
Particle Advection Workloads:
Performance Characteristics and Optimizations

Abhishek Yenpure1

1University of Oregon, USA

Abstract
Flow visualization is an important approach for understanding fluid dynamics simulations. This survey focuses on flow visu-
alization algorithms that use “particle advection,” a process that displaces particles in a flow field. The performance of these
algorithms can vary greatly based on a variety of factors including workload, solver type, underlying mesh type, and optimiza-
tions employed. That said, the relationship between these factors and actual execution time is often not well understood. In
response, this survey aims to illuminate performance aspects. It considers a decision-making workflow for assessing whether
or not a particle advection workload requires optimized approaches to complete within a time bound. This workflow requires
considering workload properties, cost models, and possible optimizations, and each of these topics is surveyed. Further, special
attention is paid to parallelism and especially parallelism on supercomputers, including portable performance. Overall, the
survey identifies three key limitations in realizing the decision-making workflow: in cost estimation, in expected performance
increases from using GPUs, and in expected performance increases from using distributed-memory parallel techniques. Fi-
nally, the survey contributes new ideas for how particle advection components relate and for translating particle advection
workloads to a cost formulation, also contributes some nascent preliminary work addressing each of the three limitations.

1. Introduction

Flow visualization is a technique for understanding flow patterns
and movement of fluids. It is performed both experimentally and
computationally, with computational approaches falling within
the field of scientific visualization. It is used by experts from var-
ious fields to study phenomena like ocean movements, aerody-
namics, and electromagnetics. In the context of scientific visual-
ization, almost all flow visualization techniques utilize the same
operation — placing a massless particle at a seed location, dis-
placing that particle according to the vector field to form a tra-
jectory, and using that trajectory to create a renderable output.
Many of these flow visualization techniques consider large num-
bers of particles and thus can be very computationally expensive.
However, the exact amount of computational work varies from
case to case.

The main focus of this study is the computational costs for
flow visualization, and it considers these costs from two perspec-
tives: (1) reasoning about how much work a flow visualization
technique will require and (2) reasoning about how to execute
this work as quickly as possible. We envision the results of this
survey can help inform a workflow for making decisions about
which optimizations to employ for particle advection problems.
The workflow is shown via a flow chart in Figure 1, and works in
three steps:

• In the first step, the desired workload is analyzed to see how
many operations need to be performed.

• In the second step, the analysis from the first step is used to
estimate the execution time costs to execute the algorithm.

• In the third step, the estimated costs from the second step
are compared to user requirements. If the estimated costs are
within the user’s budget, then no optimizations are necessary
and the workload can be executed as is. If not, then optimiza-
tions should be employed.

With respect to optimizations, there are two main types. One
type of optimization is algorithmic, i.e., to do less work. Another
type of optimization is parallelization, i.e., to use more resources
to do the same work. In many cases, these optimizations can
be used in conjunction. Utilizing available parallelism can usu-
ally be considered the easier option. However, depending on the
size of the workload and the data, further decisions are needed
regarding utilizing shared-memory parallelism or distributed-
memory parallelism.

Additionally, this survey considers parallelism on super-
computers. As such, the parallelism study is split into two
parts, shared-memory techniques and distributed-memory
techniques, and particularly focuses on the latter. The discus-
sion of distributed-memory techniques is intended to serve as
an exhaustive survey of the works in this area to date, and also go
deeper in contrasting these works than any previous survey. Fi-
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Figure 1: A flow chart to determine the potential optimizations to
be applied to a flow visualization algorithm.

nally, the evolving nature of supercomputer hardware has made
portable performance an important issue. To that end, this study
analyzes portable performance results to date for scientific visu-
alization.

In all, the organization of this document is:

• Section 2: background on flow visualization
• Section 3: reasoning about how much work a flow visualization

technique will take
• Section 4: reducing the amount of work via algorithmic opti-

mizations
• Section 5: shared memory parallelization
• Section 6: distributed memory parallelization
• Section 7: portable performance
• Section 8: conclusion

During the course of this survey, we identified three areas
where existing studies do not sufficiently provide answers we
need to realize the aforementioned workflow. We highlight these
areas as Limitation 1, Limitation 2, and Limitation 3 in the
manuscript. In each case, we also augment current understand-
ing with some nascent preliminary work that reveals the extent
of the limitation. Briefly, the limitations are as follows:

• Limitation 1: Estimating execution time for arbitrary work-
loads is difficult, and may require a formal cost model. For our
preliminary work, we make a cost model based on the num-
ber of operations performed and briefly evaluate its efficacy.
We find that merely counting operations is not sufficient to
capture diverse workloads, and likely that considerations for
memory accesses are needed.

• Limitation 2: For shared-memory parallelism, our community
has a poor understanding of expected speedups over diverse
GPUs and diverse workloads. For our preliminary work, we
complement existing studies that use powerful GPUs on dif-
ficult workloads with a mini-study using less powerful GPUs
and less intensive workloads and show that the achieved
speedups differ dramatically.

• Limitation 3: For distributed-memory parallelism, our com-
munity has a poor understanding of scaling properties for our
algorithms. For our preliminary work, we re-analyze previous
results to inform parallel efficiency, although these results are

for weak scaling, and our intended workflow would most ben-
efit from a study focused on strong scaling.

2. Background

This section provides background on flow visualization, orga-
nized into three subsections. Section 2.1 introduces an orga-
nization for the components of a flow visualization algorithm.
These components fall into two broad groupings. The first group-
ing is made up of components that are general-purpose build-
ing blocks that can be utilized by any flow visualization algo-
rithm. These components are described in Section 2.2. The sec-
ond grouping is made up of components that are individual to a
given flow visualization algorithm. Section 2.3 informs the nature
of these components by surveying some representative flow visu-
alization algorithms, with a focus on how they realize the various
components from the second grouping.

2.1. Organization for the Components of a Flow Visualization
System

This subsection introduces an organization for the components
of a flow visualization algorithm. This organization considers
three levels of granularity. The “top level” of our organization is
the coarsest granularity, and it contains three components:

• Seed Particles: defines the initial placement of particles.
• Advance Particles: defines how the particles are displaced and

analyzed.
• Construct Output: constructs the final output of the flow vi-

sualization algorithm, which may be a renderable form, some-
thing quantitative in nature, etc.

These operations happen in a sequence, starting with the place-
ment of the seed particles. The particles are then advanced by the
flow visualization system. Finally, the information from the parti-
cle advancements are used to construct the visual output for the
users.

The “middle level” of our organization considers the process
of advancing a single particle. This is an expansion of the sec-
ond component of the top-level, “Advance Particles.” It is again
divided into three parts:

• Particle Advection Step: defines how a particle advances to the
next position.

• Analyze Step: defines the analysis that is required after every
step of a particle.

• Check for Termination: defines when a particle should be ter-
minated.

The process of advancing a particle involves taking many steps,
with each step displacing the particle from its current location
to a new location. Such steps are referred to as particle advec-
tion steps. For every particle being advanced, the particle is first
displaced from its current location for a single step. Some flow
visualization algorithms require special analysis of the displace-
ment’s outcome. This analysis could be as simple as storing the
particle’s new location in memory or could involve more com-
putation. Further, flow visualization algorithms define specific
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Figure 2: Organization of the components for a particle advection-based flow visualization algorithm. The components are categorized in
two ways. The first categorization is based on the hierarchy at which the components occur. The components are arranged in three rows in
decreasing levels of granularity from top to bottom. In other words, the components at the bottom are building blocks for the components
at higher levels. The top row shows the components which encapsulate a flow visualization algorithm. The middle row shows components
that define the movement and analysis of a particle. The loop in this middle level indicates its components are executed repeatedly until
the particle is terminated. Note that, in the figure, the top row advances many particles, while the middle row is dedicated to advancing a
single particle, i.e., a flow visualization algorithm would advance each of its particles by repeatedly using the components in the middle
column. Finally, the bottom row shows components that define a single step of advection. The four arrows with the ellipsis from ODE
solver to velocity field evaluation are meant to indicate that an ODE solver needs to evaluate the velocity field multiple times. Each velocity
field evaluation takes as input a spatial location and possibly a time, and returns the velocity at the corresponding location (and time). A
frequently used ODE solver, Runge-Kutta 4, requires four such velocity field evaluations. Further, each velocity field evaluation requires first
locating which cell in the mesh contains the desired spatial location and then interpolating the velocity field to the desired location. The
second categorization is based on the role the components play. The components are organized by different colors. The colors distinguish
between common components and components that are custom for the flow visualization algorithms — the blue components are the key
components of particle advection which are common to all algorithms, and the yellow components are the components that are custom to
an algorithm. The “Check for Termination” component is colored in green (blue + yellow) because it can fall into either group. There are
several common termination criteria that are used repeatedly across flow visualization techniques, but some flow visualization techniques
have custom criteria.

criteria for when to terminate a particle. After analyzing the par-
ticle’s displacement, a special component checks if the particle
meets the termination criteria. Further, if the particle is not ter-
minated, then these three activities are repeated in a loop until
the termination criteria is reached.

Finally, the “bottom level” of our organization is the finest
granularity and considers the process of completing a single step
for a particle. This level has four components:

• ODE solver (ordinary differential equation solver): calculates
the particle’s next position using velocity field evaluations.

• Velocity Field Evaluation: calculates the value of the velocity
field at a specific location.

• Cell Location: locates the cell that contains some location.
• Field Interpolation: calculates velocity field at a specific loca-

tion via interpolation of surrounding velocity values.

These four components relate as follows. For every particle step,
the particle is displaced to a new location determined by an ODE
solver. This ODE solver requires the velocity of the particle for the
displacement. The velocity evaluation is performed using two
components 1) a cell locator to identify the cell containing a loca-

tion, and 2) a field interpolator that calculates the velocity using
the cell’s information.

This organization is also described in Figure 2.

2.2. Building Blocks for a Flow Visualization Algorithm

This section describes the components from our organization
that serve as general-purpose building blocks for any flow visu-
alization algorithm.

2.2.1. Particle Advection Step

The trajectory a particle follows can be defined using an ordinary
differential equation (ODE):

s′(t ) = v(t , s(t ))

s(t0) = s0
(1)

where s(t ) denotes the position of the particle at time t, s0 ∈ Rd

is the position at initial time t0, v is a function that returns the
velocity for position s at time t such that v : [t0,∞)×Rd 7→ Rd ,
and s′(t ) is the derivative of the particle trajectory at time t . An
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advection step displaces a particle according to the vector field
by approximating a solution to the ODE. If a particle is located
at position Pi at time Ti , then an advection step displaces the
particle to a new position, Pi +∆p, and a new time, Ti +∆t . Three
operations are required for every particle advection step:

1. Locating the cell or cells for the locations required for the step.
2. Interpolating the velocity information at the locations re-

quired for the step.
3. Solving for the next position of the particle.

Algorithm 1 presents a simplified view of this routine. The first
two operations are parts of the “vector field evaluation” compo-
nent discussed earlier. The rest of this section describes each of

Algorithm 1 Algorithm for advancing a particle until termina-
tion. Lines inside the while loop are computations for a single
step. K is the number of velocity evaluations required by the ODE
solver.

while !Shoul dTer mi nate() do
vel ← {}
for i = 1 to K do

loci ←ODESol ver.GetLocati on(i )
cel li ←Cel l Locator.F i ndCel l (l oci )
veli ← F i el d Inter pol ator.Inter pol ate(cel li , loci )
vel ← vel + {veli }

end for
pos ←ODESol ver.Sol ve(pos, vel )

end while

these subcomponents of particle advection.

2.2.1.1. ODE Solver: Solutions to ordinary differential equa-
tions can be approximated by using “ODE Solvers.”

In the context of particle advection, ODE solvers are used to
calculate the next position of the particle. This process is con-
tinued successively, i.e., each time a new particle position is
calculated, that position becomes the input to the next step,
and the result of each of these steps is an approximation of
the particle’s trajectory. There are many different solvers, each
of which perform this approximation in different ways. These
solvers have trade-offs in accuracy, computational cost, and suit-
ability, and users choose a solver based on these trade-offs. The
simplest scheme to perform this approximation, known as the
Euler method, is shown in Equation 2.

