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Abstract—Fine-grained traffic analysis (FGTA), as an ad-
vanced form of traffic analysis (TA), aims to analyze network
traffic to deduce information related to application-layer activi-
ties, fine-grained user behaviors, or traffic content, even in the
presence of traffic encryption or traffic obfuscation. Different
from traditional TA, FGTA approaches are usually based on
machine learning or high-dimensional clustering, enabling them
to discover subtle differences between different network traffic
sets. Nowadays, with the increasingly complex Internet architec-
ture, the increasingly frequent transmission of user data, and
the widespread use of traffic encryption, FGTA is becoming
an essential tool for both network administrators and attackers
to gain different levels of visibility over the network. It plays
a critical role in intrusion and anomaly detection, quality of
experience investigation, user activity inference, website finger-
printing, location estimation, etc. To help scholars and developers
research and advance this technology, in this report, we examine
the literature that deals with FGTA, investigating the frontier
developments in this domain. By comprehensively surveying
different approaches toward FGTA, we introduce their input
traffic data, elaborate on their operating principles by different
use cases, indicate their limitations and countermeasures, and
raise several promising future research avenues.

Index Terms—Network traffic, traffic analysis, traffic classifi-
cation, traffic monitoring, fine-grained traffic analysis, intrusion
detection, user behavior identification.

I. INTRODUCTION

IN the context of Internet, protocols and applications are
usually built upon hierarchical models [1] (e.g., TCP/IP

and OSI), where the communication functions of a telecom-
munication or computing system are categorized into several
abstraction layers. Higher layers only encapsulate high-level
methods, protocols, and specifications, operating with the
support of lower layers [2]. With such design, program-
mers can easily develop interoperable Internet applications
regardless of diverse underlying protocols and technologies.
However, this convention also makes cross-layered network
analysis feasible. As developers of higher layer applications
usually only take higher-layer measures (e.g., encryption,
anonymization, etc.) to preserve the user privacy regardless
of leaving traceable patterns on lower layers, analyzers can
capture network features from the lower layers to infer higher-
layer knowledge in communication [3], even in the presence
of message encryption. Such a process is called traffic analysis
(TA), a technique widely used in today’s Internet.

TA has been studied for decades, with myriad systems,
tools, and algorithms [4]–[9] developed to serve different types

of purposes, such as traffic measurement, traffic engineering,
anomaly detection, and network surveillance. In early develop-
ment of TA, traditional TA approaches were mainly designed
for network traffic measurement/forecast [10]–[12], anomaly
detection [13], and basic traffic classification [14]. These ap-
proaches are usually rule-based, statistics-based, or clustering-
based, can separate traffic of different network protocols or
conduct basic modeling of traffic flow changes. Later, with
the adoption of cutting-edge data processing techniques and
algorithms, such as harnessing the power of machine learning
on big data, TA is able to deduce more information from
network traffic data regarding application-layer activities, fine-
grained user behaviors, and message content. For instance,
researchers have developed advanced TA techniques to detect
application-layer threats, infer the specific websites that people
are visiting over HTTPS, or even dig users’ private data
from network-layer knowledge. We define such advanced TA
techniques as fine-grained traffic analysis (FGTA), the process
of application-layer behavior modeling, fine-grained user ac-
tivities inferring, or traffic content decoding, only through link-
layer or network-layer traffic data, with or without encryptions.

As a subset of TA, FGTA is mainly different from traditional
TA in the following ways:

• First of all, the most notable difference is the goals of
analysis. Traditional TA can coarsely distinguish or model
traffic from different types of network device, protocols,
or applications. However, FGTA aims to analyze traf-
fic at a finer granularity, such as traffic from different
application-layer activities (e.g., Tweeter post vs. Tweeter
read), different groups of application users (e.g., online
social network (OSN) bots vs. normal users), or different
user content (e.g., the visiting website).

• The analysis pipelines of traditional TA and FGTA are
usually different. FGTA, aiming at more granular infor-
mation, usually takes the traditional TA as a prerequisite
step to “preprocess” the traffic before the final inference.
For example, a FGTA approach that tries to identify
the web page the user is visiting needs to first leverage
traditional TA to extract all the web browsing traffic.

• As for analysis algorithms, most FGTA approaches de-
pend on sophisticated modeling or classification meth-
ods, such as deep machine learning or high-dimensional
clustering, to tackle the challenging fine-grained object
identification tasks. While, traditional TA, dealing with
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easier tasks, can utilize a number of different analytical
methods, such as rule-based, statistics-based, or soft-
computing-based approaches.

With the increasingly complex Internet architecture, increas-
ingly frequent transmission of user data, and the widespread
use of traffic encryption, FGTA is becoming a more and
more important research topic. Compared with traditional
TA, FGTA can reveal more information from network traffic
and can achieve high efficacy even in various complicated
network environments. Besides, benefitting from the easily
accessible network traffic data, the applicable scenarios of
FGTA are more extensive compared with directly analyzing
traffic content. Furthermore, FGTA is efficient and portable in
discovering application-layer knowledge. By analyzing a small
amount of metadata or statistical information of traffic, FGTA
can obtain almost the same level of visibility as decoding large
amount of message content. Therefore, FGTA has a wide range
of usage scenarios. As for network managements, FGTA can
help measure application usage, detect complicated network
intrusions or anomalies, investigate edge user experience, etc.
As for the attacker side, FGTA can help eavesdrop private
information of users, model user behaviors, estimate user
locations, etc. Studying FGTA is profound for comprehensive
network inspection, safeguarding information transmission,
and precise network configuration.

