Toward Finer Granularity Analysis of Network Traffic

Yebo Feng
Computer and Information Science Department
University of Oregon
yebof@uoregon.edu

Abstract—Fine-grained traffic analysis (FGTA), as an advanced form of traffic analysis (TA), aims to analyze network traffic to deduce information related to application-layer activities, fine-grained user behaviors, or traffic content, even in the presence of traffic encryption or traffic obfuscation. Different from traditional TA, FGTA approaches are usually based on machine learning or high-dimensional clustering, enabling them to discover subtle differences between different network traffic sets. Nowadays, with the increasingly complex Internet architecture, the increasingly frequent transmission of user data, and the widespread use of traffic encryption, FGTA is becoming an essential tool for both network administrators and attackers to gain different levels of visibility over the network. It plays a critical role in intrusion and anomaly detection, quality of experience investigation, user activity inference, website fingerprinting, location estimation, etc. To help scholars and developers research and advance this technology, in this report, we examine the literature that deals with FGTA, investigating the frontier developments in this domain. By comprehensively surveying different approaches toward FGTA, we introduce their input traffic data, elaborate on their operating principles by different use cases, indicate their limitations and countermeasures, and raise several promising future research avenues.

Index Terms—Network traffic, traffic analysis, traffic classification, traffic monitoring, fine-grained traffic analysis, intrusion detection, user behavior identification.

I. INTRODUCTION

In the context of Internet, protocols and applications are usually built upon hierarchical models [1] (e.g., TCP/IP and OSI), where the communication functions of a telecommunication or computing system are categorized into several abstraction layers. Higher layers only encapsulate high-level methods, protocols, and specifications, operating with the support of lower layers [2]. With such design, programmers can easily develop interoperable Internet applications regardless of diverse underlying protocols and technologies. However, this convention also makes cross-layered network analysis feasible. As developers of higher layer applications usually take higher-layer measures (e.g., encryption, anonymization, etc.) to preserve the user privacy regardless of leaving traceable patterns on lower layers, analyzers can capture network features from the lower layers to infer higher-layer knowledge in communication [3], even in the presence of message encryption. Such a process is called traffic analysis (TA), a technique widely used in today’s Internet.

TA has been studied for decades, with myriad systems, tools, and algorithms [4–9] developed to serve different types of purposes, such as traffic measurement, traffic engineering, anomaly detection, and network surveillance. In early development of TA, traditional TA approaches were mainly designed for network traffic measurement/forecast [10–12], anomaly detection [13], and basic traffic classification [14]. These approaches are usually rule-based, statistics-based, or clustering-based, can separate traffic of different network protocols or conduct basic modeling of traffic flow changes. Later, with the adoption of cutting-edge data processing techniques and algorithms, such as harnessing the power of machine learning on big data, TA is able to deduce more information from network traffic data regarding application-layer activities, fine-grained user behaviors, and message content. For instance, researchers have developed advanced TA techniques to detect application-layer threats, infer the specific websites that people are visiting over HTTPS, or even dig users’ private data from network-layer knowledge. We define such advanced TA techniques as fine-grained traffic analysis (FGTA), the process of application-layer behavior modeling, fine-grained user activities inferring, or traffic content decoding, only through link-layer or network-layer traffic data, with or without encryptions.

As a subset of TA, FGTA is mainly different from traditional TA in the following ways:

• First of all, the most notable difference is the goals of analysis. Traditional TA can coarsely distinguish or model traffic from different types of network device, protocols, or applications. However, FGTA aims to analyze traffic at a finer granularity, such as traffic from different application-layer activities (e.g., Twitter post vs. Twitter read), different groups of application users (e.g., online social network (OSN) bots vs. normal users), or different user content (e.g., the visiting website).

• The analysis pipelines of traditional TA and FGTA are usually different. FGTA, aiming at more granular information, usually takes the traditional TA as a prerequisite step to “preprocess” the traffic before the final inference. For example, a FGTA approach that tries to identify the web page the user is visiting needs to first leverage traditional TA to extract all the web browsing traffic.

• As for analysis algorithms, most FGTA approaches depend on sophisticated modeling or classification methods, such as deep machine learning or high-dimensional clustering, to tackle the challenging fine-grained object identification tasks. While, traditional TA, dealing with
easier tasks, can utilize a number of different analytical methods, such as rule-based, statistics-based, or soft-
computing-based approaches.

With the increasingly complex Internet architecture, increasingly frequent transmission of user data, and the widespread use of traffic encryption, FGTA is becoming a more and more important research topic. Compared with traditional TA, FGTA can reveal more information from network traffic and can achieve high efficacy even in various complicated network environments. Besides, benefitting from the easily accessible network traffic data, the applicable scenarios of FGTA are more extensive compared with directly analyzing traffic content. Furthermore, FGTA is efficient and portable in discovering application-layer knowledge. By analyzing a small amount of metadata or statistical information of traffic, FGTA can obtain almost the same level of visibility as decoding large amount of message content. Therefore, FGTA has a wide range of usage scenarios. As for network managements, FGTA can help measure application usage, detect complicated network intrusions or anomalies, investigate edge user experience, etc. As for the attacker side, FGTA can help eavesdrop private information of users, model user behaviors, estimate user locations, etc. Studying FGTA is profound for comprehensive network inspection, safeguarding information transmission, and precise network configuration.

In this report, we examine the literature that deals FGTA. By including more than 190 citations, mostly from top-tier academic conferences (e.g., IEEE Symposium on Security and Privacy, USENIX Security Symposium, ACM Conference on Computer and Communications Security, the Network and Distributed System Security Symposium, etc.) and reputable academic journals (e.g., IEEE Transactions on Dependable and Secure Computing, IEEE Transactions on Information Forensics and Security, IEEE Journal on Selected Areas in Communications, Computer Communication Review, etc.), we elaborate on frontier developments of FGTA, demonstrating and comparing different FGTA approaches’ operating mechanisms, use cases, input data, limitations and countermeasures. In addition, based on our observations and reflections on this field, we propose several avenues for future research, thereby helping future academics and developers to advance FGTA.

The rest of this report is organized as follows. After describing the input data of FGTA in Section II, we elaborate on frontier developments of FGTA by their use cases in Section III. We then point out the limitations of existing FGTA in Section IV and introduce the countermeasures in Section V. In the end, we propose some avenues for future research in Section VI and conclude this report in Section VII.

II. INPUT DATA

Like traditional TA, FGTA inputs network traffic data from some vantage points in the network to dig knowledge. The traffic data is the inference object for all TA approaches. In this section, we survey popular network traffic capture engines and their deployments, compare the formats of their generated data, and discuss their application scenarios in FGTA.

A. Network Observation Point

The observation point of the traffic capture engine will significantly impact the integrity of the captured data and the network visibility. Different observation point is suitable for different types of TA tasks.

The ideal observation point for most FGTA tasks is located at the gateway of a network (illustrated in Figure 1a), which enables people to capture both inbound and outbound traffic of the network. Such a bidirectional traffic dataset is suitable to infer the interactions between the observed network and rest of the Internet. However, analyzers cannot learn the story that happens in the rest of the Internet according to this dataset.

Sometimes, the observation point can be in the middle of the network (illustrated in Figure 1b), especially when the traffic capture engine is deployed by an ISP or IXP. In this case, the capture engine is able to collect a large amount of traffic that bypass it. However, it also raises the following concerns:

- Due to asymmetric packet routing [15], in-network observation point sometime may only capture traffic in one direction (illustrated in Figure 1b).
- It cannot guarantee the robustness of captured traffic because of the deployment of various traffic engineering techniques [16], [17]. The routing path for any packet can be dynamic in today’s networks.

Therefore, in-network-based observation points may be suitable for traditional TA tasks such as Internet measurement and network-layer anomaly detection. But given the lack of integrity of such data, we should avoid using it in FGTA.

To capture comprehensive traffic data from the network with complex topology, we can deploy multiple observation points at different vantage points if conditions permit. By using a pool of metering processes to collect network packets at multiple observation points, optionally filter them and aggregates information about these packets, a traffic exporter can gather each of the observation points together into an observation domain and sends this information to a traffic capture engine [18]. Then we can fetch comprehensive network traffic data without redundancy.

B. Traffic Data Acquiring

Since the birth of the Internet, various traffic capture engines have been developed to log traffic information. TA approaches...
can further leverage these “log information” to measure network events, detect anomalies, and analyze network behaviors. Based on different information captured, these traffic capture engines can be classified into either packet-level or flow-level [4].

1) Packet-level capture: Packet-level capture is widely used in local networks and endpoint devices. As its name states, it copies or makes a snapshot of all the network packets that bypass the network interface and forwards the collected data to a collector. The agent that takes charge of the capture is called a packet-level traffic capture engine or a “sniffer”, which can be either software-based (e.g., Snoop [19], Wireshark [20], etc.) or hardware-based (e.g., Sniffer InfiniStream [21]). It can be as simple as an IP table rule on a route that copies all the traffic to a cloud disk besides normal forwarding.

Packet-level capture can collect raw network traffic, containing both packet headers and packet payloads. Theoretically, it can support all types of FGTA tasks because it basically logs all the information flowed on networks. However, in most cases, packet-level traffic capture might be improper to deploy for the following reasons:

- Packet-level traffic capture is expensive, not only because the interface needs to copy all the packets that bypass it, but also because the interface needs to forward all the captured traffic to an analysis node through a link. All these operations will double the workload of the network interface and occupy a considerable amount of link bandwidth. Packet-level traffic capture is therefore not scalable.
- The information contained in packet-level traffic data is sometimes an “overkill” for TA, as many TA approaches only require statistical information from the packet headers to complete the analysis. Moreover, user messages, website content, and video streaming are usually contained in packet payloads in encrypted forms, making most information captured in packet-level traffic meaningless for all TA approaches.
- Packet-level traffic may contain sensitive information (i.e., payload) of users. Thus, network service providers are cautious about capturing and analyzing such data.

2) Flow-level capture: To address the aforementioned issues of packet-level traffic captures and make traffic capturing affordable, scalable, and practical for network service providers, researchers and developers have proposed myriad flow-level traffic capture engines.

In flow-level traffic capture systems, the capture engines no longer copy or make snapshots of each packet, instead, they first aggregate relevant packets into a flow and then capture metadata or statistical information to represent that flow. Here, the concept of flow has been around for a long time, with many formal and informal definitions (e.g., RFC 2722 [22], RFC 3697 [23], RFC 3917 [24], etc.). In this paper, we define a network traffic flow as a sequence of relevant network packets from a source to a destination for the same application. In most instances, the network system will process packets within a flow in the same manner. Besides, each application-layer behavior will generate one or multiple flows in both directions.