Pi+1 = Pi +∆t × v(ti , Pi ) (2)

In this equation, Pi is the particle’s current position at time ti ,
and Pi+1 is the particle’s next position at time ti +∆t . The term
v(ti , Pi ) represents the velocity at position Pi . Finally, ∆t repre-
sents the duration of the displacement with the evaluated veloc-
ity value.

Since the displacement uses only the velocity at the particle’s
current position and time, displacing the particle for a longer du-
ration could potentially accumulate significant error in the par-
ticle’s trajectory over time. One solution to this problem is to dis-
place the particle for a smaller duration (e.g., smaller values for

‘∆t ’ in Equation 2), while another is to use a higher-order inte-
gration method. The most commonly used integration method
in flow visualization is the fourth-order Runge-Kutta method,
which is presented in Equation 3.

Pi+1 = Pi +
∆t

6
× (k1 +2k2 +2k3 +k4)

k1 = v(ti , Pi )

k2 = v(ti +
∆t

2
, Pi +

∆t

2
×k1)

k3 = v(ti +
∆t

2
, Pi +

∆t

2
×k2)

k4 = v(ti +∆t , Pi +∆t ×k3)

(3)

While the Runge-Kutta method requires more computations to
calculate a particle’s next position, it is able to preserve accuracy
over longer durations.

Consider an example of a particle being advected with for a
duration of T = 1 with ∆t = 0.01 using an RK4 solver. In this case,
the solver will need to complete 1/0.01 = 100 steps. Over the en-
tire advection, the error accumulated by the RK4 solver is of the
order O(∆t 4). In the case of the example, the accumulated er-
ror is O(1e−8). Since the particle completes 100 steps, the RK4
solver requires 400 velocity evaluations. Over the entire advec-
tion, the error accumulated by the Euler solver is of the order
O(∆t ). To attain the same accuracy as the RK4 solver, the Eu-
ler solver will need ∆t to be 1e−8, requiring 1e8 velocity evalu-
ations, to advect for the same duration. In comparison, the Euler
solver requires 1e8/400, i.e., 250,000× as many velocity evalua-
tions. Hence, when considering both performance and accuracy,
the RK4 solver provides a better option.

Euler and Runge-Kutta are just two of many numerical tech-
niques for approximating ordinary differential equations. Other
notable examples used for particle advection are Dormand
Prince [DP80], Adams Bashforth [Gol12], and Leapfrog [Ske93].

2.2.1.2. Vector Field Evaluation: Simulations operate by dis-
cretizing their problem domains into “meshes” made up of many
elements. The nature of these meshes varies widely across simu-
lation code, including many different types of elements and or-
ganizations of these elements. Simulations typically define fields
on their meshes, and most flow visualization algorithms operate
by using the velocity vector field defined on the mesh. In this dis-
cussion, meshes are classified into two broad categories: struc-
tured and unstructured. Structured meshes exhibit regularity in
terms of the elements’ shape and organization, which simpli-
fies the specification of their topology. Examples of structured
meshes are uniform, rectilinear, and curvilinear grids. Unstruc-
tured meshes do not exhibit regularity and need the topology of
every element to be specified explicitly. For particle advection,
a simulation’s mesh type can significantly impact on the perfor-
mance of the vector field evaluation operation.

All ODE solvers require evaluating the velocity field at a series
of locations, L1, L2, ... LN . Evaluating velocity at each location Li
is a two-step process. The first step is to determine which cell Ci
contains Li , which we refer to the “containing cell.” The second
step is to evaluate the velocity value at Li using the velocity field
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information from Ci . Two components are used to execute these
two tasks: a cell locator to perform the first and a field interpo-
lator to perform the second. The remainder of this subsection
further describes these two components.

Cell Locator: Cell locators are data structures that accelerate re-
peated searches for containing cells. The cost of this operation
varies based on mesh type, in terms of both implementation and
execution time. Finding the containing cell Ci for a location Li
is straightforward in uniform and rectilinear grids. In uniform
grids, a simple operation with the location Li and the grid’s prop-
erties (spacing, resolution) can determine the containing cell. In
rectilinear grids, a fast search can be applied for Li ’s coordinates
in different directions to determine the containing cell. Hence,
uniform or rectilinear grids require only simple cell locator ap-
proaches. Curvilinear and unstructured grids, however, require
sophisticated approaches. In particular, given that some meshes
contain upwards of a billion elements, it is not practical to se-
quentially search each cell to see if it contains a location. A sim-
ple approach is to use spatial data structures like a k-d tree or an
octree. That said, there are many additional techniques, many
of which yield faster execution times. These techniques are re-
viewed in Section 4.1.

Field Interpolation: After finding a containing cell for a location
requested by the ODE solver, the next step is to evaluate the ve-
locity at that location. This operation requires gathering all the
velocity values associated with the cell and then interpolating the
value at the required location. The complexity of this operation is
based on the type of the mesh and shape of the cell. For a uniform
or rectilinear grid where elements are hexahedral, trilinear inter-
polation is a common way for calculating velocities. However, for
other cell shapes, the approach for interpolation can vary. The
operation may involves computing the Berycentric coordinates
of a location within the cell and then interpolating the actual val-
ues. This process can be computationally intensive in the case of
higher-order meshes.

2.2.2. Check for Termination

This component determines when a particle should be termi-
nated. The two most common termination criteria for flow visu-
alization techniques are:

1. The particle advects for some specific duration.
2. The particle advects for some specific distance.

Additional termination criteria are added based on the analysis
requirements of the flow visualization technique, e.g., the num-
ber of orbits completed by a particle for a Poincaré plot (see Sec-
tion 2.3.4 for more information). Further, to improve the effi-
ciency of the flow visualization algorithm, a particle can be ter-
minated if it gets stuck in a critical region. Finally, most imple-
mentations in practice place a bound on the maximum number
of steps. For example, a particle in a region with slow-moving ve-
locity may require too many steps to travel a specific distance.

2.3. Representative Techniques

This section reviews some flow visualization techniques that use
particle advection. The discussion of each technique is organized

Figure 3: Streamlines rendered over a slice of the jet plume
data. The jet plume is a simulation of a jet of high-velocity fluid
moving into a medium at rest, created using the Gerris Flow
Solver [Pop03].

into two parts. The first part is a general description of the tech-
niques. The second part considers the four components of our
organization that are specified by a flow visualization technique:

1. Seed Particles: The method used for seeding particles.
2. Analyze Step: Choice of analysis for a step of a particle.
3. Check for Termination: The termination criteria for a particle.
4. Construct Output: The method for construction of the flow vi-

sualization output.

The term “seeding” in particle advection refers to the initial num-
ber of particles and their placement for flow visualization algo-
rithms. The number and placement of particles can have a signif-
icant impact on the quality of the analysis. Additionally, the num-
ber of steps completed by each particle can significantly impact
the flow visualization algorithm’s performance. The usual ranges
for these parameters are shown in Table 1.

2.3.1. Streamline and Pathline

Streamlines and pathlines are related techniques that differ
based on the type of vector data they handle. This description
begins by describing a streamline and then discusses pathlines
by comparing its difference with streamlines.

A streamline plots the entire trajectory a particle travels.
Streamlines use line segments (or tubes) to connect the series
of locations a particle travels to as it is advected. Streamlines
operate on steady state vector fields, i.e., vector fields that do
not change/evolve with time. An example of streamlines visual-
izing a flow is presented in Figure 3. Pathlines are the extension
for streamlines for visualizing unsteady vector fields, i.e., vector
fields that change with time. In terms of practical implementa-
tion, pathlines often require temporal interpolations. In a typical
scenario, only “time slices” of data are stored to disk, and path-
line calculations require evaluating velocities at times that occur
between saved time slices.
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Seeding Strategy
Sparse: particles are distributed
sparsely in the specified region of
the data.

Packed: particles are distributed
densely in the specified region of
the data.

Seeding Curves: particles are
placed along a curve defined by
the seeding curve.

Number of Seeds Small: ≤1/1K cells Medium: 1/100 cells Large: ≥1/cell

Number of Steps Small: ≤100 Medium: 1K Large: ≥10K

Table 1: Parameter classification for seeding strategy, the number of seeds, and the number of steps for flow visualization algorithms

Figure 4: Streamsurface rendered over a vector field. The surface
is split by turbulence and vortices can be observed towards the
end [Fis13].

Seeding Sparse/Packed

# Seeds Small

# Steps Large

Analysis Store particle location for each step

Termination 1. User specified duration
2. User specified distance

Output Connect stored location for a particle to
create particle trajectories

2.3.2. Streamsurface and Pathsurface

A streamsurface is a 3D generalization of a streamline. In prac-
tice, streamsurfaces begin with a seeding curve. The particles on
the seeding curve are advected for equal duration. The trajecto-
ries generated by neighboring particles are triangulated to repre-
sent a surface. From a theoretical perspective, Hultquist defines
them as a locus of an infinite set of streamlines rooted at ev-
ery point along a continuous line segment [Hul92]. Pathsurfaces
are an extension of a streamsurface with a temporal dimension
added. Streamsurfaces and pathsurfaces are very useful in study-
ing vortices in a flow. An example of a streamsurface is presented
in Figure 4.

Figure 5: Different types of critical points that occur in a
flow [VKP00]. The arrow heads represent the direction of vectors.

Seeding Seeding Curves

# Seeds Medium

# Steps Large

Analysis Store particle location for each step;
measure separation between neighboring
particles to introduce or purge particles

Termination 1. User specified duration
2. User specified distance
3. Separation between particles is smaller
than a certain threshold

Output Triangulate/tessellate the particle locations
to create a surface

2.3.3. Finite Time Lyapunov Exponents

Finite Time Lyapunov Exponents (FTLE) is a technique to calcu-
late the rate of separation between trajectories that start close to
one another. FTLE can help in identification of flow features like
Lagrangian Coherent Structures (LCS) and critical points.

Lagrangian Coherent Structures and Critical Points:
Lagrangian Coherent Structures are the most repelling, attract-

ing, and shearing surfaces in a flow that persist over time and ex-
ert a major influence on the trajectories around it [HY00]. A crit-
ical point is a feature in the flow where the magnitude of velocity
is zero. Critical points are usually classified into three classes —
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Figure 6: Attracting (blue) and repelling (red) LCSs extracted as
FTLE ridges from a two-dimensional simulation of a von Karman
vortex street [KPH∗10]

sources, sinks, and saddle points. These features can be distin-
guished from each other by observing the eigenvalue of the Jaco-
bian at that point.

The FTLE algorithm produces a scalar field that is computed
in two phases: particle advection and field generation.

During the particle advection phase, a set of uniformly sam-
pled particles are placed in the volume. Each particle trajectory
encapsulates the underlying flow field that transports a parti-
cle from one position to another over some finite amount of
time. Collectively, all the particle trajectories form a flow map
R×R×Rd →Rd : x 7→φ

t0+t
t0

(x), where a position x ∈Rd at time t0
is mapped to a new position over the time interval of duration t .

The particle trajectories are then used in the second phase, to
generate the FTLE field. Using the flow map from the first phase,
the Cauchy-Green tensor δ ∈Rd×d is calculated for each particle
as:

δ=
dφt0+t

t0
(x)

d x
×

dφt0+t
t0

(x)

d x
. (4)

The FTLE value for a position x for the interval [t0, t0+t ] is calcu-
lated using the largest eigenvalue λmax ∈R of the Cauchy-Green
tensor weighted as:

σ
t0+t
t0

(x) = l og (λmax (δ))

2× t
. (5)

Seeding Packed (uniformly sampled)

# Seeds Large

# Steps Small

Analysis None

Termination
1. Duration specified for FTLE calculation

Output Calculate the exponents using the start and
end locations of the particle to produce the
scalar FTLE field for further analysis

2.3.4. Poincaré Map

A Poincaré plot is also referred to as a first recurrence map or a
return map. It is defined as an intersection of a periodic orbit in a

Figure 7: The left cut away shows a Poincaré plot. The right cut
away shows the iso-temperature contours. Data is from a NIM-
ROD M3D simulation and courtesy of Scott Kruger [KSS05]

continuous dynamical system with a certain lower-dimensional
subspace called the Poincaré section. The Poincaré section is
traverse to the flow of the system. While using particle advec-
tion, the Poincaré section is usually a plane, and the Poincaré
plot keeps track of the locations where particles intersect with
the plane over time. The trajectories of the particle have for a
Poincaré plot have to loop back around, exhibiting a periodic be-
havior.