In this report, we examine the literature that deals FGTA.
By including more than 190 citations, mostly from top-tier
academic conferences (e.g., IEEE Symposium on Security and
Privacy, USENIX Security Symposium, ACM Conference on
Computer and Communications Security, the Network and
Distributed System Security Symposium, etc.) and reputable
academic journals (e.g., IEEE Transactions on Dependable
and Secure Computing, IEEE Transactions on Information
Forensics and Security, IEEE Journal on Selected Areas in
Communications, Computer Communication Review, etc.), we
elaborate on frontier developments of FGTA, demonstrating
and comparing different FGTA approaches’ operating mecha-
nisms, use cases, input data, limitations and countermeasures.
In addition, based on our observations and reflections on this
field, we propose several avenues for future research, thereby
helping future academics and developers to advance FGTA.

The rest of this report is organized as follows. After de-
scribing the input data of FGTA in Section II, we elaborate
on frontier developments of FGTA by their use cases in
Section III. We then point out the limitations of existing FGTA
in Section IV and introduce the countermeasures in Section V
In the end, we propose some avenues for future research in
Section VI and conclude this report in Section VII.

II. INPUT DATA

Like traditional TA, FGTA inputs network traffic data from
some vantage points in the network to dig knowledge. The
traffic data is the inference object for all TA approaches. In
this section, we survey popular network traffic capture engines
and their deployments, compare the formats of their generated
data, and discuss their application scenarios in FGTA.

...
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(a) The observation point is the
gateway of the network. The
traffic capture engine can collect
bidirectional traffic data.

...
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(b) The observation point is in
the network. The captured traffic
can be asymmetric.

Fig. 1: Network visibility with different observation locations.

A. Network Observation Point

The observation point of the traffic capture engine will
significantly impact the integrity of the captured data and the
network visibility. Different observation point is suitable for
different types of TA tasks.

The ideal observation point for most FGTA tasks is located
at the gateway of a network (illustrated in Figure 1a), which
enables people to capture both inbound and outbound traffic of
the network. Such a bidirectional traffic dataset is suitable to
infer the interactions between the observed network and rest
of the Internet. However, analyzers cannot learn the story that
happens in the rest of the Internet according to this dataset.

Sometimes, the observation point can be in the middle of the
network (illustrated in Figure 1b), especially when the traffic
capture engine is deployed by an ISP or IXP. In this case, the
capture engine is able to collect a large amount of traffic that
bypass it. However, it also raises the following concerns:

• Due to asymmetric packet routing [15], in-network ob-
servation point sometime may only capture traffic in one
direction (illustrated in Figure 1b).

• It cannot guarantee the robustness of captured traffic
because of the deployment of various traffic engineering
techniques [16], [17]. The routing path for any packet can
be dynamic in today’s networks.

Therefore, in-network-based observation points may be suit-
able for traditional TA tasks such as Internet measurement
and network-layer anomaly detection. But given the lack of
integrity of such data, we should avoid using it in FGTA.

To capture comprehensive traffic data from the network with
complex topology, we can deploy multiple observation points
at different vantage points if conditions permit. By using a pool
of metering processes to collect network packets at multiple
observation points, optionally filter them and aggregates infor-
mation about these packets, a traffic exporter can gather each
of the observation points together into an observation domain
and sends this information to a traffic capture engine [18].
Then we can fetch comprehensive network traffic data without
redundancy.

B. Traffic Data Acquiring

Since the birth of the Internet, various traffic capture engines
have been developed to log traffic information. TA approaches
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can further leverage these “log information” to measure net-
work events, detect anomalies, and analyze network behaviors.
Based on different information captured, these traffic capture
engines can be classified into either packet-level or flow-
level [4].

1) Packet-level capture: Packet-level capture is widely used
in local networks and endpoint devices. As its name states, it
copies or makes a snapshot of all the network packets that
bypass the network interface and forwards the collected data
to a collector. The agent that takes charge of the capture is
called a packet-level traffic capture engine or a “sniffer”, which
can be either software-based (e.g., Snoop [19], Wireshark [20],
etc.) or hardware-based (e.g., Sniffer InfiniStream [21]). It can
be as simple as an IP table rule on a route that copies all the
traffic to a cloud disk besides normal forwarding.

Packet-level capture can collect raw network traffic, contain-
ing both packet headers and packet payloads. Theoretically,
it can support all types of FGTA tasks because it basically
logs all the information flowed on networks. However, in most
cases, packet-level traffic capture might be improper to deploy
for the following reasons:

• Packet-level traffic capture is expensive, not only because
the interface needs to copy all the packets that bypass
it, but also because the interface needs to forward all
the captured traffic to an analysis node through a link.
All these operations will double the workload of the
network interface and occupy a considerable amount of
link bandwidth. Packet-level traffic capture is therefore
not scalable.

• The information contained in packet-level traffic data
is sometimes an “overkill” for TA, as many TA ap-
proaches only require statistical information from the
packet headers to complete the analysis. Moreover, user
messages, website content, and video streaming are usu-
ally contained in packet payloads in encrypted forms,
making most information captured in packet-level traffic
meaningless for all TA approaches.

• Packet-level traffic may contain sensitive information
(i.e., payload) of users. Thus, network service providers
are cautious about capturing and analyzing such data.

2) Flow-level capture: To address the aforementioned is-
sues of packet-level traffic captures and make traffic cap-
turing affordable, scalable, and practical for network service
providers, researchers and developers have proposed myriad
flow-level traffic capture engines.

In flow-level traffic capture systems, the capture engines no
longer copy or make snapshots of each packet, instead, they
first aggregate relevant packets into a flow and then capture
metadata or statistical information to represent that flow. Here,
the concept of flow has been around for a long time, with many
formal and informal definitions (e.g., RFC 2722 [22], RFC
3697 [23], RFC 3917 [24], etc.). In this paper, we define a
network traffic flow as a sequence of relevant network packets
from a source to a destination for the same application. In
most instances, the network system will process packets within
a flow in the same manner. Besides, each application-layer
behavior will generate one or multiple flows in both directions.
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Fig. 2: Workflow of a network interface when Cflowd serves
as the traffic captured engine.

