
Evolution of HPC Software Development and
Accompanying Changes in Performance Tools

Area Exam Report

Srinivasan Ramesh∗
∗University of Oregon {sramesh}@cs.uoregon.edu

Abstract—High-Performance Computing (HPC) software is
rapidly evolving to support a wide variety of heterogeneous
applications. Traditionally, HPC applications are built using
the message-passing interface (MPI) and operate in a bulk-
synchronous manner. The complexity of scientific software devel-
opment and emerging classes of workloads have driven the HPC
community to adopt increasingly modular software development
frameworks. On the one hand, the modularization of HPC soft-
ware makes programming these systems more manageable. On
the other hand, HPC performance tools have had to be constantly
updated to keep up with how HPC software is built and deployed.
This paper presents an overview of the fundamental driving
forces and technologies that have resulted in the evolution of
HPC software development over the last three decades. The
techniques that performance tools have implemented to keep up
with these changes are also discussed. Finally, this paper presents
some avenues for future work, highlighting the critical areas that
performance tools must address to remain relevant.

Index Terms—modules, components, services, coupled applica-
tions, data management

I. INTRODUCTION

Over the past three decades, there has been a constant
evolution in how HPC distributed software is conceptualized,
implemented, and deployed. Traditional HPC software devel-
opment has been centered around the message-passing pro-
gramming model. In particular, the message-passing interface
(MPI) has been the de-facto programming model of choice
for developing distributed HPC applications. In response to
the recent explosion of data-centric and machine learning
(ML) workloads in scientific computing [1], HPC systems
and software are rapidly evolving to meet the demands of
diversified applications. These new applications do not fit
into the MPI programming model [1], [2], thus necessitating
a change in the fundamental methodologies for distributed
HPC software development. In particular, the emergence of
coupled applications, ensembles, and in-situ software services
running alongside traditional HPC simulations [3] are the key
indicators of such change. Scientific workflows are beginning
to move away from traditional MPI monoliths to resemble
a mix of several different pieces of specialized distributed
software working in concert to achieve some larger goal [4].

Within a process running inside the broader distributed
application, increasing software complexity and the need to
perform ever-more-realistic simulations have been the driving
forces behind the componentization of HPC software [5].
Parallels can be drawn between adopting componentization

in the industry [6] and the subsequent push to componentize
HPC software to manage complexity. At the same time,
HPC performance tools have also been updated to reflect this
change [7]. Over the last 20 years, the push to componentize
software has resulted in evolving a service-oriented architec-
ture in the industry. The HPC community has recently been
actively looking into similar software architectures to support
heterogeneous, data-centric workloads.

The key aspect that sets HPC applications from other
forms of distributed software is the need to achieve high
performance, high efficiency, and a high degree of scalability
on exotic HPC hardware. In such environments, performance
measurement and analysis tools play a critical role in identify-
ing sources of performance inefficiencies. State-of-the-art HPC
performance tools such as TAU, HPCToolkit, and Caliper [8]–
[10] excel at the performance analysis of monolithic MPI
applications. However, when faced with the task of holistically
analyzing the performance of coupled multi-physics codes or
distributed HPC data services, applying these performance
tools without change finds limited application because these
tools implicitly rely on the existence of an MPI library to
bootstrap their measurement frameworks. Studying the evolu-
tion of HPC performance tools in this context is necessary to
identify opportunities and future tool design requirements.

This area exam explores the evolution of HPC software
and performance tool development. Starting with a collection
of source files built into one monolithic MPI executable,
HPC software has evolved to support coupled applications,
distributed data services, in-situ ML, visualization, and anal-
ysis modules running together on a single machine alloca-
tion. A novel narrative of the tension between the need to
manage software complexity while simultaneously achieving
high performance is presented. Wherever appropriate, notable
trends from the general computing industry are cited as key
technology enablers of such change. The parallel timeline and
evolution of performance measurement, analysis, and online
monitoring tools and techniques are also presented in this
research document.

II. BACKGROUND

To familiarize the reader with standard HPC programming
practices and common terminology, a brief overview of the
state-of-the-art in HPC system architectures, applications, and
performance analysis software is necessary. HPC machines,



also known as supercomputers, represent the largest networked
computers designated for scientific computing. Although offi-
cial figures of the cost of such machines are rarely released,
speculations [11] suggest that the hardware cost alone is
several hundreds of millions of dollars. Also, the operating
costs of running these machines are in the order of tens
of millions of dollars. Thus, the applications that run on
these machines must do so at the highest efficiency possible
to maximize scientific output, maximize machine occupancy,
and minimize cost. Today’s typical HPC machine architecture
consists of a heterogeneous mix of general-purpose CPUs and
accelerator architectures such as the graphics processing unit
(GPU) [12]. These computing elements are connected through
a high-bandwidth, low-latency interconnect such as Infini-
band [13]. Further, all the computing and networking elements
are typically situated within the same IT infrastructure or
building. These key characteristics separate HPC architectures
from more general distributed grid computing architectures.

A. MPI: The Dominant Distributed Programming Model

The MPI programming model [14] has dominated the HPC
software development landscape for a large portion of the past
three decades. An MPI application is launched as a set of N
communicating processes. Traditional MPI applications [15],
[16] divide an application domain, such as a computational
grid into several logical sub-domains. Each MPI process is
assigned one or more sub-domains on which they perform
local computation. When necessary, these MPI processes com-
municate to exchange or aggregate intermediate results. This
communication can either be point-to-point or collective. A
typical scientific application [15] contains a discretized time
domain and a computational grid (spatial domain) and runs
for a certain number of fixed timesteps. Communication and
computation proceed in phases within a timestep, with periodic
synchronization between the different processes. Such a model
of parallel computation is referred to as the bulk-synchronous
parallel model (BSP).

Given the importance of MPI, there have been several large-
scale, ongoing efforts to implement high-performance MPI
implementations that are portable as well [17], [18]. Com-
munication requires processes to synchronize with each other.
Besides, communication over the network can significantly
slow down a parallel program. At a large scale, synchronous,
collective communication can degrade the application’s overall
performance and quickly limit the application’s scalability.
Therefore, several HPC performance engineering efforts have
been centered around improving MPI library communication
performance.

B. Shared-Memory Programming Models

Multi-core and many-core CPU architectures such as the
Intel Xeon Phi [19] and accelerator architectures such as the
GPU have become commonplace on leadership-class HPC
systems [12]. HPC applications have evolved to support
and extract performance from the increased on-node par-
allelism. Specifically, shared-memory parallel programming

has been a key focus area for performance optimizations.
Notable programming models offering shared-memory parallel
programming capabilities include OpenMP [20], TBB [21],
pthreads [22], and OpenACC [23]. NVIDIA CUDA [24] is
arguably the most popular GPU programming model, followed
by OpenCL [25].

These shared-memory programming models expose their
functionality either through a library-based API or through
compiler pragmas or hints to aid with the automatic identi-
fication and generation of parallel code. Invariably, shared-
memory parallel programming involves the generation of
parallel threads of execution. These threads share the same
process address space, may have their local stacks, and com-
municate through shared memory regions.

C. Other Programming Models

While many conventional HPC applications employ a dis-
tributed model such as MPI combined with a shared-memory
model such as OpenMP, other applications employ hybrid
programming models and runtimes. Notable examples include
Charm++ [26], a machine-agnostic task-based programming
approach, and partitioned global address space (PGAS) pro-
gramming models such as UPC [27] and Chapel [28].

D. Performance Analysis Tools

This section discusses the state-of-art in the performance
analysis of traditional HPC applications.

1) MPI Performance Analysis: Performance tools for HPC
applications have primarily catered to those applications that
employ the MPI programming model. Typically, the paral-
lel profiling and tracing tools build on the presence of an
MPI library to bootstrap their measurement frameworks [8]–
[10]. The PMPI-based library interposition technique has
successfully enabled performance tools to intercept MPI calls
to perform timing measurements and capture other relevant
performance data such as message sizes. The PMPI approach
is often the first step in analyzing the performance of MPI
applications. Key performance metrics include the sizes of
MPI messages, contributions of MPI collective routines, and
the contributions of MPI synchronization operations to the
overall execution time.

2) Shared-Memory Performance Analysis: Regarding
the capture of application-level performance information
(function-level timers), HPC performance tools follow
one of two schools of thought. Instrumentation-based
tools [8], [10] rely on intrusive instrumentation to elicit the
exact measurements of events. Tools based on statistical
sampling [8], [9] rely on lightweight sampling and call stack
unwinding to capture statistical features of the performance
data. Hardware counters are commonly used to track the
efficiency of various routines based on their hardware resource
usage characteristics. The performance API (PAPI) [29] has
grown into a standard and portable way of exposing hardware
performance data.

Shared-memory programming libraries expose their profil-
ing APIs to allow insight into their operation and performance.

2



Notably, the OMPT interface [30] allows performance tools to
register callbacks for several events defined by the OpenMP
specification. Likewise, the CUDA CUPTI API allows insight
into the operation of the CUDA API. After the node-level per-
formance data from various sources is collected, performance
tools typically orient and aggregate this data around the MPI
processes involved in the particular execution instance.

III. DEFINITIONS

This section defines the various terms that are used in the
sections that follow. Unless specified otherwise, any usage of
these terms pertains to the following definitions.

Fig. 1: Modularization: A Conceptual Illustration

A. Module

A module is any piece of software or code entity with well-
defined boundaries used as a general building block for higher-
level functionality. A module can be a library, a class object,
a file, a service, or a component. Throughout this document,
the term “module” is used in the broadest context possible,
i.e., it does not refer to any specific software, implementation,
technique, or specification. Therefore, it follows that mod-
ularization is the process by which a piece of software is
divided into separate, independent entities by following the
general software design principle of “separation of concerns”.
Process-local modularization results in software modules that
run within the same address space (process). Distributed
modularization results in software modules that are separated
by different address spaces (processes). Figure 1 depicts a
conceptual illustration of modularization of a monolithic MPI-
based application.

B. Component

The term component is interchangeably used with the term
module everywhere except in Section V. In Section V, the
term “component” has a special meaning and refers to modules
that adhere to a particular type of component architecture and
interface specification. Componentization, as used in Section
V, is converting a piece of software into components that
follow the component architecture.

C. Service

Services are regarded as loosely connected software mod-
ules running on separate processes with well-defined pub-
lic interfaces specifying access to the service functionality.
Usually (but not always), the interaction between two service
entities involves calls over the network. Again, every service is
a module (or a component), but not every module is a service.

D. Composition

Composition is the process by which two or more modules
are connected (coupled) to form a larger entity that functions
as a whole. By this definition, the composed modules can
be within the same process, within different processes on the
same computing node, or inside processes running on separate
computing nodes. Composition is a natural outcome of the
modularization of software.

IV. APPLICATION COMPLEXITY AND MODULARIZATION

This section presents the fundamental claim regarding the
evolution of HPC software along with the reasoning supporting
this claim.

A. Claim

HPC software development approaches have become in-
creasingly modular to manage software complexity. As a di-
rect consequence of this modularization, performance analysis
tools have had to reinvent themselves to stay relevant and
practical.

B. Reasoning

By modularizing software, the complexity of software is
compartmentalized [5], and modules become re-usable. Indi-
vidual teams or developers can focus on building just a few
specialized modules with clearly defined interfaces instead of
having to deal with a massive, complicated codebase repre-
senting the entire application. Individual components can be
portable by having multiple “backend” implementations. Com-
ponentization can also enable fine-grained resource allocation
and management. Besides, modularization is attractive because
it allows for the rapid composition of modules to create many
composed applications targeting different usage scenarios. The
complexity in developing HPC software primarily arises from
the following sources.

1) Simulation Scale and Fidelity: There are two challenges
to programming at large scale. First, parallel programming
is inherently hard to get right. There are several classes of
software bugs related to “program correctness” that show up
only on highly concurrent systems. The one constant in high-
end computing has been the need to simulate natural systems
with ever-increasing fidelity and at a larger scale. A study of
the largest HPC systems globally over the past 25 years [12]
supports this claim. Second, with a billion-way parallelism
available on modern machines, the software must be constantly
re-written and updated to reflect and utilize new sources of
parallelism. An analysis of popular large-scale applications
such as CESM [31], LAMMPS [32], HACC [33] reveals that

3



each of these applications has consistently been updated with
additional modules to simulate individual physical phenomena
with increased fidelity.

2) Range of Applications and Platforms: In the past decade,
the range and diversity of applications requiring high-end com-
puting capabilities have exploded. The US Department of En-
ergy develops and publishes mini-applications called CORAL
benchmarks that represent the core computations within ap-
plications of national interest. Performance optimization of
these benchmarks would likely result in an improvement in the
performance of the larger scientific applications they represent.
An analysis of the CORAL-1 benchmark suite [34] released in
2014 and the CORAL-2 benchmark suite [35] released in 2020
reveals a telling story. In 6 years, data science and machine
learning (ML) workloads have become Tier-1 applications.
These data science workloads are not regular MPI applications.
This explosion in application variety has resulted in the search
for a broader set of programming models and supporting
services to accommodate the newer applications.

3) Structure of Modern Scientific Research Teams: Due
to the number of different components involved in modern
scientific software development, it has become impossible for
one person or team to develop all the software components [5],
[36].

With an increase in the number of interacting components
or modules that must simultaneously run at high efficiency,
performance data exchange with analysis and monitoring tools
has become more complex. When modularization results in
black-box software components, it is challenging for perfor-
mance tools to instrument and extract the necessary perfor-
mance data. There is tension between the need to manage
software complexity and the simultaneous requirement of
running software components at their optimal efficiency. The
rest of this paper attempts to present evidence in support of
this reasoning.

V. PROCESS-LOCAL MODULARIZATION

This section presents an overview of the development of
component-based HPC software. An in-depth account of the
techniques implemented by HPC performance tools to analyze
component-based software is also discussed.

A. Important Trends in the Computing Industry

Arguably, the need for designing modular software can be
traced to the popularization of object-oriented methodologies
in the 1970s and early 1980s [37]. Software complexity had
exploded, and the computing industry was beginning to realize
the importance of software architectural patterns as a way to
implement and manage software.

Eventually, the focus on separating concerns led to
the development of component-based software engineering
(CBSE) [38]. CBSE aimed to go beyond object or module
re-use by defining components as “executable units of inde-
pendent production, acquisition, and deployment that can be
composed into a functioning whole”. The fundamental notions
of independent deployment, re-usability, and composition are

the recurring themes underlying major revolutions in software
architecture over the past two decades.

In the early 1990s, the industry began to adopt component-
based software engineering frameworks such as the Common
Object Request Broker Architecture (CORBA) [39], the Java
Remote Method Invocation (RMI), and the Component Object
Model (COM) [40]. Component models aimed to address the
shortcomings of object-oriented methodologies. Specifically,
components were designed to be modular, re-usable, and
language-independent, allowing for their rapid composition to
build higher-level functionality.

B. Component Software For HPC

In the late 1990s, the HPC research community had re-
alized that the ballooning scientific software complexity had
to be controlled and managed. Scientific software developers
were beginning to develop coupled, multi-physics models for
plasma simulations, and nuclear fusion codes. There was a
need to employ high-performance, re-usable, plug-and-play
components that were language-agnostic.

The Common Component Architecture (CCA) [41]–[45]
sought to address several shortcomings of object-oriented
methodologies, libraries, and commercial component frame-
works [39], [40]. First, while object-oriented frameworks had
done well to encourage software reuse within a project, they
offered little to no cross-project reuse. Second, object-oriented
frameworks were limited in their ability to form the basis of
component software as they were applicable only in compile-
time coupling scenarios. HPC component frameworks required
that components expose a way for compatible implementations
to be “swapped” at runtime. Third, component frameworks
enabled language independence by relying on meta-language
interfaces, a feature that was not typically available with
object-oriented frameworks at the time. Fourth, the main issue
with employing commercial component frameworks in HPC
was the exorbitant performance overheads for “local” inter-
component interactions. Lastly, multiple component imple-
mentations with the same interface could co-exist within a
framework. Doing so was not possible with libraries. After
initial attempts to develop independent, disparate component
frameworks, the HPC community came together to form the
CCA Forum, mainly consisting of members from various aca-
demic institutions and US Department of Energy laboratories.

1) CCA Model: The objectives of the CCA specifica-
tion are found in [41]. Specifically, the CCA was designed
within the context of single-program-multiple-data (SPMD)
or multiple-program-multiple-data (MPMD) codes. The CCA-
MPI marriage was destined given the popularity of the MPI
programming model and the integration objectives of the CCA
specification.

The following list defines some of the critical elements of
the CCA model.

• Components: In the CCA model, a component is an en-
capsulated piece of software that exposes a well-defined
public interface to its internal functionality. Notably, this

4



definition allows components to be composed together to
form more complex software.

• Local and Remote Components: Components that live
within the same address space are local components.
Interactions among local components are ideally no more
expensive than regular function calls. A process bound-
ary separates remote components. Although the CCA
specification supported remote component interactions, it
implicitly incentivized components to perform a bulk of
the interactions locally, if possible.

• Scientific Interface Definition Language (SIDL): The
CCA specification introduced the scientific interface def-
inition language (SIDL) as a means of enabling com-
position and interaction amongst components written in
different languages. Given the prevalence of “legacy”
HPC codes written in C and Fortran and the growing
use of Python for scripting and analysis tasks, language
interoperability was an essential CCA requirement. The
SIDL is a meta-language that is used to describe compo-
nent interfaces. Notably, it supported complex data types,
a feature that commercial component frameworks did not
support at that time. Other tools such as Babel [46] read
in the SIDL specification to generate glue code allowing
components written in different languages to interact.