Seeding Packed (along a plane)

# Seeds Medium

# Steps Large

Analysis Check the intersection particle steps with the
planes defined for Poincaré map

Termination
1. Number of orbits for the particle

Output The stored intersection locations for the
puncture plot are used for further analysis

3. Workload Mapping

This section considers how to translate a particle advection
workload into actual execution times. The section is divided into
three parts. Section 3.1 discusses cost models, both in general
and as applied to scientific visualization. Section 3.2 provides
a formulation for assessing the types and amounts of opera-
tions performed during particle advection, using the concepts
described in Section 2.2. Section 3.3 provides some nascent pre-
liminary work on whether an analytical cost model can be accu-
rate.

3.1. Cost Models for Scientific Visualization

Cost models are used to predict execution time of a certain algo-
rithm. There are three different ways to define a cost model:

• Empirical cost model considers experimental results.
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Solver Data set sol ve locate i nter p ter mi nate Total
type

Euler Uniform 6 15 15 5 41
Rectilinear 6 17 15 5 43

Unstructured 6 120 15 5 146
RK4 Uniform 37 15 15 5 162

Rectilinear 37 17 15 5 170
Unstructured 37 120 15 5 582

Table 2: Analytical cost calculation for particle advection. The costs in the table are by reference of a 503 grid. Hence, for the next two equa-
tions, d = 50. Rectilinear location costs : 3× log (d). Unstructured location costs : l og (d3). The costs for unstructured grid are highlighted
in red as the precise costs in floating point operations is difficult to predict and these are an estimate.

• Analytical cost model considers mathematical formulation of
the algorithm.

• When either of the above two are insufficient, a combination
of the two can be used.

Cost models can be challenging to formulate.

There is a dearth of cost modeling work in scientific visualiza-
tion. In the case of particle advection, we term this as Limitation
1, since no existing work can be used to predict performance.
Outside particle advection, there have been a few notable works.

Larsen et al. [LHK∗16] defined a cost model for in situ ren-
dering. The cost predicted from the model can be used manage
the trade-off simulation and visualization resources during run-
time. They used a combination for the empirical and analytical
model for their cost predictions. The demonstrated the use of
their model at large scale and to answer in situ feasibility ques-
tions.

Bruder et al. [BMFE19] presented a performance modeling of
volume rendering and particle rendering. Their objective was to
identify which are the most important performance factors and
how these factors correlate. Their experiments, however, were
only focused on GPUs and not out-of-core handling. They plan
to extend their approach for performance modeling of parallel
and out-of-core techniques and towards modeling not only exe-
cution time, but also energy usage and memory consumption.

3.2. Cost Formulation

This section considers the cost of particle advection from the per-
spective of the building blocks used to carry out particle advec-
tion. If Cost denotes the particle advection costs, then a coarse
formulation of Cost is:

Cost =
i=P∑
i=0

j=Ni∑
j=0

ad vancei , j (6)

where P represents the total number of particles used for the flow
visualization, Ni represents the total number of steps taken by
the i th particle, and ad vancei , j represents the amount of work
required by particle i at step j in the process of advancing the
particle.

In the remainder of this subsection, we consider how this

coarse formulation can be decomposed further to better illumi-
nate the overall costs. We begin this process by exploring the pro-
cess behind ad vancei , j . In particular, each step that advances a
particle contains three components — taking an advection step,
analyzing the step in a way specific to the individual flow visual-
ization algorithm, and checking if the particle should be termi-
nated. Hence, Equation 6 can be written as:

Cost =
i=P∑
i=0

j=Ni∑
j=0

(
stepi , j +anal y zei , j + ter mi , j

)
(7)

where stepi , j is the cost for advecting, anal y zei , j is the cost for
analyzing, and ter mi , j is the cost for the checking termination

for the i th particle at the j th step.

The cost can be further broken down by exploring the cost for
a single advection step, stepi , j . Particle advection uses an ODE
solver to determine the next position of a particle. Further, the
ODE solver requires the velocity of the particle at the current lo-
cation. However, depending on the ODE solver, multiple velocity
evaluations at locations closer to the particle may be required.
The Euler solver (Equation 2) requires only one velocity evalua-
tion, while the RK4 solver (Equation 3) requires four velocity eval-
uations. In all, the cost of a single particle advection step can be
written as:

stepi , j = sol vei , j +
k=K∑
k=0

evali , j ,k (8)

where sol vei , j is the cost for the ODE solver to determine the
next position, K is the number of velocity evaluations required
by the ODE, and evali , j ,k is the cost for velocity evaluation for

the i th particle for the j th step at the k th location.

The cost for velocity evaluations, evali , j ,k , can be further bro-
ken down into two more components. Each evaluation involves
two operations: locating the current cell for the current evalua-
tion, and interpolating the velocity values for the current posi-
tion using velocities at the vertices of the current cell. In all, the
cost of velocity evaluations can be written as:

evali , j ,k = locatei , j ,k + i nter pi , j ,k (9)

where locatei , j ,k is the cost for locating the cell, and i nter pi , j ,k

is the cost for interpolating the velocities at the k th location.
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Further, we can substitute 9 in 8 to yield:

stepi , j = sol vei , j +
k=K∑
k=0

(locatei , j ,k + i nter pi , j ,k ) (10)

Finally, we can substitute 10 in 7 to obtain our final formula-
tion:

Cost =
i=P∑
i=0

j=Ni∑
j=0

(
sol vei , j +

k=K∑
k=0

(
locatei , j ,k + i nter pi , j ,k

)
+anal y zei , j + ter mi , j

) (11)

3.3. Preliminary Work: Analytical Cost Modeling

This section presents preliminary work of cost modeling for par-
ticle advection in two parts. Section 3.3.1 demonstrates cost esti-
mation for a hypothetical workload based on Equation 11. Sec-
tion 3.3.2 presents experimental validation for costs estimated
using the method in Section 3.3.1.

3.3.1. Cost Estimation

To understand the process of cost estimation, consider a hypo-
thetical usage of a flow visualization algorithm advancing a mil-
lion particles in a 3D uniform grid for a maximum of 1000 steps.
Further assume this usage employs a fourth order Runge-Kutta
solver. Then, the cost of each component can be estimated as fol-
lows:

Locate: The locate operation in a uniform grid uses 15 FLOP
to find the cell and the particle’s location within the cell for
interpolation.
Interpolate: The interpolate operation in a uniform grid re-
quires trilinear interpolation which uses 15 FLOP to evaluate
the velocity at the given location.
Solve: The solve operation for the RK4 integration scheme uses
37 FLOP to calculate the determine the next position of the
particle.
Analyze: The cost of analysis of the step varies based on the
visualization technique being used. In case only deals with ad-
vancing particles and hence the analysis cost is 0.
Terminate: The terminate operation requires 5 FLOP to deter-
mine if the particle is outside the spatio-temporal bounds or if
the particles completes the maximum number of steps.

These costs can be substituted in Equation 11 to get the final cost
of a single step of a particle in the presented situation.

Cost =
i=1M∑

i=0

j=1000∑
j=0

(
37+

k=4∑
k=0

(
15+15

)+0+5
)

=
i=1M∑

i=0

j=1000∑
j=0

(
37+120+0+5

)

=
i=1M∑

i=0

j=1000∑
j=0

162

=
i=1M∑

i=0
162,000

= 162,000,000,000 FLOP

(12)

Table 2 presents the cost of each of the individual components
for the RK4 solver and the Euler solver across the three com-
monly used types of meshes. This table can be used to calcu-
late the cost of a particle advection workload in terms of floating
point operations (FLOP) for most flow visualization use cases.

3.3.2. Empirical Validation

The cost formulation in Section 3.2 and the method to estimate
the cost for a workload in Section 3.3.1 are only useful if they can
successfully predict the execution time for a given workload. This
section presents a set of experiments performed where the calcu-
lated cost is translated into an execution time for a workload and
them compared against the its actual execution time. These ex-
periments were performed on an Intel Xeon E5-1650 CPU with
a clock rate of 3.80 GHz using a particle advection implementa-
tion from the VTK-m visualization library [MSU∗16] with a single
CPU core. The data used for the experiments was of the resolu-
tion 50×50×50 enabling comparison with the estimated FLOP
costs in Table 2.

The results of the experiments are presented in Table 3. The
cost factor defined in the last column is the ratio of the total exe-
cuted FLOP from the experiment (product of execution time and
clock speed of the CPU) and the estimated FLOP using Equa-
tion 11. The cost predicted using the equation can be determined
valid if this factor stays constant for all experiments. In the case
of this study this factor stays constant between 12 and 13 across
all experiments using uniform and rectilinear data and the Euler
and RK4 solvers. However, even if this factor is consistent for all
experiments using unstructured grids, it differs from the other
experiments. This is because the cost function is not compre-
hensive and fails to account for the contributions of accessing
and indexing large arrays typical of cell locators for unstructured
grids. In all, these experiments show that an analytical approach
may be quite difficult, and that at least some elements of an em-
pirical model may be needed. As a result, this nascent prelimi-
nary work is unable to address Limitation 1 and additional re-
search will be needed to address this topic.
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Data type Solver Number of Number of Cost Cost Cost
Particles Steps Eq. 11 VTK-m Factor

Uniform

Euler
1000 1000 41e6 0.131 12.13

10000 1000 410e6 1.311 12.15
100000 1000 4100e6 13.161 12.20

RK4
1000 1000 162e6 0.519 12.18

10000 1000 1620e6 5.197 12.19
100000 1000 16200e6 51.910 12.18

Rectilinear

Euler
1000 1000 74e6 0.147 12.98

10000 1000 740e6 1.455 12.86
100000 1000 7400e6 14.745 13.03

RK4
1000 1000 294e6 0.574 12.82

10000 1000 2940e6 5.808 12.98
100000 1000 24900e6 57.298 13.03

Unstructured
Euler

1000 1000 146e6 4.657 121.21
10000 1000 1460e6 49.682 129.31

RK4
1000 1000 582e6 18.653 121.79

10000 1000 5820e6 188.029 122.77

Table 3: Comparing analytical cost and actual execution cost for particle advection. The first four columns describe the workload. The fifth
column, labeled “Cost Eq. 11” is the estimated number of FLOPS for this workload using information from Table 2 and our cost formula
(Equation 11). The sixth column, labeled “Cost VTK-m” is the execution time of running this workload on a single core using the VTK-
m software. The final column calculates the cost factor, i.e., the factor relating the number of FLOPS with the actual execution time. The
experiments were run a single CPU core running at 3.8GHz, and issuing at most one floating-point operation per cycle, meaning a potential
of 3.8 GFLOPS. Taking the first row as an example, this workload ran for 0.131s meaning it had the potential to issue 497 MFLOPS (i.e.,
0.131s ×3.8 GFLOPS). The cost equation indicated that this workload only needed to issue 41 MFLOPS, so the resulting cost factor is 12.13
(i.e., 497 MFLOPS / 41 MFLOPS). A consistent cost factor across experiments would build confidence that an analytic approach can be used
to estimate runtimes. That said, while this nascent attempt shows consistency across rectilinear and uniform meshes, unstructured meshes
have very different values.

4. Algorithmic Optimizations

This section surveys algorithmic optimizations for particle ad-
vection building blocks, i.e., techniques for executing a given
building using fewer operations. Some of the building blocks do
not particularly lend themselves to algorithmic optimizations.
For example, a Runge-Kutta solver requires a fixed number of
FLOPS, and the only possible “optimization” would be to use a
different solver. That said, cell location allows room for possi-
ble optimizations. Further, the efficiency of vector field evalua-
tion can be improved by considering underlying I/O operations.
These two optimizations are discussed in Sections 4.1 (cell loca-
tion) and 4.2 (I/O efficiency).