By capturing traffic at flow-level, traffic capture engines no
longer suffer from high system overhead and high bandwidth
usage. Figure 2 illustrates the workflows of a network interface
with and without Cflowd as the flow-level traffic captured
engine [25]. Unlike packet-level traffic capture that will copy
and forward any packet entirely to the collector port, flow-
level traffic capture only copies information from headers
to assemble traffic flows. The volume of data to process
is then largely reduced in such a procedure. According to
existing evaluations, NetFlow, the most frequently used flow-
level traffic capture engine, only creates 1-1.5% of throughput
on the interface it is exported on [26]. With a great deal
of data reduction, network administrators can store, process,
inspect and analyze large amounts of network data efficiently.
Furthermore, when combining this procedure with packet
sampling, it becomes feasible to capture and store traffic
flows at an ISP or IXP scale, thereby extending the usage
scenarios of TA. As we can see from a study, NetFlow only
occupies around 15% of the router/switch’s CPU load when
capturing sampled network traffic [27]. Compared with packet-
level traffic capture that sometimes may double the system
overhead and link usage, flow-level traffic capture is a huge
improvement regarding efficiency and deployability.

However, the shortcoming of flow-level traffic capture is
also obvious—it will decrease the visibility of the network
traffic because people only see metadata and aggregated sta-
tistical information about the traffic rather than each packet.
This is especially troublesome for FGTA as many approaches
require at least inter-packet-level information. To make up
for this, we can shorten the lifecycle for each flow in traffic
capture engines to let them generate flows more frequently,
thereby increasing the network visibility.

C. Widely used traffic capture engines

Here, we introduce widely-used traffic capture engines in
academia and industry (Table I shows comparisons of them).

1) Packet-level traffic capture engines: Back in the early
days of Internet, developers had realized the importance of
capturing network packets for troubleshooting. Thus, Tcp-
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TABLE I: Comparisons of selected widely-used traffic capture engines ( : fully support; G#: partially support; #: not support.).

Traffic
Capture
Engine

Data Captured Granularity
Open

or
Proprietary

Layer
(OSI)

Hardware
Acceleration Sampling

SNMP [28] High-level statistical information about the interface. Flow-level
(aggregated) Open 2, 3 # #

IPFIX [29] Metadata and statistical information about the flow. Flow-level Open 3, 4   
NetFlow v9 [30] Metadata and statistical information about the flow. Flow-level Proprietary 3, 4   
NetFlow v5 [31] Metadata and statistical information about the flow. Flow-level Proprietary 3, 4   

Argus [32] Metadata and statistical information about the flow. Flow-level Open 2, 3, 4  #

sFlow [33] Complete packet headers and partial packet payloads. Packet-level Partially
Open 2 - 7   

Tcpdump [34] Network information pass through the observation point. Packet-level Open 2 - 7 # #
Wireshark [20] Network information pass through the observation point. Packet-level Open 2 - 7 # #
PF RING [35] Network information pass through the observation point. Packet-level Open 2 - 7  G#

Netmap [36] Network information in the memory of the observation point. Packet-level Open 2 - 7  G#

dump [34], a software-based packet-level traffic capture engine
(sniffer), was proposed in 1988. It allows users to store and
display TCP/IP and other packets being transmitted or received
over a network. Nowadays, Tcpdump has been ported to
several operating systems (e.g., Unix with libpcap library,
Windows with WinPcap) and is still frequently used in network
studies. Similar software-based sniffers were also proposed
to meet different needs. For example, Snoop [19], a simple
packet capture tool that is bundled on Solaris operating system;
Wireshark [20], a free packet capture and analysis software
that not only supports multiple operating systems (e.g., Linux,
Solaris, Windows, FreeBSD, Mac OS, etc.), but also comes
with a user-friendly interface; PF RING [35], a high speed
packet capture library that can turn a commodity PC into an
efficient and cheap network measurement box suitable for both
packet capture and TA. As for routers and switches, traffic
mirroring [37]–[39] is also well-studied, with many software
or hardware-based approaches [21], [40] proposed to support
real-time packet capture for enterprise-level networks.

However, as capturing the entire packet is expensive and
sometimes impractical, people began to make a snapshot of
each packet rather than storing it entirely. The most frequently-
used approach is sFlow [33], an industrial method (defined in
RFC 3176 [33]) originally developed by InMon Inc., to capture
packet-level snapshot from switches and routers. Compared
with previous packet-level traffic capture engines, sFlow has
the following features, making it the ideal input for most
FGTA approaches:

• Without capturing the entire packet, sFlow can just copy
the first N bytes of a packet to save computing and
transmission resource. This is especially useful for TA
tasks as packet payloads are useless in such scenarios
but the entire packet headers are still deserved for fine-
grained analysis.

• As an industrial standard, sFlow is compatible on many
different platforms of network switches and routers and
utilizes a dedicated chip built into the devices to operate,
which removes the burden of the CPU and memory of
the router or switch when capturing the traffic.

• By introducing time-based or packet-based sampling
techniques, sFlow can capture traffic on all interfaces
simultaneously at wire speed.

Therefore, sFlow can reach a good balance between data
integrity and velocity—being able to capture all the packet
headers and simultaneously create less burden on the router
or switch.