• Frameworks: Frameworks are the software that manage
component interactions. They are responsible for con-
necting components through the use of ports. The notion
of a framework implies a certain level of orchestration
necessary for the functioning of CCA components.

• CCA Ports: The CCA specification described two types
of ports — provides and uses ports. A component allows
access to its functionality through the provides port, and
it registers its intent to interact with other components
through the uses ports. The framework is ultimately
responsible for actuating the interaction by connecting
the provides and uses ports.

• CCA Services: Every CCA-compliant framework pro-
vides the registered components with a set of essential
services. The components access these framework ser-
vices similar to how they interact with other components
— through ports. One of the most important functional-
ities of the services object is to provide methods for the
components to register their uses and provides ports.

• CCA Repository: The CCA specification included a pub-
lic CCA repository for components. The key idea was to
enable the rapid, “plug-and-play” design of scientific ap-
plications using off-the-shelf components available in the
CCA repository. The other motivation behind providing a
repository was to encourage large-scale community reuse
of software components and widespread adoption of the
CCA specification.

• Cohort: A collection of components of the same type
(running within different address spaces) is referred to as
a cohort.

• Direct-Connected Framework: As Figure 2 depicts, there
are two ways in which CCA components can be com-

posed. In a direct-connected framework, each process
consists of the same set of parallel components. A
notable feature of such a framework is that it does
not allow diagonal interactions among components, i.e.,
inter-component interactions are limited to function calls
within a process. Direct-connected frameworks only sup-
port the SPMD model of parallelism. Parallel components
within a cohort can interact through any distributed com-
munication library available. This latter type of commu-
nication was outside the scope of the CCA specification.

• Distributed Framework: Distributed frameworks, depicted
by Figure 2, allow diagonal interactions and a more
general MPMD model of parallelism. Specifically, inter-
component interaction can occur between components
belonging to different processes. In addition to providing
a remote-method-invocation (RMI) interface, distributed
frameworks need to address data distribution between
coupled applications. This problem shall be revisited in
Section VI.

Fig. 2: CCA: Framework Types (inspired from DCA [47])

2) CCA: Performance Measurement: Given the composi-
tion model of CCA applications, it was imperative to gen-
erate a performance model of the component assembly and
judge the efficacy of the instantiation [48], [49]. Specifi-
cally, the community found it necessary to measure local
component performance and inter-component interactions in
a non-intrusive, cohesive way. These measurements would
then be used to generate performance models of individual
components and their interactions. Finally, the generated per-
formance models would be employed to select an optimal
set of components for the particular application context. The
research on performance measurement and analysis of high-
performance CCA applications can be divided into two cate-
gories: (1) Intra-component performance measurement and (2)
Inter-component performance measurement.

Intra-component performance measurement entails captur-
ing performance data about the execution of functions and
routines within a component. Literature [7] presents two ways
in which intra-component interactions can be captured:

• Direct Instrumentation: This is the most straightforward
way to extract measurement data. Existing HPC perfor-
mance tools could instrument component routines directly

5



(either manually or through automatic instrumentation).
The component invokes the measurement library to gen-
erate the necessary performance data.

• Performance Component: Direct instrumentation tech-
niques suffer from the disadvantage of being tightly
coupled with component implementations. The use of
an abstract measurement component interface and a per-
formance component that implements the measurement
interface circumvents this problem of tight-coupling, and
it allows for a more flexible approach to performance
measurement of intra-component interactions. Specifi-
cally, any compliant performance tool (TAU being just
one example) can implement the performance component
interface. Moreover, the use of an abstract measurement
interface ensures that the overheads of performance in-
strumentation are effectively zero when no performance
component is connected.

Inter-component performance measurement is necessary
to study the interactions between components. Specifically,
components are connected via provides and uses ports. The
interactions between components occur on these ports and
contain valuable information such as data transfer sizes and
source and destination identifiers used in message-passing
routines. These interactions are not visible to an external entity,
and thus, unique instrumentation is required to capture them.

The instrumentation and measurement techniques used for
inter-component performance analysis can be categorized as
either (1) direct instrumentation, (2) instrumentation during
interface definition and generation, or (3) Proxy-based instru-
mentation and measurement.

• Direct Instrumentation: A few CCA frameworks, such
as CCAFFEINE [50], are based entirely on C++ as
the language for implementing component interfaces. In
such scenarios (often not the case), direct instrumentation
techniques can measure and observe inter-component
interactions.

• Instrumentation of Interface Generation Code: When
component interfaces are specified using an interface
definition language such as SIDL [51], direct instrumen-
tation can be applied only once the interface language
compiler (such as Babel) has generated the language-
specific component interface glue code. Another approach
is to build the instrumentation directly into the process of
generating the glue code. Both approaches are feasible.
However, the latter technique is likely to yield more
optimal code [7].

• Proxy-based Instrumentation and Measurement: Ar-
guably, the most popular technique to instrument and
measure component interactions involves component
proxies to snoop for invoked methods on the provides and
uses ports [48], [52]. Component proxies are stub compo-
nent implementations presenting the same interface as the
components they represent. Component proxies placed
“in-front” of “caller” components trap method calls on
the uses ports to enable performance measurement. A

“Mastermind” component invokes the measurement API
of a backend performance component (such as the TAU
component) and is responsible for storing and exposing
the performance data for external analysis and query.

3) CCA: Performance Monitoring and Optimization: Aside
from managing software complexity, component frameworks
also present logical boundaries for performance optimization.
Recall that, unlike standard libraries, the CCA component
specification allowed multiple component implementations
presenting the same interface to coexist within the application.
In a CCA-enabled application, a sub-optimal component can
be dynamically replaced with a more optimal component.
For example, in a scientific application composed of solver
components performing a linear-algebra calculation, the solver
component implementation can be switched at runtime de-
pending on how well the component performs on traditional
metrics such as execution time as well as functional metrics
such as solver residual.

Literature [5], [53], [54] describes computational quality
of service (CQoS) as a general methodology for optimizing
CCA-enabled application. CQoS is the “automatic selection
and configuration of components to suit a particular com-
putational need”. Essentially, the selection of an optimal set
of components involves a trade-off between accuracy, perfor-
mance, stability, and efficiency [54]. The cycle of performance
measurement and optimization of CCA applications has four
distinct parts: (1) performance measurement, (2) performance
analysis, (3) performance model generation, and (4) a control
system to implement optimizations.

Performance measurement has been discussed in Sec-
tion V-B2. Thus, here we discuss performance analysis, per-
formance model generation, and control systems for CCA
optimization. The application is instrumented to report tra-
ditional performance metrics such as the execution time and
component-specific functional performance metrics such as
the solver residual. This performance information is used to
train analytical and empirical models of component perfor-
mance. Specifically, the performance information is written
to a performance database component [55]. The analysis
tools query the database component to generate component
performance models. These component models are written into
a “substitution assertion database” that acts as the link between
the analysis and control infrastructure.

The control system is driven by control laws that dictate
the actions of the control infrastructure. Control laws are
essentially the “rules” that drive dynamic adaptation of CCA
components. A control law executes by combining the applica-
tion’s state information with the appropriate model information
within the substitution database to output a recommendation
for optimization. The control infrastructure is ultimately re-
sponsible for implementing the recommendation.

The control infrastructure consists of the reparameterization
decision service and the replacement service as the critical
pieces. CQoS control is accessed seamlessly via proxy com-
ponents. The use of a proxy allows applications to benefit from
CQoS with minimal addition of intrusive instrumentation.

6



Further, CQoS can be dynamically turned on or off. When
CQoS is disabled, proxy components function as gateways to
CCA performance measurement. When CQoS is enabled, the
proxy component is connected to the optimization components
that inform the proxy of the optimal provides port to use
(among many candidate component ports). Effectively, the
proxy component functions as a switch that connects the caller
(application component) with the optimal implementation of
the callee component.

C. Other HPC Component Frameworks

Although the CCA specification formed the majority of ef-
forts to componentize HPC software, there were other similar
projects that had related goals.

1) High-Performance Grid Component Frameworks:
Component-based grid scientific computing infrastructures ex-
plore methodologies for optimization [56] that share simi-
larities with CCA. First, like CCA, grid component compo-
sitions are indicated in the component metadata. CXML is
a markup-based composition specification that is similar to
the SIDL language used in CCA frameworks. Such a spec-
ification enables the component framework to generate and
analyze static call graphs. Second, the “application mapper”
is an optimization component that functions as the control
system within the framework. The application mapper takes
the abstract component composition (known as an application
description document) and generates a runtime representation
of the composition. It takes system resource metadata as input
from the grid deployment services and combines the existing
component performance models to form an optimal execution
plan. If there is a change in grid resources, the grid application
can contact the application mapper at runtime to generate a
new execution plan.

Aside from the hardware on which they operate, there are
two crucial differences between high-performance grid compo-
nent frameworks and traditional high-performance computing
frameworks such as CCA. First, although both frameworks
operate on distributed systems, inter-component interactions
in grid frameworks typically involve the network. In direct-
connected CCA frameworks, most inter-component interac-
tions are reduced to a sequence of regular function calls. As
a result, grid component frameworks are designed more like
distributed “services”, and traditional HPC frameworks oper-
ate more like libraries. Second, grid component frameworks
assume that the component repository contains performance
model metadata that allows the application mapper to make
reconfiguration decisions. In other words, dynamic component
reconfiguration is treated as a first-class design requirement,
given that the fluctuation in available resources is a common
occurrence. The CCA specification as such does not pay
special attention to ensuring the dynamic reconfiguration of
components. Instead, CCA treats dynamic component recon-
figuration as an activity to be performed on a per-application
need basis. Despite this, the HPC community has invented
clever ways of seamlessly and incrementally integrating con-
trol capabilities through the use of proxy components.

2) Low-Level Component Framework (L2C): The L2C [57]
attempts to address the issue of performance portability on
HPC systems. The authors observe that multi-platform support
for large applications is usually achieved through means that
offer little code reuse (conditional compilation, component
software, runtime switches). They attempt to resolve this
problem through a low-level component model that is (1)
composable, (2) offers portable performance, and (3) offers
a high degree of code reuse. Components are implemented as
annotated objects with well-defined entry points, resembling
a plugin architecture.

The components are written in C++, Fortran, or Charm++.
Multiple instances of a particular component type can co-exist
within the application. The composition is specified through an
L2C assembly descriptor file. A small L2C runtime is respon-
sible for managing the component interactions. Notably, there
is no support for multi-language component compositions (and
associated glue code generation). The key idea lies in breaking
down the application into several fine-grained components.
Doing so allows for a high degree of code reuse between
performance-portable implementations designed for different
platforms. This design choice also leads to an explosion in the
number of components required to implement even a relatively
simple application such as a Jacobi solver.

3) directMOD Component Framework: HPC applications
such as adaptive mesh refinement (AMR) codes form a
particular category of applications whose structure (data and
communication distribution) changes over time. As the ap-
plication structure informs the component assembly, AMR
applications require a component framework that supports
dynamic reconfiguration. Not only this, multiple dynamic re-
configurations co-occur inside different application processes,
introducing synchronization and consistency issues among
them. The directMOD [58] component framework addresses
these problems by offering a component model that introduces
two new concepts: domains and transformations. Domains are
components that lock specific portions of the application and
ensure safety. Transformations are ports that connect a trans-
formation to its target sub-assembly. However, directMOD is
not broadly applicable to any general application.

D. Comparing Component Frameworks

A comparison of the various component frameworks is
presented in Table I. Several of these comply with the CCA
architecture. CCAFFEINE [50] was intended to be a model
implementation of the CCA specification. Notably, it is the
only major HPC-optimized CCA implementation that does not
support the MPMD model. In other words, all CCAFFEINE-
enabled applications are limited to SPMD parallelism, and
peer components interact through direct connections only.
Some component frameworks such as MOCCA [59], VGE-
CCA [60], CCAT [61], LegionCCA [62], and XCAT3 [63] are
not HPC-optimized. These frameworks are geared primarily
to operate in grid environments, and thus, the distributed
communication libraries they employ are not HPC-aware.

7



Among the HPC-optimized frameworks, SCIrun2 [64] and
Uintah [65] are the only CCA frameworks that have some
form of in-built performance optimization support for dy-
namic reconfiguration of their components. However, the
performance analysis and optimization techniques discussed
in Section V-B2 and Section V-B3 can be generally em-
ployed in CCA frameworks that do not have built-in support.
SCIRun2 is the only HPC-optimized framework that supports
cross-framework compatibility. That is, SCIRun2 is a meta-
framework that allows interoperability of components adhering
to different specifications. For example, SCIRun2 allows the
composition of a CCA component with a CORBA component.
It is also worth mentioning that most CCA frameworks sup-
port some form of data distribution among components that
run within a coupled, MPMD-style architecture. A detailed
discussion of this support is presented in SectionVI-E1.

E. Scientific Computing Frameworks

Component architectures have helped manage the complex-
ity of HPC software development and increase developer pro-
ductivity. At the same time, there have been other noteworthy,
smaller-scale efforts in this direction. Specifically, scientific
computing frameworks such as POOMA [66], PETSc [67],
HYPRE [68], Grace [69], and OVERTURE [70] have enabled
the rapid development of scientific software from “building
blocks”. These frameworks are built into libraries and export
an interface in either C, C++, or Fortran (the three most
commonly used languages to develop HPC software). Except
for HYPRE, the building blocks used to compose higher-level
functionality are explicitly implemented as objects.

While these frameworks share with component architectures
the general principle of composition, they target a different
user and application space. Table II enlists the similarities
and differences between scientific computing frameworks and
the CCA component framework. Most importantly, scientific
frameworks are tailored for a specific, narrow domain and are
not applicable to build arbitrary HPC applications. HYPRE,
for example, is a library of pre-conditioners for use in linear
algebra calculations. On the other hand, PETSc is a library
designed specifically for matrix operations. Given that sci-
entific frameworks are implemented as libraries, traditional
performance analysis techniques such as library interposition,
sampling, and compiler instrumentation can be employed
directly without any special modifications. Compared to CCA,
scientific frameworks typically offer an unmatched speed of
development, productivity, and out-of-the-box performance for
applications that fit the particular domain supported by the
framework. However, scientific frameworks generally offer
little to no support for adaptivity. It is generally assumed to be
the responsibility of the application developer for fine-tuning
the performance of the library on a novel platform.

F. Modularization of MPI Libraries

MPI libraries were among the first to adopt a modular archi-
tecture. The rising complexity of MPI library implementations,
the need to be portable across HPC platforms, and the scale of

development teams were the primary motivating factors behind
the push to modularize MPI libraries. Three prominent MPI
libraries are discussed, compared, and contrasted based on how
they choose to implement modular architectures.

1) LAM/MPI: The LAM/MPI project [71] was the first
production-ready MPI implementation to implement a com-
ponent architecture explicitly. The LAM project was initially
structured as an extensive collection of source files and direc-
tories. However, it was observed that new developers found it
increasingly hard to understand the source code, contribute to
the project, and experiment with novel optimization strategies.
As a result, the LAM project adopted a component architecture
focused on being lightweight, high-performance, and domain-
specific, as opposed to more general frameworks such as the
CCA [44] architecture.

LAM/MPI supports four types of components — the
RPI (Request Progression Interface) component, the COLL
(COLLector) component, the CR (Checkpoint-Restart) com-
ponent, and the BOOT (BOOTstrapping) component. LAM
supports multiple implementations of the same component
type (through a plugin framework) to coexist within an MPI
process. Doing so allows for a dynamic selection of component
implementation to optimize runtime behavior. Notably, the
re-implementation of LAM using a component architecture
improved MPI communication performance by a small margin.

2) OpenMPI: The OpenMPI project [72] is a successor to
the LAM/MPI library. The OpenMPI community recognized
the need for an MPI library that explicitly supports and en-
courages third-party developer contributions. When OpenMPI
was being developed, algorithms for process control, fault
tolerance, checkpoint-restart, and collective communication
were beginning to form separate research areas in their own
right. Thus, there was a need to support several different
versions of these algorithms within a single larger framework.

At the heart of the OpenMPI implementation is a component
architecture that aims to resolve both of these challenges. The
design element that sets OpenMPI apart from previous imple-
mentations is a multi-level component architecture. The prin-
cipal, higher-level component framework (“meta-framework”)
supports several component frameworks underneath. Each of
these lower-level component frameworks targets one specific
function, such as collective communication or checkpoint-
restart. Further, these lower-level component frameworks man-
age one or more modules. It is the responsibility of the indi-
vidual component frameworks to load, discover, and manage
the life-cycle of their respective modules. Like LAM/MPI,
OpenMPI modules are implemented as plugins. They are
integrated into the MPI library statically or as shared libraries,
allowing for compile-time or runtime module discovery and
initialization.

3) MVAPICH2: MVAPICH2 [18] is a state-of-the-art, high-
performance MPI implementation that does not explicitly
follow a component architecture. However, due to the same
factors described in Section IV-B, the design of the library
has become increasingly modular over time. Figure 3 depicts
this modularization of MVAPICH2. The current version of the

8



TABLE I: Comparing Component Frameworks

Property CCaffeine DCA XCAT3 Uintah SCIRun2 MOCCA VGE-CCA LegionCCA L2C directMOD CCAT

CCA Compliant? Yes Yes Yes Yes Yes Yes Yes Yes No No Yes
Optimized for HPC? Yes Yes No Yes Yes No No No Yes Yes No

General Purpose? Yes Yes Yes No Yes Yes Yes Yes Yes No Yes
Distributed Communication Support N/A RMI Multiple RMI RMI Multiple SOAP-RPC RMI MPI MPI RMI
Built-In Performance Optimization? No No No Yes Yes No Yes No No Yes No

Cross-Framework Compatibility? No No No No Yes Yes No No No No No
Cross-Language Support? Yes Yes Yes Yes Yes Yes Yes Yes No No Yes

Code Reuse Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate High Moderate Moderate

TABLE II: Comparing Scientific Frameworks and CCA

Property Scientific Frameworks CCA

Domain Specific? Yes No
Distributed Computing Support? No Yes

Cross-language Support? Partial Yes
Traditional Performance Tools Applicable? Yes No

Support for Performance Portability? Moderate High
Speed of Development of Higher-Level Functionality? High Moderate

Support for Adaptivity? Moderate High

library delineates the same set of logically separate modules
as OpenMPI — fault tolerance, job startup, and collective
algorithms. However, these separate modules are not explicitly
managed as independent units. Therefore, the primary method
by which MVAPICH2 allows an external user to control
its behavior is through the use of environment variables
and compile-time configuration flags. Notably, MVAPICH2
does not support custom implementations of these modules,
nor does it offer an easy way to replace them at runtime
dynamically. Arguably, its monolithic architecture makes it
more difficult for external contributors to make changes to
the library source code.