4.1. Cell Locators

Cell locators operate by first storing all of the cells in a data struc-
ture and then repeatedly locating which cell or cells contain a
point. The storage step is done as a pre-processing step, typically
before advection begins. This storage process often requires ded-
icated memory and can be time consuming. In a typical scenario,
for N cells, the storage is O(N ) bytes and the execution time is
O(N l og N ). That said, these pre-processing costs can be offset by

improved performance in location, which typically takes no ad-
ditional storage and can be performed in O(l og N ) time. In prac-
tice, cell locators quickly improve over the naïve approach, which
would iterate through the cells one at a time to find the contain-
ing cell and thus take O(N ) time. – even for a few particles travel-
ing a short distance, a cell locator offers performance benefits.

There is a storage-performance trade-off when using cell loca-
tors for large meshes, i.e., if the data structure is able to store data
at a very fine level, the cell location can be made to execute faster.
In practice, it is not always possible to have enough memory for
large data structures. In particular, storage can be a critical prob-
lem for GPUs with limited memory. In such cases, one solution is
for a data structure to store cells at some coarse level in a list, i.e.,
the last level of the data structure may return a list of “candidate
cells” that may contain the location Li instead of a single cell. An
additional performance penalty for searching through the list of
candidate cells would then be incurred to identify the containing
cell for Li .

According to Lohner and Ambrosiano [LA90] the process of
cell location can follow one of the following three approaches.

Using a Cartesian background grid: This approach superim-
poses an unstructured mesh onto a regular grid (Cartesian grid).
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A linked list is created for each cell in the regular grid, and each
linked list contains the unstructured cells that lie within the cor-
responding regular grid’s cell. The cell location problem is re-
duced to 1) calculating which cell contains the point in the Carte-
sian grid, and 2) traversing the associated linked list to find the
actual containing cell for the point. However, this approach suf-
fers when the large variances in cell sizes for the background
mesh may introduce inefficiencies and inaccuracies. If the num-
ber of cells employed for the background grid is too small, the
linked list traversal can become restrictive. If the number of cells
employed for the background grid is too large, the storage over-
head can become restrictive.

Using tree structures: This approach solves the previous ap-
proach’s shortcomings by using a hierarchy of Cartesian meshes,
for example by using octrees. The hierarchical nature better ac-
commodates large meshes that have significant variations in
cell shapes and sizes. However, Lohner and Ambrosiano note
that vectorization of this approach is challenging as tree-based
schemes introduce additional indirect addressing.

Using successive neighbor searches: This approach carries out
a search by using information from previous searches. This ap-
proach hinges on the assumption that the particle does not travel
too far away from its previous position. If the required location
for velocity evaluation is not present in the previously identi-
fied host cell, the immediate neighbors for the cell are likely to
contain it. The assumption is justified by the accuracy and sta-
bility requirements of particle advection, and thus the number
of cells needed to be searched is small. However, the first search
for a particle has no previous information to draw from. Hence,
the first search must use a different technique. For successive
searches, the neighboring cells are searched until the host cell
is identified. However, Lohner and Ambrosiano note that vector-
ization is difficult due to variance in the number of cells consid-
ered for a given particle.

Lohner and Ambrosiano also presented an algorithm and ways
to vectorize the cell location process using a successive neighbor
search method. Initially, the search is performed using all par-
ticles, to vectorize the process better. As the process continues,
particles that still do not have a containing cell are grouped to-
gether at the top of the list, and the search is only repeated over
these particles. They also study the algorithm in multiprocessor
environments where the particle list is subdivided, and each pro-
cessor is assigned a subgroup of particles. Their vectorized ver-
sion of the algorithm demonstrated a speedup of 14× over an
unvectorized version.

Ueng et al. [USM96] also adopted the successive neighbor
search method to cell location in particle advection for efficient
streamline, streamribbon, and streamtube construction. They
restricted their work to linear tetrahedral cells for simplification
of certain formulations. However, this requires the algorithm to
apply a preprocessing step for the decomposition of an unstruc-
tured mesh into tetrahedra. When applied to tetrahedral meshes,
the successive neighbor search approach is sometimes also re-
ferred to as tetrahedral walk [BRKE∗11].

Kenwright and Lane [KL96] expand the work by Ueng et al.

by improving the technique to identify the particle’s contain-
ing tetrahedron. Their approach uses fewer floating point opera-
tions for cell location compared to Ueng et al. The cell location
approach maps the particle’s physical coordinates to Barycen-
tric coordinates within the containing tetrahedron. Their exper-
iments were performed in a curvilinear grid, with the grid’s hex-
ahedral cells decomposed into tetrahedral cells on the fly. For
the initial cell location operation and in cases where a particle
travels further than the immediate neighboring cells, the bound-
ary search technique described by Buning [Bun89] was used. In
other cases, the Barycentric coordinates and a lookup table were
used for efficient cell location. Kenwright and Lane reported per-
formance improvement of 6× compared to strategies that work
over the physical space.

Sadarjeon et al. compared particle advection in C-
space or computational space against P-space or physical
space [SVWHP94]. P-space algorithms work directly over irregu-
lar grids. C-space algorithms rely on a Cartesian grid, different
from the approach described by Lohner and Ambrosiano.
Instead of using the Cartesian grid in the background to simplify
cell location, the irregular grids are transformed into a Cartesian
grid to simplify numerical procedures. However, this approach
requires transform operations between the two spaces which in-
troduce inefficiencies — 1) transforming the corner velocities of
hexahedral element from P-space to C-space, and 2) transform-
ing the output position of every advection step from C-space
to P-space. The rest of the algorithm (including interpolation
and integration) proceeds in the C-space. Sadarjeon et al. note
that C-space algorithms are computationally more expensive
than P-space algorithms. However, their work does not provide a
performance comparison of the two approaches.

Schiriski et al. [SBK06] presented a GPU-based approach for
particle advection that uses tetrahedral walk. Their approach
used a kd-tree to perform the initial search for a containing cell of
a particle. However, searching the kd-tree is done using the CPU.

Bußler et al. [BRKE∗11], and Garth and Joy [GJ10] also pre-
sented approaches for particle advection where cell location re-
lies solely on GPUs. These are discussed in more detail in Section
5.1

4.2. I/O Efficiency

Simulations with very large numbers of cells often output their
vector fields a block-decomposed fashion, such that each block is
small enough to fit in the memory of a compute node. Flow visu-
alization algorithms that process block-decomposed data vary in
strategy, although many operate by storing a few of these blocks
in memory at a time, and loading/purging blocks as necessary.
This method of computation is known as out-of-core computa-
tion. One of the significant bottlenecks for flow visualization al-
gorithms while performing out-of-core computations is the cost
of I/O. Particle advection is a data-dependent operation and effi-
cient prefetching to ensure sequential access to data can be very
beneficial in minimizing these I/O costs This section discusses
the works that aim to improve particle advection performance
by improving the the efficiency of I/O operations.
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Algorithm Application Intent / Data Time Seed Performance
Evaluation Size Steps Count

Lohner and
Ambrosiano [LA90]

Streamlines
Fast cell location and efficient
vectorization

870∗ - 10K 14×

Ueng et al. [USM96] Streamlines
Streamline computation and cell
location in canonical coordinate
space

320K∗ -
100

1.61×
225K∗ - 1.59×
288K∗ - 1.58×

Chen et al. [CXLS11] Streamlines
Improving data layout for better I/O
performance

134M -
4K

0.96−1.30×
200M - 0.98−1.98×
537M - 0.99−1.29×

Chen et al. [CNLS12] Pathlines
Improving data layout for better I/O
performance

25M 48
4K

1.25−1.38×
65M 29 1.10−1.31×
80M 25 1.19−1.36×

Chen et al. [CS13] FTLE
Improving data layout for better I/O
performance

25M 48
- 1.08−1.32×65M 29

80M 25

Table 4: Summary of studies considering algorithmic improvements to particle advection. The asterisk for entries in the data size column
represent unstructured grids.

Chen et al. [CXLS11] presented an approach to improve the
I/O efficiency of particle advection for out-of-core computation.
Their approach relies on constructing an access dependency
graph (ADG) based on the flow data. The graphâĂŹs nodes rep-
resent the data blocks, and the edges are weighted based on
the probability that a particle travels from one block to another.
While advecting particles, runtime decisions for prefetching data
blocks to minimize data block misses are made using the data
layout obtained using a cost model, which used the information
from the graph. The authors demonstrated significant speed-ups
based on their method to layout data against the H-curve data
layout. In the worse case, the ADG-based layout performed at par
with the H-curve layout, and in the best case, the ADG-based lay-
out outperformed the H-curve layout by 98%.

Chen et al. [CNLS12] extended the previous work to out-of-
core computation of pathlines. For comparison, they used a Z-
order space-filling (Z-curve) layout. Their results show a perfor-
mance improvement in the range of 10%-40% compared to the
Z-curve layout.

Chen et al. [CS13] expanded the work further to introduce
a seed scheduling strategy to be used along with the graph-
based data layout. They demonstrated an efficient out-of-core
approach to calculate FTLE. The performance improvements ob-
served against Z-curve layout were in the range of 8%-32%.

4.3. Summary

Table 4 presents the summary of studies that address algorith-
mic optimizations. Optimizations to cell locators for unstruc-
tured grid enable significant speed-ups for the workloads. With
a combination of efficient cell location and vectorization Lohner
and Ambrosiano achieved the speed-up of 14×. However, the

Solver Data type Particles Steps Scaling Scaling
CPU GPU

Euler

Uniform
1000 1000 5.48 3.29

10000 1000 7.15 9.65
100000 1000 7.38 11.02

Rectilinear
1000 1000 4.84 2.76

10000 1000 6.19 8.04
100000 1000 6.44 9.23

Unstructured
1000 1000 9.02 1.28

10000 1000 9.53 4.19

RK4

Uniform
1000 1000 6.89 3.90

10000 1000 7.49 10.46
100000 1000 7.57 11.54

Rectilinear
1000 1000 6.09 3.06

10000 1000 6.69 8.49
100000 1000 6.68 9.23

Unstructured
1000 1000 9.06 1.29

10000 1000 9.02 3.95

Table 5: Shared memory parallelism cost summarization.

other study demonstrated a speed-up of around 1.6×. The works
by Chen et al. for efficient I/O for particle advection all demon-
strated speed-ups up to 1.3×
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5. Optimizations for Shared Memory Setting

This section discusses flow visualization works that address
the performance challenges in a shared memory environment.
Shared memory parallelism refers to using parallel resources on
a single node. The devices that enable shared memory paral-
lelism are multi- and many-core CPUs and other accelerators,
such as GPUs. In the case of shared memory parallelism, mul-
tiple threads of a program running on different cores of a pro-
cessor (CPU or a GPU) share memory, hence the nomenclature.
One of the primary reasons for the increase in supercomputers’
compute power can be attributed to the advancements of CPUs
and accelerator hardware. In all, for applications to make cost-
effective use of resources, it has become exceedingly important
to use shared memory resources efficiently. However, making ef-
ficient use creates many challenges for the programmers and
users. Two important factors to consider are 1) efficient use of
concurrency, and 2) performance portability.

5.1. Shared Memory Particle Advection Using GPUs

GPUs have become a popular accelerator choice in the past
decade, with most leading supercomputers using GPUs as accel-
erators [top20]. Part of this has been the availability of specialized
toolkits, including early efforts like Brook-GPU [BFH∗04] and
popular efforts like Nvidia’s CUDA [Nic07], that enable GPUs to
be used as general purpose computing devices [BBC∗08]. How-
ever, programming applications for efficient execution on a GPU
remains challenging for three main reasons. First, unlike CPUs
which are built for low latency, GPUs are built for high through-
put. CPUs have fewer than a hundred cores, while GPUs have
a few thousand. However, each CPU core is significantly more
powerful than a single GPU core. Second, efficient use of the GPU
requires applications to have sufficiently large parallel work-
loads. Third, executing a workload on a GPU also has an implicit
cost of data movement between the host and the device, where
a host is the CPU and the DRAM of the system, and the device is
the GPU and its dedicated memory. This cost makes GPUs ineffi-
cient for smaller workloads.

