 2017). As it has been shown
in other NLP tasks including text summarization
(Mani et al., 1998), document classification (Zhang
et al., 2020a), question answering (Qiu et al., 2019)
and machine translation (Ma et al., 2019), incor-
porating the existing structures into deep models
for IE could improve their performance. The em-
ployed structure could either refer to syntactic struc-
ture, e.g., dependency tree (Bunescu and Mooney,
2005), semantic structure, e.g., entity similarity
graph (Min et al., 2012), or external structures (e.g.,
knowledge base) (Fang et al., 2020). In this survey,



we study techniques that employ structure-based
modeling to improve performance on various IE
tasks. In addition, we review the application of text
structure in other related NLP tasks. Finally, we
discuss their limitations and the possible directions
for future work.

2 Named Entity Recognition

Named entity recognition (NER) is the first task
in the information extraction pipeline and it aims
to identify words or phrases that refer to people,
organizations, locations, etc. This task has been ex-
tensively studied in the more than last two decades.
Approaches for this task extend from the unsu-
pervised rule-based methods (Collins and Singer,
1999), to the supervised feature engineering (Zhou
and Su, 2002) and the advanced deep learning mod-
els (Dernoncourt et al., 2017). Two sub-tasks for
this problem should be solved:

• Named entity recognition: The first step for
NER is to identify the sub-sequences of the
input text that refer to real-world entities. For
instance, in the input text Kabul is controlled
by President Abdol Mosharaf’s government,
which Taleban is fighting to overthrow, the
model should identify the phrases Kabul, Ab-
dol Mosharaf and Taleban as the named entity
mentions.

• Named entity classification: The next step
for NER is to classify the recognized named
entity mentions to one of the pre-defined types.
For instance, in the aforementioned example,
the model should be able to classify Kabul
as Location, Abdol Mosharaf as Person and
Taleban as Miscellaneous.

Most of the existing models address the two
tasks simultaneously. However, some of the prior
work proposes a different model for each task. For
instance, (Collins and Singer, 1999) introduced a
new rule-based model to predict the named entity
type using the spelling of the name and the context
in which it appears. The spelling rule might use
some look-up tables or predefined patterns (e.g.,
the existence of Mr indicates the type Person). On
the other hand, the contextual rules could refer to
dependencies between a type and some indicative
words in the surroundings of the named entity (e.g.,
president in the above example). Similar rules have
been used in a subsequent work (Zhou and Su,

2002), however, in (Zhou and Su, 2002) authors
employed Hidden Markov Model (HMM) to simul-
taneously identify the named entity mentions and
their types. The HMM model is able to consider the
previous tags and also the features of the current
word to predict its label.

While the feature-based models have gained
some improvements on NER, the state-of-the-art
models are now employing deep learning models.
NER models can benefit from the pre-trained word
embeddings (Nguyen et al., 2016b) and the non-
linearity of the deep learning-based models (Li
et al., 2020a). More interestingly, these models
could also incorporate structural information re-
sulting in better performance on NER (Jie and Lu,
2019; Aguilar and Solorio, 2019; Yu et al., 2020).
The structure could refer to the syntactic parse tree.
In (Jie and Lu, 2019), authors show that a deep
model enhanced with the dependency tree could
have two advantages: 1) The syntactic connection
between the words is indicative of the entity type,
2) the long-dependencies captured from the de-
pendency tree could improve the representation of
the words for the NER task. In this work, the au-
thors proposed an LSTM-CRF model to capture
this information. More specifically, the representa-
tion of the words to the LSTM model is enhanced
with the representation of their parents and the de-
pendency relation between them. Afterward, the
interaction between the parent and its child is mod-
els via an interaction function (e.g., dot product
or a feed-forward neural net) over the correspond-
ing hidden states of the parent and children from
the LSTM layer. In another recent work (Aguilar
and Solorio, 2019), authors propose to encode the
syntactic structure using Tree-LSTM. Furthermore,
they introduce local and global attention. The local
attention highlights important words with respect
to the current word that is being evaluated. On the
other hand, global attention emphasizes the impor-
tant words of the sentence without restricting the
attention to the current word.

3 Entity Linking

Entity linking (EL) is the task of identifying the cor-
responding entities in a knowledge base (KB) for
every entity mention in the text. For instance, in the
given example Michael Jordan has recently signed
a new contract with his new club. He will be the
first goalkeeper of the Rangers for two years., there
are two entity mentions: 1) Michael Jordan and 2)



Figure 1: Graph of entities for entity linking (Cao et al., 2018)

Rangers. Both of these entity mentions could re-
fer to multiple entities (e.g., Michael Jordan could
refer to the English goalkeeper, American football
offensive lineman or American former professional
basketball player and the Rangers could refer to the
entities Rangers football club in South Africa, an
association football club from Glasgow or Rangers
football club in New Zealand). The correct map-
ping between the entity mentions and the entities
in the KB depends on the context and the relation
between entities in the KB.

As KBs are structured, this task inherently ben-
efits from encoding the structure (here, structure
mainly refers to the relationships between entities
in the KB). While several feature-based models
have been proposed for EL (Ji and Grishman, 2011;
Veyseh, 2016; Khalife and Vazirgiannis, 2018), the
state-of-the-art performances are achieved using
deep learning models (Wu et al., 2019; Yamada
and Shindo, 2019; Fang et al., 2019). Most of the
existing work breaks down EL into two sub-tasks
(Sevgili et al., 2020):

• Candidate Generation: Using string similar-
ity or descriptions available in KB, a list of
candidate entities is generated (Sevgili et al.,
2020). For instance, for the given example,
the model compares the similarity between
the entity mention Rangers and the entities
in the KB to extract the list of Rangers foot-
ball club in South Africa, an association foot-
ball club from Glasgow or Rangers football
club in New Zealand. Authors in (Zwickl-
bauer et al., 2016; Le and Titov, 2019) use a
simple string-match to find the list of entities.
Others might use the aliases for the KB enti-
ties computed from the knowledge base meta-
data (e.g., redirect pages in Wikipedia) (Fang
et al., 2019) or pre-calculated prior probabili-
ties (e.g., computed from mention-link count
statistics) (Ganea and Hofmann, 2017)

• Entity Ranking: Based on the consistency be-
tween the context of the entity mention and
the representations of the entities, the candi-
date entities are ranked to choose the entity
with the highest score (Sevgili et al., 2020).
For instance, in the given example, the model
will choose the entity an association football
club from Glasgow as the most likely entity
among the extracted list of possible entities
for the entity mention Rangers

For the second sub-task, to represent the enti-
ties and encode their similarities with the entity
mentions in the text, KB structure and the relation-
ship between different entity mentions in the text
could be helpful and the recent work has shown that
deep graph architectures are able to efficiently en-
code this information (Fang et al., 2020; Wu et al.,
2020a). One of the early works that applied graph
convolution network (GCN) for entity linking is
(Cao et al., 2018). They employed GCN to model
the coherency between the candidate entities. In or-
der to handle the large number of entities in the KB,
they proposed to apply GCN only on the subset of
entities extracted in the first phase (i.e., candidate
generation). An example of the graph is shown in
Figure 1. In another work, authors in (Fang et al.,
2020) proposed a graph attention network to at-
tend to the previous and next entity mentions in the
text to encode the sequential inter-dependencies
between the entity mentions in the text. Authors
in (Wu et al., 2020a) propose to dynamically com-
pute and refine the graph structure to model the
dependencies between entities. The dynamic graph
computation has been shown to be effective for
other related tasks too (Nan et al., 2020). In this
method, the representation of the nodes is used
to compute the structure of the graph for the next
iteration of the graph convolution network.



4 Coreference Resolution

Coreference resolution (CR) is a fundamental task
of IE whose goal is to identify different entity men-
tions in the document that refer to the same entity.
For instance, in the example ”I voted for Nader
because he was most aligned with my values,” Sara
said, there are three entity mentions for the person
Sara (i.e., I, my and Sara) and two entity mentions
for the person Nader (i.e., Nader and he). A CR
model should be able to find the chain of entity
mentions for the entities Sara and Nader.This task
is crucial for many downstream applications includ-
ing Relating Extraction and Question Answering.

According to (Stylianou and Vlahavas, 2019),
traditional methods for CR can be categorized into
four categories:

• Mention-pair: This method determines if a
pair of mentions refer to the same thing. This
method employs the features of the two men-
tions and performs a binary classification
(Soon et al., 2001).

• Mention-ranking: In this category, models col-
lectively consider all mentions to resolve a
specific mention. More specifically, for each
mention, all candidate antecedents are ranked
and the one with the highest score is selected
to be chained to the current mention (Rahman
and Ng, 2009).

• Entity-based methods: Models of this cate-
gory employ clustering techniques to decide
if two clusters of mentions should be merged
or not (Ratinov and Roth, 2012).

• Latent structure models: These models create
a hierarchy of the mentions to collectively
cluster them (Björkelund and Kuhn, 2014).
The major difference between entity-based
and latent structure models is that, contrary
to the former which employs agglomerative
clustering, in the latter, the clusters are created
in a tree-like structure.

Similar techniques have been also employed in
deep learning models (Wiseman et al., 2015; Clark
and Manning, 2016; Lee et al., 2018). In addition,
some deep learning models formulate this task as
question answering (Wu et al., 2020b) or they use
reinforcement learning to perform this task (Fei
et al., 2019). While the traditional methods have

proven the importance of text structure (i.e., depen-
dency tree) for this task (Lappin and Leass, 1994;
Björkelund and Kuhn, 2014), only recently syn-
tactical structure has been used in deep models
(Fang and Jian, 2019). Authors in (Fang and Jian,
2019) proposed to use the syntactic structure of the
sentence for Chinese coreference resolution. The
syntactic structure has three purposes in this work:
(1) To filter out unlikely entity mentions. More
specifically, they keep only those candidate entity
mentions (i.e., spans of words) that are represented
by a node in the syntactic tree; (2) To represent the
context. In particular, the syntactic tree traverse is
employed to gather the syntax-based context for
each entity mention (i.e. node in the syntactic tree);
(3) Encode structural features (e.g., degree of the
node or its siblings).

5 Relation Extraction

Relation extraction (RE) is the task of identify-
ing the semantic relation between entity mentions
in the text. For instance, in the given example
Some Arab countries also want to play a role in
the stable operation in Iraq but are reluctant to
send troops because of political, religious and eth-
nic considerations, the official said, a relationship
of Organization-Affiliation is mentioned between
entities Arab countries and troops. An RE model
should be able to extract the relationship between
different entity mentions or decide whether or not
the entities of interest are in a relation.

This task has been extensively studied and sev-
eral settings for that have been proposed including
single-sentence, document-level, distantly super-
vised, end-to-end, and cross-domain. In this sur-
vey, we first review the most important existing
works and datasets for each of these settings of
RE. Afterward, we provide details on the existing
structure-aware deep RE models.