G. Tools for Performance Data Exchange

A side-effect of the increasing software complexity and
scale is an update in how performance tools instrument the
software to measure performance. While modularization can
be considered a good engineering practice and a necessity
when considering the sizeable cross-institutional nature of
HPC software development, modularization hinders the ex-
change of necessary performance essential information be-
tween software layers. At the same time, the use of modular
software on large, high-end computing systems has (1) neces-
sitated their dynamic, online adaptation and (2) enabled fine-
grained optimization of the various modules and algorithms
that comprise the software. Traditionally, HPC performance
tools have been passive participants in the optimization of HPC
applications. They are primarily employed for offline analysis
of performance data. The various costs associated with running
applications at exceedingly large scales have motivated the
tighter integration of performance tools into the software stack.

1) MPI Tools: There have been various attempts to design
and implement techniques that enable closer interaction be-
tween a performance tool and the MPI library. PERUSE [73]
was an initial attempt at using callbacks to gain access to
significant events that occur inside the MPI library. The
performance tool installs callbacks into its code for events that
it is interested in measuring. When these events occur, the tool

callback is invoked, allowing the tool to gather and analyze
the pertinent performance data. Ultimately, PERUSE failed
to gain traction in the MPI community due to a mismatch
between the proposed events and the capabilities of existing
MPI implementations.

The MPI Tools Information Interface (MPI T), introduced
as a part of the MPI 3.0 standard, has received significantly
more attention from tool developers than previous efforts.
MPI T defines two variable types — performance variables
(PVARs) and control variables (CVARs). Tools need to query
the MPI T interface to access the list of PVARs and CVARs
that the MPI library wishes to export. PVARs represent
counters and resource usage levels within the MPI library,
while CVARs represent the “control knobs” that can affect
dynamic MPI library reconfiguration. Several tools have been
developed [74]–[76] to take advantage of the MPI T interface
to gather performance data, while only one previous work [75]
implements a tool architecture that enables the dynamic con-
trol of the MPI library through CVARs. MPI libraries such as
MVAPICH2 and OpenMPI export a plethora of PVARs to be
queried at runtime, but they currently lack support for CVARs
that control online behavior. As a result, the effective use of
MPI T for dynamic reconfiguration of MPI libraries remains
an open problem. More recently, callback-driven event support
through MPI T is once again gaining traction within the MPI
community [77].

2) OpenMP Tools: The first notable effort to enable pro-
filing of the OpenMP runtime is the POMP [78] profiling
interface. POMP was designed as an OpenMP equivalent of
the PMPI interface for MPI applications. POMP allows for
seamless, portable profiling of OpenMP sections to gather
context information using the OPARI source-to-source instru-
mentor. However, it can impose noticeable runtime overheads
for short-running loops. More importantly, POMP does not
allow access to internal OpenMP runtime information and thus
has limited application in gathering internal event data. The
Sun (Oracle) profiling interface [79] implements a callback-
driven model to gain partial access to OpenMP runtime state
through the asynchronous sampling of call stacks. However, a
lack of support for static executables and gathering of context
information resulted in the interface not gaining traction within
the community.

Like MPI, these various efforts to enable low-overhead
profiling and tracing of OpenMP applications have culmi-
nated in developing the OpenMP Tools Interface specification
(OMPT) [30]. OMPT is a standard that defines how tools

9



Fig. 3: Modularization of MVAPICH2 (image credits: Dr. D.K. Panda, Network Based Computing Lab, The Ohio State
University)

and OpenMP runtimes should interact to enable profiling and
tracing of OpenMP applications. It borrows ideas from past
efforts to present a callback-driven interface that supports
several mandatory and optional events. Each supported event
is associated with a specific data structure provided to the tool
for generating context information. Additionally, the OpenMP
runtime manages state information on a per-thread basis. Since
its introduction into the OpenMP standard, the OMPT interface
has grown to support callback-driven profiling of accelerators
such as GPUs.

3) PAPI SDE: While the MPI and OpenMP tool interfaces
are limited to enabling performance data exchange within
their respective domains, the PAPI Software-Defined-Events
(SDE) [80] is an attempt to standardize the exchange of
software performance counters between any two software
layers within a process. The PAPI SDE project recognizes that
library-specific approaches such as MPI T, albeit standardized,
are not widely applicable directly. Through the existing PAPI
API, software modules can export software performance met-
rics of interest to other libraries or modules running within the
process. There are three ways in which SDEs can be created
and used. One, a library can declare an internal variable as an
SDE to be read directly by other modules. Two, the library
can register a callback that returns the value of the variable.
Three, the library can create and update a variable that lives
inside the PAPI library.

4) Comparing Techniques for Performance Data Exchange:
Table III compares various tools on the basis of how they
enable performance data exchange. Notably, the PAPI SDE
effort is unique in its ability to be generally applicable to any
type of software module. Over the past fifteen years, the HPC
community has iterated on various designs for performance
introspection, and it can be argued that event-based callbacks
are generally favored over instrumentation. Moreover, the push
to include performance introspection capabilities as a part of
the standards specification of major communication libraries
such as OpenMP and MPI has resulted in the widespread
adoption and support of performance tools. In other words,
performance tools are increasingly viewed as first-class cit-
izens as opposed to an afterthought within the performance

optimization process.
A notable limitation of the MPI T effort is a lack of tool

portability. Specifically, the MPI T standard allows the MPI
implementation the freedom to export any counter or gauge.
The standard does not require any mandatory counters or
events to be exported. As a result, performance tools need
to discover the specific list and names of PVARs and CVARs
exported by an MPI library. These names and types are not
portable between MPI implementations, and thus, there is little
reuse for tool logic that generates performance recommen-
dations or optimizations. OMPT, on the other hand, resolves
this problem by separating salient events into mandatory and
optional events. This approach can facilitate tool portability
across different library implementations.

VI. DISTRIBUTED MODULARIZATION

This section presents how distributed modularization of
HPC software has resulted in the formation of coupled appli-
cation (“in-situ”) workflows, ensembles, and services. At the
same time, an overview of the accompanying changes within
the performance analysis and monitoring tools landscape is
also discussed.

A. Overview

Since the late 1990s, there have been several efforts to
support task-coupling on HPC systems. Specifically in this
context, task-coupling is defined as the simultaneous execution
of two or more distributed entities in an inter-dependent
manner. The shift towards a coupled distributed architecture
began in the late 1990s and early 2000s. This process has been
accelerated in the last decade by several factors described in
Section IV-B. Logan et al. [81] define three categories of task-
coupling that capture how emerging HPC software architec-
tures are being designed. In a strongly coupled architecture, the
coupled entities are tightly integrated and intimately dependent
on one another to make progress. Most multi-physics applica-
tions such as the XGC-GENE [82] coupled code operate with
an assumption of strong coupling.

In a weakly coupled architecture, the producer of data can
proceed without being concerned about how the data is being

10



TABLE III: Comparing Techniques for Performance Data Exchange

Property PERUSE MPI T POMP Sun OpenMP Interface OMPT PAPI SDE

Data Exchange Strategy Event Callbacks Counters, Event Callbacks Source-to-Source Instrumentation Event Callbacks Event Callbacks Counters
Generally Applicable? No; MPI-only No; MPI-only No; OpenMP-only No; OpenMP-only No; OpenMP-only Yes

Access to Fine-Grained Events? Yes Yes No Partial Yes Yes
Standardized Technique? No Yes No No Yes No

Widespread Support? No Yes Yes No Yes Yes
Direct Support for Control? No Yes No No No No

Level of Insight into Module Internals? High High Low Moderate High Low
Tool Portability? Moderate Low High Moderate High Low

Support for Accelerators? No Yes No No Yes Yes

consumed. This interaction model is the modus operandi for
most in-situ data analysis, visualization, monitoring, and ML
services. These services run alongside a “primary” application,
typically an MPI-based simulation. Sarkar et al [83] allure to
this type of software architecture by giving it the moniker
“new-era weak-scaling”.

A third emerging type of a coupled architecture is ensemble
computing. Ensembles find application in domains such as
weather modeling, molecular biology [2], and the training of
ML models [1]. Ensembles involve simultaneously executing
collections of parallel tasks (each of which may be an MPI
application) within a single HPC node allocation. Deelman et
al. [84] refer to this kind of architecture as “in-situ workflows”,
distinguishing them from “distributed workflows” that span
multiple HPC platforms and scientific instruments. Unless
specified, the primary focus of this document is to delineate
the critical questions surrounding in-situ workflows.

Distributed modularization has several benefits. By breaking
up a large, monolithic code into several smaller distributed
modules, the user has increased control on scaling individual
entities. In doing so, the application can be executed on a
larger node count as compared to a traditional monolithic MPI-
based executable. Two, when software modules are deployed
as separate parallel executables, it allows larger software
development teams to collaborate without worrying about
the logistical issues associated with a mammoth code base.
Third, specific capabilities such as data-processing and ML-
based analysis tasks can not be leveraged directly within
the constraints of the MPI programming model. Thus, their
integration requires a software architecture that allocates a set
of dedicated computing resources for their operation. Four,
when modules run inside separate processes, they can be
implemented in the language that best suits their specific
need. The development of a separate, intermediate language-
interoperability tool such as Babel [46] is not required — this
job is usually performed by the communication library.

However, several challenges need to be addressed when
considering a distributed, modular architecture. First, it is
necessary to identify, among the available options, the cor-
rect way of splitting up the monolithic application into the
constituent (parallel) modules. Second, even when the mod-
ularization itself is straightforward, it is not always clear
how to allocate the appropriate computing resources to each
parallel module. An optimal configuration can be orders of
magnitude more performant than a haphazardly configured
setup. Third, distributed modularization can result in vast

amounts of data traversing the network between the paral-
lel modules. Thus, an efficient middleware or data-transfer
mechanism assumes vital importance. Four, when dealing with
multiple simultaneously executing components and transient
services, performance monitoring and analysis challenges are
notably different from those posed by traditional monolithic
MPI executables. Distributed components require performance
data to be extracted, exported, aggregated, and analyzed online
from multiple sources. Given the transient nature of these
distributed components and the scale of operation, it is often
infeasible for this data to be written out to disk and analyzed
offline. We touch upon these opportunities and challenges in
the sections that follow.

B. Important Trends in the Computing Industry

A key observation that can be made when surveying the
origins of several defining shifts in HPC software development
methodologies is that they are usually predated by similar
changes within the broader computing industry. Specifically,
two computing industry trends bear importance in the context
of distributed modularization. The first of these is the notion of
a service-oriented-architecture [85]. This reference model for
SOA defines “services” as to how needs and capabilities are
brought together. Fundamentally, SOA embodies the principle
of “separation of concerns”. Further, the services within an
SOA are assumed to have potentially different owners (soft-
ware development teams) and are developed and deployed
independently of each other. SOA architectures directly re-
flect the structure of software development teams within a
larger organization. Arguably, this bears a resemblance to the
emerging methodologies for designing and deploying coupled
HPC applications.

The other relevant trend is that of the “enterprise service
bus” (ESB) [86]. The ESB is the mechanism by which
different services within a framework discover and connect.
The ESB assumes the job of connecting a service requestor
with a service provider, transporting the message requests cor-
rectly, implementing load-balancing, and making the necessary
protocol conversions. In other words, the ESB functions within
the confines of a “publish-subscribe” model of distributed
communication. It orchestrates the interaction between the
different entities in the system. Arguably, data transfer and
staging software such as ADIOS [87] and DataSpaces [88]
perform the same duties within a coupled HPC workflow.

11



C. Composition Model

This section presents a discussion of the various types of
distributed HPC frameworks and compares them based on
their composition models, coupling strategies, and distributed
communication protocols. A framework in this context is
defined as any software that either (1) functions as a standalone
distributed component offering a distinct functionality or (2)
enables the development of specialized distributed components
through a programming library or platform. This study does
not regard I/O libraries such as ADIOS and Decaf [89] as
“frameworks”. Instead, they are a part of a larger body of work
addressing the problem of distributed data management and
are discussed separately in Section VI-E2. At the same time,
it is worth mentioning that there is significant overlap between
in-situ analysis tools, data services, and data management
libraries. This overlap is depicted by Figure 4.

Fig. 4: Overlap Between In-Situ Analysis and Visualization
(ISAV) Tools, Data Management Libraries, and Data Services

Composition models define the functional relationship be-
tween coupled modules or tasks. Here, we follow and extend
the definitions for composition models provided by Logan et
al. [81]:

• Strongly-coupled: Two or more coupled modules are
tightly integrated and interact in a back-and-forth manner
to exchange data during execution.

• Weakly-coupled: Distinct sets of producers and con-
sumers characterize this composition model. Notably, the
execution of producer logic does not depend on the
consumer’s execution, performance, or failure state.

• Hybrid: In a hybrid model, the coupled modules can
either be strongly-coupled or weakly-coupled depending
on how the system is set up.

• Ensemble: An ensemble represents a distinct type of
distributed coupling between tasks, and it is characterized
by the execution of a large number of concurrent tasks
(each of which may be an MPI application). The tasks
may or may not depend on one another. When the
tasks are completely independent, the ensemble is “fully
decoupled”. Such a model resembles “embarrassingly
parallel” computation, except that it occurs at a higher
level of task granularity.

A coupling strategy determines how the framework functional-
ity is accessed from an external component. For example, the
remote procedure call (RPC) is a popular coupling strategy for
HPC data services, while most CCA component frameworks
are limited to using the parallel remote method invocation
(PRMI) model for distributed, inter-component interaction.
Table IV presents a list of popular distributed HPC frame-
works covering a broad spectrum, a brief description of
the functionality enabled by each of these frameworks, and
their composition models. Table V is a list of the coupling
strategies and the internal communication protocols used by
these particular frameworks.

1) Distributed CCA Frameworks: Distributed CCA frame-
works were among the first HPC software to develop a solution
to enable communication between distributed CCA compo-
nents. Several efforts such as DCA [47] and PAWS [90] rec-
ognized that the CCA specification primarily targeted SPMD
parallelism within direct-connected frameworks and had little
provision or advice for enabling distributed frameworks. How-
ever, when CCA frameworks were beginning to be integrated
into production HPC applications, the community realized the
need to enable CCA-based componentization of multi-physics
codes such as the XGC-GENE [82] code, molecular dynamics
applications such as LAMMPS [32], and fusion codes.

Each module in a coupled code is typically implemented as
a separate MPI application consisting of one or more CCA
components. Within a purely direct-connected framework,
enabling collective port invocation for a subset of components
is straightforward — the set of communicating processes can
make use of a separate MPI communicator. The CCA frame-
work need not be involved in this collective communication
process (refer to Figure 2). However, when the collective port
invocation needs to happen between two parallel, distributed
components belonging to different MPI programs (as in a
coupled code), several challenges arise. First, the use of MPI
communicators is meaningless when passed across different
MPI programs. Second, the CCA framework needs to know
and decide which set of processes (or components) participate
in a collective, distributed port invocation. Third, there needs
to be an agreed-upon synchronization strategy for components
participating in the port invocation. Fourth, the framework
needs to know how to distribute the data between the callee
and the caller components involved in the collective port
invocation call. The CCA forum recognized these issues and
drafted a communication model called the parallel remote
method invocation (PRMI).

In the PRMI model, the callee component blocks until the

12



caller has completed the method invocation. When this require-
ment is imposed in a collective communication routine involv-
ing the participation of multiple components in the RMI port
call, it categorizes distributed CCA frameworks as implement-
ing a strongly-coupled composition model. Specifically, the
PRMI call serves as a potentially unwanted synchronization
point and reduces the system’s effective concurrency. At the
same time, the coupled codes that were built using distributed
CCA frameworks required such patterns of communication
between M processes of one component and N processes of
another. The data redistribution issues that arise from this
communication pattern are broadly referred to as the MxN
problem and shall be discussed in depth in Section VI-E2.

Among the CCA frameworks described in Table I,
CCAFFEINE [50] is a purely direct-connected framework.
MOCCA [59], VGE-CCA [60], XCAT [63], CCAT [61], and
LegionCCA [62] support distributed component interactions
through RMI, but these frameworks are optimized for scientific
applications in the grid as opposed to those employed on HPC
platforms. The individual components in these frameworks are
not MPI programs, and as a result, the restrictions of the PRMI
model do not apply. The grid frameworks employ RMI over
SOAP/HTTP or another web-services protocol for distributed
interaction. The two notable general-purpose, HPC-optimized
distributed CCA frameworks are DCA [47] and SCIRun2 [64].
As depicted in Table V, both DCA and SCIrun2 employ MPI
for internal communication within a component cohort. DCA
allows collective PRMI communication among a subset of
caller components by re-using the MPI communicator support
but stipulates that all the caller components take part in the
communication. SCIrun2, on the other hand, provides two
types of PRMI calls: (1) independent calls that involve one
component on both sides of the caller-callee cohort pair, and
(2) collective calls that involve every component on both sides
of the caller-callee cohort pair [91].