This section discusses particle advection using GPUs in two
parts. Section 5.1.1 discusses works that use GPUs for interac-
tive flow visualization, using particle advection results for ren-
dering directly from the GPU. Section 5.1.2 discusses works that
use CPUs for improving the performance of cell location for par-
ticle advection.

5.1.1. Particle Advection on GPU

Particle advection can benefit from using GPUs when there are
many particles to advect. As particles can be advected indepen-
dently of one another, each particle can be scheduled with a sep-
arate thread of the GPU, making the most of the available con-
currency. Many works have tried to address performance issues
of particle advection using GPUs, however, with different goals.

Krüger et al. [KKKW05] presented an approach for interactive
visualization of particles in a steady flow field using a GPU. They
exploited the GPU’s ability to simultaneously perform advection
and render results without moving the data between the CPU

and the CPU. This was done by accessing the texture maps in
the GPU’s vertex units and writing the advection result. Their ap-
proach on the GPU provided the interactive rendering at 41 fps
(frames per second) compared to 0.5 fps on the CPU.

Bürger et al. [BSK∗07] extended the particle advection frame-
work described by Krüger et al. for unsteady flow fields. With
their method, unsteady data is streamed to the GPU using a ring-
buffer. While the particles are being advected in some time in-
terval [ti , ti+1], another host thread is responsible for moving
ti+2 from host memory to device memory. At any time, up to
three timesteps of data are stored on the device. By decoupling
the visualization and data management tasks, particle advection
and visualization can occur without delays due to data loading.
Bürger et al. [BKKW08] further demonstrated the efficacy of their
particle tracing framework for visualizing an array of flow fea-
tures. These features were gathered using some metric of impor-
tance, e.g., FTLE, vorticity, helicity, etc.

Bürger et al. [BFTW09] also provided a way for interactively
rendering streak surfaces. Using GPUs, the streak surfaces can be
adaptively refined/coarsened while still maintaining interactiv-
ity.

The works summarized above aim to make efficient use of
GPU for interactive flow visualization. They use GPUs to directly
interact with the rendering artifacts, saving efforts to move data
between the host and the devices.

5.1.2. Cell Location on GPUs

Bußler et al. [BRKE∗11] presented a GPU-based tetrahedral walk
for particle advection. Their approach for cell location borrows
heavily from the work by Schiriski et al. [SBK06] discussed in
Section 4.1. However, they can execute the cell location strategy
entirely on the GPU and do not require the CPU for the initial
search. Additionally, they evaluated different Kd-tree traversal
strategies to evaluate the impact of these strategies on the tetra-
hedral walk Their results conclude that the single-pass method,
which performs only one pass through the kd-tree to find the
nearest cell vertex (without the guarantee of it being the near-
est) performs the best. The other strategies evaluated in the study
were random restart and backtracking .

Garth and Joy [GJ10] presented an approach for cell location
based on bounding interval hierarchies. Their search structure,
called celltree, improves construction times via a heuristic to de-
termine good spatial partitions. The authors presented a use case
of advecting a million particles on a GPU in an unstructured grid
with roughly 23 million hexahedral elements. The celltree data
structure was able to obtain good performance on GPUs despite
no GPU-specific optimizations.

5.2. Other Shared Memory Particle Advection Works

Most published works on shared-memory parallelism with CPUs
is in the context of hybrid parallelism, i.e., using a combina-
tion of shared- and distributed-memory parallel techniques. For
these works, the distributed-memory elements managed divid-
ing work among nodes, and the shared-memory parallelism ap-
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Algorithm Application Intent / Data Time Seed Performance
Evaluation Size Steps Count

Krüger et
al. [KKKW05]

source-dest
Interactive flow visualization (steady)
using GPUs

- - - 60-80×

Bürger et
al. [BSK∗07]

various
Interactive flow visualization
(unsteady)

Bürger et
al. [BKKW08]

various
Interactive flow visualization using
importance metrics

7M -
4M 22
1M 30

Bürger et
al. [BFTW09]

streak surface
Interactive streak surface
visualization

589K 102
400

4.1M 22

Schirski et
al. [SBK06]

pathlines,
source-dest

Efficient cell location on GPUs
0.8M∗ 5

1M1.1M∗ 101
3.7M∗ 200

Garth et
al. [GJ10]

source-dest
Efficient cell location on GPUs for
unstructured grids / Comparison
against CPUs

23.6M∗ -
250K

16.5×
1M

Bußler et
al. [BRKE∗11]

source-dest
Efficient cell location on GPUs using
improved tetrahedral walk

4.2M∗ 5
1M115M∗ 101

743M∗ 200

Pugmire et
al. [PYK∗18]

source-dest
Performance Portability /
Comparison with specialized
comparators for CPUs and GPUs

134M

- 10M

0.37−0.48× (GPUs)
0.29−0.36× (CPUs)

134M
1.56−2.24× (GPUs)
0.79−0.84× (CPUs)

134M
1.42−2.04× (GPUs)
0.51−0.59× (CPUs)

Table 6: Summary of shared memory particle advection. The asterisk for entries in the data size column represent unstructured grids.

proach was providing a “pool” of cores that could advect particles
quickly. Specifically:

• Camp et al. [CGC∗11b] presented two approaches that used
multi-core processors to parallelize particle advection 1) par-
allelization over particles, and 2) parallelize over data blocks.
In both cases, the authors aimed to use the N allocated cores.
For parallelization over particles, N worker threads were used
along with N I/O threads. The worker threads are responsible
for performing particle advection. The I/O threads manage the
cache of data blocks to support the worker threads. For par-
allelization over data blocks, N − 1 worker threads are used,
which access the cache of data blocks directly, and an addi-
tional thread was used for communicating results with other
processes.

• Camp et al. [CKP∗13] also extended their previous work to
GPUs. One of their objectives was to compare particle ad-
vection performance on the GPU against CPU under differ-
ent workloads. They varied the datasets, the number of parti-
cles, and the duration of advection for their experiments. Their
findings suggest that in the case where the workloads have
fewer particles or longer durations, the CPU performed better.
However, in most cases otherwise, the GPU was able to out-
perform the CPU.

• Childs et al. [CBP∗14] explored particle advection perfor-
mance across various GPUs (counts and device) and CPUs
(processors and concurrency). Their objective was to explore
the relationship between parallel device choice and the execu-
tion time for particle advection. Two of their key findings were:
1) For CPUs, adding more cores benefited workloads that exe-
cute for medium to longer duration, 2) CPUs with many cores
were as performant as GPUs and often outperformed GPUs
when the execution times for the tests was short.

Pugmire et al. [PYK∗18] provided a platform portable solu-
tion for particle advection using the VTK-m library. The so-
lution builds on data parallel primitives provided by VTK-m.
Their results demonstrated very good platform portability, pro-
viding comparable performance to platform specific solutions
on many-core CPUs and Nvidia GPUs.

5.3. Synthesis

In terms of published research, Table 6 presents a summary
of shared memory particle advection. These studies either pre-
sented approaches for interactive flow visualization or optimiza-
tions for particle advection of GPUs using cell locators, with one
exception that demonstrated platform portability.
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Figure 8: Scatter plots for CPU and GPU speed-ups for particle advections workloads. The X axis represents the magnitude of the workload
in terms of total number of steps for each of the sub plots and the Y axis represents the speed-up. The size of the glyphs corresponds to the
number of particles used in the experiment. The data for the plots on the top is collected from numbers reported by Pugmire et al. [PYK∗18]
They used 28 CPU cores and a Nvidia P100 GPU. The data from the plots on the bottom is collected from new experiments using VTK-m.
This study used 12 CPU cores and a Nvidia K80 GPU.

Figure 8 shows a preliminary result for understanding the
characteristics of shared memory parallel particle advection.
Some of the key observations are:

1. Workloads with more number of particles scale better with
added parallelism for the same amount of total work.

2. The studies that used the RK4 integrator generally scaled bet-
ter than the ones that used the Euler integrator.

3. The experiments with unstructured data scaled better on the
CPU than on the GPU. This could be because of the nature of
memory accesses required by cell locators and justifies more
research into GPU based cell locators.

Additionally, the plots for the CPUs demonstrate consistency
in terms of scalability when the workload is increased. The plot
for the P100 GPUs (top right) suggests that it is not able to
scale larger workloads with the same efficiency as the smaller
workloads considered by Pugmire et al. [PYK∗18] There is also
a tremendous variation in the speed-ups achieved by two con-
sidered GPUs, where the P100 GPU is able to achieve speed-ups
of over 125× and the K80 GPU achieves speed-ups of less than

12×. This points to Limitation 2 of existing literature. The perfor-
mance difference of particle advection between two generations
of GPUs can be significant. Existing studies fail to capture this re-
lation and makes it harder to estimate to speed-up that can be
realized. Understanding the performance characteristics of par-
ticle advection across different GPUs is planned as future work.

6. Optimizations for Distributed Memory Setting

This section summarizes large-scale parallel particle advection-
based flow visualization studies. Computational fluid dynamics
simulations are capable of producing large volumes of data. An-
alyzing such volumes of data to extract useful information de-
mands resources equivalent to that of the simulation. In most
cases, this means access to many nodes of a supercomputer
to handle the computational and memory needs of the analy-
sis. Solutions that employ particle advection often execute in a
distributed memory setting. The objective of the distribution of
work is to perform efficient computation, memory and I/O oper-
ation, and communication. There are multiple strategies for dis-
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tributing particle advection workloads in a distributed memory
setting to achieve these objectives. These can be categorized un-
der two main classes:

Parallelize over particles: Particles are distributed among paral-
lel processes. Each process only advances particles assigned to it.
Data is typically loaded as required for each of the particles.

Parallelize over data: Blocks of partitioned data are distributed
among parallel processes. Each process only advances particles
that occur within the data blocks assigned to it. Particles are com-
municated between processes based on their data requirement.

Most distributed particle advection solutions are either an op-
timization of over these two classes or a combination of these
two classes. The decision to choose between these two classes
depends on multiple factors, of which Camp et al. [CGC∗11b]
identify the most prominent to be:

The volume of data set: Data output by simulation can span the
spectrum from small to large. While small data sets can fit in the
memory of a single node, large data sets have to be partitioned
and distributed among for them to be processed. If the data set
can fit in memory, it can be easily replicated across nodes and
particles can be distributed among nodes, i.e., the work can be
parallelized over particles. However, for large partitioned data
sets, work parallelized over data is can be more efficient.

The number of particles: Different particle advection based visu-
alization techniques have different work requirements. Some re-
quire small number of particles integrated over a long duration,
while others require a large number of particles advanced for a
short duration. In the case where fewer particles are needed, par-
allelization over data is a better approach as it could potentially
reduce I/O costs. In the case where more particles are needed,
parallelization over particles can help better distribute computa-
tional costs.

Distribution of particles: The placement of particles for advec-
tion can potentially cause performance problems. When using
parallelization over data, if particles are concentrated within a
small region of the data set, the processes owning the associated
data blocks will be responsible for a lot of computation while
most other processes remain idle. Parallelization over particles
can lead to better work distribution in such cases.

Data set complexity: The characteristics of the vector field have a
significant influence on the work for the processes, e.g., if a pro-
cess owning a data block that contains a sink, most particles will
advect towards it, causing the process to do more work than the
others. In such a case, parallelize over particles will enable bet-
ter load balance. On the other hand, when particles switch data
blocks often (e.g., a circular vector field), parallelize over data is
better since it reduces the costs of I/O to load required blocks.

This section describes distributed particle advection works in
two parts. Section 6.1 describes the optimization for parallelizing
distributed particle advection in more depth. Section 6.2 sum-
marizes finding from the survey of distributed particle advection
studies.