2) Flow-level traffic capture engines: Flow-level traffic
capture engines also have a long history. Back in 1984,
the Audit Record Generation and Utilization System (Argus
flow [32]) was proposed as the first implementation of network
flow monitoring, and is still an ongoing open source network
flow monitor project now. Argus can monitor all network traf-
fic, including Internet Protocol (IP) traffic, data plane, control
plane and management plane. It captures much of the packet
dynamics and semantics in each flow, providing reachability,
availability, connectivity, duration, rate, load, delay metrics
for all network flows. It also captures most attributes that are
available from the packet headers [41]. Later, in 1988, Simple
Network Management Protocol (SNMP) [28] was proposed as
a component of the Internet Protocol Suite as defined by the
Internet Engineering Task Force (IETF). Unlike Argus flow
that provides rich information about ongoing traffic, SNMP
only provides statistical information per interface, such as link
utilization, interface bandwidth, and some other information
if the device provides. SNMP is thus less applicable in TA
compared with Argus, especially in the domain of FGTA.

With rapid development and popularization of the Internet,
the industry had realized the importance of flow-level traffic
capture engine and many solutions were proposed. The most
typical example is NetFlow [30], so far the most widely-
used flow-level capture engine with many TA approaches
built upon. Just like Argus, NetFlow uses a flow record to
represent a set of packets. However, unlike Argus, which is a
bidirectional monitoring approach, NetFlow is a unidirectional
flow monitor, reporting flow information of each direction
of conversations independently. This feature allows NetFlow
to have a finer granularity than Argus. Since NetFlow was
developed by Cisco, it is bundled with most Cisco routers
and switches, making it the object of imitation of the entire
industry. Following NetFlow, many similar systems were pro-
posed by both research institutions and commercial companies,
such as Cflowd [25], J-Flow [42], NetStream [43], Remote
Network Monitoring (RMON) [44], etc. NetFlow itself also
has evolved into different variations. The most famous one is
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Fine-Grained Traffic Analysis (FGTA)

Website 
Fingerprinting

Device 
Identification

Used by

Application 
Identification

Location 
Inference

Intrusion/Anomaly 
Detection

Application 
Usage 

Inference

Quality of
Experience 

Measurement

Side-Channel AttackerNetwork Administrator/ 
analyst

Fig. 3: A taxonomy for FGTA by use case.

Internet Protocol Flow Information Export (IPFIX) [29], an
IETF protocol built upon NetFlow v9.

The most recent development of traffic capture and traffic
handling have been mainly focusing on the velocity issue.
Researchers have proposed multiple approaches to capture
large volume of network traffic at line speed without having
any effect on data plane. For example, Netmap [36] a memory-
based framework that enables commodity operating systems
to handle millions of packets per seconds without the support
of custom hardware; eXpress Data Path (XDP) [45], a fast
programmable packet processing approach based on the oper-
ating system kernel, supports high speed packet logging and
processing; hXDP [46], an efficient software network packet
processing approach written in extended Berkeley Packet
Filter (eBPF) on Field Programmable Gate Arrays (FPGA)
network interface controllers (NICs); NetSeer [47], a flow
event telemetry (FET) monitor which aims to discover and
record all performance-critical events on the programmable
data plane. However, those approaches do not change the
pipeline of TA or FGTA as they only make it faster to capture
and handle network traffic.

III. USE CASE AND REPRESENTATIVE APPROACH

As discussed in Section I, FGTA has a wide range of
uses. FGTA can be leveraged by both attackers and network
administrators, for both illegal purposes and social good.
According to their use cases, we propose a taxonomy for
FGTA approaches (Figure 3). In the rest of this section,
We further examine typical FGTA approaches in each of the
category.

A. Attack/Anomaly Detection

Using TA to detect anomalies or attacks is widely used
by both the industry and academia. With more than two
decades of research, we have seen a myriad of solutions (e.g.,
[48]–[51]) targeting at different types of threads. However, as
networks attacks become more and more sophisticated and
traffic encryption is widely used by all the parties, detection

approaches based on traditional TA gradually become incom-
petent to tackle modern attacks. Therefore, researchers begin
adopting FGTA to model hosts and clients’ application-layer
behaviors to detect such attacks/anomalies. In this subsection,
we elaborate on FGTA-based attack/anomaly detection ap-
proaches, introducing their applicable scenarios and operation
mechanisms (Table II shows an overview).

1) Intrusion detection: Many FGTA approaches focus on
detecting complicated intrusions in the network by examining
the characteristics of the underlying network traffic. Most of
them apply machine learning models to perform the detection.

Amoli et al. [52] leveraged an unsupervised machine learn-
ing model (i.e., density-based spatial clustering of applica-
tions with noise (DBSCAN)) to distinguish subtle differences
between historic traffic and intrusion traffic. Their approach
is able to detect zero-day and complex attacks without prior
knowledge. Papadogiannaki et al. [66] generated traffic sig-
natures from packet metadata sequences and then detecting
intrusions in the UNSW-NB15 dataset [67] by matching these
signatures.

Many researchers also focus on utilizing supervised deep
learning models to detect intrusions. Tang et al. [53] extracted
six basic features from traffic flows and trained a deep neural
network (DNN) model with the NSL-KDD dataset to detect
intrusions. Shone et al. [54] first leveraged nonsymmetric
deep autoencoder (NDAE) for unsupervised feature learning.
Then, they implemented stacked NDAEs with GPU-based
architects for quick and accurate intrusion detection on labeled
datasets (i.e., KDD Cup ’99 and NSL-KDD). Mirsky et al. [55]
monitored the statistical patterns of network traffic and de-
signed an ensemble of neural networks called autoencoders to
collectively differentiate between normal and abnormal traffic
patterns. Their approach is able to detect various attacks (e.g.,
video injection, ARP MitM, OS scan, etc.). Besides, unlike
many other approaches that are only evaluated in close-world
environments, this approaches was tested with a real-world
test bed.