In a more recent work that bears a resemblance to dis-
tributed CCA, Peng et al. [92] propose a new strategy to decou-
ple MPI applications into sets of custom process groups. This
research stems from the need to address the scalability limita-
tions of the BSP programming model, particularly concerning
load imbalance. Instead of building BSP programs where
each process is essentially a replica of the same executable
(SPMD), the authors propose to break down the application’s
functionality into a set of specialized operations. The process
space is divided into groups of processes implementing these
specialized operations. These process groups are organized
into a cohesive distributed processing system through a data
stream pipeline. An evaluation of this methodology on a Map-
Reduce application at a large scale improved the performance
of the application by over four times as compared to a
standard BSP-style implementation. Arguably, this distributed
architecture is one step toward a services-style coupled model
that is commonly used in the broader computing industry.

2) HPC Data Services: Two distinct trends have given
rise to a class of applications broadly categorized as “data
services”. The first noteworthy trend is that the performance

TABLE IV: Distributed HPC Frameworks: Composition
Models

Framework Short Description Composition Model

DCA Distributed CCA framework Strongly-coupled
SCIRun2 Distributed CCA framework Strongly-coupled

Mochi HPC data service Hybrid
Faodel HPC data service Hybrid

BESPOKV HPC data service Hybrid
ParaView Catalyst In-situ viz. and analysis Weakly-coupled

VisIt Libsim In-situ viz. and analysis Weakly-coupled
SENSEI In-situ viz. and analysis Weakly-coupled
Ascent In-situ viz. and analysis Weakly-coupled
TINS In-situ analysis Weakly-coupled

Henson In-situ analysis Weakly-coupled
Damaris-viz In-situ viz. and analysis Weakly-coupled

Seer In-situ steering Hybrid
Swift/T HPC dataflow programming Ensemble

RADICAL-PILOT HPC task-based ensembles Ensemble
Merlin ML-ready HPC ensembles Ensemble

of traditional file-based parallel HPC I/O storage systems has
not been able to keep up with the increase in the concur-
rency available on the platform. In other words, the total
computational performance is growing faster than the total
storage performance of the HPC system. As a result, these
systems are forced to integrate faster storage technologies
such as burst buffers, non-volatile storage-class memories,
and NVMe technology to provide a cost-efficient, performant
storage stack.

The second trend is the broadening of the variety of HPC
applications and accompanying I/O access patterns that need
to be supported on these platforms. The traditional interaction
between MPI-based HPC applications and the storage system
is characterized by an input read phase and one or more
large, parallel bulk-synchronous writes of structured data for
check-pointing purposes. Machine-learning and data-intensive
applications such as CANDLE [1] are characterized by irreg-
ular read access and the writing of a large number of small
files [93]. Further, these new HPC applications require various
data types such as key-value (KV) stores and document stores.

Although there are areas of overlap, data services are
distinct from data management libraries. Data services offer
transient, high-performance data storage and notably richer
functionality than just helping move data between different
components in the workflow. Broadly, there are two classes of
data services that are of interest — those that function as user-
level, distributed file systems, and more general programmable
data services that can be employed to serve various application
needs. The latter class of data services is of primary interest
to this study. General programmable data services such as
Mochi [93] can be used to build custom distributed file
systems.

There have been attempts to leverage the portability and
performance offered by MPI for building HPC file systems
and storage services [94], [95]. These studies conclude that
while MPI is sufficiently capable of serving as the platform
upon which these services can be built. However, there are
several missing features (“wish-lists”), if implemented, would

13



give MPI the best chance of widespread adoption. Specifically,
these features include extended support for non-blocking calls,
one-sided communication, and the flexibility to continue op-
erating in a situation of failure.

User-level distributed file systems have been developed
primarily to improve the application performance on platforms
that support burst-buffers or node-local, fast storage hardware.
Examples of the state-of-the-art, user-level distributed file sys-
tems include FusionFS [96], GekkoFS [97], and UnifyFS [98].
These file systems can be seamlessly integrated into any HPC
application by specifying a mount point for storage operations.
The user-level file system intercepts regular POSIX I/O calls
and routes them to the burst-buffer if the file path matches
the mount point. GekkoFS implements relaxed semantics for
POSIX I/O calls. GekkoFS and UnifyFS employ a background
daemon to serve local client requests and store file metadata.

General programmable data services are fundamentally dif-
ferent from user-level file systems in two ways. First, they
are designed to support various functionality in addition to
simply improving application storage performance. Second,
they employ the principle of composability to enable higher-
level functionality to be developed from relatively simpler
building blocks. The three general programmable data services
that we consider here are BESPOKV [99], Faodel [100], and
Mochi [93]. A fourth, composable storage service, Malocol-
ogy [101] employs the principle of composition to decompose
Ceph [102] to make it more programmable [93]. However,
Malocology operates more like a storage service than a data
service and is not considered here. Specifically, it targets
the composition of the storage stack that is typically out of
the end-users control and within the purview of a system
administrator. As a result, Malocology can not be used to build
transient user-level services.

BESPOKV [99] is a high-performance distributed KV store.
By recognizing the growing importance of KV stores in HPC
for coupling, analysis, and visualization purposes, BESPOKV
introduces a flexible design for a distributed service based
on the decoupling of the data plane and the control plane.
The fundamental unit of the control plane is referred to as
a controlet. The control plane receives client requests and
forwards them to one of the distributed datalets in the system.
Each user-supplied datalet implements a standard KV store
API and manages a customizable “backend”. Further, the user
has complete control over the number and topology of datalets
and controlets in the system, thus making the BESPOKV
service customizable, flexible, and extensible. However, the
evaluation of the BESPOKV system was performed on a
virtualized cloud-based system. Thus, its performance when
coupled with HPC applications is unknown.

Faodel [100] is a composable data service that aims to
serve the general data storage and analysis needs of in-situ
workflow components. There are three Faodel components —
Kelpie, a distributed KV blob store, OpBox, a library offering
primitives for distributed communication patterns, and Lunasa,
a memory-management library for network operations. Faodel
is intended to be a sink for data from bulk-synchronous

applications, asynchronous many-task runtimes, and other ML-
based services running inside the workflow. At the same time,
Faodel also acts as a source for in-situ visualization and
analysis (ISAV) tools that run either within the workflow node
allocation or remotely.

The Mochi project [93] arguably represents the largest-scale
effort to build customizable, high-performance data services.
The fundamental premise behind this effort is the observa-
tion that each member of an ever-broadening set of HPC
applications has unique data storage requirements and access
patterns. Thus, a one-size-fits-all approach is not a good strat-
egy for developing data services. Instead, the Mochi project
relies on the composition of microservice building blocks to
enable the rapid development of higher-level functionality and
customized data services.

The term “microservice” is a concept that originated in
the cloud computing industry and is defined by Fowler [103]
to be a “building block that implements a set of specific,
cohesive, minimal functionality and can be updated and scaled
independently”. The works by Dragoni et al. [37] and Zimmer-
mann [104] elucidate the various tenets surrounding the devel-
opment of microservices in the cloud industry. Essentially, a
microservice represents an end of the spectrum of distributed
services and encapsulates minimal functionality (separation of
concerns). The explosion in the number of cloud-computing
services such as Amazon, Netflix, and Facebook that have
adopted this architecture has given rise to the debate regarding
whether microservices represent an “evolutionary” or “revolu-
tionary” step in distributed software development. Jamshidi et
al. [105] present both sides of this argument and conclude that
the consensus among industry experts is that microservices
are “SOA done right”, i.e., they are an evolutionary trend in
distributed service architectures.

The Mochi framework offers a set of microservices such
as the SDS KV store (SDSKV), the BAKE object store, the
REMI resource migration service, the SONATA document
store (to name a few). An HPC application can compose these
microservices in any manner to serve its custom needs. Mochi
depends on the Mercury [106] RPC library for communication
and the Argobots [107] library for managing concurrency on
the server. Notably, Mochi is a multi-institution effort involv-
ing five primary organizations contributing to the software’s
core development. Several other organizations and research
teams across national research laboratories in the US have
utilized the Mochi framework to develop a wide range of
data services. Examples of these data services include the
HEPnOS [108] data store for high-energy physics applications,
the FlameStore [93] service for storing the results of ML-
trained models in a distributed manner, the UnifyFS [98] user-
level distributed file system, and the Mobject [93] object-store.

Table IV and Table V present a comparison of the different
HPC data services based on their composition model and
coupling strategies. HPC data services fall under a category
of components that are composed with HPC applications in
a hybrid manner. This categorization is due to the flexibility
offered by data services. For example, applications could use

14



the data service purely for storing some partial results during
execution. In this first case, data services are weakly-coupled
with the HPC application. However, the application could also
be simultaneously reading and writing from the data service.
In other words, the application depends on the stored results in
order to proceed with its computation. In this second case, the
data services are strongly-coupled with the HPC application.

The fundamental unit of composition within the Mochi
framework is a microservice, while Faodel offers three fixed
components. BESPOKV offers customizable units called “con-
trolets” and “datalets” that bear some resemblance to Mochi
microservices in their design. Both Mochi and BESPOKV
support multiple database backends, while Faodel doesn’t
appear to do so. Mochi is unique as it recursively uses RPC to
compose operations internal to the service and the operations
exposed for external application use. BESPOKV and Faodel
employ a relatively flat structure and use shared-memory
for internal communication within data service components.
Mochi is also unique in the sense that it is the only framework
that offers more than just key-value store capabilities. Mochi
microservices span a more comprehensive range of function-
ality and thus are more broadly applicable.

3) In-situ Visualization and Analysis: Over the past decade,
the flourishing research within the in-situ visualization and
analysis (ISAV) research community has resulted in several
loose definitions for the term “in-situ”. To reduce the confusion
over the use of this term, the ISAV community got together to
define and categorize ISAV tools under six unique axes. Thus,
unless specified otherwise, any reference to the methodologies
surrounding ISAV tools in this section follows the definitions
laid out by the community [109].

In-situ refers to the processing of analyzing the simulation
data as it is being generated. This type of analysis is distinctly
different from data processing after it has been written out to
a storage medium. The motivation to perform in-situ analysis
primarily arises from the inability of traditional HPC I/O
systems to absorb the large volumes of data being generated by
HPC applications [110]. Specifically, computation capabilities
are growing faster than the storage I/O bandwidth. As a result,
it is simply infeasible to write the entire simulation data to
long-term storage for offline analysis.

In-situ methods enable the online, parallel processing of
large amounts of simulation data to result in significantly
smaller volumes of “interesting” simulation features written
to disk. All the ISAV tools considered here have either
(1) on-node proximity or (2) off-node proximity. This study
does not consider an in-depth study of the third variety of
ISAV tools that run on “distinct computing resources”, except
under the circumstance that this distinct computing resource
happens to be a remote monitoring client (human-in-the-
loop interaction). Specifically, the tools that utilize distributed
computing resources spanning multiple geographical sites to
perform computation fall under the category of grid computing
systems, and thus, they are not a primary focus of our study.

As depicted by Table IV, most ISAV frameworks are com-
posed along with the application in a weakly-coupled manner.

In other words, the application is the producer, and the ISAV
tool is the consumer. The application does not depend on the
result of the analysis to proceed with its computation. The
general assumption made by ISAV tools is that the analysis
to be run is pre-determined (automatic, adaptive, or non-
adaptive). One exception to this rule is the Seer [111] in-
situ steering framework. In Seer, the simulation takes input
from a human-in-the-loop in a non-blocking way, i.e., there
is a back-and-forth interaction between the simulation, ISAV
tool, and the human user. Thus, Seer is composed along with
the application in a hybrid manner. Notably, Seer uses the
Mochi [93] data service as an intermediate communication
module to enable this interaction.

Concerning the coupling strategy (a combination of prox-
imity, access, and integration type), Paraview Catalyst [112],
VisIt Libsim [113], SENSEI [114], TINS, [115], Ascent [116],
HENSON [117], Damaris-viz [118], and Seer [111] primarily
interact with the application through shared memory. Except
for Ascent, they all implement a dedicated API. Ascent
supports multiple backends and hence implements a multi-
purpose API. Typically, ISAV tool integration with an MPI
application occurs through the use of a client library. The
simulation invokes the ISAV routine locally on each MPI
process, and the ISAV tool client converts the simulation
data into a format suitable for analysis and visualization.
Some tools such as SENSEI support the off-node transfer of
this ISAV data to other components running within the in-
situ workflow. Further, VisIt and ParaView support remote
visualization of this data. Except for Damaris-viz and SENSEI,
all the ISAV tools considered here support only time division
between the application and the ISAV routines. Damaris-
viz is implemented using the Damaris [119] I/O framework
that allocates a dedicated compute core for the execution of
ISAV routines. Damaris-viz communicates with the simulation
through shared-memory belonging to the operating system,
and thus, it can support space division and time division.

4) HPC Ensemble Frameworks: Among the many changes
in the HPC landscape over the past few years, an important one
is the emergence of a new class of scientific workloads referred
to as HPC ensembles. Traditional workloads on HPC clusters
are characterized by a small number of large, long-running
jobs. The push towards uncertainty quantification (UQ) [120]
has resulted in ensemble workloads that consist of a large
number of small, short-running jobs [121]. These ensembles
are also referred to as “in-situ workflows” [84]. An analysis
of the batch job submissions on Lawrence Livermore National
Laboratory (LLNL)’s Sierra machine reveals that 48.5% of all
submitted jobs reveal a pattern that typifies ensembles [121].

Individual jobs or tasks within an ensemble can be fully
decoupled (such as the UQ pipeline [120]), or their coupling
can be represented by a directed acyclic graph (DAG) or
dataflow graph. The latter form represents the more general
case. Notably, it is not uncommon for these tasks to represent a
collection of different executables. There are a few fundamen-
tal capabilities that ensemble frameworks must provide — an
ensemble programming system that includes a way to specify

15



TABLE V: Distributed HPC Frameworks: Coupling Strategies and Communication Protocols

Framework Basic Coupling Internal
Name Computation Unit Strategy Communication Protocol
DCA CCA component PRMI MPI

SCIRun2 CCA component PRMI MPI
Mochi Microservice RPC Mercury RPC
Faodel OpBox, Lunasa, Kelpie RPC Shared-memory

BESPOKV Datalet, Controlet N/A Shared-memory
ParaView Catalyst MPI process Shared-memory MPI

VisIt Libsim MPI process Shared-memory MPI
SENSEI MPI process Shared-memory MPI/ADIOS

TINS Task Shared-memory MPI+Intel TBB
Henson Henson Puppet Shared-memory MPI
Ascent MPI process Shared-memory MPI/ADIOS

Damaris-viz MPI process Shared-memory MPI
Seer MPI process/Microservice Shared-memory/RPC RPC

Swift/T Turbine Task Dataflow MPI
RADICAL-PILOT Compute Unit Task DAG ZeroMQ

Merlin Celery Worker Task DAG RabbitMQ

task dependence, support for inter-task communication, and
hardware resource management (scheduling).

Swift/T [122] is a programming language and runtime for
in-situ ensemble workflows. Swift is the scripting language
used to specify the composition of workflow tasks, and Tur-
bine [123] is the runtime used to manage the execution of tasks
on an HPC cluster. Swift is a naturally concurrent language
that uses a dataflow graph to infer dependencies between tasks,
each of which can, in turn, be an MPI program itself. Swift
is a scripting language that can natively invoke code written
in C, C++, or Fortran and scripts in Python or Tcl.

Notably, the dataflow specification is not a static graph but
dynamically discovered as the program executes. Internally,
the Swift/T program is converted into an MPI program that
runs multiple copies of the Turbine runtime on a machine al-
location. These Turbine instances (MPI processes) manage the
execution of Swift/T tasks by balancing the load between the
available resources. When the Swift/T task is itself a parallel
MPI program, Turbine creates a separate MPI communicator
group to represent the MPI program. MPI is also used by
Swift/T tasks to communicate with one another. Swift/T and
UQ Pipeline [120] share the distinction of being single-cluster
ensemble frameworks. These frameworks cannot be used to
run tasks across multiple HPC clusters. At the same time, by
bootstrapping on top of MPI, they do not need to deal with the
complexities of interacting with a job scheduler and working
around the security limitations posed by traditional HPC batch
systems.

Merlin [124] and RADICAL-PILOT (RP) [125] are en-
semble workflow frameworks that blur the line between HPC
and grid computing. While Merlin is a workflow framework
tailored for HPC ensembles that result in data being used
for training ML models, RP is a general-purpose workflow
framework applicable to any system. These two frameworks
share several common design elements. One, they both sup-
port task execution across multiple HPC clusters. Two, task
dependence is inferred through an internal task DAG. Three,
both these frameworks employ a script-based programming
“frontend”. Four, there is an external centralized service or

node that hosts the task queue. The workers that are launched
on compute nodes within the batch job allocation (Celery tasks
in Merlin, Agents in RP) pull from this external task queue in
what resembles a producer-consumer model. Five, there is an
entity that manages the worker instances within a batch job
allocation and performs the work of a scheduler. This entity
is referred to as a “Pilot” in the RP framework and is the
Flux [121] component within Merlin.

However, there are some differences between these two
frameworks. One, while Merlin supports inter-task commu-
nication through a data management library called Con-
duit [126], RP appears to use the file system to perform
this action. Two, while Merlin uses RabbitMQ for internal
communication between its components, RP uses the Ze-
roMQ [127] messaging platform. While there exist mature,
general-purpose, distributed workflow management systems
such as Pegasus [128], they are generally not applicable for
ensemble HPC workflows. Three reasons are provided by
Peterson et al. [124] to support this claim: (1) they often have a
considerable upfront user training cost, (2) they do not support
accelerators such as GPUs and FPGAs, and (3) they do not
work well under the security constraints imposed by HPC data
centers.