6.1. Parallelization Methods

This section presents distributed particle advection works in
three parts. Section 6.1.1 presents works that optimize paral-
lelization over data. Section 6.1.2 presents works that optimize
parallelization over particles. Section 6.1.3 presents works that
use a combination of parallelization over data and particles.

6.1.1. Parallelization over data

“Parallelize over data” is a paradigm for work distribution in flow
visualization where M data blocks are distributed among N pro-
cessors. Each process is responsible for performing computa-
tions for active particles within the data blocks assigned to them.
This method aims to reduce the cost of I/O operations, which is
more expensive than the cost of performing computations.

Sujudi and Haimes [SH96] elicit the problems introduced by
decomposing data into smaller blocks that can be used within
the working memory of a single node. They present the semi-
nal work in generating streamlines in a distributed memory set-
ting using the parallelize over particles scheme. They used a typ-
ical client-server model where clients perform the work, and the
server coordinates the work. Clients are responsible for the com-
putation of streamlines within their sub-domain; if a particle hits
the boundary of the sub-domain, it requests the server to trans-
fer the streamline to the process that owns the next sub-domain.
The server is responsible for keeping track of client request and
sending streamlines across to the clients with the correct sub-
domain. No details of the method used to decompose the data in
sub-domains are provided.

Camp et al. [CGC∗11b] compared the MPI-only implementa-
tion to the MPI-hybrid implementation of parallelizing over data.
They noticed that the MPI-hybrid version benefits from reduced
communication of streamlines across processes and increased
throughput when using multiple cores to advance streamlines
within data blocks. Their results show between 1.5x-6x improve-
ment in the overall times for the MPI-hybrid version over the
MPI-only version. The parallelize over data scheme is sensitive to
the distribution of particles and complexity of vector field. The
presence of critical points in certain blocks of data can poten-
tially lead to load imbalances. Several techniques have been de-
veloped to deal with such cases and can be classified into two cat-
egories 1) works that require knowledge of vector field discussed
in Section 6.1.1.1, and 2) works that do not require knowledge of
vector field discussed in Section 6.1.1.2.

6.1.1.1. Knowledge of vector field required The works classi-
fied in this category acquire knowledge of vector fields by per-
forming a pre-processing step. Pre-processing allows for either
data or particles to be distributed such that all processes perform
the same amount of computation.

Chen et al. presented a method that employs repartitioning
of the data based on flow direction, flow features, and the num-
ber of particles [CF08]. They perform pre-processing of the vec-
tor field using various statistical and topological methods to en-
able effective partitioning. The objective of their work is to pro-
duce partitions such that the streamlines produced would sel-
dom have to travel between different data blocks. This enabled
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them to speed up the computation of streamlines due to the re-
duced communication between processes.

Yu et al. [YWM07] presented another method that relies on
pre-processing the vector field. They treat their spatiotemporal
data as 4D data instead of considering the space and time di-
mensions as separate. They perform adaptive refinement of the
4D data using a higher resolution for regions with flow features
and a lower resolution for others. Later, cells in this adaptive grid
are cluster hierarchically using a binary cluster tree based on the
similarity of cells in a neighborhood. This hierarchical cluster-
ing helps them to partition data that ensure workload balance.
It also enables them to render pathlines at different levels of ab-
straction.

Nouanesengsy et al. [NLS11] used pre-processing to estimate
the workload for each data block by advecting the initial set of
particles. The estimates calculated from this step are used to
distribute the work among processes. Their proposed solution
maintained load balance and improved performance. While the
solutions in this category are better at load balancing, they in-
troduce an additional step of pre-processing which has its costs.
This cost may be expensive and undesirable if the volume of data
is significant.

6.1.1.2. Knowledge of vector field not required The works clas-
sified in this category aim to balance load dynamically without
any pre-processing.

Peterka et al. [PRN∗11] performed a study to analyze the ef-
fects of data partitioning on the performance of particle trac-
ing. Their study compared static round-robin (also known as
block-cyclic) partitioning to dynamic geometric repartitioning.
The study concluded that while static round-robin assignment
provided good load balancing for random dense distribution of
particles, it fails to provide load balancing when data blocks con-
tain critical points. They also noticed that dynamic repartitioning
based on workload could improve the execution time between
5% to 25%. However, the costs to perform the repartitioning are
restrictive. They suggest more research needs to focus on using
less synchronous communication and improvements in compu-
tational load balancing.

Nouanesengsy et al. [NLL∗12] extended the work by Perterka
et al. to develop a solution for calculating Finite-Time Lyapunov
Exponents (FTLE) for large time-varying data. The major cost in
performing FTLE calculations is incurred due to particle trac-
ing. Along with parallelize over data, they also used parallelize
over time, which enabled them to create a pipeline that could
advect particles in multiple time intervals in parallel. Although
their work did not focus on load-balancing among processes, it
presented a novel way to optimize time-varying particle tracing.
Their work solidifies the conclusions about static data partition-
ing of the study by Peterka et al.

Zhang et al. [ZGH∗17] proposed a method that does very well
in achieving dynamic load balancing. Their approach used a new
method for domain decomposition, which they term as the con-
strained K-d tree. Initially, they decompose the data using the K-
d tree approach such that there is no overlap in the partitioned

data. The partitioned data is then expanded to include ghost re-
gions to the extent that it still fits in memory. Later, the over-
lapping areas between data blocks become regions to place the
splitting plane to repartition data such that each block gets an
equal number of particles. Their results show better load bal-
ance was achieved among processes without additional costs
of pre-processing and expensive communication. Their results
also demonstrate higher parallel efficiency. However, their work
makes two crucial assumptions 1) an equal number of particles
in data blocks might translate to equal work, and 2) the con-
strained K-d tree decomposition leads to an even distribution of
particles. These assumptions do not always hold practically.

In conclusion, pre-processing works can achieve load balance
with an additional cost for parallelize over data. This cost goes
up with large volumes of data. The overall time for completing
particle advection might not benefit from the additional cost of
pre-processing, especially when the workload is not compute-
intensive. Most solutions that rely on dynamic load balancing
suffer from increased communication costs or are affected by the
distribution of particles and the complexity of the vector field.
The work proposed by Zhang et al. is promising but still does not
guarantee optimal load balancing.

6.1.2. Parallelize over particles

“Parallelize over particles” is a paradigm for work distribution
in flow visualization where M particles are distributed among
N processors. Most commonly, the particle distribution is done
such that each process is responsible for computing the trajec-
tories of M

N particles. Each process is responsible for the compu-
tation of streamlines for particles assigned to it. This is done by
loading the data blocks required by the process in order to advect
the particles. Particles are advected until they can no longer con-
tinue within the current data block, in which case another data
block is requested and loaded.

Previous works have explored different approaches to opti-
mize the scheme described above. Since the blocks of data are
loaded whenever requested, the cost of I/O is a dominant fac-
tor in the total time. Prefetching of data involves predicting the
next needed data block while continuing to advect particles in
the current block to hide the I/O cost. Most commonly, predic-
tions are made by observing the I/O access patterns. Rhodes et
al. [RTBS05] used these access patterns as a priori knowledge for
caching and prefetching to improve I/O performance dynami-
cally. Akande et al. [AR13] extended their work to unstructured
grids. The performance of these methods depends on making
correct predictions of the required blocks. One way to improve
the prediction accuracy is by using a graph-based approach to
model the dependencies between data blocks. Some works use a
preprocessing step to construct these graphs [CXLS11, CNLS12,
CS13]. Guo et al. [GZL∗14] used the access dependencies to pro-
duce fine-grained partitions that could be loaded at runtime for
better efficiency of data accesses.

Zhang et al. [ZGY16] presented an idea of higher-order access
transitions, which produce a more accurate prediction of data
accesses. They incorporated historical data access information
to calculate access dependencies.
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Figure 9: Weak scaling plots for distributed memory particle advection based on the comparison of four parallelization algorithms by
Binyahib et al. [BPYC20]. The plots present performance comparison of the algorithms for two different workloads. The large workload
used 1 particle per 100 cells where each particle advanced 10K steps. The small workload used 1 particle per 10K cells where each particle
advanced 1K steps. The plots on the top present the performance of the algorithms in terms of throughput along the Y axis, while the plots
on the bottom present the parallel efficiency while using weak scaling along the Y axis. In all cases the X axis represents the number of MPI
ranks used to perform the experiments.

Since particles assigned to a single process might require ac-
cess to different blocks of data, most of the works using paral-
lelization over particles use a cache to hold multiple data blocks.
The process advects all the particles that occur within the blocks
of data currently present in the cache. When it is no longer
possible to continue computation with the data in the cache,
blocks of data are purged, and new blocks are loaded into the
cache. Different purging schemes are employed by these meth-
ods, among which “Least-Recently Used,” or LRU is most com-
mon. Lu et al. [LSP14] demonstrated the benefits of using a cache
in their work for generating stream surfaces. They also performed
a cache-performance trade-off study to determine the optimal
size of the cache.

Camp et al. [CGC∗11b] presented work comparing the MPI
only and MPI-hybrid implementations of parallelizing over par-
ticles. Their objective was to prove the efficacy of using shared
memory parallelism with distributed memory to reduce com-
munication and I/O costs. They observed 2x-10x improvement

in the overall time for calculation of streamlines while using the
MPI-hybrid version.

Along with caching, Camp et al. [CCC∗11] also presented work
that leverages different memory hierarchies available on modern
supercomputers to improve the performance of particle advec-
tion. The objective of the work is to reduce to cost of I/O opera-
tions. Their work used Solid State Drives (SSDs) and local disks
to store data blocks, where SSDs are used as a cache. Since the
cache can only hold limited amounts of data compared to local
disks, blocks are purged using the LRU method. When required
blocks are not in the cache, the required data is searched in local
disks before accessing the file system. The extended hierarchy al-
lows for a larger than usual cache, reducing the need to perform
expensive I/O operations.

One trait that makes the parallel computation of integral
curves challenging is the dynamic data dependency. The data re-
quired to compute the curve cannot be determined in advance.
However, this information is crucial for optimal load-balanced
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parallel scheduling. One solution to this problem is to opt for
dynamic scheduling. Two well-studied techniques for dynamic
scheduling are work-stealing and work-requesting. In both ap-
proaches, an idle process acquires work from a busy process.
Popularly, idle processes are referred to as thieves, and busy pro-
cesses are referred to as victims. The major distinction between
work-stealing and work requesting is how the thief from the vic-
tim acquires the work. In work-requesting, the thief requests
work items, and the victim voluntarily shares it. In work-stealing,
the thief directly accesses the victimâĂŹs queue for work items
without the victim knowing.

A huge body of works addresses work-stealing in task-based
parallel systems in general [BL99,DLS∗09,ST19]. In the case of in-
tegral curve calculation, task-based parallelism inspires the par-
allelize over particles scheme. In work-stealing, idle processes se-
lect busy processes at random and steal work from them. Dinan
et al. [DLS∗09] demonstrated the scalability of the work-stealing
approach. Work stealing can be readily applied to the parallelize
over particles approach. Lu et al. [LSP14] presented a technique
for calculating stream surface efficiently using work-stealing. In-
stead of using particles as a work item, they used segments of
the seeding curve for the stream surface. Work stealing has been
proven to be efficient in theory and practice. However, Dinan et
al. report its implementation is complicated.

Muller et al. [MCHG13] presented an approach that uses work
requesting for tracing particle trajectories. Their algorithms start
by equally distributing all work items (particles) among pro-
cesses. However, they started by assigning all particles to a single
process for performing the load balancing study. Every time an
active particle from the work queue is unable to continue in the
currently cached data, it is placed at the end of the queue. When-
ever a thief tries to request work, the particles from the end of the
queue are provided, reducing the current processesâĂŹ need to
load the data block for the particle. The results reported perfor-
mance improvements between 30% to 60%.