By capturing traffic at flow-level, traffic capture engines no longer suffer from high system overhead and high bandwidth usage. Figure 2 illustrates the workflows of a network interface with and without Cflowd as the flow-level traffic captured engine [25]. Unlike packet-level traffic capture that will copy and forward any packet entirely to the collector port, flow-level traffic capture only copies information from headers to assemble traffic flows. The volume of data to process is then largely reduced in such a procedure. According to existing evaluations, NetFlow, the most frequently used flow-level traffic capture engine, only creates 1-1.5% of throughput on the interface it is exported on [26]. With a great deal of data reduction, network administrators can store, process, inspect and analyze large amounts of network data efficiently. Furthermore, when combining this procedure with packet sampling, it becomes feasible to capture and store traffic flows at an ISP or IXP scale, thereby extending the usage scenarios of TA. As we can see from a study, NetFlow only occupies around 15% of the router/switch’s CPU load when capturing sampled network traffic [27]. Compared with packet-level traffic capture that sometimes may double the system overhead and link usage, flow-level traffic capture is a huge improvement regarding efficiency and deployability.

However, the shortcoming of flow-level traffic capture is also obvious—it will decrease the visibility of the network traffic because people only see metadata and aggregated statistical information about the traffic rather than each packet. This is especially troublesome for FGTA as many approaches require at least inter-packet-level information. To make up for this, we can shorten the lifecycle for each flow in traffic capture engines to let them generate flows more frequently, thereby increasing the network visibility.

C. Widely used traffic capture engines

Here, we introduce widely-used traffic capture engines in academia and industry (Table I shows comparisons of them).

1) Packet-level traffic capture engines: Back in the early days of Internet, developers had realized the importance of capturing network packets for troubleshooting. Thus, Tcp-
TABLE I: Comparisons of selected widely-used traffic capture engines (●: fully support; ●: partially support; ○: not support.).

<table>
<thead>
<tr>
<th>Traffic Capture Engine</th>
<th>Data Captured</th>
<th>Granularity</th>
<th>Open or Proprietary</th>
<th>Layer (OSI)</th>
<th>Hardware Acceleration</th>
<th>Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP [28]</td>
<td>High-level statistical information about the interface.</td>
<td>Flow-level (aggregated)</td>
<td>Open</td>
<td>2, 3</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>IPFIX [32]</td>
<td>Metadata and statistical information about the flow.</td>
<td>Flow-level</td>
<td>Open</td>
<td>3, 4</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>NetFlow v9</td>
<td>Metadata and statistical information about the flow.</td>
<td>Flow-level</td>
<td>Proprietary</td>
<td>3, 4</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>NetFlow v5</td>
<td>Metadata and statistical information about the flow.</td>
<td>Flow-level</td>
<td>Proprietary</td>
<td>3, 4</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Argus [32]</td>
<td>Metadata and statistical information about the flow.</td>
<td>Flow-level</td>
<td>Open</td>
<td>2, 3, 4</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>sFlow [33]</td>
<td>Complete packet headers and partial packet payloads.</td>
<td>Packet-level</td>
<td>Open</td>
<td>Partially</td>
<td>2 - 7</td>
<td>●</td>
</tr>
<tr>
<td>Tcpdump [34]</td>
<td>Network information pass through the observation point.</td>
<td>Packet-level</td>
<td>Open</td>
<td>2 - 7</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Wireshark [35]</td>
<td>Network information pass through the observation point.</td>
<td>Packet-level</td>
<td>Open</td>
<td>2 - 7</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>PF_RING [35]</td>
<td>Network information pass through the observation point.</td>
<td>Packet-level</td>
<td>Open</td>
<td>2 - 7</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Netmap [36]</td>
<td>Network information in the memory of the observation point.</td>
<td>Packet-level</td>
<td>Open</td>
<td>2 - 7</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

dump [34], a software-based packet-level traffic capture engine (sniffer), was proposed in 1988. It allows users to store and display TCP/IP and other packets being transmitted or received over a network. Nowadays, Tcpdump has been ported to several operating systems (e.g., Unix with libpcap library, Windows with WinPcap) and is still frequently used in network studies. Similar software-based sniffers were also proposed to meet different needs. For example, Snoop [19], a simple packet capture tool that is bundled on Solaris operating system; Wireshark [20], a free packet capture and analysis software that not only supports multiple operating systems (e.g., Linux, Solaris, Windows, FreeBSD, Mac OS, etc.), but also comes with a user-friendly interface; PF_RING [35], a high speed packet capture library that can turn a commodity PC into an efficient and cheap network measurement box suitable for both packet capture and TA. As for routers and switches, traffic mirroring [37–39] is also well-studied, with many software or hardware-based approaches [21], [40] proposed to support real-time packet capture for enterprise-level networks.

However, as capturing the entire packet is expensive and sometimes impractical, people began to make a snapshot of each packet rather than storing it entirely. The most frequently-used approach is sFlow [33], an industrial method (defined in RFC 3176 [33]) originally developed by InMon Inc., to capture packet-level snapshot from switches and routers. Compared with previous packet-level traffic capture engines, sFlow has the following features, making it the ideal input for most FGTA approaches:

- Without capturing the entire packet, sFlow can just copy the first N bytes of a packet to save computing and transmission resource. This is especially useful for TA tasks as packet payloads are useless in such scenarios but the entire packet headers are still deserved for fine-grained analysis.
- As an industrial standard, sFlow is compatible on many different platforms of network switches and routers and utilizes a dedicated chip built into the devices to operate, which removes the burden of the CPU and memory of the router or switch when capturing the traffic.
- By introducing time-based or packet-based sampling techniques, sFlow can capture traffic on all interfaces simultaneously at wire speed.

Therefore, sFlow can reach a good balance between data integrity and velocity—being able to capture all the packet headers and simultaneously create less burden on the router or switch.

2) Flow-level traffic capture engines: Flow-level traffic capture engines also have a long history. Back in 1984, the Audit Record Generation and Utilization System (Argus flow [32]) was proposed as the first implementation of network flow monitoring, and is still an ongoing open source network flow monitor project now. Argus can monitor all network traffic, including Internet Protocol (IP) traffic, data plane, control plane and management plane. It captures much of the packet dynamics and semantics in each flow, providing reachability, availability, connectivity, duration, rate, load, delay metrics for all network flows. It also captures most attributes that are available from the packet headers [41]. Later, in 1988, Simple Network Management Protocol (SNMP) [28] was proposed as a component of the Internet Protocol Suite as defined by the Internet Engineering Task Force (IETF). Unlike Argus flow that provides rich information about ongoing traffic, SNMP only provides statistical information per interface, such as link utilization, interface bandwidth, and some other information if the device provides. SNMP is thus less applicable in TA compared with Argus, especially in the domain of FGTA.

With rapid development and popularization of the Internet, the industry had realized the importance of flow-level traffic capture engine and many solutions were proposed. The most typical example is NetFlow [30], so far the most widely-used flow-level capture engine with many TA approaches built upon. Just like Argus, NetFlow uses a flow record to represent a set of packets. However, unlike Argus, which is a bidirectional monitoring approach, NetFlow is a unidirectional flow monitor, reporting flow information of each direction of conversations independently. This feature allows NetFlow to have a finer granularity than Argus. Since NetFlow was developed by Cisco, it is bundled with most Cisco routers and switches, making it the object of imitation of the entire industry. Following NetFlow, many similar systems were proposed by both research institutions and commercial companies, such as Clifow [25], J-Flow [42], NetStream [43], Remote Network Monitoring (RMON) [44], etc. NetFlow itself also has evolved into different variations. The most famous one is
Internet Protocol Flow Information Export (IPFIX) [29], an IETF protocol built upon NetFlow v9.

The most recent development of traffic capture and traffic handling have been mainly focusing on the velocity issue. Researchers have proposed multiple approaches to capture large volume of network traffic at line speed without having any effect on data plane. For example, Netmap [36] a memory-based framework that enables commodity operating systems to handle millions of packets per seconds without the support of custom hardware; eXpress Data Path (XDP) [45], a fast programmable packet processing approach based on the operating system kernel, supports high speed packet logging and processing; hXDP [46], an efficient software network packet processing approach written in extended Berkeley Packet Filter (eBPF) on Field Programmable Gate Arrays (FPGA) network interface controllers (NICs); NetSeer [47], a flow event telemetry (FET) monitor which aims to discover and record all performance-critical events on the programmable data plane. However, those approaches do not change the pipeline of TA or FGTA as they only make it faster to capture and handle network traffic.

III. USE CASE AND REPRESENTATIVE APPROACH

As discussed in Section I, FGTA has a wide range of uses. FGTA can be leveraged by both attackers and network administrators, for both illegal purposes and social good. According to their use cases, we propose a taxonomy for FGTA approaches (Figure 3). In the rest of this section, We further examine typical FGTA approaches in each of the category.

A. Attack/Anomaly Detection

Using TA to detect anomalies or attacks is widely used by both the industry and academia. With more than two decades of research, we have seen a myriad of solutions (e.g., [48] – [51]) targeting at different types of threads. However, as networks attacks become more and more sophisticated and traffic encryption is widely used by all the parties, detection approaches based on traditional TA gradually become incompetent to tackle modern attacks. Therefore, researchers begin adopting FGTA to model hosts and clients’ application-layer behaviors to detect such attacks/anomalies. In this subsection, we elaborate on FGTA-based attack/anomaly detection approaches, introducing their applicable scenarios and operation mechanisms (Table II shows an overview).

1) Intrusion detection: Many FGTA approaches focus on detecting complicated intrusions in the network by examining the characteristics of the underlying network traffic. Most of them apply machine learning models to perform the detection. Amoli et al. [52] leveraged an unsupervised machine learning model (i.e., density-based spatial clustering of applications with noise (DBSCAN)) to distinguish subtle differences between historic traffic and intrusion traffic. Their approach is able to detect zero-day and complex attacks without prior knowledge. Papadogiannaki et al. [60] generated traffic signatures from packet metadata sequences and then detecting intrusions in the UNSW-NB15 dataset [67] by matching these signatures.