2) Malware detection: Today’s malware is becoming more
and more challenging to be detected by traditional TA due to
traffic hiding and the increasing adoption of traffic encryption.
FGTA is then an ideal tool to detect such sneaky malware.

Shabtai et al. [56] proposed a framework for malware
detection on Android platforms. It can identify attacks or
masquerading applications installed on a mobile device and
injected applications with malicious code by semi-supervised
machine-learning methods. Wang et al. [57] leveraged a ma-
chine learning algorithm (i.e., C4.5 decision tree) in analyzing
mobile traffic, which is capable of identifying Android mal-
ware with high accuracy—more than 98%.

Later, some researchers collectively evaluated the efficacy
of different machine learning models in detecting malware.
Lashkari et al. [58] detected malicious and masquerading
applications with five different classifiers—random forest, k-
nearest neighbor (KNN), decision tree, random tree, and
regression. They found that these models can achieve similar
performances in malware detection. Besides, they published a
labeled dataset that contains both benign Android applications
and injected applications’ network traffic. Anderson et al. [59]
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TABLE II: Comparisons of selected attack/anomaly detection approaches (#: not support; G#: partially support;  : support).

Category Approach Year Goal of Analysis Feature Method Real-World
Evaluation

Intrusion
Detection

Amoli et al. [52] 2016 Mail-bomb, SSH-process-table,
botmaster, etc.

Flow-level traffic feature such as
duration, number of packets, small-
est packet size, largest packet size,
etc.

DBSCAN #

Tang et al. [53] 2016 R2L, U2R, Probe, DoS Duration, protocol type, src bytes,
dst bytes, count, srv count

DNN #

Shone et al. [54] 2018 R2L, U2R, Probe, DoS, guess pass-
word, portsweep, buffer overflow,
etc.

Features extracted with NDAE NDAE for unsupervised feature
learning, stacked NDAEs for detec-
tion

#

Mirsky et al. [55] 2018 Video injection, ARP MitM, OS
scan, etc.

Damped incremental statistics and
23 other features from packet-level
data

Kitsune’s core algorithm (KitNET),
a type of autoencoders

 

Malware
Detection

Shabtai et al. [56] 2014 Malicious attacks or masquerad-
ing/injected mobile applications

2 best feature subsets selected from
20 manually defined feature sub-
sets of various sizes

Linear regression, decision table,
SVM for regression, Gaussian pro-
cesses for regression, isotonic re-
gression, and decision/regression
tree

G#

Wang et al. [57] 2016 Android malware such as plankton,
FakeInstall, FakeRun, MobileTx,
etc.

Six TCP flow features and four
HTTP request features

C4.5 decision tree #

Lashkari et al. [58] 2017 Malicious and masquerading appli-
cations such as Airpush, Kemoge,
AVpass, FakeAV, etc.

24 features extracted from both
packet and flow-level traffic

Random forest, KNN, decision
tree, random tree, and regression

G#

Anderson et al. [59] 2017 Detecting malicious, encrypted
malware network traffic

22 and 319 data features in the
standard and enhanced feature set
extracted from NetFlow and IPFIX
data

Linear regression, logistic regres-
sion, decision tree, random forest,
SVM, and MLP

 

Data
Exfiltration
Detection

Ren et al. [60] 2016 Cross-platform information leak
identification

Raw network packets with payload Decision tree, AdaBoost, bagging,
blending, and Naive Bayes

 

Continella et al. [61] 2017 PII leakage detection, even in the
presence of obfuscation techniques

Raw network packets with payload Behavior modeling and differential
analysis

G#

Rosner et al. [62] 2019 Information leaks in TLS-
encrypted network traffic

A feature space that includes ob-
servations about individual packets
and sequences of packets; addi-
tional features from the phase de-
tection and the full original traces.

Trace alignment, phase detection,
feature selection, feature probabil-
ity distribution estimation and en-
tropy computation

#

Others
Feng et al. [63] 2021 Online social network bot detection Traffic fingerprint images con-

verted from NetFlow data
DBSCAN, CNN  

Coulter et al. [64] 2019 A data-driven cyber security sys-
tem that can identify high-level
application-layer attacks or anoma-
lies such as Twitter spam

Statistical features extracted from
the network traffic and content (op-
tional)

A varity of classification ap-
proaches

#

Feng et al. [65] 2022 Cryptojacking activity Packet size, timing, direction, and
protocol from sFlow data

LSTM #

designed and carried out experiments that show how six
machine learning algorithms (e.g., linear regression, logis-
tic regression, decision tree, random forest, Support Vector
Machine (SVM), and multi-layer perceptron (MLP)) perform
when confronted with real network data. They found the
random forest ensemble classifier to be the most robust for
the domain of malware detection.

3) Data exfiltration detection: FGTA can also be used in
detecting data exfiltration, thereby protecting personal sen-
sitive data from leakage. Different from directly detecting
anomalies or attacks, approaches in this domain usually profile
user behaviors or model normal application usage to identify
abnormal data transfer.

Wei et al. [68] proposed ProfileDroid, which is the first
approach to profile mobile application at four layers: (a)
static, or application specification, (b) user interaction, (c)
operating system, and (d) network. At network-layer, this
approach can capture essential characteristics of application
communications, including but not limited to the ratio of
incoming traffic and outgoing traffic, number of distinct traffic
sources, traffic intensity, the percentage of HTTP and HTTPS
traffic, etc. The profiling information can help identify in-

consistencies and surprising behaviors, thereby detecting data
exfiltration. A similar work is TaintDroid [69]. It leverages
dynamic information-flow tracking to identify private data
leaks of Android applications. The authors indicated that
network traffic is useful to help monitor the behavior of
popular third-party Android applications and discover potential
misuse cases of user private information across applications.
Although these two approaches not only leverage network
traffic, their ideas inspired a lot of subsequent work in this
domain.