According to Childs et al. [CPA∗10], the dominant factor af-
fecting the performance of parallelizing over particles is I/O. The
solution to solve the I/O problem during runtime is to perform
prefetching of data. However, works that propose prefetching in-
cur additional costs of making predictions of which blocks to
read. Leveraging the memory hierarchy similar to Camp et al. is
a good strategy, provided proper considerations for vector field
size and complexity are made. Apart from I/O costs, load balanc-
ing remains another factor affecting performance adversely. Pre-
vious work stealing and work requesting strategies have demon-
strated good load balance with additional costs of communicat-
ing work items. These costs could potentially be restrictive in the
case of workloads with a large number of particles.

6.1.3. Hybrid Parallelism

The works described in this section combine parallelize over
data and parallelize over particles schemes to achieve optimal
load balance. Pugmire et al. [PCG∗09] introduced an algorithm
that uses a master-slave model. The processes were divided into
groups, and each group had a master process. The master is re-
sponsible for maintaining the load balance between processes

Problem Classification
Parallelization Strategy

over data over particles

Dataset size Large Small

Number of particles Small Large

Seed Distribution Sparse Dense

Vector Field Complexity No critical No circular
points field

Table 7: Recommendation of parallelization strategy for particle
advection workloads based on features of the problem. This table
appears in the survey by Binyahib [Bin19].

as it coordinates the assignment of work. The algorithm begins
with statically partitioning the data. All processes load data on
demand. Whenever a process needs to load data for advancing
its particles, it coordinates with the master. The master decides
whether it is more efficient for the process to load data or to send
its particles to another process. The method proved to be more
efficient in I/O and communication than the traditional paral-
lelization approaches.

Kendall et al. [KWA∗11] provided a hybrid solution which they
call DStep and works like the MapReduce framework. Their al-
gorithm uses groups for processes as well and has a master to
coordinate work among different groups. A static round-robin
partitioning strategy is used to assign data blocks to processes,
similar to Peterka et al. [PRN∗11]. The work of tracking parti-
cles is split among groups where the master process maintains
a work queue and assigns work to processes in its group. Pro-
cessors within a group can communicate particles among them.
However, particles across groups can only be communicated by
the master processes. The algorithm provided an efficient and
scalable solution for particle tracing and has been used by other
works [GYHZ13, GHS∗14, LGZY16].

Lu et al. [LSP14] introduced another hybrid approach. Their
algorithm aims for the efficient generation of stream surfaces.
The seeding curve for streamlines was divided into segments,
and these segments were assigned to processes as tasks. In their
implementation, each process maintains a queue of segments.
When advancing the streamline segment using the front ad-
vancing algorithm proposed by Garth et al. [GTS∗04], if a seg-
ment starts to diverge, it is split into two and placed back in the
queue. The work-stealing approach lets idle processes acquire
work from the queues of busy processes. When a processor re-
quires additional data to advance a segment, it requests the data
from the processes that own the data block. The work demon-
strated good load balancing and scalability.

6.2. Synthesis

This section summarizes distributed particle advection in two
parts. First, general take-aways are discussed based on the vari-
ous factors discussed in the introduction of this section. Second,
observations from the studies in terms of their particle advection
workloads are presented.
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Algorithm Architecture Procs. Data set Time Seed Application Seeding Intent /
Size steps Count Strategy Evaluation

Yu et al. Intel Xeon 32 644M - 1M streamlines, - hierarchical
[YWM07] (8x4) pathlines representation,

AMD Optron 256 644M 100 1M - strong scaling
(2048x2)

Chen et al. Intel Xeon 32 162M - 700 streamlines - data partitioning /
[CF08] (48x2) strong scaling

Pugmire et al. Cray XT5 (ORNL) 512 512M - 4k, 22K streamlines uniform data loading,
[PCG∗09] (149K) 512 512M - 10K uniform data partitioning /

512 512M - 20K uniform weak scaling

Peterka et al. PowerPC-450 16k 8B - 128k streamlines, random domain decomposition,
[PRN∗11] (40960x4) 32K 1.2B 32 16k pathlines random dynamic repartitioning /

strong and weak scaling

Camp et al. Intel Xeon - 512M - 2.5K, 10K streamlines dense, Effects of
[CCC∗11] Dash (SDSC) - 512M - 2.5K, 10K uniform storage hierarchy

- 512M - 2.5K, 10K

Camp et al. Cray XT4 (NERSC) 128 512M - 2.5K, 10K streamlines dense, MPI-hybrid
[CGC∗11b] 9572x4 128 512M - 2.5K, 10K uniform parallelism

128 512M - 1.5K, 6K

Nouanesengsy PowerPC-450 4K 2B - 256K streamlines random workload aware
et al. [NLS11] (1024x4) 4K 1.2B - 128K random domain decomposition /

strong and weak scaling

Nouanesengsy PowerPC-450 1k 8M 29 186M FTLE uniform pipelined temporal
et al. [NLL∗12] (40960x4) 1K 25M 48 65.2M uniform advection, caching /

16k 345M 36 288M uniform strong and weak scaling
16K 43.5M 50 62M uniform

Camp et al. Cray XT4 (NERSC) 128 512M - 128 stream surface rake Comparison of
[CCG∗12] (9572x4) 128 512M - 361 rake parallelization algorithms

128 512M - 128 rake for stream surfaces

Muller et al. AMD Magny-Cours 1K 32M 735 1M streamlines, uniform work requesting /
[MCHG13] (6384x24) pathlines load balancing,

strong scaling

Childs et al. Nvidia Kepler 8 1B - 8M source-dest uniform Distriburted particle
[CBP∗14] (1 GPU / Proc) advection over different

Intel Xeon 192 1B - 8M hardware architectures /
comparison, strong scaling

Guo et al. Intel Xeon 64 755M 100 - streak surface, seed line sparse data
[GZL∗14] (8x8) 64 3.75M 24 200 pathlines, uniform management /

Intel Xeon 512 25M 48 - FTLE uniform strong scaling
(700x12)

Lu et al. PowerPC A2 1K 25M - 32K stream surface rakes caching,
[LSP14] (2048x16) 4K 80M - 32K rakes performance /

8K 500M - 32K rakes strong scaling
8K 2B - 64K rakes

Zhang et al. Intel Xeon 64 3.75M 24 6250 pathlines uniform data prefetching /
[ZGY16] (8x8) 64 25M 48 4096 - strong scaling

Zhang et al. PowerPC A2 8K 1B - 128M streamlines, - domain decomposition,
[ZGH∗17] (2048x16) 8K 3.8M 24 8M source-dest, - using K-d trees /

8K 25M 48 24M FTLE uniform strong and weak scaling
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Algorithm Architecture Procs. Data set Time Seed Application Seeding Intent /
Size steps Count Strategy Evaluation

Binyahib et al. Intel Xeon 512 67M - 1M source-dest dense, In situ parallelization
[BPC19] (2388x32) uniform over particles

Table 8: Summary of large scale distributed particle advection worklets. The numbers in parenthesis in the Architecture column represent
the total number of cores available on the execution platform.

Application Particles /1k Cells

Souce-destination 72222.20

FTLE 5013.02

Streamlines 9.89

Pathlines 6.93

Stream surface 0.25

Table 9: Number of particles used per one thousand cells of data
for different applications from works described in Table 8.

Table 7 provides a simple lookup for a parallelization strat-
egy based on various workload factors discussed earlier in
the section. These strategies were presented in a survey by
Binyahib [Bin19]. Parallelize over data is best suited when the
data set volume of large. In the presence of flow features like crit-
ical points and vortices, it suffers from load imbalances. While
several methods have been proposed for data partitioning for
load-balanced computation, these works incur the cost of pre-
processing and redistributing data. Parallelize over particles is
best suited when the number of particles is large. It suffers from
load imbalances due to inconsistencies in the computational
work for different particles. Some works aim to address the prob-
lem of load imbalances but have added costs of pre-processing,
communication, and I/O. Hybrid solutions demonstrate better
scalability and efficiency compared to the traditional methods.
However, implementing these methods is very complicated and
typically has some added cost of communication and I/O.

Figure 9 presents a comparison of scaling behaviors of four
parallelization algorithms, extracted from the study presented
by Binyahib et al. [BPYC20]. These algorithms include parallelize
over particles, parallelize over data, Lifeline Scheduling Method
(LSM, an extension of parallelize over particles), and master
worker (a hybrid parallel algorithm). This study presents a weak
scaling of these algorithms. The top row plots show the through-
put of these algorithms in terms of number of steps completed
by each MPI rank per second. The bottom row plots show the
efficiency of weak scaling achieved by the different algorithms.
The efficiency of the algorithms drop significantly as the concur-
rency and workload is increased. The drop is more significant in
smaller workloads than in larger workloads. This points to Lim-
itation 3 of the existing literature. The only study which com-
pares the scaling behaviors of the most widely used paralleliza-
tion algorithm uses weak scaling. In order to be able to quantify

the speed-ups resulting from added distributed parallelism for a
given workload, a strong scaling study is necessary. The strong
scaling study for these algorithms is a potential avenue for future
research.

Table 8 summarizes large-scale parallel particle advection-
based flow visualization studies in terms of the distributed ex-
ecutions and the magnitudes of the workloads. The platforms
used by the considered studies in this section span from desk-
top computers to large supercomputers. The work with the
least amount of processes and work in this survey is by Chen
et al. [CF08], which used only 32 processes to produced 700
streamlines. The work with the most number of processes was
by Nouanesengsy et al. [NLL∗12], which used 16 thousand pro-
cesses for FTLE calculation. However, the work with the most
work was by Binyahib et al. [BPYC20], which used 34 billion par-
ticles for advection.

Table 9 summarizes the number of particles used in propor-
tion to the size of the data used in the works included in Table
8. Stream surface generation is the application that required the
least amount of particles. A significant part of the cost of generat-
ing stream surfaces comes from triangulating the surfaces from
the advected streamlines. These streamlines cannot be numer-
ous as they may lead to issues like occlusion. Source-destination
queries use the most particles in proportion to the data size. All
other applications need to store a lot of information in addition
to the final location of the particle — streamlines and pathlines
need to save intermediate locations for representing the trajecto-
ries, stream surfaces need the triangulated surface for rendering,
and FTLE analysis needs to generate an additional scalar field.
Source-destination analysis has no such costs and can instead
use the savings in storage and computation to incorporate more
particles.

7. Performance Portability

It is very common for users to run experiments on multiple com-
puters. Quiet commonly simulations are run on one cluster and
analysis is run on other. Also, when new generation of architec-
tures replace existing ones, applications need to be ported to ex-
ecute with greater or at least the same efficiency on newer hard-
ware. It is not desirable for users to rewrite platform-specific,
optimized versions of code when such cases occur. Hence, plat-
form portability has become an important issue in saving costs
incured due to porting applications on newer hardware devices.
These problems are being addresed by programming libraries
like Kokkos [ET13], RAJA [HK14], and VTK-m [MSU∗16].

The remainder of this section draws from a study I participated
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in on the VTK-m software and its approach for portable perfor-
mance. The study has received a minor revision from the jour-
nal Parallel Computing, and should be published later this year.
I performed all of the survey work described in this section, in-
cluding extracting all data for the tables and figures, and making
the tables and figures. That said, much of the text was by my co-
authors on the paper.

7.1. VTK-m

To evaluate VTK-m, we surveyed ten studies on VTK-m collate
their results. In all cases, these studies considered a single vi-
sualization algorithm in depth. We feel this provides a holistic
picture of VTK-m as it evaluates a considerable number of algo-
rithms, platforms, data sets, and comparators. We divide our re-
sults into two sections. The first section (7.1.1) evaluates how the
hardware-agnostic approach of VTK-m versus hardware-specific
comparators for nine different algorithms. The second section
(7.1.2) considers studies that focused on scaling properties on
CPU hardware — when given more cores, did performance im-
prove proportionally? This section considers five such studies, al-
though four of the studies also had hardware-specific compara-
tors and appeared in section 7.1.1.
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Figure 10: VTK-m against hardware-specific comparators for nine
algorithms. The horizontal axis represents the ratio in VTK-m
against its comparator — 2−1 means VTK-m twice as long, 21

means VTK-m half the time, and 20 (1) means VTK-m the same
amount of time. The circle glyphs indicate both the hardware type
(circle color) and the size of the data set being processed (circle
size). For data size, all plotting is relative — the largest data set
considered in that study gets the largest circle size, the smallest
data set gets the smallest circle size, and the other circle glyphs are
scaled proportionally between the two extremes.