Many researchers also focus on utilizing supervised deep learning models to detect intrusions. Tang et al. [53] extracted six basic features from traffic flows and trained a deep neural network (DNN) model with the NSL-KDD dataset to detect intrusions. Shone et al. [54] first leveraged nonsymmetric deep autoencoder (NDAE) for unsupervised feature learning. Then, they implemented stacked NDAEs with GPU-based architectures for quick and accurate intrusion detection on labeled datasets (i.e., KDD Cup ’99 and NSL-KDD). Mirsky et al. [55] monitored the statistical patterns of network traffic and designed an ensemble of neural networks called autoencoders to collectively differentiate between normal and abnormal traffic patterns. Their approach is able to detect various attacks (e.g., video injection, ARP MitM, OS scan, etc.). Besides, unlike many other approaches that are only evaluated in close-world environments, this approaches was tested with a real-world test bed.

2) Malware detection: Today’s malware is becoming more and more challenging to be detected by traditional TA due to traffic hiding and the increasing adoption of traffic encryption. FGTA is then an ideal tool to detect such sneaky malware.

Shabtai et al. [56] proposed a framework for malware detection on Android platforms. It can identify attacks or masquerading applications installed on a mobile device and injected applications with malicious code by semi-supervised machine-learning methods. Wang et al. [57] leveraged a machine learning algorithm (i.e., C4.5 decision tree) in analyzing mobile traffic, which is capable of identifying Android malware with high accuracy—more than 98%.

Later, some researchers collectively evaluated the efficacy of different machine learning models in detecting malware. Lashkari et al. [58] detected malicious and masquerading applications with five different classifiers—random forest, k-nearest neighbor (KNN), decision tree, random tree, and regression. They found that these models can achieve similar performances in malware detection. Besides, they published a labeled dataset that contains both benign Android applications and injected applications’ network traffic. Anderson et al. [59]
Approach Year Goal of Analysis Feature Method Real-World Evaluation

Intrusion Detection

Amoli et al. 2016 Mail-bomb, SSH-process-table, botmaster, etc. Flow-level traffic feature such as duration, number of packets, smallest packet size, largest packet size, etc. DBSCAN ✔

Tang et al. 2016 R2L, U2R, Probe, DoS Duration, protocol type, src bytes, dst bytes, count, srv count DNN ✔

Shone et al. 2018 R2L, U2R, Probe, DoS, guess password, portscan, buffer overflow, etc. Features extracted with NDAE NDAE for unsupervised feature learning, stacked NDAEs for detection ✔

Mirska et al. 2018 Video injection, ARP MitM, OS scan, etc. Damped incremental statistics and 23 other features from packet-level data Kitsuné’s core algorithm (KitNET), a type of autoencoders ✔

Malware Detection

Shabtai et al. 2014 Malicious attacks or masquerading injected mobile applications 2 best feature subsets selected from 20 manually defined feature subsets of various sizes Linear regression, decision table, SVM for regression, Gaussian processes for regression, isotonic regression, and decision/regression tree ✔

Wang et al. 2016 Android malware such as plankton, FakeInstall, FakeRun, MobileTx, etc. Six TCP flow features and four HTTP request features C4.5 decision tree ✔

Lashkari et al. 2017 Malicious and masquerading applications such as Airpush, Kemoge, AVpass, FakeAV, etc. 24 features extracted from both packet and flow-level traffic Random forest, KNN, decision tree, random tree, and regression ✔

Anderson et al. 2017 Detecting malicious, encrypted malware network traffic 22 and 319 data features in the standard and enhanced feature set extracted from NetFlow and IPFIX data Linear regression, logistic regression, decision tree, random forest, SVM, and MLP ✔

Data Exfiltration Detection

Ren et al. 2016 Cross-platform information leak identification Raw network packets with payload Decision tree, AdaBoost, bagging, blending, and Naïve Bayes ✔

Continella et al. 2017 PHI leakage detection, even in the presence of obfuscation techniques Raw network packets with payload Trace alignment, phase detection, feature selection, feature probability distribution estimation and entropy computation ✔

Rosner et al. 2019 Information leaks in TLS-encrypted network traffic A feature space that includes observations about individual packets and sequences of packets; additional features from the phase detection and the full original traces ✔

Others

Feng et al. 2021 Online social network bot detection Traffic fingerprint images converted from NetFlow data DBSCAN, CNN ✔

Coulter et al. 2019 A data-driven cyber security system that can identify high-level application-layer attacks or anomalies such as Twitter spam Statistical features extracted from the network traffic and content (optional) A variety of classification approaches ✔

Feng et al. 2022 Cryptojacking activity Packet size, timing, direction, and protocol from sFlow data LSTM ✔

designed and carried out experiments that show how six machine learning algorithms (e.g., linear regression, logistic regression, decision tree, random forest, Support Vector Machine (SVM), and multi-layer perceptron (MLP)) perform when confronted with real network data. They found the random forest ensemble classifier to be the most robust for the domain of malware detection.

3) **Data exfiltration detection**: FGTA can also be used in detecting data exfiltration, thereby protecting personal sensitive data from leakage. Different from directly detecting anomalies or attacks, approaches in this domain usually profile user behaviors or model normal application usage to identify abnormal data transfer.

Wei et al. [68] proposed ProfileDroid, which is the first approach to profile mobile application at four layers: (a) static, or application specification, (b) user interaction, (c) operating system, and (d) network. At network-layer, this approach can capture essential characteristics of application communications, including but not limited to the ratio of incoming traffic and outgoing traffic, number of distinct traffic sources, traffic intensity, the percentage of HTTP and HTTPS traffic, etc. The profiling information can help identify inconsistencies and surprising behaviors, thereby detecting data exfiltration. A similar work is TaintDroid [69]. It leverages dynamic information-flow tracking to identify private data leaks of Android applications. The authors indicated that network traffic is useful to help monitor the behavior of popular third-party Android applications and discover potential misuse cases of user private information across applications. Although these two approaches not only leverage network traffic, their ideas inspired a lot of subsequent work in this domain.

Later, researcher began to investigate purely using network traffic to profile application usage and report possible data exfiltration. Razaghpanah et al. [70] monitored network communications on mobile phones from user-space. The proposed approach facilitates user-friendly, large-scale deployment of mobile traffic measurements and services to illuminate mobile application performance, privacy and security. Song et al. [71] proposed a VPN-based approach to detect sensitive information leakage Le et al. [72] proposed AntMonitor, which passively monitors and collects packet-level measurements from Android devices to provide a fine-grained analysis. By inspecting traffic content, it can provide users with control.

TABLE II: Comparisons of selected attack/anomaly detection approaches (○: not support; ●: partially support; ○: support).
over how their data is shared by applications. Ren et al. [60] proposed ReCon, a cross-platform system that reveals personally identifiable information (PII) leaks by inspecting network packets and gives users control over them without requiring any special privileges or custom operating system (OS)es. The authors leveraged the Weka data mining tool [73] to train classifiers that predict PII leaks. Continella et al. [61] proposed an approach to privacy leak detection that even is resilient to obfuscation techniques (e.g., encoding, reformatting, encryption). To achieve the goal, the authors first established a baseline of the network behavior of applications, and then utilized black-box differential analysis on application usages.

However, the aforementioned approaches still require inspections on traffic content to detect data exfiltration. The ideal FGTA-based solution should be content-agnostic. In 2019, Rosner et al. [62] presented a black-box approach for detecting and quantifying side-channel information leaks in TLS-encrypted network traffic. Given a user-supplied profiling-input suite in which some aspect of the inputs is marked as secret, it combines network trace alignment, phase detection, feature selection, feature probability distribution estimation and entropy computation to quantify the amount of information leakage that is due to network traffic.

4) Others: A few research works have been focusing on using FGTA to detect other types of application-layer anomalies. By harnessing the power of machine learning on big data, such approaches can model fine-grained application-layer anomalies only with flow-level traffic or packet headers. For example, BotFlowMon [63], [74] detects online social network bot traffic by converting NetFlow records to images and training a convolutional neural network (CNN)-based classification model; Coulter et al. [64] proposed a data-driven cyber security system that can detect Twitter spam or other high-level application-layer anomalies through machine-learning-based flow analysis; Feng et al. [65], [75] detects cryptojacking traffic by inferring the hash rate stability with cryptomining traffic in sFlow format.

B. Fine-Grained Quality of Experience Investigation

Quality of experience (QoE) is a well-studied topic in the development of the Internet. Unlike quality of service (QoS), which refers to the network parameter settings configured by service providers to deliver various levels of service to their customers, QoE measures how the service is experienced by individual users at the edge of the network [76]. To score well in QoE, service providers need to analyze network traffic to conduct QoE investigations. The investigation results can help them revise the network configurations accordingly, thereby providing decent service to users.

Plenty of works have been proposed to conduct QoE investigations with traditional TA (e.g., [76]–[78]). They can roughly classify network traffic into several groups (e.g., video, voice, data transfer, etc.) using statistical, DPI-based, or rule-based approaches and measure the service experience according to some metrics. However, such approaches may not be able to tackle today’s increasingly complicated network traffic, since different types of traffic may be encrypted in different protocols (e.g., HTTPS, Quick UDP Internet Connection (QUIC)) and sent from different devices (e.g., Internet of things (IoT), smartphone, server) by different applications. Besides, service providers may want to conduct more granular management of network traffic. For example, residential areas’ network administrators want to increase the priority of video streaming traffic related to YouTube for certain users; network administrators of companies want to ensure the quality of online meeting traffic for some offices. Therefore, people began to leverage FGTA to conduct QoE investigation in finer granularities in the past ten years.

Usually, fine-grained QoE investigations are performed in two steps:

1) Extract the target traffic using traffic classification.
2) Measure the extracted traffic to check if it meets certain criteria.

Some approaches may combine these two steps into one and directly identify potential QoS/QoE problems. Table III shows a comparison of some selected QoE methods.

In 2016, Dimopoulos et al. [79] proposed a random-forest-based detection model to identify QoE issues related to YouTube video streaming. By selecting three sets of features with information gain, the proposed model is able to directly detect different levels of QoE degradation that is caused by three key influence factors (i.e., stalling, the average video quality, and the quality variations). The authors demonstrated that it can detect QoE problems with an accuracy of 92% by evaluating this approach using collected traffic. At the same year, Orsolic et al. [80] also studied using different machine learning algorithms (i.e., random forest, J48, naïve bayes, OneR, and Sequential Minimal Optimization (SMO)) to detect YouTube QoE issues under different bandwidth scenarios. In 2019, Khokhar et al. [82] proposed the first work that not only can identify YouTube QoE issues related to objective factors (e.g., startup delay, stalling, resolution change, etc.), but also can identify QoE issues related to the subjective Mean Opinion Score (MOS).