D. Resource Allocation and Elasticity

When two or more components are coupled together, one
of the most fundamental questions that need to be addressed
is how they share resources. Resource allocation refers to
the methodology by which computing resources are divided
among a set of simultaneously executing components. A
related problem is the ability to change an existing resource
allocation scheme dynamically. Resource elasticity refers to
the ability of a framework to dynamically shrink or expand the
number of resources being utilized in response to an internal
change in application requirements or external factors such as
performance variability and power constraints.

1) Resource Allocation: Table VI lists the resource allo-
cation schemes for the set of distributed HPC frameworks
introduced in Section VI-C. Broadly, the common resource

16



TABLE VI: Distributed HPC Frameworks: Resource
Allocation Scheme

Framework Resource Allocation Scheme

DCA Distinct nodes, same machine
SCIRun2 Distinct nodes, same machine

Mochi Hybrid
Faodel Distinct nodes, same machine

BESPOKV Distinct nodes, same machine
ParaView Catalyst Local node, same process

VisIt Libsim Local node, same process
SENSEI Hybrid
Ascent Local node, same process
TINS Local node, separate processing core

Henson Local node, same process
Damaris-viz Local node, separate processing core

Seer Hybrid
Swift/T Distinct nodes, same machine

RADICAL-PILOT Distinct nodes, different machines
Merlin Distinct nodes, different machines

allocation schemes can be divided into five categories. Starting
from the schemes that involve the highest degree of resource
sharing to the ones that involve the lowest degree of resource
sharing, these categories are:

1) Local node, same process: The framework and the
“application” that utilizes the framework live in the same
address space, interact through regular function calls and
share the same computing resources. They may or may
not share processing threads.

2) Local node, separate processing core: The coupled com-
ponents live on the same computing node and share
the computing resources. However, they do not live in
the same address space, and thus they do not share
processing threads.

3) Distinct nodes, same machine: The coupled components
simultaneously execute on distinct computing nodes
within the batch job allocation. The only resources they
share are network resources (switches and routers) and
the parallel I/O filesystem.

4) Hybrid: In a hybrid resource allocation scheme, there is
significant flexibility in how the resources are divided up
among the coupled components. Specifically, any one of
the schemes (1), (2), or (3) can be employed.

5) Distinct nodes, different machines: The coupled com-
ponents share a minimal amount of resources. They
can run across multiple HPC machines and communi-
cate through a centralized messaging or communication
framework.

Most distributed CCA component frameworks such as
DCA [47] and SCIRun2 [64] employ a resource allocation
scheme in which the individual components are executed on
distinct computing nodes within the same machine. Typically,
these components are deployed as independent MPI programs
within the same batch job allocation. Faodel [100] and BE-
SPOKV [99] also employ this same type of resource allocation

strategy. Within the class of frameworks referred to as “data
services”, the Mochi [93] infrastructure is unique because it
offers a hybrid resource allocation scheme. Mochi microser-
vices can be configured to run inside the same process as
the “client” (MPI simulation), on different processes running
on the same node as the client, or distinct computing nodes
within the batch job allocation. Notably, the Mercury RPC
framework [106] employed by Mochi offers an RPC API that
abstracts the specific resource allocation scheme in use.

Typically, ISAV tools are tightly integrated with the MPI
application and employ a time-division or space division
scheme to share data within the application. Their proximity
to the application ensures that the data transfer overheads
are minimized. ParaView [112] VisIt [113], and Ascent [116]
employ the resource allocation scheme of type (1) and run
inside the same process as the MPI application. However, they
support an external remote-monitoring client (such as a Jupyter
notebook) to monitor the results of the in-situ analysis.

SENSEI [114] functions as a generic bridge between an
HPC application and several in-situ implementations such as
ParaView and VisIt. Additionally, SENSEI can be coupled
to an external component running on the system through
ADIOS. Thus, SENSEI implements a hybrid resource allo-
cation scheme. TINS is built upon IntelTBB [21], and the
analysis routines are launched within separate threads sharing
the local computing resources with the application. Among
ISAV tools, Damaris-viz [118] and TINS [115] are unique
because they run within a dedicated processing core on each
computing node. Damaris-viz is itself an MPI application
that is launched beside the simulation. Each Damaris-viz MPI
process communicates only with the MPI processes belonging
to the simulation that runs on the same computing node.
Seer [111] employs a hybrid scheme wherein the simulation
is coupled with an external Mochi SDSKV service. Seer
offers the user the flexibility to determine the exact resource
allocation for the Mochi service.

Swift/T [122] tasks are scheduled onto processes belonging
to a single MPI application. Here, we consider the resource
allocation scheme employed at the task level. Since multiple
tasks can run simultaneously on distinct nodes (where each
task is itself an MPI program), Swift/T employs a scheme of
type (3). In contrast, Merlin [124] and RP [125] are unique
as their tasks can span multiple HPC machines. These two
ensemble frameworks employ a resource allocation scheme of
type (5).

2) Resource Elasticity: Resource elasticity is the ability
to dynamically expand or shrink the number of resources
being utilized in response to external stimuli or a change in
application requirements. Note that resource elasticity is just
one method by which a system can adapt itself, and it does not
have the same meaning as dynamic adaptivity. Table VII lists
the current support for elasticity within different distributed
HPC frameworks.

Most distributed HPC frameworks do not natively support
resource elasticity. As pointed out by Dorier et al. [129], one
of the factors is the dependence on MPI as a bootstrapping

17



mechanism. Although the MPI standard has provisions to sup-
port the dynamic addition of new processes, most widely used
MPI implementations do not support this feature [130]. The
ones that do support elasticity (such as Adaptive MPI [131])
require a significant modifications to the application code.
Supporting elasticity within a traditional HPC cluster requires
changes to the scheduler and cost model as well. Specifi-
cally, over-provisioning is not a feature supported by most
existing HPC cluster schedulers. Motivated by the pay-as-
you-go cost model and the elasticity supported on cloud
platforms, previous efforts [130], [132] explore the elastic
execution of MPI programs within the cloud. Typically, the
techniques implemented by these efforts require some form of
checkpoint-restart combined with a monitoring and decision-
making framework.

However, none of these efforts have successfully demon-
strated the elastic execution of MPI programs within the
context of a traditional HPC cluster. Therefore, it is safe to
say that currently, MPI programs do not support elasticity.
ISAV tools such as ParaView and VisIt run within the context
of an MPI process and employ time-division coupling to
share computing resources. Therefore, any ISAV tool that
depends on MPI is limited in its support for elasticity. TINS
is an ISAV tool wherein the analysis routines run within
a separate TBB thread associated with a dedicated “helper
core”. When analytics routines are available to run, this core
is used exclusively to execute the analytics routines to prevent
interference with the simulation. Otherwise, the helper core is
utilized as a common core for processing simulation tasks.

The only class of frameworks that support elasticity are
data services. Specifically, BESPOKE supports “scale-out”
resource elasticity through the dynamic addition and removal
of its core components — controlets and datalets. The support
for elasticity has recently been added to the Mochi frame-
work. Specifically, the BEDROCK microservice functions as
a bootstrapping mechanism through which other microservice
instances can be dynamically instantiated. Note that although
these frameworks support resource elasticity in some form,
none provide the ability to do so automatically.

Further, none of the ensemble frameworks surveyed here
support resource elasticity. Each of these frameworks requires
the user to either specify a fixed number of MPI tasks (Swift/T)
or a fixed batch allocation size for a given set of tasks (Merlin
and RP). Once these tasks are mapped onto the computing
resources, there is no way for them to request more (or less)
resources dynamically should the need arise. Note, however,
that the resource utilization levels within a batch job allocation
can naturally wax and wane depending on the particular
sequence of task execution. Arguably, this is not the same
as the ability of a framework to enable resource elasticity.

E. Data Management Strategy

A fundamental question that arises when coupling two or
more distributed HPC frameworks or applications is how to
transfer and stage data between them efficiently. Within the
context of our study, HPC data management frameworks are

TABLE VII: Distributed HPC Frameworks: Resource
Elasticity

Framework Supports Elasticity? Unit of Elasticity

DCA No N/A
SCIRun2 No N/A

Mochi Yes Microservice
Faodel No N/A

BESPOKV Yes Controlet, Datalet
ParaView Catalyst No N/A

VisIt Libsim No N/A
SENSEI No N/A
Ascent No N/A
TINS Yes Task

Henson No N/A
Damaris-viz No N/A

Seer Partially Microservice
Swift/T No N/A

RADICAL-PILOT No N/A
Merlin No N/A

differentiated from more general HPC data services. From a
functional standpoint, HPC data management frameworks exist
solely to transfer data between coupled components, while data
services offer a more broad set of capabilities.

1) MxN Problem: Multi-physics applications launched as
two or more strongly-coupled, separate MPI programs need
some way to communicate and exchange data with each other.
The general problem of redistributing data from an application
launched with M processes to an application launched with N
processes came to be known as the MxN problem [91]. The
MxN problem was recognized as a major research area within
the general field of distributed CCA framework design. As
elucidated by Zhao and Jarvis [133], the MxN communication
typically involves the following steps:

• Data translation: Data stored in one format (for example,
row-major form) may need to be translated into another
form (column-major form).

• Data redistribution: The sender and the receiver must
be aware of the exact set of elements they expect to
communicate with each other.

• Computing a communication schedule: Once the set of
elements to be sent are identified, each sender needs
to identify the portions of these data elements to be
sent to specific receivers and accordingly compute a
communication schedule.

• Data transfer: After the communication schedule has been
computed, the last step involves the actual data transfer
itself.

Table VIII uses these steps to list out and differentiate a
set of popular MxN frameworks. Importantly, MxN frame-
works use one of two methodologies to enable MxN data
redistribution — PRMI or a component-based implementa-
tion. Distributed CCA frameworks such as DCA [47] and
SCIrun2 [64] employ the PRMI model to perform complete
MxN data redistribution. DCA is built upon MPI and allows
a subset of components on the sender side to redistribute

18



TABLE VIII: MxN Coupling Frameworks

Framework Conceptual Technique General Framework? Data Redistribution Communication Schedule Calculation Data Transfer

DDB Component-based Yes MxN Centralized Parallel
CUMULVS Component-based No Mx1 Centralized Parallel

Seine Component-based Yes MxN Centralized Parallel
MCT Component-based No MxN Distributed Coupler
PAWS Component-based Yes MxN Centralized Parallel

InterComm Component-based Yes MxN Distributed Parallel
DCA PRMI Yes MxN Distributed Parallel

SCIRun2 PRMI Yes MxN Distributed Parallel

data. However, it requires all receiving components to take
part in the data redistribution process. SCIrun2 allows two
forms of data redistribution — collective and point-to-point.
In collective data redistribution, all the components across
the sender and receiver side must necessarily be involved in
the communication. All the other frameworks presented here
— DDB [134], CUMULVS [135], Seine [136], MCT [137],
PAWS [90], and InterComm [138] employ a separate CCA
component to perform the data redistribution.

Among the component-based frameworks, all of them are
generally applicable to any distributed CCA application ex-
cept for CUMULVS and MCT. CUMULVS is designed as
a distributed component that allows a human user to visu-
alize, interact with, and steer the MPI-based simulation as
it is running. Specifically, this visualization component is
implemented as a serial application that generates a set of
requests to “pull in” the necessary portions of the domain
(multi-dimensional array) from multiple MPI processes while
they are running. As a result, CUMULVS only supports an
Mx1 data redistribution scheme. Further, the communication
schedule is calculated in a centralized manner within the serial
visualization application. The MPI processes transfer their
portions of the requested domain in a parallel fashion. On
the other hand, the MCT component is explicitly designed
to work with earth science applications such as CESM [31].
Although MCT supports an MxN data distribution scheme
and the calculation of communication schedules locally within
every sender process, the data transfer mechanism is unique.
Each of the M sender processes routes their individual data
elements through a “coupler” module that performs the data
redistribution and forwards them to N receiver processes.

DDB, InterComm, Seine, and PAWS are general-purpose
component-based MxN frameworks that support full MxN data
distribution. Among these, InterComm is unique concerning
the methodology by which the communication schedule is
calculated. Specifically, InterComm identifies a set of “respon-
sible” processes that compute the communication schedule
after gathering the source and destination data structure rep-
resentations. Once this task is complete, these “responsible”
processes transfer the schedules to the processes that need
them. Finally, each sender process proceeds to transfer the
data in a parallel manner.

On the other hand, DDB, Seine, and PAWS employ a
dedicated centralized component to calculate the communi-
cation schedule. DDB employs a two-level scheme where

each coupled application nominates a control process (CP)
to communicate domain information and data layout to a
single registration broker (RB) during the registration phase.
Once the RB receives all the information from each CP,
the RB performs the matching between data producers and
consumers and calculates the communication schedule. This
communication schedule is broadcast to all other processes
when they finish their registration phase.

PAWS and Seine are similar because they introduce a dis-
tinct distributed component to orchestrate the data redistribu-
tion. Both these frameworks introduce the notion of a “shared
virtual space” used to inform the communication schedule.
Notably, the calculation of the communication schedule is
performed during the registration phase, making this phase
the most expensive routine in terms of execution time. The
notion of a shared virtual space and the introduction of a
dedicated central component to perform data redistribution al-
lows these frameworks to support process dynamism elegantly.
New processes register themselves and their portion of the
domain (multi-dimensional array) with the Seine framework,
after which they can seamlessly take part in the MxN commu-
nication without being aware of who the actual senders are.

TABLE IX: Data Staging and I/O Frameworks

Framework Data Asynchronous Allows
Name Staging Nodes? Data Transfers? Process Dynamism?

ADIOS Flexible Yes Yes
DataSpaces Yes Yes Yes

FlexPath No Yes Yes
GLEAN Yes Yes Yes

Decaf Yes No No
FlowVR No Yes No
Damaris No Yes No

2) Data Staging and I/O Frameworks: While MxN frame-
works address a critical problem that arises when coupling
two MPI applications, it is not difficult to see that the class of
applications (and hence the coupling methodologies) they sup-
port are limited. Specifically, most, if not all MxN frameworks
assume that the data needs to be transferred (1) immediately,
(2) synchronously, and (3) only between two MPI applications.
In other words, MxN frameworks are generally associated with
strongly-coupled applications.

The advent of transient, in-situ visualization and analysis
tasks together with the growing disparity between computing
and parallel storage performance has given rise to a class of
frameworks that offer general data staging and I/O manage-

19



ment capabilities. Specifically, these data staging frameworks
offer the ability to transfer and stage data asynchronously
and between more than two coupled components. Moreover,
they allow significant flexibility in describing the data to be
staged and potentially also support process dynamism, i.e., the
ability to continue operating when processes enter or leave the
system.

ADIOS [87] is arguably the most widely supported data
staging and I/O framework for HPC applications. ADIOS
originally started as an API that offered seamless asynchronous
I/O capabilities. The growing disparity between compute and
storage performance meant that applications could no longer
afford to synchronously write massive amounts of data to
disk without severely damaging their overall performance.
ADIOS offered a way out of this problem by staging the data
locally and performing the write operation only during the
application’s compute phase. The ADIOS API was initially
designed to be POSIX-like while decoupling the action of
performing a parallel write with when and where the data
is written out. Since its initial release, ADIOS has become
synonymous with an I/O API that offers various data staging
and in-situ analysis capabilities. Specifically, ADIOS employs
several backend “transport methods” that effectively determine
the sink for the data. Examples of transport methods include
specialized data staging software such as DataSpaces [88]
and FlexPath [139]. ADIOS’ modular design has ensured
widespread adoption as a “high-level” I/O API across various
classes of HPC applications.

GLEAN [140] is a data staging and in-situ analysis li-
brary that offers asynchronous data staging and offloading
capabilities. GLEAN can be leveraged either directly through
its API or by the transparent library interposition of HDF5
routines. Note that the latter technique has the benefit of not
requiring any application code changes. Data from GLEAN-
instrumented applications is asynchronously transferred to a
dedicated set of staging nodes, effectively functioning as an
in-memory “burst-buffer”. After the data is transferred to the
staging nodes, the data is available to other components such
as in-situ analysis tools. As such, GLEAN does not offer any
special features to transform application data into different
formats. Because of the passive, decoupled way in which it
operates, GLEAN is indifferent to process dynamism within
the source application.

DataSpaces [88] is a project that leverages the “shared
virtual space” concept first introduced by the Seine [136]
MxN coupling framework. DataSpaces builds upon the multi-
dimensional data representation and linearization scheme in
Seine and offers data coupling via a separate dataspaces
distributed component. This MPI-based dataspaces compo-
nent runs on a dedicated set of computing nodes that asyn-
chronously stage data from multiple coupled applications.
Further, the dataspaces component offers an API that allows
in-situ analysis to be performed and an API to install a monitor
that checks for updates on a region of interest. A benefit of
having a separate data staging component is the implicit ability
to support process dynamism.

The FlexPath [139] system offers a typed publish-subscribe
mechanism for connecting data producers with data consumers
within a coupled HPC application. The data producers effec-
tively define and generate a data stream to be consumed by
any distributed component running on the system or remotely.
Notably, FlexPath employs a direct-connect scheme to transfer
data objects directly between a publisher and subscriber. This
scheme is different from a traditional brokered architecture
employed by other data staging software such as DataSpaces.
A direct-connect design choice implies that data is staged
locally within every publisher process. FlexPath hooks into
application I/O routines through the ADIOS I/O API. FlexPath
utilizes the EVPath [141] communication substrate to transfer
data between different components. Every new process en-
tering the system communicates the data objects of interest
to a local message coordinator that, in turn, calculates the
publishers from which it must fetch data. This decoupled
approach enables FlexPath to support process dynamism.