5.1 Single-sentence

In this setting, the input to the model will be only
one sentence consisting of at least two entity men-
tions. The goal is to predict the relation type
between every pair of entity mentions in the in-
put sentence. For this setting, the major existing
datasets include ACE (Doddington et al., 2004),
TACRED (Zhang et al., 2017b) and SemEval 2010
Task 8 (Hendrickx et al., 2009). The ACE dataset
is a series of datasets, i.e. ACE 2003, ACE 2004,
ACE 2005, ACE 2007, and ACE 2008, released



Figure 2: Statistics of relation types and sub-types in ACE 2003 and ACE 2004 (Pawar et al., 2017)

by NIST for the entity, relation, and event extrac-
tion. The statistics of the relation types for ACE
2003 and ACE 2004 are provided in Figure 2. The
SemEval 2010 Task 8 dataset provides 8,853 in-
stances for 9 relation types. The relations in the
SemEval dataset is directed meaning that the to-
tal number of relations will be 18 plus one special
relation (i.e., Other) for entities that are not in a re-
lation. The corpus to be annotated for the SemEval
dataset is obtained via a pattern-based search for
each relation type from the Web. The statistics
for each relation type is provided in Figure 3. De-
spite the vast application of these two datasets for
sentence-level relation extraction, there are at least
two limitations in them. First, these datasets cover
a limited number of relation types (i.e., 19 rela-
tions in SemEval and 24 relations in ACE 2003 and
2004 datasets). This small number of relations will
not represent the challenges in a real-world appli-
cation of RE. Second, the common issue in both
ACE and SemEval datasets is that these datasets
are relatively small for data-hungry deep learning
models. In other words, this small size prevents
the models from more effective feature extractions
from the data. To address this limitation, authors in
(Zhang et al., 2017b) proposed a new large-scaled
sentence-level relation extraction dataset, i.e., TA-
CRED. This dataset contains 106,264 examples
(both positive (i.e., examples in which the two enti-
ties are in a relation) and negative (i.e., examples in
which the entity are not in a relation)) in 42 relation
types. The annotation is conducted over the TAC

Figure 3: Annotation Statistics for SemEval 2010
dataset. Freq: Absolute and relative frequency in
the dataset; Pos: percentage of “positive” relation in-
stances in the candidate set; IAA: inter-annotator agree-
ment (Hendrickx et al., 2009)

KBP evaluations from 2009 to 2015. The annota-
tion refers to the relations between organizations,
people, and locations.

The traditional methods for sentence-level re-
lation extraction use feature-based and statistical
models (Zhou et al., 2005b; Bunescu and Mooney,
2005; Sun et al., 2011; Chan and Roth, 2010). The
major limitation of the feature-based models is that
it requires extensive feature engineering efforts and
domain knowledge to find the effective patterns for
the relation mentions. Moreover, these models can-
not generalize well to unseen data. To address these
limitations, deep learning models are employed for
RE and they have gained considerable attention
from the community (Zeng et al., 2014; Nguyen
and Grishman, 2015a,b; Zhou et al., 2016; Wang
et al., 2016a; Nguyen and Grishman, 2015a; Zhang
et al., 2017b; Nguyen and Nguyen, 2018b). Using



deep architectures, e.g., Convolutional Neural Net
(CNN) and Long Short-Term Memory (LSTM),
along with the background knowledge provided
via word embeddings, deep models reached the
state-of-the-art performance on different datasets.
In addition, some of the deep models embrace the
findings of the feature-based models to improve RE
performance. For instance, using dependency trees
in deep learning models has been shown to be effec-
tive for deep learning-based RE models. (Xu et al.,
2015; Liu et al., 2015b; Miwa and Bansal, 2016;
Zhang et al., 2018). For this purpose, graph neural
networks (GNN) could be employed to model the
dependency structure. Zhang et al. (2018) proposed
one of the early GNN-based models for RE. One
of the major challenges to employ the dependency
tree in a deep model is that neural models operating
directly on parse trees are usually difficult to paral-
lelize and thus computationally inefficient (Zhang
et al., 2018). To address this issue, the prior work
pruned the dependency tree to keep only the words
on the shortest dependency path (SDP) between
the two entity mentions in the dependency tree.
However, such simplification will result in loss of
information as some of the words off the path could
be also important. To address this issue, Zhang et al.
(2018) proposed to use graph convolution networks
(GCN) (Kipf and Welling, 2016). GCNs are able
to efficiently encode the graph structures with the
parameter sharing. In order to improve the perfor-
mance, Zhang et al. (2018) also proposed to prune
the dependency tree along with the SDP up to a
pre-defined distance between the off-the-path and
on-the-path words. Their evaluations of TACRED
dataset prove the effectiveness of this method.

5.2 Document-level

In this category of RE models, the input to the sys-
tem is a document consisting of multiple entities.
Entity mentions might appear in one sentence or
across multiple sentences in the given document. In
general, the relation mentions in documents could
be categorized into two groups: 1) Intra-sentence
relations: If both entity mentions that are in relation
are mentioned in the same sentence, the relation
between them is an intra-sentence relation; 2) Inter-
sentence relations: In this category, the two entity
mentions appear in different sentences across the
document. For instantce, in the given document
Elias Brown (May 9, 1793– July 7, 1857) was a
U.S. Representative from Maryland. Born near

Baltimore, Maryland, Brown attended the com-
mon schools. He died near Baltimore, Maryland,
and is interred in a private cemetery near Elder-
sburg, Maryland., the relation between the entity
U.S. and Maryland is COUNTRY and the relation
between the entity Maryland and Baltimore is LO-
CATED IN. As both relations can be inferred from
the immediate sentence in which the entities appear,
the two mentioned relations are intra-sentence rela-
tions. On the other hand, the relation between the
entity Baltimore and U.S. is COUNTRY that should
be inferred from the different sentences in which
the entity mentions appear. Thus, this relation is of
type inter-sentence relations.

While there are some domain-specific (Li et al.,
2016a) or distantly supervised (Quirk and Poon,
2016; Peng et al., 2017) document-level relation
extraction datasets, the only large scale manually
labeled document-level relation extraction dataset
available is provided by (Yao et al., 2019). This
dataset, called DocRED, contains 56,354 relation
facts and 132,357 entity annotations across 5,053
Wikipedia documents. Among all relation facts,
40.7% of them are inter-sentence relations which
require inference in document level.

The major challenge for document level relation
extraction is to infer the long range dependencies
between the entities across sentences. To deal with
this issue, most of the existing work propose to
employ structure-based modeling. More specifi-
cally, a structure that could represent the depen-
dencies between different parts of the document
is constructed, either using some heuristics (Zeng
et al., 2020) or it is learned by a trainable compo-
nent (Nan et al., 2020). In order to infer a task
specific structure for document-level RE, authors
in (Christopoulou et al., 2019) proposed to infer
the document structure from the representations
of its edges. More specifically, they first create a
dense graph whose vertices are the entity mentions,
sentences and the entities (i.e., the people, organi-
zations, etc that have been mentioned in the docu-
ment). The entity mentions are represented using
their corresponding hidden states of a bi-directional
LSTM (BiLSTM) network. The sentence and the
entity representations are computed by pooling the
representations of all words or mentions of them,
respectively. Afterwards, the representations of
edges of the graph are obtained using the represen-
tation of their heads and tails. Finally, to compute
the representations for longer paths (e.g., paths



Figure 4: Overview of the dynamic reasoner model in
(Nan et al., 2020)

consisting of two edges), a feed forward neural net
is employed to combine the representations of all
edges in that path. The path representation between
the two entity mentions of interest is used to predict
the relation. While this work proposed a method to
infer the structure-based entity mentions relations,
it fails to dynamically update the representations
of the nodes, including the entity mentions them-
selves. To address this issue, authors in (Nan et al.,
2020) proposed a structure inference mechanism to
dynamically and consecutively update the node rep-
resentation and the graph structure, in turn. More
specifically, after obtaining the representations of
the nodes1, the weights of all edges in the dense
graph are computed from the head and tail repre-
sentation of the edge. Afterwards, a GCN layer is
employed to update the node representations. Us-
ing the updated representation of the nodes, a new
set of weights for edges of the graph is computed.
This process is repeated for N times. Finally, the
representation of the two entity mentions are used
for relation prediction. Figure 4 shows a diagram
of this model.

Most recently, authors in (Wang et al., 2020a)
proposed another saturate-based document-level re-
lation extraction model. In the proposed approach,
authors first construct a set of nodes based on the
sentences, entities, and mentions. Afterwards, sim-

1in this work, entity mentions, the words on the SDP be-
tween every pair of entity mentions and the entities themselves
serve as the nodes of the graph

ilar to prior work, they connect the nodes based
on some heuristics (e..g, if a mention is hosted
by a sentence there would be connection between
the corresponding sentence node and the mention
node). Using the obtained global graph and a GCN
model, authors update the initial representations
of the nodes which are obtained from a sequence-
based encoder. In the next step, the representa-
tions of the nodes are updated using multi-head
self-attention component. This component could
capture the semantic dependencies between the ex-
tracted nodes, i.e., sentences, mentions and entities.
Finally, by concatenating the representations ob-
tained from the GCN layer and the self-attention
layer for the two entities of interest, the final repre-
sentation vector is constructed and it is consumed
by a logistic regression classifier to predict the se-
mantic relations between the two entity mentions
in the document. A diagram of this model is shown
in Figure 5.

5.3 Distantly Supervised

One of the major challenges for RE is that col-
lecting training data is expensive. Thus, the exit-
ing datasets are quite small, specifically for data-
hungry deep models. One remedy to this issue
could be to use distantly supervised (DS) datasets.
In this setting, some heuristics are employed to
collect examples for pre-defined relation sets. In
the seminal work (Mintz et al., 2009), authors em-
ployed the relations between entities in Freebase
knowledge base and an unlabeled corpus to extract
examples for each relation. For instance, consider
the two entities Steve Jobs and Apple. Suppose that
the relation between this two entity mention in the
KB is Works At. Based on the method proposed
by (Mintz et al., 2009), one could extract examples
for relation Works At by extracting all sentences
in a large corpus (e.g., Wikipedia) that contains
mentions for both entities Steve Jobs and Apple

While the distantly supervised RE dataset could
extend the size of training sets, they also introduce
noisy examples. More specifically, sentences that
contain both entities of interest but do not mention
the supposed relation between entities are incor-
rectly labeled. This examples are indeed the false
positives. Due to this problem, a distantly super-
vised RE model should be able to deal with the
noisy example which might be extracted in this
process. To this end, several techniques are pro-
posed to exclude or rectify the incorrectly labeled



Figure 5: Document-level relation extraction by global and local graph encoding. The global-level graph encoding
is fulfilled by a graph convolution layer. The local-level graph encoding is obtained by using a self-attention
component (Wang et al., 2020a).

samples in the training data. Some of the prior
works exploit reinforcement learning (RL) to iden-
tify the incorrectly labeled samples. Feng et al.
(2018) introduced a two-module RE model. The
first module is an instance selector which identi-
fies the instances with incorrect labels and filter
them out. The second module is a relation classi-
fication model which use the input training data
to learn the RE task. The reward for the instance
selector is computed using the performance of the
second component on the evaluation set. In a simi-
lar approach, Qin, Xu, and Wang (Qin et al., 2018)
proposed to employ RL to denoise the training data.
However, in their method, instead of excluding the
noisy samples, they suggested to change the label
of the false positives to None, indicating there is
no relation between the two entity mentions in the
sentence.

One issue with the RL-based approaches is that
they make a hard decision to either exclude or
change the label of noisy samples. In other words,
during the training of the relation classifier, the hard
labels of the noisy samples might be detrimental for
the training process. In order to alleviate the effect
of the incorrect hard labels, Liu et al. (2017) intro-
duced a soft-label multi-instance learning method
for relation extraction with noisy training samples.
In this method, all samples of a pair of entity men-
tions hi and tj are grouped into the set < hi, tj >
consisting of c sentences S = {x1, x2, . . . , xc}.
The set < hi, tj > could be represented either by
only one of the sentences in S or an attention-based
pooling of the sentences. Afterwards, to obtain the
label for the set < hi, ht >, instead of using the
one-hot Li,j vector label obtained from the dis-
tantly supervised dataset, they proposed to learn a
dense vector L̄i,j from the bag representation and

Figure 6: Knowledge graph structure employed to com-
pute attention scores for every sentence in the noisy
training set (Hu et al., 2019)

the one-hot vector Li,j . The soft label L̄i,j will be
used in the next epoch by the relation classifier as
the gold label for the set < hi, tj >.