Mazhar et al. [81] further extends QoE investigation to all

TABLE III: Comparisons of selected fine-grained QoE investigation approaches.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Goal</th>
<th>Method</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>[79]</td>
<td>Identify QoE degradation in YouTube</td>
<td>Random forest</td>
<td>Three feature sets selected by information gain.</td>
</tr>
<tr>
<td>[80]</td>
<td>Estimate YouTube QoE</td>
<td>Random forest, J48, naïve bayes, OneR, and SMO</td>
<td>Five hand-crafted feature sets</td>
</tr>
<tr>
<td>[81]</td>
<td>Estimate video streaming QoE over HTTPS and QUIC protocols</td>
<td>Decision tree</td>
<td>A packet-level feature set extracted from network and transport-layers</td>
</tr>
<tr>
<td>[82]</td>
<td>Estimate YouTube QoE</td>
<td>Random forest and linear regression</td>
<td>Three feature sets (inbound, outbound, and inbound + outbound)</td>
</tr>
<tr>
<td>[83]</td>
<td>Estimate mobile ABR video adaptation behavior over HTTPS and QUIC protocols</td>
<td>Traffic fingerprinting with chunk sizes</td>
<td>Packet size and timing</td>
</tr>
</tbody>
</table>
TABLE IV: Comparisons of selected WFP approaches (○: not support; ●: partially support; ●●: support).

<table>
<thead>
<tr>
<th>Approach</th>
<th>Year</th>
<th>Method</th>
<th>Feature</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mistry et al. [87]</td>
<td>1998</td>
<td>Size matching</td>
<td>Size of HTML file</td>
<td>○ ○ ○ ○</td>
</tr>
<tr>
<td>Sun et al. [85]</td>
<td>2002</td>
<td>Similarity score calculation (Jaccard’s coefficient)</td>
<td>HTTP object count, sizes, etc.</td>
<td>○ ○ ○ ○</td>
</tr>
<tr>
<td>Bissias et al. [89]</td>
<td>2005</td>
<td>Cross correlation of two value sequences</td>
<td>Packet size and inter-arrival time distributions</td>
<td>● ○ ○ ○</td>
</tr>
<tr>
<td>Liberatore et al. [90]</td>
<td>2006</td>
<td>Similarity score calculation (Jaccard’s coefficient)</td>
<td>Direction and length for each packet</td>
<td>● ○ ○ ○</td>
</tr>
<tr>
<td>Herrmann et al. [91]</td>
<td>2009</td>
<td>Multinomial naïve-bayes</td>
<td>Frequency distribution of the IP packet size</td>
<td>● ● ○ ○</td>
</tr>
<tr>
<td>Panchenko et al. [92]</td>
<td>2011</td>
<td>SVM</td>
<td>Volume, time, and direction of the traffic</td>
<td>● ● ○ ○</td>
</tr>
<tr>
<td>Cai et al. [93]</td>
<td>2012</td>
<td>Damerau-Levenshtein distance and Hidden Markov Model</td>
<td>Packet size, time, and direction</td>
<td>● ● ● ○</td>
</tr>
<tr>
<td>Wang et al. [94]</td>
<td>2014</td>
<td>KNN</td>
<td>A large feature set generated from packet-level traffic</td>
<td>● ● ● ○</td>
</tr>
<tr>
<td>Hayes et al. [95]</td>
<td>2016</td>
<td>Random decision forests</td>
<td>Features selected by gini coefficient</td>
<td>● ● ● ○</td>
</tr>
<tr>
<td>Rimmer et al. [96]</td>
<td>2017</td>
<td>SDAE, CNN, and LSTM</td>
<td>Automatically learned feature sets from packet-level network traffic</td>
<td>● ● ○ ○</td>
</tr>
<tr>
<td>Sirinam et al. [97]</td>
<td>2018</td>
<td>CNN</td>
<td>Packet-level traffic data</td>
<td>● ● ● ○</td>
</tr>
<tr>
<td>Sirinam et al. [98]</td>
<td>2019</td>
<td>N-shot learning with triplet networks</td>
<td>Selected by a neural-network-based feature selector</td>
<td>● ● ● ○</td>
</tr>
<tr>
<td>Yin et al. [99]</td>
<td>2021</td>
<td>Split point finding and BalanceCascade-XGBoost</td>
<td>Packet size, time, and direction</td>
<td>● ● ● ○</td>
</tr>
</tbody>
</table>

encrypted video streaming traffic (transferred over HTTPS or QUIC) by using a classification model trained by decision tree. They demonstrated that their approach is able to achieve a 90% classification accuracy for HTTPS and an 85% classification accuracy for QUIC. Xu et al. [83] infers mobile Adaptive Bitrate (ABR) video adaptation behavior using packet size and timing information in encrypted environments.

C. Website Fingerprinting

Website fingerprinting (WFP) is used to identify what web page the user is visiting, even in the presence of traffic encryption or encrypted tunnels established by Tor [84], [85], Shadowsocks (i.e., a popular secure socks5 proxy) [86], VPN, etc. It is a FGTA technique that widely-used by attackers to eavesdrop user activities online. In this subsection, we survey and compare well-known WFP approaches (Table IV), elaborating the history of WFP and investigating its capability.

1) Early development of WFP: WFP has a long history. The early WFP attacks simply focus on using data sizes to infer the URL the user is visiting through encrypted SSL connections. Back in 1998, Mistry et al. [87] demonstrated that the size of HTML files is a critical feature to specific web pages. They proposed an attack that simply uses the transmitted data volumes to identify certain websites. Although this attack is not feasible anymore after the launch of connection pipelining and connection parallelization by HTTP 1.1 (RFC 2616 [100]), this research enlightens many other WFP researches in the next two decades. In 2002, Hintz [101] defined “fingerprints” of websites as the histograms of transferred files’ sizes. He recorded some website fingerprints and successfully recognize some websites transferred through HTTPS with these fingerprints. However, Hintz’s WFP attack only works for a small number of websites. Later, Sun et al. [88] extends size-based WFP to thousands of websites. They proposed a WFP approach based on Jaccard’s coefficient, which can correctly identify 75% of the websites in their collected dataset. However, a common drawback of file-based attacks is that they cannot tackle traffic hidden in encrypted tunneling protocols (e.g., VPN, OpenSSH), not to mention Tor.

2) Defeat encrypted tunnel: To extend WFP to handle encrypted tunneling protocols, multiple “more advanced” WFP approaches had been proposed. Both Bissias et al. [89] and Liberatore et al. [90] proposed improved forms of WFP. Rather than using the data size as the feature, they extract sets of traffic patterns from encrypted IP packet headers, such as packet inter-arrival time, size, etc. These approaches have some efficacy in identifying websites transferred by encrypted tunneling services. However, the accuracies of page identification is still not usable in reality. In 2009, by using packet-level features, Herrmann et al. [91] proposed a multinomial naïve-bayes classifier that can identify up to 97% of web requests on a sample of 775 sites and over 300,000 real-world traffic dumps recorded over a two-month period. The authors demonstrate that this approach is effective in tackling website traffic in encrypted tunnels. Lu et al. [102] pointed out that packet ordering information, though noisy, can be utilized to enhance website fingerprinting. In addition, the ordering information is effective for WFP even under traffic morphing. By calculating the Levenshtein distance between different network traffic, their approach can perform WFP over OpenSSH and 2000 profiled websites. The identification accuracy of the proposed scheme reaches 81%, which is 11% better than the approach proposed by Liberatore et al. [90].

3) WFP in Tor era: To safeguard personal information and avoid Internet censorship in an increasingly dangerous network environment, many people began to use The Onion Router (Tor), a free and open-source software for enabling anonymous
communication, to visit the Internet. Different from traditional encrypted tunneling protocols, Tor reroutes Internet traffic through a worldwide, volunteer overlay network, consisting of more than six thousand relays [103], for concealing a user’s actual location and Internet usage from anyone conducting network surveillance or TA.

Figure 4 illustrates an operation model of Tor. To protect user’s identity, each Tor user creates an encrypted virtual tunnel to its destination through a chain of several volunteer nodes—onion relays (ORs). According to their positions in the virtual tunnel, ORs can be classified into entry OR, middle OR, and exit OR. Each of the ORs only knows its predecessor and its successor [104]. When forwarding network traffic, the user’s network packets will be encrypted in multiple layers and each of the ORs can only decrypt one layer of encryption. Thus, Tor ensures that none of the ORs in the circuit knows the user and its destination at the same time. Besides, to prevent TA, the user data is encapsulated in chunks of a fixed size, called cells, before transmission [105]. The WFP attacks above are thus ineffective against Tor network, as they rely heavily on packet-size-related features.

Indeed, it is almost impossible to dig any useful knowledge inside a Tor network. However, the virtual tunnel between the Tor user and the entry OR does provide attackers with an interface and make WFP possible (illustrated in Figure 4).

In 2011, Panchenko et al. [92] are the first to demonstrate that it feasible to use WFP to identify web pages visited by Tor users. They trained a SVM classifier with features extracted from volume, time, and direction of network packets, with a classification accuracy of 55% when testing with their web page dataset. Panchenko et al. are also the first to evaluate their WFP attack in a real-world setting. Nevertheless, these WFP approaches still have some obvious flaws according to an evaluation made by Juarez et al. [108]:

- Previous WFP attacks assume single-tab browsing behavior of users. However, multi-tab browsing is widely used in reality.
- WFP attacks highly depend on the coverage of training dataset but existing dataset cannot include web page traffic from all versions of Tor browser, user habits, or user locations.
- Previous WFP attacks can hardly tackle dynamic web pages.
- Many countermeasures of WFP have been proposed (which will be discussed later in Section V), making many of previous WFP attacks non-effective.

To further increase the success rate of WFP attacks and defeat countermeasures, researchers began to collect more comprehensive training dataset, use more complicated feature sets, and apply more sophisticated classification algorithms for WFP.

Wang et al. [107] described how they collect the training dataset in a much more thorough manner than previous works. They gathered the data in different Tor settings and with different defense approaches. Later, Panchenko et al. [109] collected the first Internet-scale WFP dataset to develop and evaluate WFP comprehensively. Based on the dataset, they proposed CUMUL, a web page classifier that has a higher recognition rate and a smaller computational overhead than previous approaches. They also demonstrated that although CUMUL is more efficient and superior in terms of detection accuracy, still, it cannot scale when applied in realistic settings. As for WFP feature set, Cai et al. [110] systematically analyzed previous WFP approaches to understand which traffic features convey the most information; Hayes et al. [95] utilized the gini coefficient index to select a feature set and designed a random decision forests classifier based upon them; Wang et al. [111] evaluated the classification accuracy of each feature category by using KNN.