Later, researcher began to investigate purely using network
traffic to profile application usage and report possible data
exfiltration. Razaghpanah et al. [70] monitored network com-
munications on mobile phones from user-space. The proposed
approach facilitates user-friendly, large-scale deployment of
mobile traffic measurements and services to illuminate mo-
bile application performance, privacy and security. Song et
al. [71] proposed a VPN-based approach to detect sensitive
information leakage Le et al. [72] proposed AntMonitor, which
passively monitors and collects packet-level measurements
from Android devices to provide a fine-grained analysis. By
inspecting traffic content, it can provide users with control
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over how their data is shared by applications. Ren et al. [60]
proposed ReCon, a cross-platform system that reveals person-
ally identifiable information (PII) leaks by inspecting network
packets and gives users control over them without requiring
any special privileges or custom operating system (OS)es.
The authors leveraged the Weka data mining tool [73] to
train classifiers that predict PII leaks. Continella et al. [61]
proposed an approach to privacy leak detection that even is
resilient to obfuscation techniques (e.g., encoding, formatting,
encryption). To achieve the goal, the authors first established
a baseline of the network behavior of applications, and then
utilized black-box differential analysis on application usages.

However, the aforementioned approaches still require in-
spections on traffic content to detect data exfiltration. The ideal
FGTA-based solution should be content-agnostic. In 2019,
Rosner et al. [62] presented a black-box approach for detect-
ing and quantifying side-channel information leaks in TLS-
encrypted network traffic. Given a user-supplied profiling-
input suite in which some aspect of the inputs is marked as
secret, it combines network trace alignment, phase detection,
feature selection, feature probability distribution estimation
and entropy computation to quantify the amount of informa-
tion leakage that is due to network traffic.

4) Others: A few research works have been focusing
on using FGTA to detect other types of application-layer
anomalies. By harnessing the power of machine learning on
big data, such approaches can model fine-grained application-
layer anomalies only with flow-level traffic or packet headers.
For example, BotFlowMon [63], [74] detects online social
network bot traffic by converting NetFlow records to images
and training a convolutional neural network (CNN)-based
classification model; Coulter et al. [64] proposed a data-
driven cyber security system that can detect Twitter spam or
other high-level application-layer anomalies through machine-
learning-based flow analysis; Feng et al. [65], [75] detects
cryptojacking traffic by inferring the hash rate stability with
cryptomining traffic in sFlow format.

B. Fine-Grained Quality of Experience Investigation
Quality of experience (QoE) is a well-studied topic in the

development of the Internet. Unlike quality of service (QoS),
which refers to the network parameter settings configured by
service providers to deliver various levels of service to their
customers, QoE measures how the service is experienced by
individual users at the edge of the network [76]. To score well
in QoE, service providers need to analyze network traffic to
conduct QoE investigations. The investigation results can help
them revise the network configurations accordingly, thereby
providing decent service to users.

Plenty of works have been proposed to conduct QoE investi-
gations with traditional TA (e.g., [76]–[78]). They can roughly
classify network traffic into several groups (e.g., video, voice,
data transfer, etc.) using statistical, DPI-based, or rule-based
approaches and measure the service experience according to
some metrics. However, such approaches may not be able
to tackle today’s increasingly complicated network traffic,
since different types of traffic may be encrypted in differ-
ent protocols (e.g., HTTPS, Quick UDP Internet Connection

TABLE III: Comparisons of selected fine-grained QoE inves-
tigation approaches.

Approach Goal Method Feature

[79] Identify QoE degra-
dation in YouTube

Random forest Three feature sets se-
lected by informa-
tion gain.

[80] Estimate QoE in
YouTube

Random forest, J48,
naı̈ve bayes, OneR,
and SMO

Five hand-crafted
feature sets

[81] Estimate video
streaming QoE over
HTTPS and QUIC
protocols

Decision tree A packet-level
feature set extracted
from network and
transport-layers

[82] Estimate QoE in
YouTube

Random forest and
linear regression

Three feature sets
(inbound, outbound,
and inbound + out-
bound)

[83] Estimate mobile
ABR video
adaptation behavior
over HTTPS and
QUIC protocols

Traffic fingerprinting
with chunk sizes

Packet size and tim-
ing

(QUIC)) and sent from different devices (e.g., Internet of
things (IoT), smartphone, server) by different applications.
Besides, service providers may want to conduct more granular
management of network traffic. For example, residential areas’
network administrators want to increase the priority of video
streaming traffic related to YouTube for certain users; network
administrators of companies want to ensure the quality of
online meeting traffic for some offices. Therefore, people
began to leverage FGTA to conduct QoE investigation in finer
granularities in the past ten years.

Usually, fine-grained QoE investigations are performed in
two steps:

1) Extract the target traffic using traffic classification.
2) Measure the extracted traffic to check if it meets certain

criteria.

Some approaches may combine these two steps into one and
directly identify potential QoS/QoE problems. Table III shows
a comparison of some selected QoE methods.

In 2016, Dimopoulos et al. [79] proposed a random-forest-
based detection model to identify QoE issues related to
YouTube video streaming. By selecting three sets of features
with information gain, the proposed model is able to directly
detect different levels of QoE degradation that is caused by
three key influence factors (i.e., stalling, the average video
quality, and the quality variations). The authors demonstrated
that it can detect QoE problems with an accuracy of 92% by
evaluating this approach using collected traffic At the same
year, Orsolic et al. [80] also studied using different machine
learning algorithms (i.e., random forest, J48, naı̈ve bayes,
OneR, and Sequential Minimal Optimization (SMO)) to detect
YouTube QoE issues under different bandwidth scenarios. In
2019, Khokhar et al. [82] proposed the first work that not only
can identify YouTube QoE issues related to objective factors
(e.g., startup delay, stalling, resolution change, etc.), but also
can identify QoE issues related to the subjective Mean Opinion
Score (MOS).