For the distantly supervised relation extraction
setting, the structure-based modeling has been also
shown to be effective. The graph-based models em-
ployed for DS relation extraction encode the struc-
ture of the knowledge graph. More specifically,
the structure of the knowledge base is employed to
model the interaction between the entities, thereby,
denoise the samples for every pair of entity men-
tions. For instance, authors in (Hu et al., 2019)
proposed to employ the knowledge graph struc-
ture to learn an embedding vector for each relation
type. More specifically, using the graph encoding
method proposed by (Bordes et al., 2013), they
learn the representation of the head (h), tail (t) and
relation (r) of the triples < h, r, t > in the knowl-
edge graph. Afterwards, using the representation of
the relations in the training set, an attention score
is computed for each sentence in the training set.
The attention-based representation of the sentences
are employed by the relation classifier. Figure 6
shows the diagram of this model.

In addition to the application of the graph struc-
ture for denoising the samples in DS datasets,



some researchers have employed graph structure to
learn the dependencies between relations predicted
for an entity pair (e1, e2) from a set of sentences
S = {s1, s2, . . . , sn}. Two relation are dependent
on each other, if the existence of one infer the exis-
tence of another. Note that it would be a directed
dependency. For instance, President of between a
person and a country could also induce the relation
Lives in between the person and the country. To
encode this dependency, authors in (Shang et al.,
2020) proposed to build a graph structure where
the nodes are the relation types and the edges could
represent the dependencies between them. During
training the model is optimized to learn a depen-
dency relation graph for every pair of entities that
could represent the gold relations between the two
entity.

5.4 End-to-end

Relation extraction is the task of identifying the
relations between entity mentions in text. To this
end, the entity mentions should be first identified.
While a pipeline approach identifies the entities and
relations in separate stages, the major limitation is
that the errors in the entity recognition stage could
be propagated to the relation extraction stage. In
order to prevent this error propagation, an end-to-
end (E2E) RE model jointly recognizes the entity
mentions and the the relation between them in a
given text snippet.

While the sentence-level relation extraction
datasets (e.g., ACE or SemEval 2010 Task 8) could
be used to train and evaluate an E2E RE model
(Miwa and Bansal, 2016), for this setting, most
of the recent work report the performance of the
models on NYT (Miwa and Bansal, 2016) and
WebNLG (Gardent et al., 2017) datasets. NYT
was originally proposed to address the high level of
noise in the datasets prepared by the distant super-
vision technique (Mintz et al., 2009). To this end,
they proposed a semi-supervised method to extract
relation tipples (i.e., (entity1,relation,entity2)) from
New York Times using the Freebase as the knowl-
edge base. WebNLG is a corpus created using a
natural language generation (NLG) framework op-
erated on the DBpedia knowledge base.

Although prior work for E2E RE employed
feature-engineering methods (Nguyen and Mos-
chitti, 2011), recent deep models are proved to
achieve the state-of-the-art results for this task
(Miwa and Bansal, 2016). Moreover, in the re-

cent work (Fu et al., 2019), authors have shown
that the structure-based modeling could improve
the performance of an E2E RE system. In particu-
lar, two graph structures are employed in this work:
(1) The syntactic tree of the sentence is employed
by a graph convolution network (GCN) to enrich
word representations The syntax-enriched word
representations are employed to predict the enti-
ties and also the relation types between words; (2)
A full-graph consisting of the words as the nodes
and the pair-wise relations between words as the
edges is created. In this graph, the edges (i.e., rela-
tions) that are predicted in the first stage (i.e., using
the dependency based GCN) are emphasized by
giving more attention weights to them. The main
purpose of this graph is to encode the relation de-
pendencies between words. Specifically, for those
relations that share an entity (e.g., the head entity),
the dependency between them could be encoded by
the GCN layer to infer the direct relation between
the other entities (e.g. the tail entities). For in-
stance, if the triples (BarackObama,LiveIn, White-
House) and (WhiteHouse, PresidentialPalace, Unit-
edStates) are predicted in the first stage, the second
stage employ GCN to infer the third triple (Barack-
Obama, PresidentOf, UnitedStates). In addition, in
order to predict multiple relations between every
pair of entities, authors proposed to use a thresh-
old in which every relation type r between the
pair of words w1 and w2 (i.e., two predicted entity
mentions), predicted in the second phase, will be
included in the final model’s prediction to create
the triple (w1, r, w2).

5.5 Cross-domain

While the aforementioned settings suppose that
the training and the evaluation data come from the
same domain, it could not be guaranteed in all sce-
narios. For those cases that the RE model is trained
and evaluated in different domains, a cross-domain
RE system is required. The main challenge of such
a setting is that the features that are useful dur-
ing training might not be relevant or helpful in the
evaluation phase. To train and evaluate models in
this setting, the ACE 2005 datasets is widely used.
In this dataset, there are 6 different domains, i.e.,
(bc, bn, cts, nw, un, and wl), covering text from
news, conversations and web blogs. Cross-domain
models are trained on one of these domains (e.g.,
news) and are evaluated on the other domains (e..g,
conversations and web blogs). Similar to the other



Figure 7: Event Graph from a news article. The triangle nodes represent the events and the circle nodes represent
the entities. The edges between the event node and the entity node show the role of the entity (i.e., argument) in
the corresponding event. The edges between two entities are the relation between them. (Li et al., 2020c)

Figure 8: Relation extraction in cross-domain setting
using structure inference (Veyseh et al., 2020b)

settings, for cross-domain RE, prior work started
to employ feature-based models (Yu et al., 2015).
However, deep models are proved to be more effec-
tive for this setting (Nguyen and Grishman, 2015a).
Until recently, the graph-based deep model have
not been explored for this task. Recently, Veyseh
et al. (2019a) have shown that the structure of the
text (e.g., dependency tree) could be used to im-
prove the performance for cross-domain RE. Also,
in the recent work (Veyseh et al., 2020b), they have
employed deep learning to infer the structure of
the text without using off-the-shelf parsers. More
specifically, they propose to employ two deep ar-
chitectures, i.e., ordered-neuron LSTM (Shen et al.,
2018) and self-attention mechanism (Vaswani et al.,
2017), to infer two views of structure of the in-

put sentence. Afterwards, by exploiting a neural-
based mutual information estimator (Belghazi et al.,
2018), they increased the consistency between two
structural views. Their evaluation on ACE 2005
dataset show that this techniques achieves the state-
of-the-art results for cross-domain relation extrac-
tion.

6 Event Extraction

Event extraction is the task of identifying real word
incidents mentioned in text such as attack, divorce,
or birth. According to the ACE annotation guide-
lines, an event is described as something that hap-
pens and change the state of an entity. For instance,
the sentence Ames recruited her as an informant
in 1983, then married her two years later, implies
that the marriage status of Ames is changed so it
refers to an event of marriage. According to ACE
annotation guidelines, every event mention consist
of two components:

• Trigger: This is the word or phrase which
most clearly express the occurrence of the
event. It could be a verb, noun or adjective.
For instance, in the sentence John robert bond
was born in England, the verb born is the
event trigger which indicates the occurance
of the event BE-BORN. Note that each event
trigger evokes a specific incident known as
event type.

• Argument: Those entities that are participants
of the event and their states are changed due



Figure 9: Graph Transformer Network (Yun et al., 2019)

to the occurrence of the event are considered
as the event argument. In addition to the event
participants, the other attributes of the event,
e.g., time or location of the event, are also con-
sidered as the event arguments. For instance,
in the sentence The man accused of killing
seven people near Boston on Tuesday got his
guns in Massachusetts, there is an event men-
tion of Kill. The trigger word for this event
is killing and the arguments of this event are
man, seven people, Boston and Tuesday. It
is worth noting that each argument takes a
specific role in the event. For instance, in the
given example, the role of the argument seven
people is victim and the role of the argument
Boston is place.

The task of identifying the trigger and its type
is known as Event Detection (ED) and the task of
identifying the event arguments and their roles is
known as Event Argument Extraction (EAE). For
each of this tasks there is a wealth of prior work ex-
tending from feature-based models (Ahn, 2006; Ji
and Grishman, 2008; Patwardhan and Riloff, 2009;
Liao and Grishman, 2010a,b; Riedel and McCal-
lum, 2011; Hong et al., 2011; McClosky et al.,
2011; Li et al., 2013; Miwa et al., 2014; Yang and
Mitchell, 2016) to advanced deep learning systems
(Chen et al., 2015; Sha et al., 2018; Zhang et al.,
2019b; Yang et al., 2019; Nguyen and Nguyen,
2019; Zhang et al., 2020b). While most of the
prior work consider sentence-level event extraction,
some recent work has also introduced event extrac-
tion in document level (Ebner et al., 2019). More-
over, in addition to the text-based event extraction,
there are some recent work that attempt to extract

event mentions from multiple modalities (e.g., text
and image) (Zhang et al., 2017a; Li et al., 2020b).
Furthermore, some prior work consider the open
event extraction which aims to extract the event
triggers without the assumption of a pre-defined
domain (i.e., ontology of event types) (Wang et al.,
2019a; Sims et al., 2019; Naik and Rosé, 2020).
Event extraction systems could be employed in
knowledge base construction, question answering,
and text summarization. In this section, we will
review the important existing work and their ma-
jor advantages and limitations. In the reviews of
the models, we emphasize the application of text
structure for event detection and event argument
extraction.

6.1 Datasets

The most popular dataset among event extraction
researches is ACE 2005 dataset. It has annotations
for 599 documents with 6,000 labels for events (Xi-
ang and Wang, 2019). The events are annotated
with 8 types and 33 sub-types. Table 1 shows the
event types and sub-types in ACE 2005 dataset.
Docuemnts annotated for ACE 2005 are in English,
Arabic and Chinese from six different domains,
i.e., Newswire, Broadcast News, Broadcast Con-
versations, Weblog, Usenet News Group, and Con-
versational Telephone Speech. Table 2 shows the
statistics of each of these domains in English sec-
tion of ACE 2005 dataset.

In addition to ACE 2005 dataset, there are other
datasets that are exploited by event extraction
works:

• TAC-KBP: introduced by Linguistic Data
Consortium (LDC) (tac, 2016), provides anno-



Type Sub-Types
Life Be-Born, Marry, Divorce, Injure, Die
Movement Transport
Contact Meet, Phone-write
Conflict Attack, Demonstrate
Business Merge-Organization, Declare-Bankruptcy, Start-Org, End-Org
Transaction Transfer-Money, Transfer-Ownership
Personnel Elect, Start-Position, End-Position, Nominate
Justice Arrest-Jail, Execute, Pardon, Release-Parole, Fine,

Convict, Charge-Indict, Trial-Hearing, Acquit, Sentence, Sue, Extradite, Appeal

Table 1: Event Types and Sub-Types in ACE 2005 (Xiang and Wang, 2019)

Domain Proportion
Newswire 20%
Broadcast News 20%
Broadcast Conversations 15%
Weblog 15%
Usenet News Group 15%
Conversational Telephone Speech 15%

Table 2: Domain Statistics of the English portion of the
ACE 2005 (Xiang and Wang, 2019)

CASIE CySecED
# event types 5 30
# positive examples 8,470 8,014
# negative examples 240,682 282,220
# sentences per document (average) 16.69 24.94

Table 3: Statistics for CASIE and CySecED. Negative
examples refer to non-trigger words while positive ex-
amples are the annotated trigger words for the event
types of interest (Hieu Man Duc Trong, 2020).

tations for 360 documents with 9 event types
and 38 event sub-types.

• LitBank: This dataset annotates 100 English
literary texts. It includes annotations for both
entities and event triggers. Unlike ACE, Lit-
Banck does not provide event types for the
triggers.

• TimeBank: This dataset, provided by LDC
(Pustejovsky et al., 2003), includes annota-
tions for events, times, and temporal relation
between event mentions. Similar to LitBank,
this dataset also does not provide types of the
event triggers.