FlowVR [142] and Decaf [89] represent data staging soft-
ware that depend on the concept of dataflows to transfer
data between coupled components (“nodes”). Decaf is a data
staging software that depends on MPI. Specifically, the Decaf
system takes as input a JSON file representing the coupled
applications and splits the global MPI communicator among
the various “nodes” (coupled MPI applications) and “links”
(data staging processes). Note that a link separates two nodes.
The producer node transfers data to the link, and the link can
optionally transform the data or perform specialized analysis
on the data before forwarding it to the consumer node.
In FlowVR, however, the data transfer is performed in the
background by a FlowVR daemon process on every computing
node, with limited support to stage data. However, FlowVR
data in transit can be acted upon by a set of pre-defined
“filters” to transform it before it is passed on to the next
component in the flow. Both FlowVR and Decaf need to be
informed of the task graph before execution, and as a result,
they cannot handle process dynamism.

Damaris [119] is an I/O management framework that relies
on a dedicated processing core on each computing node to
perform asynchronous I/O. The global MPI communicator of
the application is split into two — one for the main application
itself and the other for the Damaris component. Processes
within a computing node asynchronously communicate their
I/O data with the local Damaris process through shared mem-
ory. The Damaris process optionally hosts a set of plugins that
act upon this data to compress, analyze, and finally commit it
to a long-term storage medium. Due to its reliance on MPI,
Damaris is limited in serving as a general distributed data
staging software. Instead, it can serve as a data source for
in-situ analysis tools such as Damaris-viz [118].

F. Performance Tools

As the number of simultaneously executing components
within a distributed, in-situ workflow continues to rise along
with the scale of the HPC machine, the application of per-
formance tools to ensure the proper and optimal operation

20



of the workflow is growing in importance as well. Tradi-
tionally, HPC performance tools are employed for the offline
performance analysis of monolithic MPI applications. State-
of-the-art performance tools such as Score-P [143], TAU [8],
CALIPER [10], and HPCToolkit [9] collect a rich profile
and trace that is ultimately written out to disk for offline
performance analysis.

With the advent of coupled applications and in-situ work-
flows, a different approach is needed for practical performance
analysis at scale. Specifically, several challenges must be
addressed within each of the three classical performance engi-
neering categories — performance measurement, performance
monitoring and analysis, and performance control and adaptiv-
ity. This section considers these challenges in detail. Table X
summarizes the level of tool support currently available within
each of these categories for the different types of coupled
applications and in-situ workflows previously introduced.

1) Performance Measurement: Performance instrumenta-
tion, measurement, and sampling often represent the first steps
in the performance engineering of an application. The tool API
instrumentation is added either explicitly (source instrumen-
tation) or implicitly (library interposition). Measurements are
then made when the application executes. Traditionally, these
measurements are gathered and written out to disk when the
application finishes executing.

An important observation to be made about in-situ work-
flows is that many depend on one or more MPI-based
components. Specifically, this is the case for commonly
used strongly-coupled MPI applications (XGC-GENE and
LAMMPS) and ISAV tools such as ParaView [112], SEN-
SEI [114], and Ascent [116]. In such a situation, the rich sup-
port for measurement in existing HPC performance tools can
be leveraged and extended as needed. Specifically, there are
two types of measurements to be made. One, the measurements
that represent internal function execution times and metrics
for each coupled component. Second, the measurements that
correspond to the interactions between the components. Wolf
et al. [144] identify key ADIOS [87] routines to instrument for
capturing data movement between coupled applications. Given
its widespread use, instrumenting high-level ADIOS routines
automatically enables insight into any transport method uti-
lized underneath.

Malony et al. [145] demonstrate a methodology by which
Ascent routines are instrumented and analyzed using TAU’s
plugin architecture [146]. ISAV tools are typically tightly
integrated with the MPI application, and the ISAV tool routines
are invoked synchronously by each MPI process. This design
presents an opportunity for TAU plugins to “hook into” these
synchronous executions to dynamically calculate the contri-
butions of the Ascent routines to the captured performance
events. A key observation here is that plugin architecture offers
a doorway to both the performance event data and the tool
measurement API.

Traditional HPC performance analysis tools built for MPI-
based applications cannot be generally applied to gather
performance measurements from HPC data services such as

Mochi [93] and BESPOKV [99]. HPC performance tools im-
plicitly assume that control is not passed between two different
distributed applications. Data services break this assumption
through an RPC-based client-server communication model.
Thus, the HPC community needs to look to the general cloud
computing industry for answers to measuring data service
performance. Sambasivan et al. [147] summarize the exten-
sive body of research on a class of distributed tracing tools
that implement request metadata propagation. Briefly, this
technique involves generating a unique “request ID” and the
subsequent propagation of this request ID through the system
by RPC invocations. The request ID is then used to tie together
events that are causally related and thus, this technique can
be used to capture distributed callpaths, request structures, and
also be used to compare request flows [148]. Industry tracing
tools such as Dapper [149] and Jaeger [150] employ request
metadata propagation on production-scale cloud computing
systems.

Performance measurement of HPC ensembles is an open
area that is yet to be targeted by the HPC tools community.
Table X enlists the current level of performance measurement
support for HPC ensembles as “partial”. While traditional
measurement tools can be used to capture the execution time
of individual ensemble tasks that happen to be MPI-based
applications (or serial tasks), there is no existing tool to
provide a holistic picture of the task execution in conjunction
with the dynamic task interactions and resource utilization
measurements. An integrated approach is required to capture
and correlate all three types of performance measurements.

TABLE X: Performance Tools for Coupled Applications and
Workflows

Application Measurement Monitoring & Analysis Control & Adaptivity
Type Tools Exist? Tools Exist? Tools Exist?

Strongly-coupled MPI Yes Yes Partial
ISAV Tools Yes Yes Partial

Data Services No Partial Partial
Ensembles Partial Partial No

2) Performance Monitoring and Analysis: Arguably, the
bulk of performance solutions for coupled in-situ workflows
fall into the category of monitoring and analysis tools. Partly,
this is due to the observation that several existing performance
measurement tools can be leveraged directly for most com-
ponents within the coupled in-situ workflow. Therefore, the
existing research focuses on monitoring and exporting this data
to an external entity for aggregation and analysis.

WOWMON [151] is a monitoring and analysis infras-
tructure for in-situ workflows. WOWMON instruments cou-
pled applications using traditional HPC performance tools
to generate performance measurements. These performance
measurements are buffered and sent over EVPath [141] to a
central workflow manager. The performance data is analyzed
to gather the end-to-end latency of the workflow. Further, this
performance data is passed through a machine learning profiler
to rank the instrumented metrics according to their correlation
with the end-to-end latency of the workflow.

21



SOS [152] is a distributed monitoring tool that offers the
ability to collect, aggregate, and analyze performance data
from multiple simultaneously executing coupled applications.
The SOS client interfaces with the application to collect
performance data which it then forwards to a collector daemon
running on the same computing node. The daemon processes
are organized into an overlay network that aggregates local
performance data. The Lightweight Distributed Messaging
System (LDMS) [153] and MRNet [154] tools also employ
an overlay network to aggregate performance metrics within
an HPC cluster. LDMS, together with Ganglia [155] represent
a class of monitoring tools that can be employed for system
resource monitoring. Unlike SOS, they do not offer a client
instrumentation library, and thus, they can not be used to
capture application performance data directly.

As the level of concurrency on modern HPC systems con-
tinues to rise, the volume of performance monitoring data pro-
duced can significantly perturb application performance [81],
[144]. Thus, there is a growing interest in sub-sampling
and analyzing performance data in-situ to reduce trace sizes
before a global aggregation is carried out. The MOnitoring
Analytics (MONA) [36], [144] approach speaks to this kind
of a technique. Specifically, MONA employs the SOS [152]
monitoring tool to aggregate and analyze TAU performance
data from a coupled MPI application. The TAU performance
data is piped to SOS through a TAU plugin. The aggregated
data is analyzed and visualized on an interactive dashboard.

Chimbuko [156] is a workflow-level in-situ trace analysis
tool. Chimbuko analyzes the performance data from a cou-
pled application workflow to generate performance anomalies.
Specifically, the TAU plugin infrastructure is utilized to export
performance traces to a process-local anomaly detection (AD)
module. The AD module periodically communicates with a
central AD parameter server to update its internal anomaly
thresholds based on a global view of statistical outlier in-
formation. Finally, when Chimbuko detects an anomaly, it
captures and stores provenance information that helps identify
the context in which the anomalous value was recorded.

While the design of distributed tools such as SOS can be
generally applied to monitor HPC data services, the data model
used to capture performance information must be carefully
studied. HPC data services that run in highly concurrent
environments handle thousands of requests per second. Thus,
the instrumentation library must be able to operate efficiently
under a high degree of concurrency. Not only this, the ac-
companying in-situ analysis needs to be able to track changes
across time to be able to observe poor service performance.
Thus, a time-series monitoring approach combined with so-
phisticated node-local analysis for trace data reduction may
be a viable strategy. There are several state-of-the-art cloud-
based tools such as Prometheus [157] and Graphite [158] that
implement a time-series database. However, these tools operate
within the constraints of a commodity hardware and stack,
and thus, they need to be appropriately modified to suit HPC
service requirements.

3) Control and Adaptivity: Several tools implement adap-
tive algorithms within the context of individual applications.
The MPI T interface is a notable effort to enable tool inte-
gration for control and adaptivity of MPI applications. Specif-
ically, performance tools can use control variables (CVARs)
to effect dynamic adaptation and control. The APEX [159]
monitoring system exposes a set of listeners that external tools
can use to implement control policies. The TINS [115] in-
situ framework implements a naturally elastic threading model
that enables the sharing of computing resources between
simulation and analysis routines.

However, fewer tools enable control and adaptivity resulting
from data analysis of a coupled execution. The MONA [144]
project studies the cross-application interactions resulting from
an XGC-GENE coupling to determine a more optimal task
placement for both applications. However, this more optimal
task placement cannot be implemented immediately. Instead, it
is a valuable starting point for subsequent coupled executions.
The Seer [111] in-situ steering framework enables a human
user to interact with a running simulation to execute custom,
dynamic in-situ analysis routines. Older monitoring tools such
as Falcon [160] also enable user-interactive simulation steering
of traditional monolithic executables. Pufferscale [161] is a
multi-objective optimization framework that can simultane-
ously and dynamically balance load and data across a set
of distributed Mochi [93] microservices. This re-balancing is
enabled through the REMI resource migration microservice.
However, Pufferscale cannot enable an online re-scaling (or
resizing) of the number of distributed microservices.

VII. TRENDS AND OPEN AREAS

This section describes the important trends and open areas
that inform future work for HPC performance tools.

A. Trends

This section describes the major trends and open areas that
inform future work for HPC performance tools.

There are several significant trends concerning the evolution
of modern HPC applications. First, the number of distinct
components coupled together has been steadily increasing over
the past two decades. As distributed CCA frameworks became
popular, strongly-coupled MPI applications were developed.
ISAV tools and data management frameworks arrived on the
scene, increasing the number of coupled, distributed compo-
nents. HPC ensembles push the barrier even further, resulting
in hundreds to thousands of small, short-running tasks.

Second, the types of applications that require high-
performance capabilities have exploded. HPC platforms that
were once strictly the domain of bulk-synchronous parallel
applications now share the space with transient data analy-
sis tools and ML tasks that were traditionally executed on
desktop-class single-node machines. On the one hand, tools
based on statistical analysis extract helpful knowledge from
the large amounts of data generated by HPC applications,
and their integration with traditional BSP-style codes requires
careful thought. As a result, the HPC community has borrowed

22



ideas and techniques from the general cloud-computing and
artificial intelligence (AI) communities. On the other hand,
some of these ML and AI tools are large-scale distributed
applications in their own right. Their special needs are driving
the decisions behind the procurement of these multi-million
dollar HPC machines [35].

Third, the relatively slow growth of traditional file-storage
performance on HPC machines compared to the computa-
tional performance is the single most significant hardware
factor contributing to the emergence of several new classes
of distributed frameworks described in this document. The
resulting storage heterogeneity and the inclusion of faster,
storage-class memories is only one part of the solution to
this problem. The second part consists of the development
of appropriate software abstractions such as data services and
I/O frameworks. This latter part is particularly challenging to
get right — the integration of these new services: (1) should
ensure high performance of the resulting coupled application,
(2) should present a unified interface that hides the complexity
of programming the storage hardware, (3) should not hamper
developer productivity, and (4) should not adversely affect the
operation of existing legacy codes.

Fourth, performance tools are always the last to be up-
dated. In other words, their evolution has always followed
the applications they measure, instead of co-evolving with the
application itself. For example, the CCA specification in its
initial form did not appear to have any special provision for
the design of CCA-capable performance tools. Instead, the
tool community invented clever ways to integrate performance
measurements through component proxies seamlessly. Aside
from SCIRun2 [64] and Uintah [65], no other CCA framework
considered performance optimization as a first-class design re-
quirement. However, there are indications that this is changing.
The MPI and OpenMP communities have recognized the need
to tightly integrate performance tools by including a “tools
section” in their respective specifications.

A fifth, bold prediction can be made by comparing the
evolution of HPC software architectures with the respective
changes within the general computing industry. The industry
has shifted from an ESB-style tightly-coupled model to a more
loosely-coupled services model where each service is highly
cohesive in terms of functionality and can be independently
updated from other services or components. This paradigm
shift has increased the scalability of the overall application
and allowed for faster, dynamic updates to service function-
ality without hampering other distributed components. If the
initial signs [92], [93] are anything to go by, HPC software
architectures are likely to resemble their industry counterparts
in the future.

B. Open Areas

The trends discussed in this section naturally point to
some critical open areas for future tool development. Table X
presents a brief overview of the level of tool support for the
different classes of distributed HPC frameworks discussed in
this document.

1) Performance Instrumentation & Measurement: As dis-
cussed in Section VI-F, relatively few techniques exist to
instrument and measure HPC data service performance. Their
key interactions cannot be captured using existing techniques
such as compiler instrumentation or PMPI-based library inter-
position. There are two reasons for this. One, these services
typically do not use MPI for communication. Instead, the data
services considered in this study primarily rely on RPC for
passing control between coupled components. Traditional HPC
performance tools are not designed to handle a client-server
architecture. Second, and more importantly, control is passed
between two or more distributed components. In the case of
a microservice architecture such as Mochi [93], RPC calls
can span microservices running on different computing nodes.
Tracking these microservice interactions (“callpaths”) through
the system requires HPC tools to borrow some ideas from
the cloud-based performance tools. At the same time, these
microservice callpaths need to be annotated with context to
associate performance inefficiencies occurring at lower levels
in the software stack with higher-level interactions. Thus, a
careful application of a combination of ideas borrowed from
decades of HPC tool research with novel distributed request-
tracing techniques can be a practical approach.

Regarding performance measurement, HPC ensembles only
partially succumb to the application of existing HPC perfor-
mance tools. For example, applying traditional PMPI-based
measurement techniques to a Swift/T [122] workflow execu-
tion can yield information about the data transfers between
individual Swift/T tasks. However, little information can be
gathered this way about the execution details of individual
Swift/T tasks. Individual tasks need some way of exchanging
their identity with the performance tool so that the tool’s mea-
surement infrastructure can separate the performance events
belonging to the task from the performance events belonging
to the underlying Turbine [123] runtime.

2) Performance Monitoring & Analysis: While several
robust performance monitoring tools such as LDMS [153]
exist, these tools primarily target the monitoring of hardware
resources. Recently, tools such as SOS [152] have been
developed to monitor and aggregate performance data simul-
taneously from multiple data sources. They can be broadly
applied to monitor any distributed application. However, most
existing monitoring tools collect the data, aggregate this data
in a central location (database), and then optionally provide the
ability for a user to analyze the data from within this central
location.

While this technique can scale well when the volume of
data aggregated is minimal, it may not work for newer types
of applications such as data services. Specifically, HPC data
services operate in a highly concurrent environment. Thus,
they require monitoring, aggregation, and analysis of large
volumes of event traces to detect performance inefficiencies.
Given the large storage footprint of event tracing, there is a
need to analyze data at the source, before the aggregation is
performed. Monitoring tools need to be flexible enough to
support this type of analysis.

23



3) Control & Adaptivity: Few tools exist that can dynami-
cally control and guide the execution of a coupled application.
Fewer (if any) tools offer the ability to do so automatically.
While adaptive algorithms have been studied and developed
for individual modules in isolation, the guided execution of a
coupled application requires performance data to be captured
from multiple sources, aggregated, and finally analyzed to
result in a control decision.

Further, the question of who actuates the control mechanism
is also essential. Currently, the power to make these control
decisions rests with a human user [111], [144]. This solution
may work well when the number of coupled modules is
relatively small, and the timescales involved in the control
loop are large. However, HPC ensembles and transient data
services involve tens or hundreds of individual modules and
tasks that complete in a short span. Thus, they may require
an automatic control system that relies on predefined policies.
Further, as depicted in Table VII, many existing frameworks
need to be updated to support resource elasticity before they
can reap the full benefits of a control infrastructure.

VIII. CONCLUSION

This document presented a novel narrative of the evolu-
tion of HPC software development methodologies and the
accompanying changes in HPC performance tools. Modular-
ization was identified as the recurring theme underlying major
revolutions in HPC software development. This document
categorized various emerging types of HPC frameworks and
applications based on their composition model, resource allo-
cation scheme, and data management strategies. A discussion
of the various techniques that HPC performance tools have
implemented to stay relevant was also presented. Finally, the
document touched upon some trends and open areas informing
future work.