In the recent five years, the development of WFP have been focusing on conducting attacks in the presence of effective countermeasures, with little encrypted data, or under complicated circumstances. Many of recent approaches also investigated the applicability of deep learning techniques in WFP. Rimmer et al. [96] trained three classification model with Stacked Denoising Autoencoder (SDAE), CNN, and Long Short-Term Memory (LSTM) respectively. These deep learning models are capable of automatically learning the best features to conduct WFP. The authors further demonstrated that automatically created features are more effective especially in tackling constantly changing web content. In 2018, Sirinam et al. [97] presents a very powerful WFP attack—Deep Fingerprinting (DF) By employing a CNN model with a sophisticated architecture design, the authors claim that this attack can defeat many WFP countermeasures (e.g., WFP-PAD [112] and Walkie-Talkie [113]) and works well in very complicated real-world scenarios (95% accuracy for 20,000 URLs in a real-world setting). Sirinam et al. [98] further
proposed an approach based on N-shot learning with triplet networks in 2019, which can achieve decent efficacy with relatively less training data. Besides these approaches, Abe et al. [113] also applied SDAE in WFP; Bhat et al. [114] leveraged ResNets [115], a CNN architecture, to reach high success rates in WFP; Oh et al. [116] used unsupervised DNN to generate low-dimensional features and trained different machine learning classification models based upon them. In 2021, Wang et al. [117] leveraged adversarial domain adaption (a transfer learning technique) to achieve high WFP accuracy with little encrypted data; Yin et al. [99] proposed a WFP attack that is able to identify websites in multi-tab environments, which means it can achieve usable accuracies regardless of the number of simultaneously opened web pages; Hoang et al. [118] found that even in the presence of domain name encryption technologies or content delivery network (CDN), IP-based WFP is still feasible. They exploited the complex structure of most websites, which load resources from several domains besides their primary one, and further applied the generated domain fingerprints to conduct WFP at large.

D. Location Inference

Location inference is a widely studied topic by computer scientists. We have seen myriad work focusing on using social network information [119], [120], smartphone accelerometer [121], image content [122], etc. to infer users’ locations. In the past decade, a few researchers began to use FGTA to conduct location inference. The location we discuss here can be either a geographical location or a contextual location, the later one means the type of location the user is sending packets from, such as an airport, a campus, or a residential building. This subsection examines inference approaches for these two types of locations.

1) Contextual location inference: The intuition behind contextual location inference with FGTA is straightforward—users from different types of locations tend to generate different traffic because they need to use different web applications at different locations. Besides, different locations (e.g., campus, company, residential area) may process network traffic in different manners. Contextual location inference using FGTA aims to measure and analyze a group of network traffic and infer where this group of traffic is coming from.

Back in 2009, Trestian et al. [123] conducted a detailed study on applications accessed by users at different locations. They demonstrated that users are more likely to eavesdrop in a particular class of applications than others at certain locations, which is irrespective of the time of day. They indicated that we can further use the traffic generated by these applications to identify the type of locations (e.g., work versus home). In 2014, Das et al. [124], [125] collected around 100 GBs of real-world network traffic from more than 1700 users at different types of locations (e.g., cafeteria/restaurant, university campus, airport/travel, etc.). By measuring and analyzing this dataset, Das et al. selected sets of features for packet-level, flow-level traffic and built a decision-tree-based classification model to predict contextual location with an overall accuracy of 87%. Later, a few similar works also demonstrated that mobile traffic from different cellular towers [126]–[128] tend to have different characteristics.

The drawback of contextual location inference is that it only works on a group of network traffic sending from many endpoints. It cannot infer a device’s contextual location by only analyzing its own network traffic.

2) Geographical location inference: Purely using network traffic to infer a user’s geographical location seems impossible. However, in 2015, Ateniese et al. [129] demonstrated that it is actually feasible under certain assumptions.

Nowadays, location-based applications (LBA), such as Facebook, Yelp, Google Map, etc., are widely used. These LBAs obtain user locations through location-based services (LBS). LBS providers usually use a base transceiver station (BTS) to locate a user and send real-time location information to the user. Ateniese et al. proposed an approach (illustrated in Figure 5) that simply monitors the traffic between the BTS and the LBS to identify user locations. They found that different locations will trigger LBS packets of different sizes. An adversary can potentially create a location knowledge base of different locations’ packet sizes and their corresponding timestamps to conduct geographical location inference. Still, this approach has many limitations (e.g., low accuracy, difficult to build the location knowledge base at large, etc.). This work is more about demonstrating the feasibility of geographical location inference with FGTA than launching a full-fledged, ready-to-use approach.

E. Device/OS Identification

TA has been used to identify user devices or the OS running on the device for a long time. For example, Lippmann et al. [130] focused on extracting TCP or IP packet metadata to recognize different OSes in 2003. However, with the increase in the variety and complexity of user device and OS, simply identifying the device/OS type according to rules in packet header is no longer effective. Thus, researchers turn to use FGTA to investigate if specific traffic patterns can be correlated with some OSes or devices, which not only can recognize a few rough device/OS types, but also can pinpoint the device model or OS for various IoT and mobile devices. In this subsection, we introduce such FGTA approaches that deal with device/OS identification.

1) OS identification: Chen et al. [131] perform OS identification and detection of NAT and tethering (i.e., multiple devices sharing the Internet connection of a mobile device, which can lead to multiple OSes in a single IP address)
by inspecting TCP/IP headers of packet traffic. They leverage a probability-based method by applying the naïve bayes classifier to effectively combine multiple features (e.g., TTL value, IP ID monotonicity, TCP timestamp, clock frequency, etc.), thereby fingerprinting and recognizing different OSes in different environments. Laštióvčka et al. [132] also proposed an OS identification method by inspecting the TLS handshake, HTTP headers, and TCP/IP features with a decision tree. However, these approaches cannot distinguish between minor versions of the same OS. To tackle this problem, Ruffing et al. [133] identify different versions of smartphone OSes by using the frequency spectrum of packet timing from encrypted traffic. By identification through correlations of the feature-extracted spectra, the authors demonstrate that even a network traffic input of 30 seconds can be enough for high accuracy identification results.

2) IoT device identification: Compared with OS identification, IoT device identification can be more challenging due to the complexity of their network environments and their wide variety. Lopez-Martin et al. [134] extract a time-series feature vectors from network traffic, where each element of the time-series vector contains the features of a packet in the flow. They then proposed a classifier that is based on both a recurrent neural network (RNN) model and a CNN model to separate heterogeneous IoT traffic using the features. Meidan et al. [135] collected and labeled network traffic from nine distinct IoT devices (e.g., baby monitor, motion sensor, printer, security camera, etc.), PCs, and smartphones. They then utilized a multi-stage machine-learning-based classifier to classify traffic of IoT devices in two phases. In the first stage, the classifier can distinguish traffic between IoT and non-IoT devices. In the second stage, the classifier can further identify traffic from different IoT devices. The authors demonstrate that their approach is able to classify IoT traffic with an accuracy of 99.281%.

However, these two researches do not consider complicated network environments (e.g., smart homes, enterprises, and cities) of IoT devices. Sivanathan et al. [136] addressed this challenge by developing a robust framework for IoT device traffic classification with a multi-stage machine-learning-based algorithm. The authors instrumented a smart environment with 28 different IoT devices that consist of spanning cameras, lights, plugs, motion sensors, appliances, and health-monsitors. They then collected and synthesized network traffic traces from this infrastructure for a period of six months. By extracting statistical features such as activity cycles, port numbers, signaling patterns, and cipher suites from the traffic and using naïve bayes and random forest as the identification models, they are able to classifying heterogeneous IoT devices with an accuracy over 99%. Yao et al. [137] further proposed an end-to-end IoT traffic classification method that eliminates the multi-stage classification for high accuracies and efficiencies. It relies on a deep-learning-aided capsule network to construct an efficient classification mechanism that integrates feature extraction, feature selection, and classification model. Even though, the evaluations of these approaches are all based on close-world datasets, which may not be able to precisely reflect their true efficacy in the real world.

F. Application Identification

Using the network traffic from a device to identify the applications that are running on the device, even in the presence of traffic encryption, is one of the most classic use cases of TA. Decades ago, people have investigated using traditional TA approaches to classify traffic from different applications. Before 2000, many researchers simply used traffic ports to identify some popular applications that have well-established ports (e.g., port 443 for HTTPS, port 110 for POP3). Port-based approaches fail for most emerging applications such as gaming, streaming, and messaging [138]. Later, Karagianni et al. [139] proposed BLINC, which not only looks at port-based features, but also inspect the host’s social behavior and its community behavior to determine the applications. Bernaille et al. [140] observe the sizes of the first few packets of an SSL connection to identify the web application, which can achieve an accuracy of more than 85%. There are also many machine-learning-based traditional TA approaches [14], [141]–[143] that classify application traffic according to the traffic patterns.

However, application identification with traditional TA can hardly adapt to the current network environment and meet current needs due to several limitations:

- Traditional TA can only identify some high-level protocols (e.g., HTTP, HTTPS, SMTP, POP3, etc.) and a few frequently used applications that have obvious traffic patterns (e.g., MySQL, BitTorrent, MSN, etc.).
- Traditional TA-based application identifications only work in relatively simple network environments. For example, endpoints only consist of servers, clients, and peers; devices communicate without encrypted tunneling protocols (e.g., virtual private network (VPN)).

Nowadays, network environments are becoming far more complicated that before. Different types of nodes (e.g., smartphone, IoT, middlebox) may communicate through complicated network environments (e.g., VPN, network address translation (NAT), WiFi). Besides, millions of web applications are used on different platforms, with more complex communication mechanisms and much less regular traffic patterns. Therefore, people started to leverage FGTA to identify specific applications among miscellaneous traffic from different types of devices. In this subsection, we introduce typical FGTA-based application identification approaches (Table V shows an overview).

1) Application identification for general-purpose devices: General-purpose devices, such as personal computers and servers, supports the operation of countless web applications. Recently, FGTA-based application identifications for general-purpose devices focus on identifying more specific applications in more complicated network environments.