• Domain-Specific Datasets: In addition to
the general-domain event annotation, some

datasets focus on domain-specific datasets.
BioNLP-ST is a collection of event mention
annotations from various corpora including
GENIA event corpus, BioInfer corpus, Gene
regulation event corpus, GeneReg corpus and
PPI corpora (Xiang and Wang, 2019; Vanegas
et al., 2015; Nédellec et al., 2013). Another
domain that has gained attention for event
extraction is cyber-security domain. In this
domain, event are categorized into four gen-
eral topics: (1) Discover: Events referring to
identification of a vulnerability in a system,
(2) Patch: Events mentioning the fixes of a
known vulnerability, (3) Attack: Exploitation
of a vulnerability to impact the system and
(4) Impact: consequences of an attack on a
system (Hieu Man Duc Trong, 2020). For
cyber-security domain, CySecED (Hieu Man
Duc Trong, 2020) and CASIE (Satyapanich
et al., 2020) are the largest datasets available.
The statistics of these datasets are provided in
Table 3.

• Multi-modal Event Extraction: In additon to
text-based event extraction, some recent work
proposed a new dataset for extracting events
from both textual and visual data (Li et al.,
2020b).

6.2 Feature-based Models

Early work on event extraction has employed fea-
ture engineering for event extraction from text. In
the early stages of event extraction research, Riloff
and Shoen (Riloff and Shoen, 1995), proposed a
pattern-based EE system. In their system, the syn-
tactic parse of the sentence is employed to extract
general patterns for event mentions. For instance,
in the sentence World trade center was bombed by



terrorists, identifying the subject (i.e., Wordl trade
center), verb phrase (i.e., was bombed) and prepo-
sitional phrase (i.e., by terrorists) could lead to the
event patterns [x] was bombed and bombed by [y]
to identify the attack event and its arguments in text
(Xiang and Wang, 2019). Based on the statistics
of the patterns in the corpus, the high confident
patterns are selected to be used in evaluation phase.
Later in the following years, feature-based models
employed statistical models such as nearest neigh-
bors (Ahn, 2006), maximum-entropy learner (Chen
and Ji, 2009), support vector machine (Saha et al.,
2011), and conditional random field (Majumder
and Ekbal, 2015).These models employ the lexical
forms of the words, the syntactic parse (e.g., the
POS tag, the parent or children of the word in the
dependency tree, or the label of the dependency
edges), synonyms of the words, and the event or
entity type (Xiang and Wang, 2019). For a com-
plete review of these methods, refer to the survey
provided by (Xiang and Wang, 2019).

6.3 Deep Models

Despite all progress obtained from more effec-
tive features employed in statistical models, the
major limitations of feature-based systems is that
these models are not able to incorporate back-
ground knowledge and also to infer new useful
patterns from the training data. Deep learning ad-
dresses these limitations by utilizing the word em-
beddings pre-trained on large corpus and also by
exploiting deep architectures to induce effective
patterns from the training data. Due to these advan-
tages, the recent event extraction systems employ
deep learning (Chen et al., 2015; Sha et al., 2018;
Zhang et al., 2019b; Yang et al., 2019; Nguyen and
Nguyen, 2019; Zhang et al., 2020b). Some of the
deep models exploit sequence-based architectures
(Sha et al., 2018), convolutional neural networks
(CNN) (Björne and Salakoski, 2018), or recent
transformer-based models (Ahmad et al., 2020).

In addition to the deep architectures and back-
ground knowledge, some recent models attempted
to incorporate the interaction between event types
(Li et al., 2019b) or argument roles (Wang et al.,
2019b) using hierarchy-based modeling. For in-
stance, authors in (Wang et al., 2019b), proposed
to encode the hierarchy of event argument types us-
ing neural module network (NMN) (Andreas et al.,
2016). In particular, the hierarchy of the event argu-
ment types are employed to capture the dependency

between related argument roles. For instance, in
the sentence Steve Jobs sold Pixar to Disney in
2006, identifying the role of the entity Steve Jobs
as Seller and its hierarchical dependency with role
Buyer (i.e., considering the fact that both Seller and
Buyer are entities of type Person or Organization)
could help the model to predict the role of the en-
tity disney as Buyer (see figure 11). To encode this
hierarchical information, authors proposed to train
separate attention functions for each type which
could be applied to the input sentence to obtain
type-dependent repression of the input text. The
aggregation of type-dependent representations of
all possible types of an entity is used in the final
classifier to predict the role of the entity. Figure 10
shows the diagram of this model.

6.4 Graph-based Models

The structure-based modeling has two applications
for event extraction: 1) Text Representation and
2) Event Graph. In this section, we study each of
them in details

6.4.1 Text Representation
The syntax or semantic based structures of the sen-
tence might be employed by deep models to en-
code the interactions between the words, thereby
improving the performance of event detection or
event argument extraction. For instance, authors in
(Amir Pouran Ben Veyseh, 2020) proposed to infer
the task-specific syntactic and semantic structure of
the input sentence using deep architectures. Specif-
ically, the syntactic structure is induced by feeding
the pair of dependency-based distance of the words
to the trigger/argument into a feed forward neural
net. The output of the feed forward neural net are
employed as the entries of the syntax-based adja-
cency matrix. To infer the semantic structure of the
input text, authors propose to employ self-attention
mechanism (Vaswani et al., 2017). Finally, for ef-
ficient combination of the syntactic and semantic
structures, graph transformer network (GTN) (Yun
et al., 2019) is employed. GTN uses convolution
operation to combine the structures and also en-
code the heterogeneous paths by multiplying the
adjacency matrix of all structures. An overview of
this network is shown in figure 9. One limitation
of the GTN architecture is that it could result in
overfitting to the training data due to the increased
number of parameters for combining the structures.
In order to alleviate this issue, authors in (Amir
Pouran Ben Veyseh, 2020) proposed to employ in-



Figure 10: Hierarchical Modular Event Argument Extraction (Wang et al., 2019b)

Figure 11: An example of the concept hierarchy (Wang
et al., 2019b).

formation bottleneck technique. Specifically, they
decrease the mutual information between the input
and output of the GTN, treating this network as
information bottleneck. This technique could pre-
vents the model from memorizing patterns specific
to the training data.

In another work, authors in (Li et al., 2019a)
proposed to employ Tree-LSTM to encode the de-
pendency tree of the input text. Tree-LSTM is a
version of LSTM with the key difference that at
each time step, the hidden states of the Tree-LSTM
neurons are updated using the representation of the
current word and the hidden states of all of its chil-
dren in the input tree structure. In addition to the
dependency tree encoded by Tree-LSTM, authors
also proposed to encode the external knowledge
encoded in a domain-specific knowledge base (KB)
using gating mechanism added to the Tree-LSTM
update rules. More specifically, firstly, for each
entity in the input text, their types and descrip-
tions are obtained from the knowledge base. Next,
the entity type and description are represented us-
ing randomly-initialized embedding of their words.
Note that these embeddings will be fine-tuned dur-
ing training. Afterwards, using the pooled repre-
sentation of the entity type and description, a new
gate vector is computed. The gate vector will be
employed in the Tree-LSTM to control how much
information should be transferred from the chil-
dren to the parent node at each time step. Diagram
12 shows the overall architecture of the proposed

model.

Although the Tree-LSTM or GCN architectures
employed in the above mentioned works are effec-
tive to capture the structure of the input text, the per-
formance of these models will degrade by increas-
ing the number of layers. This limitation prevent
the model from encoding longer dependencies in
the graph structure. To overcome this issue, authors
in (Yan et al., 2019) proposed to encode multi-order
graph structure. More specifically, they compute
the graph-based representation of the input text
by employing the dependency tree adjacency ma-
trix A, the second order of the adjacency matrix
A2 and the third-order of the adjacency matrix A3.
The aforementioned adjacency matrices will be en-
coded using graph attention network (GAT) which
is a variant of GCN. The representation obtained
for each order will be aggregated using attention
function atop the proposed GATs.

Another issue with prior work is that they utilize
dependency tree for event extraction while ignor-
ing the dependency relation type between words.
More specifically, the dependency tree is encoded
using a binary adjacency matrix in which an entry
is set to 1 if there is a dependency edge between
the corresponding words, otherwise the entry is
set to zero. To solve this limitation, in the pro-
posed mode by (Cui et al., 2020), authors suggest
to model the structure of the sentence by encoding
the dependency relations between words. More
specifically, instead of using a binary adjacency
matrix to encode the dependency tree, authors em-
ploy the tensor E of the dimension n × n × p
whose entry Ei,j is a vector of size p, i.e., the total
number of dependency relations in the dependency
tree. Moreover, each edge in the dependency tree
is represented with a randomly initialized vector.
The words of the sentence are also encoded by the
high-dimensional vectors obtained from a BiLSTM
network. Next, to update the word representations,



Figure 12: Knowledge-based event extraction. The upper component represent the depednecy tree and the
knowledge-base concept representations for the argument Tax. The middel component shows the KB informa-
tion for the concept Tax. The lower component shows the KB-drivent Tree-LSTM model (Li et al., 2019a).

each channel of the adjacency tensor E is employed
by a GCN layer to aggregate the representations
of the neighbor nodes and connecting edges with
the respect to the relation type corresponding to the
selected channel. Finally, using the updated rep-
resentations of the nodes and the previous state of
the edge vectors, the representation of each edge is
updated using a feed forward neural net. By stack-
ing of L layers of GCN and feed forward net to
update the word representations and the edge rep-
resentation, respectively, the final representation of
the words is obtained. Finally, a feed forward clas-
sifier consumes the representations of the words
to predict the event triggers. The diagram of this
model is shown in Figure 16.

6.4.2 Event Graph

A document might includes several event mentions.
These events could have temporal, hierarchical or
causal relations with each other. For instance, Fig-
ure 15 shows an event graph constructed from a
document based on temporal and causal relations
between events. More specifically, the event storm
causes three other events killed, died and canceled.
In addition to the causal relation, this figure also
shows the temporal relations between events, e.g.
the event die has happened before the event can-
celed. To construct the event graphs, prior works
takes two major steps: (1) Event mention detec-

tion which identifies the events in the document,
(2) Event-Event relation extraction which aims to
predict the causal or temporal relations between
events.

Recently, event-event relation extraction has
gained more attention. For instance, authors in
(Wang et al., 2020b) proposed joint model for si-
multaneously predicting the temporal and causal
relations between event pairs using contextualized
word embeddings and common sense knowledge
injection. In particular, to pre-train a model for
common sense knowledge injection, they propose
to construct a set of positive and negative samples
for event-event relations from two knowledge base
ConceptNet and TemProb. Specifically, they ex-
tract 30,000 triples from these knowledge bases and
annotate them using the relation specified between
them in the knowledge base. They also construct
another set of 30,000 triples in which there is no
relation between the head and the tail based on the
knowledge base facts. Afterwards, in a contrast
learning framework, they train a multi-layer per-
ception to distinguish the triples in which there is a
relation between them from the ones that are irrel-
evant to each other (i.e., with no relation between
the head and the tail). Finally, during training of the
event-event relation extraction model, the activa-
tions obtained from the pre-trained common sense
knowledge network is employed as extra features



Figure 13: Autoregressive path language model with neighbor path classification (Li et al., 2020c)

to be concatenated with the features extracted for
the input event-event paris. To obtain the event-
event pair representations, the input document is
first encoded by a pre-trained contextualized lan-
guage model. Afterwards, the representations of
the words in the document are concatenated with
their POS tag embedding and are fed into a bi-
directional LSTM (Bi-LSTM) model. Next, using
the representation of the event triggers obtained
from the Bi-LSTM layer and the features obtained
by the pre-trained common sense knowledge net-
work, the temporal and causal relations between
every pair of events is predicted. Figure 14 shows
the diagram of this model. The main advantage for
joint temporal and causal relation extraction is that
it could learn the features from one task that are
indicative for the other task too.