REFERENCES

[1] J. M. Wozniak, R. Jain, P. Balaprakash, J. Ozik, N. T. Collier, J. Bauer,
F. Xia, T. Brettin, R. Stevens, J. Mohd-Yusof et al., “Candle/supervi-
sor: A workflow framework for machine learning applied to cancer
research,” BMC bioinformatics, vol. 19, no. 18, pp. 59–69, 2018.

[2] P. M. Kasson and S. Jha, “Adaptive ensemble simulations of
biomolecules,” Current opinion in structural biology, vol. 52, pp. 87–
94, 2018.

[3] A. Malony, “Performance understanding and analysis for exascale data
management workflows,” Univ. of Oregon, Eugene, OR (United States),
Tech. Rep., 2019.

[4] T. Ben-Nun, T. Gamblin, D. Hollman, H. Krishnan, and C. J. Newburn,
“Workflows are the new applications: Challenges in performance,
portability, and productivity,” in 2020 IEEE/ACM International Work-
shop on Performance, Portability and Productivity in HPC (P3HPC).
IEEE, 2020, pp. 57–69.

[5] B. Norris, J. Ray, R. Armstrong, L. C. McInnes, D. E. Bernholdt,
W. R. Elwasif, A. D. Malony, and S. Shende, “Computational quality
of service for scientific components,” in International Symposium on
Component-Based Software Engineering. Springer, 2004, pp. 264–
271.

[6] W. Emmerich and N. Kaveh, “Component technologies: Java beans,
com, corba, rmi, ejb and the corba component model,” in Proceedings
of the 8th European software engineering conference held jointly
with 9th ACM SIGSOFT international symposium on Foundations of
software engineering, 2001, pp. 311–312.

[7] A. Malony, S. Shende, N. Trebon, J. Ray, R. Armstrong, C. Rasmussen,
and M. Sottile, “Performance technology for parallel and distributed
component software,” Concurrency and Computation: Practice and
Experience, vol. 17, no. 2-4, pp. 117–141, 2005.

[8] S. S. Shende and A. D. Malony, “The tau parallel performance
system,” The International Journal of High Performance Computing
Applications, vol. 20, no. 2, pp. 287–311, 2006.

[9] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[10] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,
M. LeGendre, O. Pearce, and M. Schulz, “Caliper: performance in-
trospection for hpc software stacks,” in SC’16: Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2016, pp. 550–560.

[11] “Price of hpc systems,” https://qz.com/1301510.
[12] “Top500 list,” https://www.top500.org/.
[13] G. F. Pfister, “An introduction to the infiniband architecture,” High

performance mass storage and parallel I/O, vol. 42, no. 617-632, p.
102, 2001.

[14] D. W. Walker and J. J. Dongarra, “Mpi: a standard message passing
interface,” Supercomputer, vol. 12, pp. 56–68, 1996.

[15] “Ecp proxy suite,” https://proxyapps.exascaleproject.org/
ecp-proxy-apps-suite.

[16] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and
M. Yarrow, “The nas parallel benchmarks 2.0,” Technical Report NAS-
95-020, NASA Ames Research Center, Tech. Rep., 1995.

[17] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the mpi message passing interface stan-
dard,” Parallel computing, vol. 22, no. 6, pp. 789–828, 1996.

[18] J. Liu, J. Wu, and D. K. Panda, “High performance rdma-based
mpi implementation over infiniband,” International Journal of Parallel
Programming, vol. 32, no. 3, pp. 167–198, 2004.

[19] G. Chrysos, “Intel® xeon phi™ coprocessor-the architecture,” Intel
Whitepaper, vol. 176, p. 43, 2014.

[20] L. Dagum and R. Menon, “Openmp: an industry standard api for
shared-memory programming,” IEEE computational science and en-
gineering, vol. 5, no. 1, pp. 46–55, 1998.

[21] A. Kukanov and M. J. Voss, “The foundations for scalable multi-core
software in intel threading building blocks.” Intel Technology Journal,
vol. 11, no. 4, 2007.

[22] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads programming.
O’Reilly & Associates, Inc., 1996.

[23] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “Openacc—first
experiences with real-world applications,” in European Conference on
Parallel Processing. Springer, 2012, pp. 859–870.

[24] J. Sanders and E. Kandrot, CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional,
2010.

[25] A. Munshi, “The opencl specification,” in 2009 IEEE Hot Chips 21
Symposium (HCS). IEEE, 2009, pp. 1–314.

[26] L. V. Kale and S. Krishnan, “Charm++ a portable concurrent object
oriented system based on c++,” in Proceedings of the eighth annual
conference on Object-oriented programming systems, languages, and
applications, 1993, pp. 91–108.

[27] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and
K. Warren, “Introduction to upc and language specification,” Technical
Report CCS-TR-99-157, IDA Center for Computing Sciences, Tech.
Rep., 1999.

[28] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel programma-
bility and the chapel language,” The International Journal of High
Performance Computing Applications, vol. 21, no. 3, pp. 291–312,
2007.

[29] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable
interface to hardware performance counters,” in Proceedings of the
department of defense HPCMP users group conference, vol. 710.
Citeseer, 1999.

[30] A. E. Eichenberger, J. Mellor-Crummey, M. Schulz, M. Wong,
N. Copty, R. Dietrich, X. Liu, E. Loh, and D. Lorenz, “Ompt:
An openmp tools application programming interface for performance
analysis,” in International Workshop on OpenMP. Springer, 2013, pp.
171–185.

24



[31] J. E. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. M.
Arblaster, S. Bates, G. Danabasoglu, J. Edwards et al., “The community
earth system model (cesm) large ensemble project: A community
resource for studying climate change in the presence of internal climate
variability,” Bulletin of the American Meteorological Society, vol. 96,
no. 8, pp. 1333–1349, 2015.

[32] S. Plimpton, P. Crozier, and A. Thompson, “Lammps-large-scale atom-
ic/molecular massively parallel simulator,” Sandia National Laborato-
ries, vol. 18, p. 43, 2007.

[33] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka et al., “Hacc: Simulating
sky surveys on state-of-the-art supercomputing architectures,” New
Astronomy, vol. 42, pp. 49–65, 2016.

[34] “Coral-1 benchmarks,” https://asc.llnl.gov/coral-benchmarks.
[35] “Coral-2 benchmarks,” https://asc.llnl.gov/coral-2-benchmarks.
[36] J. Y. Choi, C.-S. Chang, J. Dominski, S. Klasky, G. Merlo, E. Suchyta,

M. Ainsworth, B. Allen, F. Cappello, M. Churchill et al., “Coupling
exascale multiphysics applications: Methods and lessons learned,” in
2018 IEEE 14th International Conference on e-Science (e-Science).
IEEE, 2018, pp. 442–452.

[37] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and
tomorrow,” Present and ulterior software engineering, pp. 195–216,
2017.

[38] C. Szyperski, D. Gruntz, and S. Murer, Component software: beyond
object-oriented programming. Pearson Education, 2002.

[39] A. L. Pope, The CORBA reference guide: understanding the common
object request broker architecture. Addison-Wesley Longman Pub-
lishing Co., Inc., 1998.

[40] R. Sessions, COM and DCOM: Microsoft’s vision for distributed
objects. John Wiley & Sons, Inc., 1997.

[41] D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K. Chiu, T. L.
Dahlgren, K. Damevski, W. R. Elwasif, T. G. Epperly, M. Govindaraju
et al., “A component architecture for high-performance scientific com-
puting,” The International Journal of High Performance Computing
Applications, vol. 20, no. 2, pp. 163–202, 2006.

[42] Y. Alexeev et al., “Component-based software for high-performance
scientific computing,” Journal of Physics: Conference Series, vol. 16,
no. 1, 2005.

[43] S. G. Parker, “A component-based architecture for parallel multi-
physics pde simulation,” Future Generation Computer Systems, vol. 22,
no. 1-2, pp. 204–216, 2006.

[44] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes,
S. Parker, and B. Smolinski, “Toward a common component archi-
tecture for high-performance scientific computing,” in Proceedings.
The Eighth International Symposium on High Performance Distributed
Computing (Cat. No. 99TH8469). IEEE, 1999, pp. 115–124.

[45] R. Armstrong, G. Kumfert, L. C. McInnes, S. Parker, B. Allan, M. Sot-
tile, T. Epperly, and T. Dahlgren, “The cca component model for high-
performance scientific computing,” Concurrency and Computation:
Practice and Experience, vol. 18, no. 2, pp. 215–229, 2006.

[46] T. G. Epperly, G. Kumfert, T. Dahlgren, D. Ebner, J. Leek, A. Prantl,
and S. Kohn, “High-performance language interoperability for scientific
computing through babel,” The International Journal of High Perfor-
mance Computing Applications, vol. 26, no. 3, pp. 260–274, 2012.

[47] F. Bertrand and R. Bramley, “Dca: A distributed cca framework based
on mpi,” in Ninth International Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments, 2004. Proceedings.
IEEE, 2004, pp. 80–89.

[48] J. Ray, N. Trebon, R. C. Armstrong, S. Shende, and A. Malony,
“Performance measurement and modeling of component applications
in a high performance computing environment: A case study,” in 18th
International Parallel and Distributed Processing Symposium, 2004.
Proceedings. IEEE, 2004, p. 95.

[49] N. Trebon, A. Morris, J. Ray, S. Shende, and A. Malony, “Performance
modeling of component assemblies with tau,” in Compframe 2005
workshop, Atlanta, 2005.

[50] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E. Bernholdt, and
J. A. Kohl, “The cca core specification in a distributed memory spmd
framework,” Concurrency and Computation: Practice and Experience,
vol. 14, no. 5, pp. 323–345, 2002.

[51] A. Cleary, S. Kohn, S. G. Smith, and B. Smolinski, “Language interop-
erability mechanisms for high-performance scientific applications,” in
Proceedings of the 1998 SIAM Workshop on Object-Oriented Methods

for Interoperable Scientific and Engineering Computing, vol. 99, 1999,
pp. 30–39.

[52] N. Trebon, A. Morris, J. Ray, S. Shende, and A. D. Malony, “Perfor-
mance modeling of component assemblies,” Concurrency and Compu-
tation: Practice and Experience, vol. 19, no. 5, pp. 685–696, 2007.

[53] P. Hovland, K. Keahey, L. McInnes, B. Norris, L. Diachin, and
P. Raghavan, “A quality of service approach for high-performance
numerical components,” in Proceedings of Workshop on QoS in
Component-Based Software Engineering, Software Technologies Con-
ference, Toulouse, France, vol. 20, 2003.

[54] L. C. McInnes, J. Ray, R. Armstrong, T. L. Dahlgren, A. Malony,
B. Norris, S. Shende, J. P. Kenny, and J. Steensland, “Computational
quality of service for scientific cca applications: Composition, substi-
tution, and reconfiguration,” Preprint ANL/MCS-P1326-0206, Argonne
National Laboratory, Feb, 2006.

[55] V. Bui, B. Norris, K. Huck, L. C. McInnes, L. Li, O. Hernandez,
and B. Chapman, “A component infrastructure for performance and
power modeling of parallel scientific applications,” in Proceedings of
the 2008 compFrame/HPC-GECO workshop on Component based high
performance, 2008, pp. 1–11.

[56] N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and
J. Darlington, “Optimisation of component-based applications within a
grid environment,” in Proceedings of the 2001 ACM/IEEE Conference
on Supercomputing, 2001, pp. 30–30.

[57] J. Bigot, Z. Hou, C. Pérez, and V. Pichon, “A low level component
model easing performance portability of hpc applications,” Computing,
vol. 96, no. 12, pp. 1115–1130, 2014.

[58] C. Perez and V. Lanore, “Towards reconfigurable hpc component
models,” in 2018 International Conference on High Performance
Computing & Simulation (HPCS). IEEE, 2018, pp. 151–152.

[59] M. Malawski, D. Kurzyniec, and V. Sunderam, “Mocca-towards a dis-
tributed cca framework for metacomputing,” in 19th IEEE International
Parallel and Distributed Processing Symposium. IEEE, 2005, pp. 8–
pp.

[60] R. Schmidt, S. Benkner, and M. Lucka, “A component plugin mecha-
nism and framework for application web services,” in Towards next
generation grids: proceedings of the CoreGRID Symposium 2007,
August 27-28, Rennes, France. Springer, 2007, p. 107.

[61] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukhi,
B. Temko, and M. Yechuri, “A component based services architec-
ture for building distributed applications,” in Proceedings the Ninth
International Symposium on High-Performance Distributed Computing.
IEEE, 2000, pp. 51–59.

[62] M. Govindaraju, M. J. Lewis, and K. Chiu, “Design and implementa-
tion issues for distributed cca framework interoperability,” Concurrency
and Computation: Practice and Experience, vol. 19, no. 5, pp. 651–
666, 2007.

[63] S. Krishnan and D. Gannon, “Xcat3: A framework for cca components
as ogsa services,” in Ninth International Workshop on High-Level
Parallel Programming Models and Supportive Environments, 2004.
Proceedings. IEEE, 2004, pp. 90–97.

[64] K. Zhang, K. Damevski, V. Venkatachalapathy, and S. G. Parker,
“Scirun2: A cca framework for high performance computing,” in Ninth
International Workshop on High-Level Parallel Programming Models
and Supportive Environments, 2004. Proceedings. IEEE, 2004, pp.
72–79.

[65] J. D. d. S. Germain, J. McCorquodale, S. G. Parker, and C. R. John-
son, “Uintah: A massively parallel problem solving environment,” in
Proceedings the Ninth International Symposium on High-Performance
Distributed Computing. IEEE, 2000, pp. 33–41.

[66] J. V. Reynders Iii, J. Cummings, and P. F. Dubois, “The pooma
framework,” Computers in Physics, vol. 12, no. 5, pp. 453–459, 1998.

[67] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang, “Petsc,” See http://www.
mcs. anl. gov/petsc, 2001.

[68] R. D. Falgout and U. M. Yang, “hypre: A library of high performance
preconditioners,” in International Conference on Computational Sci-
ence. Springer, 2002, pp. 632–641.

[69] M. Parashar and J. C. Browne, “Systems engineering for high perfor-
mance computing software: The hdda/dagh infrastructure for imple-
mentation of parallel structured adaptive mesh,” in Structured adaptive
mesh refinement (SAMR) grid methods. Springer, 2000, pp. 1–18.

[70] D. L. Brown, G. S. Chesshire, W. D. Henshaw, and D. J. Quinlan,
“Overture: An object-oriented software system for solving partial

25



differential equations in serial and parallel environments,” Los Alamos
National Lab., NM (United States), Tech. Rep., 1997.

[71] J. M. Squyres and A. Lumsdaine, “A component architecture for
lam/mpi,” in European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting. Springer, 2003, pp. 379–387.

[72] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine
et al., “Open mpi: Goals, concept, and design of a next generation
mpi implementation,” in European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting. Springer, 2004, pp. 97–104.

[73] R. Keller, G. Bosilca, G. Fagg, M. Resch, and J. J. Dongarra,
“Implementation and usage of the peruse-interface in open mpi,” in
European Parallel Virtual Machine/Message Passing Interface Users’
Group Meeting. Springer, 2006, pp. 347–355.

[74] T. Islam, K. Mohror, and M. Schulz, “Exploring the capabilities of the
new mpi t interface,” in Proceedings of the 21st European MPI Users’
Group Meeting, 2014, pp. 91–96.

[75] S. Ramesh, A. Mahéo, S. Shende, A. D. Malony, H. Subramoni,
A. Ruhela, and D. K. D. Panda, “Mpi performance engineering with
the mpi tool interface: the integration of mvapich and tau,” Parallel
Computing, vol. 77, pp. 19–37, 2018.

[76] E. Gallardo, J. Vienne, L. Fialho, P. Teller, and J. Browne, “Employ-
ing mpi t in mpi advisor to optimize application performance,” The
International Journal of High Performance Computing Applications,
vol. 32, no. 6, pp. 882–896, 2018.

[77] M.-A. Hermanns, N. T. Hjelm, M. Knobloch, K. Mohror, and
M. Schulz, “The mpi t events interface: An early evaluation and
overview of the interface,” Parallel computing, vol. 85, pp. 119–130,
2019.

[78] B. Mohr, A. D. Malony, S. Shende, and F. Wolf, “Design and
prototype of a performance tool interface for openmp,” The Journal
of Supercomputing, vol. 23, no. 1, pp. 105–128, 2002.

[79] M. Itzkowitz and Y. Maruyama, “Hpc profiling with the sun studio™
performance tools,” in Tools for high performance computing 2009.
Springer, 2010, pp. 67–93.

[80] H. Jagode, A. Danalis, H. Anzt, and J. Dongarra, “Papi software-
defined events for in-depth performance analysis,” The International
Journal of High Performance Computing Applications, vol. 33, no. 6,
pp. 1113–1127, 2019.

[81] J. Logan, M. Ainsworth, C. Atkins, J. Chen, J. Y. Choi, J. Gu, J. M.
Kress, G. Eisenhauer, B. Geveci, W. Godoy et al., “Extending the
publish/subscribe abstraction for high-performance i/o and data man-
agement at extreme scale,” Bulletin of the IEEE Technical Committee
on Data Engineering, vol. 43, no. 1, 2020.

[82] G. Merlo, S. Janhunen, F. Jenko, A. Bhattacharjee, C. Chang, J. Cheng,
P. Davis, J. Dominski, K. Germaschewski, R. Hager et al., “First
coupled gene–xgc microturbulence simulations,” Physics of Plasmas,
vol. 28, no. 1, p. 012303, 2021.