Chen et al. proposed Seq2img [144], an application traffic classification framework based on an online CNN model. Seq2img employs a data fusion method based on Reproducing Kernel Hilbert Space (RKHS) to convert flow sequences into images, which can fully capture the static and dynamic behaviors of different applications. Then, Seq2img utilize a CNN
TABLE V: Comparisons of selected FGTA approaches for application identification (●: not support; ○: partially support; ✗: support).

<table>
<thead>
<tr>
<th>Category</th>
<th>Approach</th>
<th>Year</th>
<th>Target Application</th>
<th>Traffic Feature</th>
<th>Method</th>
<th>Real-World Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>App Identification for General-Purpose Devices</td>
<td>Chen et al. [144]</td>
<td>2017</td>
<td>Instagram, Skype, Facebook, Wechat, Youtube, etc.</td>
<td>Images converted from flow sequences</td>
<td>RKHS-based data fusion and CNN</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Rezaei et al. [145]</td>
<td>2018</td>
<td>Google Drive, Youtube, Google Docs, Google Search, Google Music, etc.</td>
<td>Time series features extracted from sampled packets</td>
<td>Semi-supervised CNN</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Lotfollahi et al. [146]</td>
<td>2020</td>
<td>Vimeo, YouTube, VoipBuster, Spotify, Netflix, Hangouts, Facebook, etc. (with or without VPN)</td>
<td>Normalized features extracted from packet headers</td>
<td>CNN and SAE</td>
<td>○</td>
</tr>
<tr>
<td>Mobile App Identification</td>
<td>Wang et al. [147]</td>
<td>2015</td>
<td>Snapchat, Tencent QQ, Mint, Tinder, YouTube, etc.</td>
<td>Statistical features from packets (e.g., STD time, average size, STD size, deviation, etc.)</td>
<td>Random forest</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>Alan et al. [148]</td>
<td>2016</td>
<td>1595 applications on four different devices</td>
<td>Features from TCP/IP headers (e.g., packet size, timing, direction)</td>
<td>Jaccard’s coefficient and naïve bayes</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Taylor et al. [149]</td>
<td>2016</td>
<td>110 most popular applications in Google Play Store</td>
<td>Two sets of features from flow-level traffic-flow vector and statistical features</td>
<td>SVM and random forest</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Aceto et al. [150]</td>
<td>2018</td>
<td>49 mobile applications (i.e., QQ, SayHi, eBay, 6Rooms, NetTalk, PureVPN, etc.)</td>
<td>Statistical features (e.g., packet size, timing, deviation, etc.) for incoming, outgoing, and bidirectional packets</td>
<td>A multi-classification (viz., fusion) model consists of naïve bayes, random forest, SVM, and decision tree</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Aceto et al. [151]</td>
<td>2019</td>
<td>Facebook, Facebook Messenger, and other 49 apps on both Android and IOS</td>
<td>Automatically-extracted features using neural networks</td>
<td>Multiple machine learning models (e.g., CNN, LSTM, MLP, etc.)</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Van et al. [152]</td>
<td>2020</td>
<td>More than 1M apps from three datasets.</td>
<td>Packet and flow-level features selected by adjusted mutual information</td>
<td>A semi-supervised fingerprinting with destination-based clustering, browser isolation, and pattern recognition</td>
<td>○</td>
</tr>
<tr>
<td>Decentralized App Identification</td>
<td>Shen et al. [153]</td>
<td>2019</td>
<td>Aragon, Bancor, Canwork, Chainy, Cryptopepes, Eth_town, Etheremon, etc.</td>
<td>57 features of packet lengths, 72 features of bursts, and 54 features of time series, fused by kernel functions</td>
<td>KNN, SVM, and random forest</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>Aioli et al. [154]</td>
<td>2019</td>
<td>BTC.com, BitPay, Bread, Wirex, Copay, etc.</td>
<td>Vectors of statistical features about the packet length from traffic flow</td>
<td>SVM and random forest</td>
<td>○</td>
</tr>
</tbody>
</table>

model to recognize network traffic of popular applications, such as Facebook, Instagram, Wechat, etc.

Rezaei et al. [145] investigated using a few labeled, sampled packet-level dataset to train a comprehensive application identification model. They first pre-train a CNN-based model on a large unlabeled dataset where the input is the time series features of a few sampled packets. Then, the learned weights are transferred to a new CNN model that is re-trained on a small labeled dataset. They demonstrated that this semi-supervised approach achieves almost the same accuracy as a fully-supervised method with a large labeled dataset. The proposed approach is able to identify applications like Google Drive, Google Doc, Google Search, Google Music, etc.

In 2020, Lotfollahi et al. [146] proposed an application identification method that can work in both VPN and non-VPN networks. After extracting features from packet headers, they used both CNN and stacked autoencoder (SAE) to train the classification models. Evaluation results show that this approach can achieve a recall score of 0.98 in application identification tasks.

2) Mobile application identification: With the raising of mobile network, mobile application identification becomes an emerging research topic in recent years. Unlike general-purpose devices, mobile devices are less regularized in port usage. In addition, a wide variety of mobile applications may utilize some common libraries in communication, generating similar network traffic patterns. Thus, mobile application identification can be more challenging.

Wang et al. [147] use random forest algorithm to analyze packet-level traffic in wireless networks. Their approach is able to detect the usage of 13 selected popular mobile applications on IOS platform, such as Snapchat, Tencent QQ, Mint, Tinder, YouTube, etc., with an accuracy of more than 87.23%. They demonstrate that by using the mobile applications the privacy of the user is more at risk compared to using online services through browsers on mobile devices.

Many researchers also studied application identification on Android platform. Enlightened by some WFP approaches (Section III-C), Alan et al. [148] use Jaccard’s coefficient
and naïve bayes to analyze features (e.g., packet size, timing, direction) from TCP/IP headers to identify 1595 applications on four different devices. Taylor et al. [149] proposed AppScanner, a framework that can automatically fingerprint and identify Android applications from their encrypted network traffic. The authors extracted two sets of features (i.e., flow vector and statistical features) from flow-level network traffic and implemented this approach using both SVM and random forest algorithms. The evaluations show that AppScanner can identify the 110 most popular applications in Google Play Store with more than 99% accuracy. In the next year, Taylor et al. further extended AppScanner in a succeeding research [155]. They investigated how application fingerprints change over time, across different devices, and across different application versions.

Recently, many similar works (e.g., [150]–[152], [156]) have been proposed to enhance the efficacy, efficiency, and coverage of mobile application identifications.

3) Application identification on other platforms: A few researches have been focusing on identifying decentralized applications on blockchain systems. Shen et al. [153] proposed an encrypted traffic classification of decentralized applications (e.g., Cryptopepes, Matchpool, Lordless, etc.) on Ethereum with features like packet lengths, bursts, and time series. Aiolli et al. [154] focused on identifying user activities on Bitcoin wallet applications (e.g., BTC.com, Bitcoin Wallet, Coinbase, etc.). The authors used SVM and random forest models to conduct the identification.

We also studied the application identification approaches for IoT devices. However, as each IoT device is usually bundled with a IoT application, the identification of IoT application is equal to the identification of IoT devices in most cases. Therefore, we introduce these approaches in Section III-E (IoT device identification).

G. Application Usage Inference

Application usage inference aims to analyze encrypted network traffic to identify certain application events, infer user behaviors, and measure specific service usage. It is one of the most challenging FGTA tasks, as it not only classifies the network traffic that is associated to different applications, device, or web pages, but also leverages the traffic patterns to recognize the application-layer activities that users conducted with the applications, devices, or web pages. Therefore, many application usage inference approaches may take extra steps (e.g., clustering, pre-filtering, etc.) to narrow down the scope before the final traffic classification. Besides, they need to perform traffic segmentation to locate different traffic bursts, where each burst represents a group of adjacent packets that support an application event.

In this subsection, we introduce representative application usage inference approaches, demonstrating their applicable scenarios and methodologies (Table VII shows a comparison).

1) Mesenger/Online social network usage inference: User activities on messaging or OSN applications are very private and sensitive. However, although being encrypted, a third party can still infer the rough messaging/OSN activities that users have performed only through content-agnostic network traffic data.

Back in 2009, Schneider et al. [169] investigated OSN usages from the perspective of network traffic for four different platforms—Facebook, LinkedIn, Hi5, and StudiVZ. The authors studied how users actually interact with OSNs by extracting clickstreams from passively monitored network traffic. They found that different OSN operations (e.g., login, open friend list, logout, select profile, etc.) will trigger statistically different network traffic. This research later leads many researchers to dig deeper into using the traffic differences to classify different user actions on OSNs. Coull et al. [157] analyzed the network traffic of encrypted messaging services such as Apple iMessage. The authors demonstrated that an eavesdropper can learn information about user actions (e.g., control, read, start, stop, image, and text), the language of messages, and even the length of those messages with greater than 96% accuracy simply by observing the sizes of encrypted packets. They used three algorithms to perform the inference—linear regression, naïve bayes, and rule lookup table. However, they only evaluated their approach in close-world environments with a small dataset. Fu et al. [158] extended the inference to more messaging applications (i.e., Wechat and WhatsApp) and more activities (e.g., stream video call, news feed, location sharing, etc.). By segmenting Internet traffic into sessions with a number of dialogs, extracting discriminative features from the perspectives of packet length and time delay, and leveraging multiple machine learning models to conduct the classification. The proposed approach can achieve 96% and 97% accuracy in WeChat and WhatsApp, respectively. Liu et al. [159] further extended the inference coverage to more OSN applications (i.e., Facebook, WeChat, and WhatsApp) and evaluated their approach in a real-world environment with real-time traffic data streaming. Real-world evaluation is essential to reveal the true performance and efficacy of application usage approaches, but many approaches were only evaluated through close-world off-line cases, leaving the inference throughput and abilities to handle noise mysteries. Feng et al. [63], [170] developed and evaluated their OSN usage inference approach in a larger network environment—a campus network. Although their approach is mainly built for social bot detection, it can identify some commonly seen user activities (i.e., posting, reading, liking, etc.) on Twitter and Facebook.

2) Streaming service usage inference: There are a few works focusing on leveraging FGTA to extract behavioral information from network traffic of streaming service (e.g., VoIP, audio streaming, and video streaming). Researchers have demonstrated the feasibility of revealing voice information from encrypted VoIP conversations or identifying encrypted video streams [6].