In addition to temporal and causal relations be-
tween events, they might share their arguments and
the arguments could have relations with each other
too. These relations between events and their argu-
ments could be encoded using graph structure. For
instance, Figure 7 shows an event graph consisting
of two events, their arguments and the relation be-
tween them. Identifying this graph could be helpful
to recognize the co-occurring events and arguments
for event extraction. Due to the importance of this
task, recently it has gained attention (Wang et al.,
2020c; Li et al., 2020c) Specifically, authors in (Li
et al., 2020c) proposed a language-model-based ap-
proach to construct the event graph between every
pair of events from all documents in a corpus. In

particular, they propose to find all possible connec-
tions between a pair of events using their mentions
in multiple documents. Note that connection be-
tween two events refer to any path between the
events in the event graph that includes one or mul-
tiple arguments. For instance, in the Figure 7 the
path Transport,artifact,PER,attacker,Attack is the
connection between the event Transport and the
event Attack via their common argument PER (i.e.,
entity of type Person whose role in Transport event
is artifact and in Attack event is Attacker). After
finding all possible connections, a language model
(i.e., BERT model), pre-trained on the paths in the
training set, predicts the importance of all found
connections in test set. Finally, those connections
that are above a threshold are selected to be used in
the final event graph constructed for the two events
of interest. Note that to predict the importance of a
connection using the pre-trained language-model,
authors propose to compute two types scores:

• Coherence and salience: This score evaluates
the degree to which the candidate path is con-
sistent with the two event types. For instance,
the path Attack, attacker, GPE, agent, Trans-
port should have high score with respect to co-
herence as it appears in the training data (See
Figure 7). To train the pre-train language-
model to give high score to coherent paths,
authors propose to train the BERT model in
an autoregressive fashion (i.e., given the pre-
vious elements of a path, the model predicts
the next element)



Figure 14: Joint model for causal and temporal event-event relation extraction (Wang et al., 2020b)

Figure 15: Event Graph constructed based on causal
and temporal relations between events (Wang et al.,
2020b)

• Path co-occurrence: For a pair of events, some
paths are more common and they frequently
co-occur with each other. For instance, the
path Attack, attacker, GPE, agent, Transport
and Attack, instrument, WEA, artifact, GPE,
agent, Transport co-occur with each other as
they both appear in the event graph shown in
Figure 7. In order to train the language-model
to give higher scores to the co-occurring paths,
authors employ a contrasting learning objec-
tive. Specifically, they propose to construct an
input sequence consisting of two paths for the
BERT language model. If two paths belong
to the same event graph, the input is labeled
as positive, otherwise it is labeled as negative
sample. Figure 13 shows the diagram of this
model.

While the approach proposed by authors in (Li

et al., 2020c) achieves promising results on con-
struing the event graph, due to the breaking down
of the event graph into paths, this model fail to
capture any graph-level interactions between edges
and nodes in the event graph. As such, a potential
direction for future work is to apply deep graph
models to encode the event graph.

7 Veracity

In addition to the application of structure-based
modeling for traditional information extraction
tasks, these models could be also useful for other
sub-fields of information extraction. One of these
sub-fields is information veracity. For information
veracity, the goal is to evaluate how much valid or
factual is a stated claim or event. This general topic
can be formulated as event factuality (Rudinger
et al., 2018), rumor stance classification (Veyseh
et al., 2017) or rumor resolutions in social networks
(Veyseh et al., 2019b). In this section, we study
these tasks and the application of graph-based mod-
els for them.

7.1 Event Factuality

For event factuality, the goal is to determine the
degree to which an event mentioned in text has
happended. For instance, in the example I will, af-
ter seeing the treatment of others, go back when I
need medical care, the event go back has not hap-
pened (it can be inferred by considering the verb
will). This task can be formulated as either a clas-
sification or a regression task. In the classification
task, the system could make a binary prediction
(i.e., for happened or not-happened classes) or it
could predict the levels of factuality. More specif-
ically, the system could predict one of the classes



Figure 16: Event extraction by utilizing dependency relations. The dependency tree is encoded in a trainable
tensor which is utilized in the edge-aware node update module to update the word representations. Afterwards,
the dependency tensor is updated by the node-aware edge update module using the new word representations (Cui
et al., 2020).

Figure 17: Dependency tree for the sentence I will, af-
ter seeing the treatment of others, go back when I need
medical care(Pouran Ben Veyseh et al., 2019)

of {−3,−2,−1,+1,+2,+3}, where the class -3
represent the predictions for cases that the model is
confident that the event is not factual (i.e., it has not
happened) and the class +3 represent the predic-
tions for cases in which the model is confident that
the event is factual (i.e., it has happened). On the
other hand, a regression model predicts any number
from the range of -3 to +3. The predictions that
are closer to +3 indicates that the model is more
confident about the factuality of the event mention.

For event factuality, the existing dataset
provide annotations for either the classifica-
tion task (i.e., discrete scores from the set
{−3,−2,−1,+1,+2,+3}) or regression task
(i.e., continuous numbers from the ragne [−3,+3]).
The most important existing datasets are:

• FactBank (Saurı́ and Pustejovsky, 2009): A
classification dataset provided otop the Time-
Bank dataset (Pustejovsky, 2006). Factbank

provide the factuality assessment with respect
to different sources (e.g., author).

• MEANTIME (Mititelu et al., 2018): This
dataset re-annotate a portion of the FactBank
dataset to capture the factuality of the event
with respect to the pragmatic context of the
event.

• UW (Lee et al., 2015): This a regression-
based dataset provides annotations for event
factuality in the range [−3,+3]. It also maps
the discrete labels from FactBank and MEAN-
TIME to the same range [−3,+3].

• UDS-IH1 (White et al., 2016) and UDS-IH2
(Rudinger et al., 2018): These regression-
based datasets provide annotations for 6,920
and 27,282 event predicates. The datasets
are annotated using crowd-sourcing (e.g.,
annotators from Amazon Mechanical Turk
(MTurk)).

For event factuality prediction, the exisiting
state-of-the-art models employ the syntactic or se-
mantic structure of the sentence to capture the im-
portant words regarding the given event trigger.
For instance, in the sentence I will, after seeing the
treatment of others, go back when I need medical
care, the factuality of the event trigger go back
could be induced from the verb will. However, this
cue (i.e., the word will) is sequentially far from the
trigger word go back. Due to this long distance, a
sequence based model will fail to effectively cap-
ture the dependency between these two words. In
contrast, a structure-based model could benefit the



Figure 18: Deep learning for rumor stance classification (Veyseh et al., 2017)

Figure 19: Distribution of Labels as time passes. The
horizontal axis displays how much time has passed
from the originating rumorous tweet. The vertical axis
displays the number of tweets in each class (Veyseh
et al., 2017).

short distance between these two words in the de-
pendency tree to infer the importance of the word
will for the trigger word go back (See Figure 17
for the dependency tree of the this sentence). To
encode this information, authors in (Rudinger et al.,
2018) proposed to employ the Tree-LSTM architec-
ture. More specifically, the dependency tree of the
sentence is employed as the syntax-based structure
of the sentence to identify the children of each word
in the sentence. Afterwards, the representation of
each word is updated based on its embedding and
the representation of its children obtained from the
hidden states of the Tree-LSTM neurons.

In addition to the syntax-based structure, the se-
mantic connection between words could be crucial
too. For instance, in the sentence Knight lied when
he said I went to the ranch, the semantics of the
word lied indicates that the event mentioned after
this is not factual. Capturing this semantic con-
nection between words requires semantics-based

structure modeling. To obtain the semantics-based
structure, authors in (Pouran Ben Veyseh et al.,
2019) proposed to employ a sequential encoder
(i.e., LSTM) to represent the words. Next, a two-
layer feed forward neural network predicts the
weight of the pair-wise connections between every
pair of words using the concatenation of their rep-
resentations obtained from the sequential encoder
(i.e., LSTM). Moreover, authors suggested to com-
bine the learnt semantic structure with the syntactic
tree to enhance the word representations for event
factuality prediction task. To achieve this goal,
they linearly combine the learnt semantics-based
adjacency matrix with the dependency tree adja-
cency matrix. Finally, a graph convolution layer
(GCN) updates the word representations using the
combined syntactic and semantic structures.

7.2 Information Veracity in Social Network

With the proliferation of social media, these net-
works are now one of the well-known source of
information for people. The high reachability of
the contents in these networks makes them a po-
tential platform for people to quickly spread news
to a large audience. This characteristics combined
with lack of editorial board to filter out non-factual
content, make the social networks (SN) a potential
platform for evil-doers to spread false information
(e.g. rumors). In order to prevent this side-effect
of SNs, automatic information veracity assessment
tools are required. Hence, in recent years, there
have been some efforts to design new models to
predict the veracity of the information in social net-
works. These models mainly focus on the rumor
resolution task. In particular, rumor resolution aims



Figure 20: An example of tree structure in Twitter for rumor stance classification (Ma et al., 2018)

to categorize a claim in social network (e.g., a tweet
in Twitter) into one of the following categories: (1)
True Rumor: Claims that turns to be factual, (2)
False Rumor: Claims that could be proved as non-
factual, (3) Without Rumor: Contents that do not
convey any questionable claim, and (4) Unrecog-
nizable: Claims that could not be identified either
as true rumor or false rumor.

Rumor resolution has been the subject of a series
of evaluation forums named as RumorEval (Gorrell
et al., 2018). This shared-task provides datasets for
rumor resolution from Twitter network. Also, in
addition to the main task (i.e., rumor resolution),
they provide dataset for another related sub-task
called rumor stance classification. The purpose of
the rumor stance classification is to identify the at-
titude of the people toward a claim which contains
a rumor. More specifically, the attitudes are catego-
rized into four groups: (1) Support (i.e., confirming
that the claim is true) (2) Deny (i.e., rejecting the
claim) (3) Comment (i.e., the user does not confirm
or reject the claim, instead, he/she expresses his/her
view about the claim) (4) Question (i.e., inquires
about the main claim). These attitudes could be ex-
pressed in the comments/replies to a post in social
network. Together with the main post itself, these
replies form a tree structure. An example of this
tree is shown in Figure 20. The tree structure of
replies could be employed by graph-based models
to encode each reply, thereby, to predict the attitude
of its author. This section first reviews the existing
work on rumor stance classification. Afterwards, it
discusses the existing work for rumor resolutions
on social media.

7.3 Rumor Stance Classification

The first work that has employed machine learn-
ing models for rumor stance classification is
(Qazvinian et al., 2011). They employ a feature-
based model for this task. Later, deep learning

models have been exploited for rumor stance clas-
sification (Kochkina et al., 2017; Ma et al., 2016).
More specifically, authors in (Kochkina et al., 2017)
employ a sequential encoder (i.e., LSTM) to en-
code each branch in the tree structure of replies
(see Figure 20). The representation obtained for
the branch will be further employed by a logistic
regression classifier to separately predict the stance
of each reply in the corresponding branch. In an-
other work (Zubiaga et al., 2016) authors use condi-
tional random field (CRF) to encode the sequential
dependencies between the replies in a branch. It
has been also shown that the temporal relation be-
tween replies could be helpful for this task (Lukasik
et al., 2019, 2016). More specifically, authors in
(Lukasik et al., 2019) propose to employ Gussian
Process to encode the process of different reply
attitudes (i.e., frequency in which the different at-
titudes are posted for a give main post containing
the rumor). In another work, authors in (Lukasik
et al., 2016) employ Hawkess Process for the same
task. Despite the improvements made available
by these works, they cannot infer the dynamics of
the changes in people’s attitude toward a topic. In
other words, people’s attitude tends to shift from
comment and query to deny or support after a pe-
riod of time. This fact is expressed in the recent
work (Veyseh et al., 2017) (See Figure 19). In order
to encode this characteristics, authors in (Veyseh
et al., 2017) introduced an attention-based model in
which the representation of the current reply is ob-
tained by attending at the previous and next replies
in the same branch of the reply tree. They also com-
bine this representation with other network-based
features obtained for the reply or its author from
the social network. Figure 18 shows the diagram
of this model.