Mazhar et al. [81] further extends QoE investigation to all



8

TABLE IV: Comparisons of selected WFP approaches (#: not support; G#: partially support;  : support).

Approach Year Method Feature Effectiveness

HTTP/1.1 VPN Tor Multi-tab

Mistry et al. [87] 1998 Size matching Size of HTML file # # # #
Sun et al. [88] 2002 Similarity score calculation (Jac-

card’s coefficient)
HTTP object count, sizes, etc. G# # # #

Bissias et al. [89] 2005 Cross correlation of two value se-
quences

Packet size and inter-arrival time
distributions

 G# # #

Liberatore et al. [90] 2006 Similarity score calculation (Jac-
card’s coefficient)

Direction and length for each
packet

 G# # #

Herrmann et al. [91] 2009 Multinomial naı̈ve-bayes Frequency distribution of the IP
packet size

  # #

Panchenko et al. [92] 2011 SVM Volume, time, and direction of the
traffic

  G# #

Cai et al. [93] 2012 Damerau-Levenshtein distance and
Hidden Markov Model

Packet size, time, and direction    #

Wang et al. [94] 2014 KNN A large feature set generated from
packet-level traffic

   #

Hayes et al. [95] 2016 Random decision forests Features selected by gini coeffi-
cient

   G#

Rimmer et al. [96] 2017 SDAE, CNN, and LSTM Automatically learned feature sets
from packet-level network traffic

   #

Sirinam et al. [97] 2018 CNN Packet-level traffic data    #
Sirinam et al. [98] 2019 N-shot learning with triplet net-

works
Selected by a neural-network-
based feature selector

   #

Yin et al. [99] 2021 Split point finding and
BalanceCascade-XGBoost

Packet size, time, and direction     

encrypted video streaming traffic (transferred over HTTPS or
QUIC) by using a classification model trained by decision tree.
They demonstrated that their approach is able to achieve a 90%
classification accuracy for HTTPS and an 85% classification
accuracy for QUIC Xu et al. [83] infers mobile Adaptive
Bitrate (ABR) video adaptation behavior using packet size and
timing information in encrypted environments.

C. Website Fingerprinting

Website fingerprinting (WFP) is used to identify what web
page the user is visiting, even in the presence of traffic
encryption or encrypted tunnels established by Tor [84], [85],
Shadowsocks (i.e., a popular secure socks5 proxy) [86], VPN,
etc. It is a FGTA technique that widely-used by attackers
to eavesdrop user activities online. In this subsection, we
survey and compare well-known WFP approaches (Table IV),
elaborating the history of WFP and investigating its capability.

1) Early development of WFP: WFP has a long history. The
early WFP attacks simply focus on using data sizes to infer the
URL the user is visiting through encrypted SSL connections.
Back in 1998, Mistry et al. [87] demonstrated that the size
of HTML files is a critical feature to specific web pages.
They proposed an attack that simply uses the transmitted data
volumes to identify certain websites. Although this attack is
not feasible anymore after the launch of connection pipelining
and connection parallelization by HTTP 1.1 (RFC 2616 [100]),
this research enlightens many other WFP researches in the
next two decades. In 2002, Hintz [101] defined “fingerprints”
of websites as the histograms of transferred files’ sizes. He
recorded some website fingerprints and successfully recog-
nize some websites transferred through HTTPS with these
fingerprints. However, Hintz’s WFP attack only works for
a small number of websites. Later, Sun et al. [88] extends

size-based WFP to thousands of websites. They proposed
a WFP approach based on Jaccard’s coefficient, which can
correctly identify 75% of the websites in their collected
dataset. However, a common drawback of file-based attacks
is that they cannot tackle traffic hidden in encrypted tunneling
protocols (e.g., VPN, OpenSSH), not to mention Tor.

2) Defeat encrypted tunnel: To extend WFP to handle
encrypted tunneling protocols, multiple “more advanced” WFP
approaches had been proposed. Both Bissias et al. [89] and
Liberatore et al. [90] proposed improved forms of WFP.
Rather than using the data size as the feature, they extract
sets of traffic patterns from encrypted IP packet headers, such
as packet inter-arrival time, size, etc. These approaches have
some efficacy in identifying websites transferred by encrypted
tunneling services. However, the accuracies of page identifi-
cation is still not usable in reality. In 2009, by using packet-
level features, Herrmann et al. [91] proposed a multinomial
naı̈ve-bayes classifier that can identify up to 97% of web
requests on a sample of 775 sites and over 300,000 real-
world traffic dumps recorded over a two-month period. The
authors demonstrate that this approach is effective in tackling
website traffic in encrypted tunnels. Lu et al. [102] pointed
out that packet ordering information, though noisy, can be
utilized to enhance website fingerprinting. In addition, the
ordering information is effective for WFP even under traffic
morphing. By calculating the Levenshtein distance between
different network traffic, their approach can perform WFP
over OpenSSH and 2000 profiled websites. The identification
accuracy of the proposed scheme reaches 81%, which is 11%
better than the approach proposed by Liberatore et al. [90].

3) WFP in Tor era: To safeguard personal information and
avoid Internet censorship in an increasingly dangerous network
environment, many people began to use The Onion Router
(Tor), a free and open-source software for enabling anonymous
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Fig. 4: Threat model for WFP attacks over Tor network.

communication, to visit the Internet. Different from traditional
encrypted tunneling protocols, Tor reroutes Internet traffic
through a worldwide, volunteer overlay network, consisting of
more than six thousand relays [103], for concealing a user’s
actual location and Internet usage from anyone conducting
network surveillance or TA.