Wright et al. [160] demonstrated that when the audio is encoded using variable bit rate codecs, the lengths of encrypted VoIP packets can be used to identify the phrases spoken within a call. By leverage a hidden Markov model (HMM), the authors indicated that an eavesdropper can identify phrases from a standard speech corpus within encrypted calls with an average accuracy of 50%, and with accuracy greater than
90% for some phrases. Schuster et al. [161] demonstrated that many video streams are uniquely characterized by their burst patterns, and classifiers based on CNN models can accurately identify these patterns given very coarse network measurements. The authors only extracted features from flow attributes, such as inbound/outbound bytes per second, inbound/outbound packet per second, and inbound/outbound average packet length. They have examined this approach on Netflix, YouTube, Amazon, and Vimeo.

3) General-purpose application usage inference: The approaches discussed in this subsection aim at inferring all types of application-layer events rather than only recognizing certain event categories.

Conti et al. [162, 171] analyzed encrypted mobile traffic to infer user actions on Android devices, such as email exchange, posting a photo online, publishing a tweet, etc. They extracted features from TCP/IP packet fields (e.g., IP address, port number, packet size, direction, and timing) and use a random forest classifier, a recursive time continuity constrained K-means clustering algorithm called agglomerative, and an SVM model to identify application events, rule mining.
The evaluation results demonstrate that it can achieve more than 95% of accuracy and precision for most of the actions within the dataset. However, this approach was not evaluated in the real-world environments. In 2016, Saltafioramaggio et al. [163] proposed NetScope, a framework that can perform robust inferences of user activities for both Android and iOS devices by only inspecting IP packet headers. NetScope leverages a K-means model and an SVM model to learn and detect network traffic generated by different application behaviors. By testing the approach in a lab environment, the authors demonstrated that despite the widespread use of fully encrypted communication, NetScope can distinguish subtle traffic behavioral differences between user activities (e.g., Instagram browse versus post, Yelp browse versus search, Facebook feed versus post, etc.). Papadogiannaki et al. [164] further pushed application usage inference to a much larger scale. They proposed OTTer, a highly scalable engine that identifies fine-grained user actions (e.g., voice call, video call, messaging, etc.) in popular Over-The-Top mobile applications, such as WhatsApp, Skype, Viber, and Facebook Messenger with encrypted network traffic connections. By evaluating OTTer in a real-world test bed, the authors demonstrated that it can operate at traffic loads with an average of 109 Gbps.

4) Others: There are a few application usage inference approaches tackling different problems. For instance, Yan et al. [165] segmented the network traffic into several bursts and trained a random forest model to identify red packet transactions and fund transfers in Wechat; Wang et al. [166] proposed an approach to identify the mobile payment applications from traffic data, then classify specific actions (e.g., transfer payment, transfer receipt, QR code payment, etc.) on the mobile payment application, and finally, detect the detailed steps (e.g., click the button, receive the fund, open the red packet, etc.) within the action; Jiang et al. [167] studied encrypted remote desktop traffic and found that an eavesdropper can reveal application usage information (e.g., reading documents, surfing webs, editing documents, etc.) due to side-channel privacy leakage. Wang et al. [168] aimed at identifying DApp (e.g., Superrare, Editional, John Orion Young, etc.) user behaviors (e.g., open DApps, open market, view detail, etc.) on Ethereum by using random forest, decision tree, and gradient boosting decision tree (GBDT).

IV. LIMITATION

Although it seems effective in inferring different high-level, fine-grained behaviors, FGTA still has many limitations. In fact, FGTA approaches are far from what they have promised in the real world, and their efficacies depend on many conditions. In this section, we discuss the limitations of FGTA.

A. Coverage of train data

As most FGTA approaches are based on machine learning algorithms or prior knowledge about specific traffic, the efficacy of such approaches is highly dependent on the coverage of training datasets or rules learned beforehand. Unfortunately, existing datasets or rule can only represent a small fraction of real-world scenarios. It is actually impossible to collect a dataset to cover all possible scenarios. Take the WFP attack discussed in Section III-C as an example, as shown in Figure 6, state-of-the-art datasets from public repositories can only cover less than 0.001% of all websites around the world. FGTA approaches built upon such datasets then have little effect in practice. Furthermore, network traffic of websites, applications, or OSes is dynamic. For instance, the layouts of Facebook websites have been changed for several times since its birth, and so has the network traffic associated with Facebook. Therefore, a FGTA approach worked before may no longer be effective if we do not update its analysis model with the latest training datasets.

B. Uncertainties in real-world environments

As can be seen from our previous discussion (Section III), many approaches were only evaluated in close-world environments, which means they were only tested with a small amount of labeled traffic, with a little noise or without noise. Such close-world evaluations cannot objectively reveal the efficacy of proposed approaches in the real world. Network traffic from real-world environments can be very quite different from laboratory environments:

- Real-world network configurations can be complicated, with traffic going through NATs, Wi-Fi connections, or special middle boxes. All these factors can significantly change the original traffic characteristics.
- Edge users have different habits of using web applications. Some may send traffic with VPN, Shadowsocks, or Tor. Although many FGTA approaches claim to be effective even with traffic tunneling techniques, many researchers found their efficacy will actually be reduced under such circumstances [172].
- The ratio of different network traffic in the real world is different from that in the laboratory environment, making accuracies fetched from close-world evaluations hardly representative.

Therefore, real-world evaluations or large-scale pilot studies are essential for developing and polishing a usable FGTA approach.

C. False alarm

FGTA aims to identify specific types of user activities from network traffic. Usually, the analysis object only occupies a very tiny proportion of the whole traffic (e.g., less than 1% of the whole traffic).

Fig. 6: Training data coverage for WFP.
D. Integrity of network traffic

As discussed in Section II, the integrity of the network traffic collected in the real-world cannot be guaranteed. The traffic flow can be asymmetric or highly sampled, which will certainly reduce the efficacy of existing FGTA approaches. However, FGTA with incomplete network traffic was not widely discussed in existing papers.

V. COUNTERMEASURE

Besides the aforementioned limitations of FGTA approaches, Internet users can also adopt various tricks or methods to escape being inferred. From the perspective of illegitimate users, these countermeasures can make them stay sneaky and avoid being discovered when conducting malicious activities. On the other hand, legitimate users can also leverage these countermeasures to perturb FGTA, thereby protecting their privacy. This section investigates FGTA countermeasures, comparing their efficacy and use cases.

Naïve countermeasures send individual or aggregated traffic through encrypted channels to escape the inferences of traditional TA approaches, such as VPN, Shadowsocks, and Tor. However, these approaches are proven to be vulnerable to many FGTA approaches [178]–[181]. Therefore, people began to modify the features of traffic flows to perturb FGTA approaches’ classification models. Such perturbations can be conducted from either network layer or application layer [104]. Table VII shows a comparison of some well-known countermeasure approaches.

A. Network-layer Countermeasures

Network-layer FGTA countermeasures directly modifying the network traffic by adding padding packets, changing packet bytes, or delaying existing packets, thereby obfuscating specific features that FGTA approaches rely on, making the current traffic look like other activities’, or regularizing the traffic patterns of different applications [174]. Such approaches usually come with some side effects. They might increase the overheads of the network system, including time overhead, bandwidth overhead, and potentially computational overhead.

Among all the network-layer countermeasures, traffic obfuscation is the most classic approach. Back in 2006, Liberatore et al. [90] leveraged per-packet padding (i.e., increasing the bytes of packets) in an attempt to defeat host profiling systems. They found that per-packet padding is reasonably effective, which can lower predictive accuracy to less than 8% with a cost of increasing traffic volume by 145%. However, per-packet padding cannot defend against many WFP attacks because this approach still preserves some key traffic features that can help classify the traffic. To fix the drawbacks, WTF-PAD [112] extends per-packet padding to link-based padding to modify more traffic features. It detects large time gaps between packets and covers them by adding dummy packets. Further, to obscure traffic bursts, it also adds delays between packets to make them statistically different. Due to its low computational overhead and time overhead, WFP-PAD has been used in many real-world FGTA defense systems [182], [183]. Still, WTF-PAD leaks a portion of information in transmission and can be broken by some FGTA approaches [97], [184]. Gong et al. [174] proposed FRONT and GLUE. FRONT focuses on obfuscating the trace front with dummy packets. It also randomizes the number and distribution of dummy packets to impede the attacker’s inferring process. GLUE adds dummy packets between separate traces so that they appear to the attacker as a long consecutive trace, making the attacker unable to find the start or end points.

Compared with traffic obfuscation that freely modifies traffic features, traffic confusion mimic other groups of traffic to let FGTA approaches generate wrong outputs, which is sometimes more effective, especially when defending against WFP attacks. Wright et al. proposed traffic morphing [175]. It can thwart statistical TA approaches by morphing one class of traffic to look like another class using convex optimizations. Although it cannot defend against some types of FGTA

<table>
<thead>
<tr>
<th>Category</th>
<th>Approach</th>
<th>Usage Scenarios</th>
<th>Time Overhead</th>
<th>Bandwidth Overhead</th>
<th>Additional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network-Layer</td>
<td>Pinheiro et al. [173]</td>
<td>All web applications</td>
<td>None</td>
<td>Medium</td>
<td>Middlebox and SDN controller</td>
</tr>
<tr>
<td></td>
<td>FRONT and GLUE [174]</td>
<td>Tor</td>
<td>None</td>
<td>Low</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Traffic morphing [175]</td>
<td>All web applications</td>
<td>None</td>
<td>Low</td>
<td>Knowledge about other traffic classes</td>
</tr>
<tr>
<td></td>
<td>Walkie-Talkie [111]</td>
<td>Web browsing</td>
<td>Medium</td>
<td>Low</td>
<td>Knowledge about some web traffic</td>
</tr>
<tr>
<td></td>
<td>WTF-PAD [112]</td>
<td>Web browsing</td>
<td>None</td>
<td>Low</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>BuFLO [106]</td>
<td>All web applications</td>
<td>None</td>
<td>High</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>TrafficSliver [104] (L7 mode)</td>
<td>Web browsing</td>
<td>High</td>
<td>High</td>
<td>Network Transfer with fixed rates</td>
</tr>
<tr>
<td>Application-Layer</td>
<td>HTTPOS [176]</td>
<td>Web browsing</td>
<td>None</td>
<td>Low</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>TrafficSliver [104] (L7 mode)</td>
<td>Tor</td>
<td>None</td>
<td>Low</td>
<td>Multiple entry ORs in Tor network</td>
</tr>
<tr>
<td></td>
<td>LLaMA and ALPaCA [177]</td>
<td>Tor</td>
<td>Server-side:</td>
<td>Medium; Client-side:</td>
<td>None</td>
</tr>
</tbody>
</table>

TABLE VII: Comparisons of selected well-known FGTA countermeasures (None: 0; Low: 0-30%; Medium: 30%-60%; High: more than 60%).