7.4 Rumor Resolution

For rumor resolution which is the task of if a rumor
is true or not, the existing work attempt to collec-
tively encode all replies in the tree structure of the
posts (e.g., tweets). For instance, Ma et al. (2018)
exerted Tree-LSTM to collectively encode the tree
structure. In their model, the representation of
the main tweet will be regulated by the representa-
tions from its direct replies. The replies themselves
will be also regulated by the representation of their
direct replies (i.e., their children in the tree struc-
ture (See Figure 20)). While this method could
be helpful to incorporate the information from all
replies to identify the validity of the main claim,
the major limitation of this is that it is restricted
to the reply structure enforced by the social net-
work. In order to alleviate this issue, authors in
(Veyseh et al., 2019c) introduced a semantic-based
structure inference component. More specifically,
the representations of the replies are employed to
compute the pair-wise connection between them
using self-attention mechanism. Combined with a
novel regularization for emphasizing the content
of the main tweet, this method achieves the SOTA
performance on this task.

8 Text Structure in Other NLP
Applications

This section studies the application of text structure
and structure-based models for other natural lan-
guage processing applications. Namely, we study
the application of the text structure for sentiment
analysis, question answering, document classifica-
tion and text summarizing.

8.1 Sentiment Analysis

Sentiment analysis is one of the well known tasks
in natural language processing. The goal of this
task is to identify the attitude expressed in a piece
of text. For instance, in the sentence This restau-
rant is famous because of its high-quality Kebabs,
the author expresses a positive attitude. Identifying
the polarity of the authors’ attitude could be helpful
for other downstream applications including opin-
ion mining and recommending systems. Due to
the importance of this task, there is a wealth of
prior work for sentiment analysis. Furthermore, in
addition to the main task, recent works have exten-
sively studied the sub-task aspect-based sentiment
analysis (ABSA). In this sub-task, the goal is to
identify the attitude of the author toward a specific

topic. For instance, in the sentence The Kebabs
were good but the service was terrible, the author
express a positive attitude toward Kebab and a neg-
ative attitude toward service. In prior works, topics
of interest in which the attitude is evaluated against
are categorized into two groups:

• Aspect Term: In this category, topic is one
of the words appearing in the sentence. For
instance, in the given example, there are two
aspect terms Kebab and service.

• Aspect Category: This group of topics refer
to subjects that are discussed in the text but
they might not explicitly appear in it. For
instance, the aspect category quality of food is
discussed in the aforementioned example but
it is not explicitly part of the sentence2.

It is worth noting that ABSA might be used
in a pipeline system or a joint model with as-
pect term extraction (ATE) and aspect category
extraction (ACE) modules. More specifically, in a
pipeline model, the aspect terms and aspect cate-
gories are separately extracted using a pre-trained
model. Then, the extracted aspect terms or cate-
gories will be used by the final ABSA system. On
the other hand, in a joint model, the system simul-
taneously predicts the aspect term, aspect category
and the attitude of the author toward them.

In addition to the well-known SA and ABSA,
recently another sub-task of sentiment analysis has
been introduced. This task, called targeted opin-
ion word extraction (TOWE), aims to identify the
words in the text that convey the attitude of the
author, i.e., opinion word, toward the specific topic
expressed in the sentence. For instance, in the
sentence The keyboards of this laptop are quite
well-designed, however, its screen is disappoint-
ing, there are two aspect terms, i.e., keyword and
screen, and the opinion word for the aspect term
keyboard is well-designed and the opinion word for
the aspect term screen is disappointing. By iden-
tifying the opinion words toward different aspect
terms, TOWE could be helpful to increase the inter-
pretability of an ABSA system. Similar to ABSA,
some recent work propose a pipeline model or a
joint model for TOWE. In the pipeline model, the
aspect terms are predicted by a pre-trained model.
On the other hand, a joint TWOE model predicts

2Note that in this case the word Kebab is implicitly refer-
ring to the aspect category quality of food



Figure 21: The architecture of Latent Opinions Transfer Network (Wu et al., 2020c)

both the aspect terms and the opinion words to-
wards to each of them.

In this section, we study the progress of recent
works on ABSA and TOWE, with an emphasis on
the application of the text structure for these two
tasks.

8.1.1 Aspect-based Sentiment Analysis

Prior works on aspect-based sentiment analy-
sis range from feature-engineering methods (e.g.,
SVM) (Wagner et al., 2014) to the advanced deep
learning models (Wagner et al., 2016; Johnson
and Zhang, 2015; Tang et al., 2016). Despite the
improvement obtained from the typical sequence-
based deep models (e.g., LSTM) (Wagner et al.,
2016) and other novel mechanism such as attention
mechanism (Luong et al., 2015) and gating mecha-
nism (He et al., 2018), recent work has shown that
the graph-based models that encode the syntactic
structure of the sentence achieve the state-of-the-art
results for ABSA (Huang and Carley, 2019; Zhang
et al., 2019a; Hou et al., 2019). This sections re-
views the important recent works that employ the
structure-aware models for ABSA.

Huang and Carley (2019) proposed a model
based on graph attention network to encode the
dependency tree of the sentence. More specifically,
given the syntactic tree of the sentence, an adja-
cency matrix is computed. In this matrix, entries
indicate whether the words in the two correspond-
ing indices are connected in the dependency tree
or not. As the dependency tree is a directed graph,
the adjacency matrix is asymmetrical. Afterwards,
a graph-attention network (GAT) (Veličković et al.,

2017) is employed to update the initial representa-
tions of the words using the dependency tree adja-
cency matrix. Specifically, GAT consists of mul-
tiple layers to update node representations using
attention-based neighbor aggregation. Note that
the initial representation of the nodes are obtained
from their corresponding pre-trained embeddings.
While GAT could be more effective than Graph
Convolution Network (GCN) to capture longer de-
pendencies in the input graph, its performance still
degrades by stacking too many layers of GAT. In
order to address this issue, authors in (Huang and
Carley, 2019) proposed to employ a Recurrent Neu-
ral Network (RNN) to encode the representations
of the nodes from different layers of the GAT. In
particular, all representations of the i-th node from
l layers of GAT, are fed into a LSTM layer and the
final hidden states of the LSTN neurons are em-
ployed as the final representation of the i-th word.

Despite the improvement obtained by the ap-
proach presented in (Huang and Carley, 2019), this
method fails to capture the importance of the aspect
term in the pair-wise interaction between words. In
other words, the attention scores are ignorant of
the given aspect term in the sentence. It could
be problematic as the aspect term is the most im-
portant word in the sentence and it should be em-
phasized in the representations of the other words
too. To alleviate this limitation, authors in (Veyseh
et al., 2020d) proposed to compute aspect-aware
gates to be applied to each layer of GCN. More
specifically, the representation of the aspect term
wt is employed by a feed forward neural network
to compute the gate vector gt. The gate vector gt



is multiplied to the word representations obtained
from the l-th layer of the GCN operating on the
dependency tree, i.e., h′i = gt ∗ hi. Although this
gating mechanism could be helpful to incorporate
the information about the aspect term to the rep-
resentations of the other words, one drawback is
that it exploits the same gate for different layers of
the GCN that naturally represent different abstract
information. To mitigate this problem, authors sug-
gested to compute separate gate vectors for each
layer of the GCN. Moreover, they introduced a di-
versity auxiliary loss to encourage the difference
between gates of the different layers. Finally, in
addition to the application of the syntactic tree in
the gated graph convolution network, authors in
(Veyseh et al., 2020d) proposed to employ the syn-
tactic tree to guide the model emphasizing on the
words that are syntactically more important to the
aspect term. In particular, they compute impor-
tance scores for each word based on their distance
to the aspect term in the dependency tree. They
also compute another importance score for each
word based on the similarity of its representations
to the representation of the entire sentence. Finally,
they encourage these two sets of scores to be simi-
lar to each other by using KL-divergence between
them in the final loss function.

8.1.2 Targeted Opinion Word Extraction
Compared to the other sub-tasks of sentiment analy-
sis, there are fewer prior works on the targeted opin-
ion word extraction. Although some of the prior
works have studied the task of opinion word ex-
traction (OTE) (Htay and Lynn, 2013; Shamshurin,
2012), they extract the general opinion words ex-
pressed in the sentence regardless of the given tar-
get words. Another related task to TOWE is opin-
ion target extraction (OTE) (Qiu et al., 2011; Liu
et al., 2015a; Poria et al., 2016; Yin et al., 2016;
Xu et al., 2018) whose goal is to identify the target
words for which the author express his/her opinion
in the sentence. Also, some prior works propose
a joint model for opinion word extraction (OWE)
and opinion target extraction (OTE). Howver, they
do not pair the opinion words with their targets
(Qiu et al., 2011; Liu et al., 2013a; Wang et al.,
2016b, 2017; Li and Lam, 2017). The few exist-
ing works on TOWE employ either a rule-based
method (Zhuang et al., 2006; Hu and Liu, 2004) or
deep learning models (Fan et al., 2019; Wu et al.,
2020c; Pouran Ben Veyseh et al., 2020). In the
recent work by (Fan et al., 2019), authors anno-

tated the the widely used ABSA datasets from the
SemEval challenges, i.e., SemEval 2014, 2015 and
2016. These datasets contain reviews for restau-
rants and laptops. One limitation of the datasets pre-
pared by (Fan et al., 2019) is their limited size com-
pared to other exiting datasets for sentiment analy-
sis. This limited size might hinder developing an
effective deep learning model. To address this issue,
authors in (Wu et al., 2020c) proposed a transfer
learning based model. Specifically, they propose
to learn the opinion word extraction knowledge
from the existing sentiment classification datasets
by pre-training an attention-based sentiment clas-
sifier. Note that the attention scores obtained for
each word from the pre-trained sentiment classifier
indicates the general opinion words in the input
sentence. In order to transfer this information to
the TOWE model, they propose two mechanism:
(1) Incorporating the representation of the words
from the pre-trained sentiment classifier into the
TOWE model by concatenating them with the rep-
resentations of the corresponding words from the
TOWE model, (2) Re-scaling the attention scores
obtained from the pre-trained sentiment classifier
with respect to their distance to the target and use
the re-scaled attention scores as auxiliary labels to
be predicted by the TOWE model in a multi-task
setting. The overall architecture of this model is
shown in Figure 21. While this method achieves
some improvement, the major limitation of this
is that it totally ignores the syntactic information
of the input sentence. To overcome this limita-
tion, authors in (Pouran Ben Veyseh et al., 2020)
proposed to employ the dependency tree of the sen-
tence to infer the importance of the words of the
sentence with respect to the given target. More
specifically, the application of the dependency tree
in this work is two-folded: (1) To induce the im-
portance of the words and incorporate it into the
model parameters, (2) Update pair-wise interac-
tions of the words based on their connection in the
dependency tree. To achieve the first goal, they
compute the dependency-based importance scores
of the words based on their distance to the target
word in the dependency tree. In order to incorpo-
rate these scores to the model parameters, they sug-
gest to first compute another set of scores based on
the model parameters (called model-based scores).
Afterwards, they minimize the difference between
these two sets of scores, i.e., dependency-based and
model-based scores, using KL-divergence. In or-