[83] V. Sarkar, W. Harrod, and A. E. Snavely, “Software challenges in
extreme scale systems,” in Journal of Physics: Conference Series, vol.
180, no. 1. IOP Publishing, 2009, p. 012045.

[84] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam,
K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter,
“The future of scientific workflows,” The International Journal of High
Performance Computing Applications, vol. 32, no. 1, pp. 159–175,
2018.

[85] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and
B. A. Hamilton, “Reference model for service oriented architecture
1.0,” OASIS standard, vol. 12, no. S 18, 2006.

[86] D. A. Chappell, Enterprise service bus. ” O’Reilly Media, Inc.”, 2004.
[87] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,

“Flexible io and integration for scientific codes through the adaptable
io system (adios),” in Proceedings of the 6th international workshop
on Challenges of large applications in distributed environments, 2008,
pp. 15–24.

[88] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an interaction and
coordination framework for coupled simulation workflows,” Cluster
Computing, vol. 15, no. 2, pp. 163–181, 2012.

[89] M. Dreher and T. Peterka, “Decaf: Decoupled dataflows for in situ high-
performance workflows,” Argonne National Lab.(ANL), Argonne, IL
(United States), Tech. Rep., 2017.

[90] P. H. Beckman, P. K. Fasel, W. E. Humphrey, and S. M. Mniszewski,
“Efficient coupling of parallel applications using paws,” in Proceed-
ings. The Seventh International Symposium on High Performance

Distributed Computing (Cat. No. 98TB100244). IEEE, 1998, pp. 215–
222.

[91] D. Bernholdt, F. Bertrand, R. Bramley, K. Damevski, J. Kohl, S. Parker,
and A. Sussman, ““mxn” parallel data redistribution research in the
common component architecture (cca).”

[92] I. B. Peng, R. Gioiosa, G. Kestor, E. Laure, and S. Markidis, “Preparing
hpc applications for the exascale era: A decoupling strategy,” in 2017
46th International Conference on Parallel Processing (ICPP). IEEE,
2017, pp. 1–10.

[93] R. B. Ross, G. Amvrosiadis, P. Carns, C. D. Cranor, M. Dorier,
K. Harms, G. Ganger, G. Gibson, S. K. Gutierrez, R. Latham et al.,
“Mochi: Composing data services for high-performance computing
environments,” Journal of Computer Science and Technology, vol. 35,
no. 1, pp. 121–144, 2020.

[94] R. Latham, R. Ross, and R. Thakur, “Can mpi be used for persistent
parallel services?” in European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting. Springer, 2006, pp. 275–284.

[95] J. A. Zounmevo, D. Kimpe, R. Ross, and A. Afsahi, “Using mpi
in high-performance computing services,” in Proceedings of the 20th
European MPI Users’ Group Meeting, 2013, pp. 43–48.

[96] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns,
R. Ross, and I. Raicu, “Fusionfs: Toward supporting data-intensive
scientific applications on extreme-scale high-performance computing
systems,” in 2014 IEEE international conference on big data (Big
Data). IEEE, 2014, pp. 61–70.

[97] M.-A. Vef, N. Moti, T. Süß, T. Tocci, R. Nou, A. Miranda, T. Cortes,
and A. Brinkmann, “Gekkofs-a temporary distributed file system for
hpc applications,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2018, pp. 319–324.

[98] A. Moody, D. Sikich, N. Bass, M. J. Brim, C. Stanavige, H. Sim,
J. Moore, T. Hutter, S. Boehm, K. Mohror et al., “Unifyfs: A dis-
tributed burst buffer file system-0.1. 0,” Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2017.

[99] A. Anwar, Y. Cheng, H. Huang, J. Han, H. Sim, D. Lee, F. Douglis, and
A. R. Butt, “Bespokv: Application tailored scale-out key-value stores,”
in SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2018, pp. 14–29.

[100] C. Ulmer, S. Mukherjee, G. Templet, S. Levy, J. Lofstead, P. Widener,
T. Kordenbrock, and M. Lawson, “Faodel: Data management for next-
generation application workflows,” in Proceedings of the 9th Workshop
on Scientific Cloud Computing, 2018, pp. 1–6.

[101] M. A. Sevilla, N. Watkins, I. Jimenez, P. Alvaro, S. Finkelstein,
J. LeFevre, and C. Maltzahn, “Malacology: A programmable storage
system,” in Proceedings of the Twelfth European Conference on Com-
puter Systems, 2017, pp. 175–190.

[102] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation, 2006, pp. 307–320.

[103] Martin Fowler, “Microservices,” https://martinfowler.com/articles/
microservices.html.

[104] O. Zimmermann, “Microservices tenets,” Computer Science-Research
and Development, vol. 32, no. 3, pp. 301–310, 2017.

[105] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Mi-
croservices: The journey so far and challenges ahead,” IEEE Software,
vol. 35, no. 3, pp. 24–35, 2018.

[106] J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q. Koziol,
A. Afsahi, and R. Ross, “Mercury: Enabling remote procedure call for
high-performance computing,” in 2013 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 2013, pp. 1–8.

[107] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns,
A. Castelló, D. Genet, T. Herault et al., “Argobots: A lightweight low-
level threading and tasking framework,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, no. 3, pp. 512–526, 2017.

[108] N. Buchanan, M. Dorier, D. Doyle, C. Green, J. Kowalkowski,
R. Latham, A. Norman, M. Paterno, R. Ross, S. Sehrish et al., “Sup-
porting hep data as the exascale era approaches,” Argonne National
Lab.(ANL), Argonne, IL (United States); Fermi National . . . , Tech.
Rep., 2018.

[109] H. Childs, S. D. Ahern, J. Ahrens, A. C. Bauer, J. Bennett, E. W. Bethel,
P.-T. Bremer, E. Brugger, J. Cottam, M. Dorier et al., “A terminology
for in situ visualization and analysis systems,” The International
Journal of High Performance Computing Applications, vol. 34, no. 6,
pp. 676–691, 2020.

26



[110] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky,
K. Moreland, P. O’Leary, V. Vishwanath, B. Whitlock et al., “In
situ methods, infrastructures, and applications on high performance
computing platforms,” in Computer Graphics Forum, vol. 35, no. 3.
Wiley Online Library, 2016, pp. 577–597.

[111] P. Grosset, J. Pulido, and J. Ahrens, “Personalized in situ steering
for analysis and visualization,” in ISAV’20 In Situ Infrastructures for
Enabling Extreme-Scale Analysis and Visualization, 2020, pp. 1–6.

[112] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
and J. Mauldin, “Paraview catalyst: Enabling in situ data analysis
and visualization,” in Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization,
2015, pp. 25–29.

[113] T. Kuhlen, R. Pajarola, and K. Zhou, “Parallel in situ coupling of
simulation with a fully featured visualization system,” in Proceedings
of the 11th Eurographics Conference on Parallel Graphics and Visu-
alization (EGPGV), vol. 10. Eurographics Association Aire-la-Ville,
Switzerland, 2011, pp. 101–109.

[114] U. Ayachit, B. Whitlock, M. Wolf, B. Loring, B. Geveci, D. Lonie,
and E. W. Bethel, “The sensei generic in situ interface,” in 2016
Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization (ISAV). IEEE, 2016, pp. 40–44.

[115] E. Dirand, L. Colombet, and B. Raffin, “Tins: A task-based dynamic
helper core strategy for in situ analytics,” in Asian Conference on
Supercomputing Frontiers. Springer, 2018, pp. 159–178.

[116] M. Larsen, J. Ahrens, U. Ayachit, E. Brugger, H. Childs, B. Geveci,
and C. Harrison, “The alpine in situ infrastructure: Ascending from the
ashes of strawman,” in Proceedings of the In Situ Infrastructures on
Enabling Extreme-Scale Analysis and Visualization, 2017, pp. 42–46.

[117] D. Morozov and Z. Lukic, “Master of puppets: Cooperative multi-
tasking for in situ processing,” in Proceedings of the 25th ACM In-
ternational Symposium on High-Performance Parallel and Distributed
Computing, 2016, pp. 285–288.

[118] M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, and D. Semeraro,
“Damaris/viz: a nonintrusive, adaptable and user-friendly in situ visu-
alization framework,” in 2013 IEEE Symposium on Large-Scale Data
Analysis and Visualization (LDAV). IEEE, 2013, pp. 67–75.

[119] M. Dorier, G. Antoniu, F. Cappello, M. Snir, R. Sisneros, O. Yildiz,
S. Ibrahim, T. Peterka, and L. Orf, “Damaris: Addressing performance
variability in data management for post-petascale simulations,” ACM
Transactions on Parallel Computing (TOPC), vol. 3, no. 3, pp. 1–43,
2016.

[120] S. Brandon, D. Domyancic, J. Tannahill, D. Lucas, G. Christianson,
J. McEnereny, and R. Klein, “Ensemble calculation via the llnl uq
pipeline: A user’s guide,” Tech. Rep. LLNL-SM-480999, 2011.

[121] D. H. Ahn, N. Bass, A. Chu, J. Garlick, M. Grondona, S. Herbein,
H. I. Ingólfsson, J. Koning, T. Patki, T. R. Scogland et al., “Flux:
Overcoming scheduling challenges for exascale workflows,” Future
Generation Computer Systems, vol. 110, pp. 202–213, 2020.

[122] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk,
and I. T. Foster, “Swift/t: Large-scale application composition via
distributed-memory dataflow processing,” in 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing.
IEEE, 2013, pp. 95–102.

[123] J. M. Wozniak, T. G. Armstrong, K. Maheshwari, E. L. Lusk, D. S.
Katz, M. Wilde, and I. T. Foster, “Turbine: A distributed-memory
dataflow engine for extreme-scale many-task applications,” in Pro-
ceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow
Execution Engines and Technologies, 2012, pp. 1–12.

[124] J. L. Peterson, R. Anirudh, K. Athey, B. Bay, P.-T. Bremer, V. Castillo,
F. Di Natale, D. Fox, J. A. Gaffney, D. Hysom et al., “Mer-
lin: Enabling machine learning-ready hpc ensembles,” arXiv preprint
arXiv:1912.02892, 2019.

[125] A. Merzky, M. Santcroos, M. Turilli, and S. Jha, “Radical-pilot:
Scalable execution of heterogeneous and dynamic workloads on su-
percomputers,” CoRR, abs/1512.08194, 2015.

[126] C. Harrison, B. Ryujin, A. Kunen, J. Ciurej, K. Biagas, E. Brugger,
A. Black, G. Zagaris, K. Weiss, M. Larsen et al., “Conduit: Simplified
data exchange for hpc simulations,” 2019.

[127] P. Hintjens, ZeroMQ: messaging for many applications. ” O’Reilly
Media, Inc.”, 2013.

[128]
[129] M. Dorier, O. Yildiz, T. Peterka, and R. Ross, “The challenges of elastic

in situ analysis and visualization,” in Proceedings of the Workshop

on In Situ Infrastructures for Enabling Extreme-Scale Analysis and
Visualization, 2019, pp. 23–28.

[130] A. Raveendran, T. Bicer, and G. Agrawal, “A framework for elastic
execution of existing mpi programs,” in 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum. IEEE, 2011, pp. 940–947.

[131] C. Huang, O. Lawlor, and L. V. Kale, “Adaptive mpi,” in Interna-
tional workshop on languages and compilers for parallel computing.
Springer, 2003, pp. 306–322.

[132] D. Rajan, A. Canino, J. A. Izaguirre, and D. Thain, “Converting a high
performance application to an elastic cloud application,” in 2011 IEEE
Third International Conference on Cloud Computing Technology and
Science. IEEE, 2011, pp. 383–390.

[133] L. Zhao and S. A. Jarvis, “Predictive performance modelling of parallel
component compositions,” Cluster Computing, vol. 10, no. 2, pp. 155–
166, 2007.

[134] L. A. Drummond, J. Demmel, C. R. Mechoso, H. Robinson,
K. Sklower, and J. A. Spahr, “A data broker for distributed computing
environments,” in International Conference on Computational Science.
Springer, 2001, pp. 31–40.

[135] J. A. Kohl, T. Wilde, and D. E. Bernholdt, “Cumulvs: Interacting
with high-performance scientific simulations, for visualization, steering
and fault tolerance,” The International Journal of High Performance
Computing Applications, vol. 20, no. 2, pp. 255–285, 2006.

[136] L. Zhang, C. Docan, and M. Parashar, “The seine data coupling frame-
work for parallel scientific applications,” Advanced Computational
Infrastructures for Parallel and Distributed Adaptive Applications,
vol. 66, p. 283, 2010.

[137] J. Larson, R. Jacob, and E. Ong, “The model coupling toolkit: a new
fortran90 toolkit for building multiphysics parallel coupled models,”
The International Journal of High Performance Computing Applica-
tions, vol. 19, no. 3, pp. 277–292, 2005.

[138] J.-Y. Lee and A. Sussman, “High performance communication between
parallel programs,” in 19th IEEE International Parallel and Distributed
Processing Symposium. IEEE, 2005, pp. 8–pp.

[139] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang,
H. Abbasi, S. Klasky, and N. Podhorszki, “Flexpath: Type-based
publish/subscribe system for large-scale science analytics,” in 2014
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. IEEE, 2014, pp. 246–255.

[140] V. Vishwanath, M. Hereld, and M. E. Papka, “Toward simulation-time
data analysis and i/o acceleration on leadership-class systems,” in 2011
IEEE Symposium on Large Data Analysis and Visualization. IEEE,
2011, pp. 9–14.

[141] G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan, “Event-based
systems: Opportunities and challenges at exascale,” in Proceedings of
the Third ACM International Conference on Distributed Event-Based
Systems, 2009, pp. 1–10.

[142] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin,
and S. Robert, “Flowvr: a middleware for large scale virtual reality ap-
plications,” in European Conference on Parallel Processing. Springer,
2004, pp. 497–505.

[143] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm,
D. Eschweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony et al.,
“Score-p: A joint performance measurement run-time infrastructure for
periscope, scalasca, tau, and vampir,” in Tools for High Performance
Computing 2011. Springer, 2012, pp. 79–91.

[144] M. Wolf, J. Choi, G. Eisenhauer, S. Ethier, K. Huck, S. Klasky, J. Lo-
gan, A. Malony, C. Wood, J. Dominski et al., “Scalable performance
awareness for in situ scientific applications,” in 2019 15th International
Conference on eScience (eScience). IEEE, 2019, pp. 266–276.

[145] A. D. Malony, M. Larsen, K. A. Huck, C. Wood, S. Sane, and
H. Childs, “When parallel performance measurement and analysis
meets in situ analytics and visualization.” in PARCO, 2019, pp. 521–
530.

[146] A. D. Malony, S. Ramesh, K. Huck, N. Chaimov, and S. Shende, “A
plugin architecture for the tau performance system,” in Proceedings of
the 48th International Conference on Parallel Processing, 2019, pp.
1–11.

[147] R. R. Sambasivan, R. Fonseca, I. Shafer, and G. R. Ganger, “So, you
want to trace your distributed system,” Key design insights from years
of practical experience. Parallel Data Lab, 2014.

[148] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. R. Ganger, “Diagnosing

27



performance changes by comparing request flows.” in NSDI, vol. 5,
2011, pp. 1–1.

[149] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale dis-
tributed systems tracing infrastructure,” 2010.

[150] “Jaeger tracing,” https://www.jaegertracing.io.
[151] X. Zhang, H. Abbasi, K. Huck, and A. D. Malony, “Wowmon: A

machine learning-based profiler for self-adaptive instrumentation of
scientific workflows,” Procedia Computer Science, vol. 80, pp. 1507–
1518, 2016.

[152] C. Wood, S. Sane, D. Ellsworth, A. Gimenez, K. Huck, T. Gamblin,
and A. Malony, “A scalable observation system for introspection and
in situ analytics,” in 2016 5th workshop on extreme-scale programming
tools (ESPT). IEEE, 2016, pp. 42–49.

[153] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden et al., “The
lightweight distributed metric service: a scalable infrastructure for
continuous monitoring of large scale computing systems and applica-
tions,” in SC’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2014, pp. 154–165.

[154] P. C. Roth, D. C. Arnold, and B. P. Miller, “Mrnet: A software-based
multicast/reduction network for scalable tools,” in SC’03: Proceedings
of the 2003 ACM/IEEE conference on Supercomputing. IEEE, 2003,
pp. 21–21.

[155] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience,” Parallel
Computing, vol. 30, no. 7, pp. 817–840, 2004.

[156] C. Kelly, S. Ha, K. Huck, H. Van Dam, L. Pouchard, G. Matyasfalvi,
L. Tang, N. D’Imperio, W. Xu, S. Yoo et al., “Chimbuko: A workflow-
level scalable performance trace analysis tool,” in ISAV’20 In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization,
2020, pp. 15–19.

[157] “Prometheus,” https://prometheus.io/.
[158] “Graphite,” https://graphiteapp.org/.
[159] K. A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A. D. Malony,

T. Sterling, and R. Fowler, “An autonomic performance environment
for exascale,” Supercomputing frontiers and innovations, vol. 2, no. 3,
pp. 49–66, 2015.

[160] W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko, J. Vetter,
and N. Mallavarupu, “Falcon: On-line monitoring and steering of
large-scale parallel programs,” in Proceedings Frontiers’ 95. The Fifth
Symposium on the Frontiers of Massively Parallel Computation. IEEE,
1995, pp. 422–429.

[161] N. Cheriere, M. Dorier, G. Antoniu, S. M. Wild, S. Leyffer, and
R. Ross, “Pufferscale: Rescaling hpc data services for high energy
physics applications,” in 2020 20th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Internet Computing (CCGRID). IEEE,
2020, pp. 182–191.

28