0.01%). Thus, a very small false positive rate can be amplified in deployment, making the proposed FGTA approach hardly usable.
approaches [95, 106], this approach enlightens many subsequent countermeasure approaches. For example, Glove [185] first leverages a clustering algorithm to group web pages with similar traffic, and then inserts only a small amount of dummy traffic to hide the web page traffic in a close group; Supersequence [94] also clusters network traffic traces of different web pages and extracts the shortest common supersequence to cover current web traffic; Walkie-Talkie [111] modifies the browser to communicate in half-duplex mode (buffer traffic and send in bursts) rather than the usual full-duplex mode (immediately send available data). By combining with dummy packets, Walkie-Talkie can modify the traffic of monitored sensitive pages and benign non-sensitive pages, so that these packet sequences are exactly the same (each packet has the same timing, length, direction and ordering). However, traffic-confusion-based approaches requires a priori knowledge about popular web pages’ network traffic. It cannot tackle traffic of dynamic content or unpredictable activities. Moreover, such approaches can lead to noticeable computational overhead.

Another direction is to regularize the network traffic, making different groups of traffic have relatively uniform patterns. For instance, Buffered Fixed-Length Obfuscation (BuFLO) [106] obfuscates page transmissions by sending packets of a fixed size at a fixed interval and using dummy packets to both fill in and potentially extend the transmission. Thus, the traffic generated by different websites has a similar continuous traffic flow. However, BuFLO can cause very high time and bandwidth overhead, sometimes can even bring congestion problems to the network [93]. To alleviate the problem, Congestion-Sensitive BuFLO (CS-BuFLO) [186] was proposed to vary the packet transmission rate. Tamaraw [110] achieves a better security/bandwidth trade-off by using smaller fixed packet sizes and treating incoming and outgoing packets differently to avoid unnecessary padding and dummy traffic. DynaFlow [187] morphs packets into fixed bursts, dynamically changes packet inter-arrival times to generate constant traffic flows, and pads the number of bursts. Theoretically, DynaFlow leads to less network overhead compared with BuFLO, CS-BuFLO, and Tamaraw.

The recent development of FGTA countermeasures mainly focuses on two aspects:

1) The countermeasure should lead to nearly zero overhead to both the data plane and the endpoints.
2) The countermeasure should be applicable to various web applications (e.g., web page visiting, video streaming, VoIP, etc.) and scenarios.

For instance, Henri et al. [188] splitting traffic exchanged between the user and Tor nodes over two different, unrelated network connections (e.g., DSL, Wi-Fi, or cellular networks) to protect against FGTA by a malicious ISP; TrafficSliver [104] limits the data a single observation point can observe and distorts repeatable traffic patterns exploited by FGTA with user-controlled splitting of traffic over multiple Tor entry nodes. TrafficSliver also offers an application-layer solution, which will be discussed in Section V-B. Wang [189] points out that an attacker may only need to successfully identify a single web page (which they define as the one-page setting) in reality, and a WFP countermeasure must still thwart that attempt. Based on this assumption, Wang fortify WFP countermeasures by exploring randomness and regularization options for several existing countermeasures; To protect IoT networks, Pinheiro et al. [173] implement a middlebox to modify the outbound and inbound traffic’s packet size. They also leverage an SDN application to obtain information of network traffic from both sides (source and destination) to manage the size-based padding mechanism.

B. Application-layer Countermeasures

Unlike network-layer countermeasures that directly modify network traffic to cover user activities, application-layer countermeasures use dummy applications to generate unnecessary traffic, thereby indirectly perturbing FGTA approaches. However, most application-layer countermeasures are limited in covering traffic of web page visiting.

Panchenko et al. [99] proposed a browser plug-in that adds traffic noise by loading another random web page in parallel. However, it may fail to defend against some WFP attacks if users lower the page loading frequency to decrease the bandwidth overhead [97]. Another Tor-based countermeasures approach [190] randomizes the order of requests for embedded website content and the pipeline size (i.e., the number of requests processed in parallel) to perturb WFPs. Cherubin et al. [177] propose LLaMA and ALPaCA, defenses for client side and server side. LLaMA reorder outgoing HTTP requests by randomly delaying them and adding dummy HTTP requests. On the server side, ALPaCA conducts traffic morphing by padding web objects of a page and inserting invisible dummy web objects. The three methods above only work in Tor environments.

HTTP Obfuscation (HTTPoS) [176] is countermeasure that can be used in environments other than Tor. By modifying HTTP requests and basic TCP features, it manipulates four fundamental network flow features, including packet size, web object size, flow size, and timing of packets. It can also modify and reorder HTTP headers and insert dummy HTTP requests. Another general countermeasure is TrafficSliver’s application-layer defense [104]. This approach is on the client side. By sending single HTTP requests for different web objects over distinct Tor entry nodes, this application-layer defense can reduce the detection rate of WFP classifiers by almost 50 percentage points.

VI. FUTURE RESEARCH DIRECTION

Although FGTA has been developed for decades, there still exists room for further development, enhancement, and exploration. In this section, according to our observations about recent research trends, existing literature, industry deployments, and major problems to be solved in this domain, we discuss avenues for future research.

A. Improvement of Analysis Efficacy and Coverage

FGTA has been used in many different subfields of computer network, including attack detection, traffic measurement, side-channel attack, and network management, etc.
Researchers have constructed myriad analysis models and collected plenty of datasets specifically for different categories of tasks. But there are still many use cases or scenarios that have not been covered by existing approaches. For example, with the raising of Unmanned Aerial Vehicle (UAV), FGTA can be potentially refined for UAV anomaly detection [191]; FGTA can also be adopted to monitor and safeguard network traffic of automatic vehicles; with the emergence of new forms of applications, attacks, and communication protocols, existing FGTA approaches may not be able to handle today’s traffic. Therefore, researchers can gather more updated traffic datasets to enhance the coverage of existing FGTA approaches, so that they can be used in more types of tasks and scenarios.

In addition, the efficacy of many current FGTA approaches are not ideal for real-world deployments. Depending on the observation points, FGTA approaches may easily see millions of traffic flows over a short time period in the real world. Under such circumstances, an FGTA approach could generate large numbers of false positives or false negatives, even if it achieves more than 95% accuracies in close-world evaluations. Thus, increasing the efficacy of FGTA is a timeless topic for researchers and developers.

B. Evaluation Enhancement

As we elaborate in Section IV, current close-world evaluation methods are far away from revealing an FGTA approach’s real capability and many open-world evaluations are not very standardized and effective. It is therefore profound to propose a new, operable, and effective evaluation paradigm for FGTA. Such an evaluation paradigm should contain a testing dataset similar to a real-world test case in terms of volume, environment, and data distribution. Simultaneously, the dataset should have comprehensive labels for almost all traffic flows, not only for analysis targets. This can be achieved by either constructing a large scale sandbox to simulate and collect all types of traffic from a white box view, or collect a large-scale, real-world traffic dataset and carefully label it using knowledge of endpoints from all perspectives. Besides, the testing data portion that is visible to the observation point should be consistent with accordingly to the real-world deployment conditions.

C. Dealing with Complex Network Environments

In real-world deployments, the network environments and configurations can be quick different from researchers’ assumptions. The following factors were not widely discussed in previous papers, but can be common for network service providers.

- Many observation points can only see asymmetric network traffic, which can lead to disfunctions for most FGTA approaches.
- Some networks are composed of multiple subnets, including but not limited to wireless network, optical network, or radio frequency network. Traffic flows collected from such a network can have different delays and congestion control mechanisms. Tackling this type of traffic can be challenging.
- Due to deployments of modern traffic engineering approaches, traffic captured from some observation points is inconstant, posing difficulties to many FGTA methods. We believe designing and implementing new FGTA approaches that can work under these circumstances are directions worthy of our concerns.

D. Integrating FGTA into Other Analytical Systems

Information contained in network traffic is essentially limited. Even though FGTA can already reveal considerable amount of information, the detailed behavior models of endpoints are still hidden behind the curtain. To more comprehensively investigate the network situation, researchers can try to combine FGTA with information from other dimensions (e.g., application-layer activities, server specifics, hardware conditions, etc.), which can provide a better ability for situational awareness. So far, there are a few researches combine TA with information from other layers for more accurate attack/anomaly detection and timely threat response (e.g., [192]–[194]). We can push this idea forward by further integrate FGTA into this idea.

Furthermore, cyber threat intelligence (CTI) [195], allowing entities to share attack/anomaly information with trusted partners and peers, is becoming a powerful tool to quickly and accurately tackle intractable attacks. By embedding results from FGTA into CTI systems, participated entities can raise awareness of the current situation, thereby more quickly responding to incoming attacks. Designing attack defense systems with both FGTA and CTI is thus a promising research direction.

VII. Conclusion

With the increasing complexity of network transmission technology, FGTA is becoming a crucial tool to gain a finer granularity of visibility over the network. From the perspective of attackers, it can analyze the content-agnostic metadata and statistical information of network traffic to infer the website visited by users, estimate locations of traffic sender, or decode the video content streamed in the link. As for the network administrators, FGTA can be used to detect application-layer threats even with layer 3 or layer 4 data, investigate quality of experience without collect sensitive user data, or perform fine-grained traffic measurement to better configure the network.

In this report, we analyze literature that deal with FGTA to help researchers and developers learn the latest developments in this area. After comparing different FGTA approaches by their use cases, we found that most existing approaches are based on machine learning or high-dimensional clustering. They are effective in capturing the subtle differences between network traffic generated by different activities. However, many FGTA approaches still come with limitations related to training data coverage, false positive rates, and real-world usability. In addition, edge users of the network can adopt a variety of countermeasures to defend against FGTA, with some overheads regarding network bandwidth and delay. Researchers can further study this domain to increase the coverage of FGTA or make the approaches more practical in complex real-world network environments.
ACKNOWLEDGMENTS

I would like to thank my committee members from the University of Oregon for their guidance and constructive suggestions on this work.

REFERENCES

Y. Feng, J. Li, and D. Sisdoria, “Cj-sniffer: Measuring and detecting content-agnostic cryptojacking traffic in network.”