Figure 22: Correspondence between constituency parse tree and hidden states of ON-LSTM (Shen et al., 2018).
Figure (a) shows the constituency tree for the sentence S = x1, x2, x3, Figure (b) shows the block-view of the
constituency tree and Figure (c) shows the hidden states of ON-LSTM at different time-steps (i.e., words). Note
that in this symbolic sentence, the word x1 has the highest importance so all hidden states of ON-LSTM are
active in that time step. On the other hand, x3 is the least important words and fewest neurons are active in the
corresponding time step.

der to compute the model-based importance scores,
they employ Ordered Neuron LSTM (ON-LSTM)
architecture. This architecture is similar to the well-
known LSTM architecture with the key difference
of having two master input and forget gates. These
gates control the frequency in which each neurons
of ON-LSTM should be updated. More specifi-
cally, these gates are computed and employed in
the ON-LSTM computations as follows:

f̂i = cummax(Wf̂xi + Uf̂hi−1 + bf̂ )

îi = 1 − cummax(Wîxi + Uîhi−1 + bî)

f̄i = f̂i ◦ (fi îi + 1 − îi), īi = îi ◦ (iif̂i + 1 − f̂i)

ci = f̄i ◦ ci−1 + īi ◦ ĉi

(1)

where hi−1 is the representation of the i− i-th
word, Wf̂ , Uf̂ and bf̂ are model parameters, fi,
ii and ci−1 are the forget and input gates and the
context vector for the i-th and i−1-th word, respec-
tively, ◦ is element-wise multiplication and finally,
cummax is a new activation function defined as
follows:

cumax(x) = cumsum(softmax(x)) (2)

and cumsum is defined as
cumsum(u1, u2, . . . , un) = (u′1, u

′
2, . . . , u

′
n)

where u′i =
∑

j=1..i uj
Note that ideally cummax divides its input into

two sections of 0’s and 1’s. Using this function as
the activation function of the master forget or input
gates, it controls how many neurons should be acti-
vated at the corresponding time step. Based on this,
authors in (Shen et al., 2018) and (Pouran Ben Vey-
seh et al., 2020) suggest to infer the importance of
the word w by sw = 1 −

∑
j=1..D f̂ij . Note that

although Shen et al. (2018) directly use this impor-
tance score to infer the constituency tree of the sen-
tence (See Figure 22), authors in (Pouran Ben Vey-
seh et al., 2020) employ these scores to measure the
difference between model-based and dependency-
based importance scores via KL-divergence loss.

In order to realize the second aforementioned
application of dependency tree (i.e., encoding the
pair-wise interaction between words), authors in
(Pouran Ben Veyseh et al., 2020) employ graph con-
volution network (Kipf and Welling, 2017). Since
the pair-wise interaction between words in the de-
pendency tree might be ignorant of the target word,
they suggest to combine the dependency tree ad-
jacency matrix with another adjacency matrix in-
duced by a feed forward layer consuming the dis-
tance of the words to the target in the dependency
tree.

8.2 Definition Extraction

Automatically extracting terms and definitions
from text is one of the natural language process-
ing tasks related to information extraction. This
task aims to identify the symbols or phrases, i.e.,
terms, for which a definition is provided in text.
For instance, in the sentence The phrase “atoms
and molecules” is explained in the dictionary by
the expression of building blocks of materials the
definition building blocks of materials is provided
for the term atoms and molecules. Identifying the
terms and definitions in text could be helpful for
question answering, knowledge base population,
and text summarization.

Prior work in Definition Extraction (DE) takes
two step to fulfill this task: (1) Identifying the sen-
tences in which a term or a definition is provided,



Figure 23: Relation schema in DEFT dataset (Spala et al., 2019)

Figure 24: Statistics of existing definition extraction
datasets (Spala et al., 2019)

(2) Span extraction whose goal is to recognize the
spans in text corresponding to term or definition.
While early models provide a solution for the for-
mer task (Klavans and Muresan, 2001; Cui et al.,
2004, 2005; Fahmi and Bouma, 2006), the latter
gained more attention in recent years (Li et al.,
2016b; Veyseh et al., 2020a; Kang et al., 2020).

For this task, there are three major datasets:

• WCL: This dataset, contributed by (Navigli
and Velardi, 2010), annotates Wikipedia arti-
cles with the terms and definitions in general
domain.

• W00: This dataset is introduced by (Jin et al.,
2013). It provides annotations for terms and
definitions in scientific domain from the pa-
pers in ACL-ARC anthology.

• DEFT: This is the largest available definition
extraction dataset (Spala et al., 2019). It pro-
vides annotations for terms and definitions in
legal documents, i.e., contracts, and scientific
documents, i.e., text books. Moreover, it also
annotates the different type of relations be-
tween terms or definitions in the document.
The description of the relation schema is pro-
vided in Figure 23. Also, Figure 24 shows the
statistics for all three datasets WCL, W00 and
DEFT.

Prior works on DE extends from rule-based
methods (Klavans and Muresan, 2001; Cui et al.,

2004, 2005; Fahmi and Bouma, 2006) to feature-
based (Jin et al., 2013; Westerhout, 2009) and re-
cently advanced deep learning models (Anke and
Schockaert, 2018; Veyseh et al., 2020a; Kang et al.,
2020). Although recent sequential deep learning
models such as LSTM and CNN achieve promising
results on this task (Anke and Schockaert, 2018),
the state-of-the-art results are obtained by models
employing the structure of the input text. More
specifically, authors in (Veyseh et al., 2020a) pro-
posed a model in which the dependency tree of
the sentence is utilized by graph convolution net-
work (GCN) to encode long-range dependencies
between words in the sentence. Moreover, in their
model they encourage the consistency between the
term and the definition by ensuring the similar-
ity between the term and the definition representa-
tions. This work is further analyzed and improved
in the recent work (Kang et al., 2020) by utilizing
a transformer-based encoder to model the syntactic
structure of the sentence.

A special case for definition extraction is
acronym meaning extraction. Acronyms and abbre-
viations are shorter forms of technical terms and
they are prevalent in scientific and legal writing.
Acronym meaning extraction consist of two major
sub-tasks:

• Acronym Identification: In this sub-task the
goal is to identify the spans that represent an
acronym or phrases which are abbreviated in
text. For instance, in the sentence The main
key performance indicator, herein referred to
as KPI, is the E2E throughput, there are two
acronyms, i.e., KPI and E2E, and one phrase
with an abbreviated form, i.e., key perfor-
mance indicator. An acronym identification
systems (AI) aims to identify both acronyms
and the phrases in text. This task is normally
formulated as sequence labeling. The predom-
inant approach used in prior work on AI is
based on heuristics rules. For instance, the ap-



Figure 25: Incorporating external knowledge into transformer-based machine reading comprehension (Qiu et al.,
2019)

proach proposed in (Charbonnier and Wartena,
2018) identities the acronyms if 60% of their
characters are upper-cased. To identify the
phrases they propose to compare the initials
of the words surrounding an acronym with the
letters of the acronym itself; phrases that their
initials could form the acronym are labeled as
abbreviated phrases. Despite the simplicity of
the rule-based methods, they achieve promis-
ing results on various acronym identification
datasets (Veyseh et al., 2020c). Recently, au-
thors in (Veyseh et al., 2020c) proposed a deep
learning model which utilizes a sequence-
based encoder (i.e., BiLSTM) followed by
conditional random field (CRF) layer to pre-
dict the acronyms and their long-forms in text.

• Acronym Disambiguation: Acronyms and
abbreviations might have multiple expanded
forms. For instance, PDF could refer to Prob-
ability Density Function or Portable Docu-
ment Format. The correct meaning of an
acronym depends on the context in which the
acronym appears. As such, acronym disam-
biguation (AD), aims for identifying the cor-
rect meaning of an ambiguous acronym, i.e.,
an acronym with multiple long-forms. For this
task, prior work employs both feature-based
models (Li et al., 2018) and deep learning
approaches (Charbonnier and Wartena, 2018;
Ciosici et al., 2019). For example, authors
in (Charbonnier and Wartena, 2018) propose
to pre-train a language model in which the
acronyms are represented with the special to-

ken [Acronym] [Meaning]. Note that for each
meaning of an acronym, one special token is
created. Afterwards, in inference time, the
acronym is replaced with blank and the spe-
cial token with the highest probability to fill
the blank is predicted by a language model.
The meaning corresponding to the predicted
special token is selected as the expanded form
of the given acronym.

Employing the structure of the text has been
shown to be effective for acronym extraction too
(Veyseh et al., 2020c). More specifically, authors
in (Veyseh et al., 2020c) propose to employ the de-
pendency tree of the input sentence to capture the
interactions between words of the sentence. This in-
teraction is encoded by graph convolution network
(GCN). They show that this model could signifi-
cantly improve the performance over a sequence-
based model. For instance, consider the sentence
Words that are not compatible with our pre-defined
rules are excluded from SDP, with the acronym
SDP and the correct expanded form Shortest De-
pendency Path. In this example, the clue for identi-
fying the correct meaning of the acronym is Words
at the beginning of the sentence. As there is a long
distance between SDP and Words a sequence-based
model might fail to capture their dependencies. On
the other hand, these two words are close to each
other in the dependency tree. Thereby, incorporat-
ing the information obtained by dependency tree
into the model could improve the performance of
acronym disambiguation. Despite this improve-
ment, authors in (Veyseh et al., 2020c) warn that



the direct incorporation of the dependency tree
might also involve some noisy dependencies into
the model which results in performance degrada-
tion compared to a sequence-based acronym dis-
ambiguation model. Hence, enriching a structure-
based model with some mechanism to control the
contribution of the dependency tree and filter out
the noisy dependencies seems to be promising di-
rection for future improvement on this task. This
can be achieved by graph attention network or more
sophisticated structure-based models for inferring
the semantic structure instead of relying on the
syntactic trees.

8.2.1 Question Answering and Machine
Reading Comprehension

One of the well-known tasks in natural language
processing is question answering. This task backs
to 1960s (Green Jr et al., 1961) when early systems
were designed to extract answers to questions from
a database. Since then, several formulations and
settings for question answering has been proposed
including open domain (Yang et al., 2015), knowl-
edge base (Veyseh, 2016), or community-based
(Zhao et al., 2017) question answering. Some other
tasks such as machine reading comprehension (Qiu
et al., 2019), relation extraction (Li et al., 2019c),
or event extraction (Du and Cardie, 2020) has been
also modeled and approached using question an-
swering paradigm. For a complete survey on ques-
tion answering, refer to (Gupta and Gupta, 2012;
Bouziane et al., 2015; Fu et al., 2020).

In this study, we review the application of
structure-aware models for question answering
(QA). Some of the prior work employs the struc-
ture in a knowledge base (KB) to extract answers
to the questions. For instance, authors in (Qiu
et al., 2019) proposed to incorporate the external
knowledge encoded in a Knowledge base into a
transformer-based QA system. More specifically,
for a given paragraph from which the answer is
expected to be extracted and a question, they first
extract the triples in the knowledge base whose
tail or head share the same lemma with one of the
words in the given paragraph. Afterwards, for each
extracted triple, the neighbors of the heads or tails
that share the same lemma with one of the words in
the questions are selected too. Finally, using the ex-
tracted triples and their neighbors, author create a
graph which represent a sub-graph of the KB. This
graph is later encoded by a graph attention network
(GAT). The representations of the words obtained

from the GAT will be finally concatenated with the
representations of them from the transformer to be
used in a span labeling model. Figure 25 shows the
diagram of this model.

Knowledge bases could be also directly used to
extract answers from them. For instance, authors
in (Veyseh, 2016) proposed a feature-based model
to extract answers from DBpedia which is a knowl-
edge base constructed from Wikipedia. In particu-
lar, they first extract the keywords of the questions
that would be further exploited to extract entities,
i.e., candidate answers, from the knowledge base.
Afterwards, using the semantic similarity between
the entity relations and the question, the triple with
the highest semantic similarity is selected as the
answer to the question.