7.1.1. VTK-m Hardware-Specific Comparators

Table 10 and Figure 10 show the results from nine studies com-
paring individual algorithms. The hardware-specific compara-
tors came from a mix of well-known visualization/rendering soft-
ware (Embree [W∗14], HAVS [CICS05], OptiX [P∗10], VisIt [C∗12],

VTK [SML96], Vapor [CMNR07b]) and direct implementations
(CUDA, OpenMP, pthreads, TBB, Thrust). While Table 10 lists the
range of comparisons, Figure 10 shows the outcome for each in-
dividual experiment.

Two of the algorithms, external facelist and ray tracing,
had significantly worse performance with VTK-m than with its
hardware-specific comparators. For external facelist, the cause
was an asymmetric comparison — the comparator was a serial
algorithm that could skip any overhead necessary for any par-
allel algorithm. Specifically, the serial comparator could update
its internal tables without fear of collisions, whereas the VTK-m
had to be designed to prevent collisions when running in parallel.
For ray tracing, the cause was that the comparators are extremely
efficient — NVIDIA’s OptiX and Intel’s Embree are the product
of dedicated teams embedded at their respective hardware ven-
dors. The difference in performance, then, is likely more a re-
flection of respective development time than a statement about
VTK-m Further, the VTK-m actually beat OptiX on older NVIDIA
cards, speaking to the extent that OptiX is tuned for the latest
NVIDIA hardware and to the portable performance of VTK-m

Table 11 summarizes aggregate performance over the nine al-
gorithms from their respective studies, and we use the methodol-
ogy for calculating individual table entries as our best estimate at
relative performance. Four of the nine algorithms are faster than
their hardware comparators, whereas five are slower. This pro-
vides evidence that VTK-m good performance, as the expected
outcome if VTK-m as good as hardware-specific implementation
would be a 50/50 mix of faster and slower. On the hardware side,
we saw that serial and CPU experiments were faster. This could
possibly demonstrate a benefit of DPP programming, as it is not
possible to incorporate serial bottlenecks. We felt the GPU per-
formance of 0.95X was quite good, and matches our team’s expe-
riences with good GPU performance. Similarly, we have felt that
Xeon Phi performance was poor, which is borne out in the table.
In particular, the study by Perciano et al. [PHC∗20] demonstrated
poor performance at high scale. VTK-m was competitive at lower
concurrency, but not when the hyperthreads were involved. This
may indicate a shortcoming in Xeon Phi device adapters. Finally,
the aggregation of the experiments demonstrate a 1.14X speedup
from using VTK-m hardware-specific comparators. As previously
discussed, these gains are coming from serial and multi-core
CPU improvements, and likely from limiting programmers to
only using fast programming constructs. That said, the GPU re-
sults (0.95X) indicate that VTK-m competitive.

7.1.2. VTK-m on Multi-Core CPUs

For each of the studies that ran scaling studies on multi-core
CPUs (not Xeon Phi), Table 12 shows the parallel efficiency and
Figure 11 shows the behavior with increasing numbers of cores.
For the most part, scaling is quite good, as the VTK-m get propor-
tionally faster as more cores are added. The two exceptions are
for contour trees (where scalability is similar for a native OpenMP
implementation due to algorithm complexities) and for the point
merge algorithm when it switches to hyperthreading. That said,
we find the overall scalability is good evidence that VTK-m an ef-
fective programming paradigm for multi-core CPUs.
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Algorithm Architecture Comparator Performance

Threshold Intel Xeon X5680 (1C) VTK 3.6
[MMA∗13] Intel Xeon X5680 (12C) custom 4

Nvidia Tesla C2050 custom 26

Ray Tracing Intel I7 4770K Intel Embree 0.28−0.48
[L∗15] Intel Xeon E5-2680 v2 Intel Embree 0.4−0.58

Nvidia GTX Titan Black (Kepler) Nvidia OptiX 0.44−0.56
Nvidia Tesla K80M (Kepler) Nvidia OptiX 0.37−0.51
Nvidia GeForce GTX 750Ti Nvidia OptiZ 0.69−0.89
Nvidia GeForce GT 620M Nvidia OptiX 0.73−1.16

Volume Rendering Intel Ivy Bridge/NERSC Edison (1C) VisIt 0.73−9.1
[LLN∗15] Intel Ivy Bridge/NERSC Edison (24C) self-1C 17.5

Intel I7 4770K (8C, 4 physical) VTK [BKS97] 2
Nvidia GTX Titan Black (Kepler) HAVS 0.33−2

Halo and Intel Xeon E5-2670 (16C) custom no comparison
center finding Nvidia Tesla M2090 custom-16C MPI 2.5−4.9
[SLH∗15] Intel Xeon Phi SE10P (MIC) custom-60C MPI 0.13

AMD Opteron (16C) custom no comparison
Nvidia Tesla K20x custom-32C MPI 6

External facelist Intel Xeon E5-2650 v2 (1C) VTK, VisIt 0.50−1.4,0.08−0.25
calculation Intel Xeon E5-2650 v2 (16C) self-1C 8.8−12
[LBMC16] Nvidia Tesla K40 (Kepler) self-16C 0.9−2.25

Contour tree Intel Xeon E5- 4650L (1C) custom 0.6
computation Intel Xeon E5- 4650L (32C) custom-1C, self-1C 13.1, 9.2
[CWSA16] Nvidia Tesla K40m (Kepler) custom-1C, self-1C 21.0, 14.8

Wavelet Compression Intel Haswell (16C) Vapor [CR05, CMNR07a] 0.8−1.5×
[L∗17] Nvidia Tesla K40 (Kepler) custom CUDA 0.6−0.8

Maximal clique Intel Xeon(R) E5-2667v3 (16C) custom-1C 0.05−7.4
enumeration NVIDIA Tesla K40 (Keplar) custom-1C 0.05−11.6
[LPM∗17]

Particle Advection Intel Xeon E5-2650 (16C) VisIt 2.4−3.6
[P∗18] Intel Xeon E5-2695 v3 (28C) pthreads [CGC∗11a] 0.03∗−1.6

IBM Power8 (20C) pthreads 0.05∗−1.03
Nvidia Tesla K20x (Kepler) CUDA [CKP∗13] 0.37−2.26
Nvidia Tesla K80 (Kepler) CUDA 0.54−2.45
Nvidia Tesla P100 (Pascal) CUDA 0.48−4.08

Point Merge IBM Power9 (1C) VTK 1.07−6.86
[YCM19] IBM Power9 (40C) VTK 1.4−2.5

Nvidia Tesla V100 (Volta) VTK-m 0.48−4.0

Probablistic Intel Ivy Bridge (24C) custom 2−7
Graphical Modeling Intel Xeon Phi 7250 (68C) custom 0.75−4.25
[L∗18] Nvidia Tesla K40 (Kepler) self-KNL 3.5−4.14

Probablistic Intel Xeon E5-2609 v2 (8C) custom (OpenMP, 2.2,2.6
Graphical Modeling Intel Xeon Phi 7250 (68C) threads) 1.25,5.93
[PHC∗20]

Table 10: Studies comparing performance for algorithms implemented in VTK-m against hardware-specific implementations. In the ar-
chitecture column, numbers in parentheses specify number of multi-core CPU cores used in the experiments. Finally, in the performance
column, the numbers represent the range of outcomes. For example, VTK-m ray tracing algorithm only had 28% to 48% of the performance
(i.e., from almost 4X slower to nearly 2X slower) compared to Intel’s Embree ray tracer when run on the Intel I7 architecture.
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Algorithm CPUs GPUs X. Phi Serial Total

External - - - 0.34 0.34
facelist

PGM 18 3.32 - 0.87 - 1.69

PGM 20 2.39 - 0.25 - 0.78

Particle 0.38 1.53 - - 0.76
advection

Point 1.82 - - 3.10 2.38
merge

Ray 0.47 0.55 - - 0.51
tracing

Volume 1.13 0.83 - 3.10 1.43
rendering

Wavelet 1.13 0.75 - - 0.92
compression

Hashing 5.97 1.45 - - 2.94

Total 1.45 0.95 0.47 1.48 1.14

Table 11: Aggregate performance of VTK-m against hardware-
specific comparators for nine algorithms on four hardware archi-
tectures. Each entry in the table represents a geometric mean over
its experiments. For example, if algorithm X on hardware Y had
three experiments, where VTK-m five times as fast, half as fast, and
one fourth as fast as its hardware comparator, then the table will

contain 0.85 (= (5×0.5×0.25)
1
3 ). We use the geometric mean since

it captures aggregate behavior better than an arithmetic mean
(which would be 1.92 for the previous example). We also combined
results in algorithm and in hardware, i.e., if algorithms X, Y, and
Z had results on hardware W, we calculated performance on W
as the geometric mean of results for X, Y, and Z on W. One bene-
fit of this approach is that is unaffected by the number of exper-
iments run for a given study — if one study contained one hun-
dred experiments and another study contained two, then the find-
ings from the first study do not overshadow the second. Finally, we
calculated the geometric mean over all hardware-algorithm pairs,
which was 1.14.

8. Conclusion

This survey has endeavored to inform a workflow for deciding
whether to employ optimizations for particle advection-based
flow visualization. It considered aspects of this workflow involv-
ing work estimation and work optimization. In particular, Sec-
tions 2 and 3 provided a formalization of how different aspects
of particle advection interact and a formula counting the num-
ber of operations, which are potentially useful for future work
in formal cost modeling. It also synthesized relevant works on
optimizations, whether algorithmic or via parallelism, and con-
tributed some new understanding on gaps in our community’s
understanding with respect to speedups via parallelism.

A distinct contribution is in the organization of the compo-

Algorithm Architecture Max Parallel
Cores Efficiency

Volume I Ivy Bridge 24 0.73
Rendering [LLN∗15]

External I Ivy Bridge 16 0.77
Facelist [LBMC16]

Contour I Sandy Bridge 32 0.24
Tree [CWSA16]

Point IB Power 9 40 0.55
Merge [YCM19]

Particle I Haswell 28 0.78
Advection [P∗18]

Table 12: Surveying multi-core CPU scaling studies for five visual-
ization algorithms. While these studies considered many concur-
rency levels, this table shows the maximum concurrency, as well
as the parallel efficiency achieved at that maximum concurrency.

Volume Rendering

External Facelist

Contour Tree

Point MergeParticle Advection

2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9

Number of Available CPU Cores

2 
0

2 
1

2 
2

2 
3

2 
4

2 
5

S
p

ee
d

 U
p

Figure 11: Plotting scaling study results for five visualization
algorithms on multi-core CPUs. Each visualization algorithm is
plotted as its own line, with a unique color. When an algorithm
uses hyperthreads, the line becomes dotted. Finally, the ideal scal-
ing line is drawn as a dotted black line.

nents of a flow visualization system, as seen in Figure 2. These
components suggest an opportunity to develop an efficient soft-
ware design for a grand unified particle advection framework.

While this survey has informed a decision-making workflow
for particle advection workloads, current limitations prevent it
from being realized at this time. These limitations are:

1. None of the existing research presents cost estimation for var-
ious operations related to particle advection. While some are
easy to predict, predicting the costs for unstructured grids is
challenging and more research is needed.

2. For shared memory, the amount of speed-ups for workloads
on CPUs was consistent. But the observed speed-ups on GPUs
varied significantly. It is challenging to predict how much a
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GPU will speed-up a certain workload. A study comparing
speed-ups for particle advection across multiple GPUs would
help make such predictions.

3. For distributed memory, the best holistic study did weak scal-
ing. The premise of this paper is more about strong scaling.
But weak scaling results are poor, so strong scaling is likely to
be poorer still. Understand of strong scaling properties of dis-
tributed memory particle advection will enable better predic-
tion of speed-ups while introducing more parallelism.

All these limitations also open avenues for future research.
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