In addition to the application of the knowledge
base for question answering, some recent works
employ the structure-aware models for document-
level question answering. For instance, authors in
(De Cao et al., 2018) proposed a graph-based model
to extract answers from a collection of documents.
More specifically, they first create a graph of enti-
ties and semantic relations between them from a
set of documents. The representations of the en-
tities is obtained from the sequential encoding of
the words of each document. Next, to perform rea-
soning across multiple documents and update the
entity representations, they employ graph convolu-
tion network (GCN). Finally, the representations
of the question obtained from a sequence-based
encoder is concatenated with the representations of
the entity nodes to predict the answer.

8.2.2 Text Summarization
Text summarization is one of the established task in
natural language processing dating back to 1950s
(El-Kassas et al., 2020). The goal of this task is
to summarize a long piece of text, e.g., a docu-
ment, into a shorter version. To this end, prior
work takes three different approaches: (1) Extrac-
tive summary: In this approach the summary is
constructed by selecting the salient sentences or
other text blocks from the original document (Mur-
ray et al., 2005), (2) Abstractive summary: This
method aims to generate a summary consisting
of sentences which might not be explicitly in the
document (Gehrmann et al., 2018), and finally (3)
Hybrid summary: In this method both extractive
and abstractive techniques are utilized to obtain
the final summary (Kirmani et al., 2019). For a
comprehensive review of the prior work on text



Figure 26: Document summarization using latent and explicit structure encoding (Balachandran et al., 2020)

summarization, we refer the reader to the recent
survey (El-Kassas et al., 2020). In this study we
review some of the recent works that utilize the text
structure to obtain the summary.

For text summarization (TS), traditionally graph-
based architectures have played an important role
to encode the interaction between different parts
of the document, thereby, improving the represen-
tation of the document for summarization. These
methods includes sentence-sentence compatibility
(Erkan and Radev, 2004), abstract meaning rep-
resentation (AMR) (Liu et al., 2018) or discourse
based methods such as coreference graphs (Dur-
rett et al., 2016). In addition to these traditional
structures employed for TS, recently the structure
induction has gained attention too. Structure induc-
tion aims to employ the semantic representation of
the words/sentences of the document to infer pair-
wise interactions between them. For instance, in
the recent work by Balachandran et al. (2020), au-
thors proposed an attention-based model to incorpo-
rate the semantics of the sentences into the syntax-
based structure of the document. In particular, the
sentences of the document are first encoded by a
sequence-based model (i.e., BiLSTM). Afterwards,
the max-pooled representations of these sentences
are fed into two graph-based models. The first one
is a graph convolution network which utilizes the

coreference-based graph of the document to up-
date the sentence representations. The second one
is a self-attention component which assesses the
pair-wise interaction of the sentences using their
representations. The concatenation of the outputs
of these two graph-based networks are finally fed
into a decoder as the context representation to gen-
erate the text summary. The diagram of this model
is shown in Figure 26

9 Future Works

Employing structural modeling is an important
topic in various NLP tasks, especially informa-
tion extraction whose goal is to create a structured
knowledge from unstructured text. Despite all suc-
cesses in leveraging syntactic or semantic struc-
ture of the text, external structures such as knowl-
edge bases and innovative structure-based model-
ing (e.g., graph attention network), there are a lot of
challenges remained for future research. One of the
major limitations of the existing work is that they
are limited to the existing structures (e.g., syntactic
tree or knowledge bases) extracted using external
tools. More specifically, a pre-trained model is re-
quired to create the structure used in the IE model.
This requirement has two drawbacks: (1) In do-
mains and settings in which an efficient structure
could not be extracted using external tools (e.g.,



in cross-lingual setting that one of the languages
lacks efficient syntactic parser) the existing models
fail to decently work. (2) The external tools are
pre-trained for the general task (e.g., constituency
parsing), thus ignorant of the downstream task (e.g.,
relation extraction). This mismatch between the
pre-trained model’s task and the IE task might re-
sult in inefficiency of the extracted structure using
these tools. In order to address these two limita-
tions, one direction is to simultaneously train the
IE model for the task in hand and also to infer the
structure in a multi-task setting. To achieve this
goal, several questions should be answered such as
whether a sparse graph is suitable for the IE task
or a dense graph; what elements should be used as
the nodes and the edges of the inferred graph (i.e.,
words, entities, etc); and how the inferred structure
should be involved in the model for the IE task?

Another limitation of the existing work is that
they are mainly restricted to the sentence-level
structures (e.g., dependency tree). The main goal
of IE is to extract formations from document rather
than one sentence. So it is crucial for the future
research to explore the challenges of leveraging a
document-level structure. Although there are some
recent work for document level RE or EE, however
these models mainly exploit heuristics to create
the structure. For instance, they use the sentences
or entities as the nodes and connect them in the
graph if the entity is mentioned in the sentence.
Such simple rules might not be able to capture all
types of interactions between different parts of the
document. Thereby, exploring efficient ways to en-
code the structure of the document for IE is another
direction for future work.

Finally, exploiting external knowledge in an
structured model is also another possible direction
for future research in IE. Using external knowl-
edge (e.g., knowledge base) for IE has a long his-
tory. However, incorporating these structures in the
modern deep architectures (e.g., transformers like
BERT) is not fully explored yet. It has been shown
that the transformer based model pre-trained on
large corpora are able to encode notions of textual
structure. However, their capability to encode the
factual knowledge in a knowledge base should be
investigated in future.

10 Proposed Research Topic

Based on the expected future works elaborated in
the previous section, I propose to work on the ap-

plication of the document structure for multilingual
event detection. In this task, the goal is to study
how the structural information induced for a given
document could be useful for detecting the event
triggers and their arguments in text. This is a novel
study as none of the prior works have considered
the document structure for event extraction specifi-
cally for multilingual setting. Also, given the recent
work on structure induction, this work is expected
to have a substantial contribution to the field by
providing more insight into the applicability of a
deep learning model to induce a structure which
is useful across multiple languages. To this end,
due to the lack of existing resources, i.e., a dataset,
we should first attempt to collect training data for
document level multilingual event extraction. In
addition, we expect to have some analysis on how
the existing deep architectures, such as transformer-
based pre-trained language models, could perform
in document level event extraction. Finally, we will
work on a novel model to efficiently infer the struc-
ture of a given document and to exert this in the
final event extraction model. The proposed model
will be evaluated on multiple languages including
English, Spanish, Persian and Vietnamese.
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wards open domain event trigger identification us-
ing adversarial domain adaptation. arXiv preprint
arXiv:2005.11355.

Guoshun Nan, Zhijiang Guo, Ivan Sekulic, and Wei Lu.
2020. Reasoning with latent structure refinement for
document-level relation extraction. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1546–1557, On-
line. Association for Computational Linguistics.

Roberto Navigli and Paola Velardi. 2010. Learning
word-class lattices for definition and hypernym ex-
traction. In ACL.

Claire Nédellec, Robert Bossy, Jin-Dong Kim, Jung-
Jae Kim, Tomoko Ohta, Sampo Pyysalo, and Pierre
Zweigenbaum. 2013. Overview of bionlp shared
task 2013. In Proceedings of the BioNLP shared
task 2013 workshop, pages 1–7.

Vincent Ng and Claire Cardie. 2002. Improving ma-
chine learning approaches to coreference resolution.
In Proceedings of the 40th annual meeting of the As-
sociation for Computational Linguistics, pages 104–
111.

Minh Nguyen and Thien Huu Nguyen. 2018b. Who
is killed by police: Introducing supervised attention
for hierarchical lstms. In Proceedings of COLING.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016a. Joint event extraction via recurrent
neural networks. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 300–309.

Thien Huu Nguyen and Ralph Grishman. 2015a.
Combining neural networks and log-linear mod-
els to improve relation extraction. arXiv preprint
arXiv:1511.05926.

Thien Huu Nguyen and Ralph Grishman. 2015b. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In Proceedings of the 1st Workshop on
Vector Space Modeling for Natural Language Pro-
cessing, pages 39–48.

Thien Huu Nguyen and Ralph Grishman. 2015a. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In The NAACL Workshop on Vector
Space Modeling for NLP (VSM).

Thien Huu Nguyen, Avirup Sil, Georgiana Dinu, and
Radu Florian. 2016b. Toward mention detection
robustness with recurrent neural networks. arXiv
preprint arXiv:1602.07749.

Truc-Vien T Nguyen and Alessandro Moschitti. 2011.
End-to-end relation extraction using distant super-
vision from external semantic repositories. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 277–282.

Trung Minh Nguyen and Thien Huu Nguyen. 2019.
One for all: Neural joint modeling of entities and
events. In AAAI.

Siddharth Patwardhan and Ellen Riloff. 2009. A uni-
fied model of phrasal and sentential evidence for in-
formation extraction. In EMNLP.

Sachin Pawar, Girish K Palshikar, and Pushpak Bhat-
tacharyya. 2017. Relation extraction: A survey.
arXiv preprint arXiv:1712.05191.

https://www.aclweb.org/anthology/2020.acl-main.141
https://www.aclweb.org/anthology/2020.acl-main.141


Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph lstms. Transac-
tions of the Association for Computational Linguis-
tics, 5:101–115.

Soujanya Poria, Erik Cambria, and Alexander Gelbukh.
2016. Aspect extraction for opinion mining with
a deep convolutional neural network. Knowledge-
Based Systems, 108:42–49.

Amir Pouran Ben Veyseh, Thien Huu Nguyen, and De-
jing Dou. 2019. Graph based neural networks for
event factuality prediction using syntactic and se-
mantic structures. In ACL.

Amir Pouran Ben Veyseh, Nasim Nouri, Franck Der-
noncourt, Dejing Dou, and Thien Huu Nguyen.
2020. Introducing syntactic structures into target
opinion word extraction with deep learning. page
EMNLP.

James Pustejovsky. 2006. Timebank 1.2. In LDC.

James Pustejovsky, Patrick Hanks, Roser Sauri, An-
drew See, Robert Gaizauskas, Andrea Setzer,
Dragomir Radev, Beth Sundheim, David Day, Lisa
Ferro, et al. 2003. The timebank corpus. In Corpus
linguistics, volume 2003, page 40. Lancaster, UK.

Vahed Qazvinian, Emily Rosengren, Dragomir Radev,
and Qiaozhu Mei. 2011. Rumor has it: Identifying
misinformation in microblogs. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing, pages 1589–1599.

Pengda Qin, Weiran Xu, and William Yang Wang.
2018. Robust distant supervision relation extraction
via deep reinforcement learning. Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics.

Delai Qiu, Yuanzhe Zhang, Xinwei Feng, Xiangwen
Liao, Wenbin Jiang, Yajuan Lyu, Kang Liu, and Jun
Zhao. 2019. Machine reading comprehension using
structural knowledge graph-aware network. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5898–5903.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen.
2011. Opinion word expansion and target extraction
through double propagation. Computational linguis-
tics, 37(1):9–27.

Chris Quirk and Hoifung Poon. 2016. Distant super-
vision for relation extraction beyond the sentence
boundary. arXiv preprint arXiv:1609.04873.

Karthik Raghunathan, Heeyoung Lee, Sudarshan Ran-
garajan, Nathanael Chambers, Mihai Surdeanu, Dan
Jurafsky, and Christopher D Manning. 2010. A
multi-pass sieve for coreference resolution. In Pro-
ceedings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing, pages 492–
501.

Altaf Rahman and Vincent Ng. 2009. Supervised mod-
els for coreference resolution. In Proceedings of
the 2009 conference on empirical methods in natu-
ral language processing, pages 968–977.

Sudha Rao, Daniel Marcu, Kevin Knight, and Hal
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