Figure 4 illustrates an operation model of Tor. To protect
user’s identity, each Tor user creates an encrypted virtual
tunnel to its destination through a chain of several volunteer
nodes—onion relays (ORs). According to their positions in
the virtual tunnel, ORs can be classified into entry OR, middle
OR, and exit OR. Each of the ORs only knows its predecessor
and its successor [104]. When forwarding network traffic, the
user’s network packets will be encrypted in multiple layers
and each of the ORs can only decrypt one layer of encryption.
Thus, Tor ensures that none of the ORs in the circuit knows the
user and its destination at the same time. Besides, to prevent
TA, the user data is encapsulated in chunks of a fixed size,
called cells, before transmission [105]. The WFP attacks above
are thus ineffective against Tor network, as they rely heavily
on packet-size-related features.

Indeed, it is almost impossible to dig any useful knowledge
inside a Tor network. However, the virtual tunnel between the
Tor user and the entry OR does provide attackers with an
interface and make WFP possible (illustrated in Figure 4).

In 2011, Panchenko et al. [92] are the first to demonstrate
that it feasible to use WFP to identify web pages visited by Tor
users. They trained a SVM classifier with features extracted
from volume, time, and direction of network packets, with a
classification accuracy of 55% when testing with their web
page dataset. Panchenko et al. are also the first to evaluate
their WFP attack in a real-world setting. The result shows
that their approach is able to achieve a true positive rate
of up to 73% and a false positive rate of 0.05%. Based on
this work, a significant amount of improved WFP approaches
were proposed to use different algorithms and features (e.g.,
VNG++ [106], Hidden Markov Models [93], Levenshtein-like
distance [107], etc.) to tackle web page identification in Tor.
In 2014, Wang et al. [94] proposed a KNN WFP classifier
and applied it on a large feature set with weight adjustment.
Their approach achieves an accuracy of 91% in a close-world
setting and a true positive rate of 85% for a false positive rate
of 0.6% when testing with more than 5,000 background pages

in a real-world setting.
Nevertheless, these WFP approaches still have some ob-

vious flaws according to an evaluation made by Juarez et
al. [108]:

• Previous WFP attacks assume single-tab browsing behav-
ior of users. However, multi-tab browsing is widely used
in reality.

• WFP attacks highly depend on the coverage of training
dataset but existing dataset cannot include web page
traffic from all versions of Tor browser, user habits, or
user locations.

• Previous WFP attacks can hardly tackle dynamic web
pages.

• Many countermeasures of WFP have been proposed
(which will be discussed later in Section V), making
many of previous WFP attacks non-effective.

To further increase the success rate of WFP attacks and
defeat countermeasures, researchers began to collect more
comprehensive training dataset, use more complicated feature
sets, and apply more sophisticated classification algorithms for
WFP.

Wang et al. [107] described how they collect the training
dataset in a much more thorough manner than previous works.
They gathered the data in different Tor settings and with
different defense approaches. Later, Panchenko et al. [109]
collected the first Internet-scale WFP dataset to develop and
evaluate WFP comprehensively. Based on the dataset, they
proposed CUMUL, a web page classifier that has a higher
recognition rate and a smaller computational overhead than
previous approaches. They also demonstrated that although
CUMUL is more efficient and superior in terms of detection
accuracy, still, it cannot scale when applied in realistic settings.
As for WFP feature set, Cai et al. [110] systematically
analyzed previous WFP approaches to understand which traffic
features convey the most information; Hayes et al. [95] utilized
the gini coefficient index to select a feature set and designed a
random decision forests classifier based upon them; Wang et
al. [111] evaluated the classification accuracy of each feature
category by using KNN.

In the recent five years, the development of WFP have
been focusing on conducting attacks in the presence of ef-
fective countermeasures, with little encrypted data, or under
complicated circumstances. Many of recent approaches also
investigated the applicability of deep learning techniques in
WFP. Rimmer et al. [96] trained three classification model
with Stacked Denoising Autoencoder (SDAE), CNN, and
Long Short-Term Memory (LSTM) respectively. These deep
learning models are capable of automatically learning the best
features to conduct WFP. The authors further demonstrated
that automatically created features are more effective espe-
cially in tackling constantly changing web content. In 2018,
Sirinam et al. [97] presents a very powerful WFP attack—
Deep Fingerprinting (DF) By employing a CNN model with a
sophisticated architecture design, the authors claim that this
attack can defeat many WFP countermeasures (e.g., WTF-
PAD [112] and Walkie-Talkie [111]) and works well in very
complicated real-world scenarios (95% accuracy for 20,000
URLs in a real-world setting). Sirinam et al. [98] further
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proposed an approach based on N-shot learning with triplet
networks in 2019, which can achieve decent efficacy with
relatively less training data. Besides these approaches, Abe
et al. [113] also applied SDAE in WFP; Bhat et al. [114]
leveraged ResNets [115], a CNN architecture, to reach high
success rates in WFP; Oh et al. [116] used unsupervised DNN
to generate low-dimensional features and trained different
machine learning classification models based upon them. In
2021, Wang et al. [117] leveraged adversarial domain adaption
(a transfer learning technique) to achieve high WFP accuracy
with little encrypted data; Yin et al. [99] proposed a WFP at-
tack that is able to identify websites in multi-tab environments,
which means it can achieve usable accuracies regardless of
the number of simultaneously opened web pages; Hoang et
al. [118] found that even in the presence of domain name
encryption technologies or content delivery network (CDN),
IP-based WFP is still feasible. They exploited the complex
structure of most websites, which load resources from several
domains besides their primary one, and further applied the
generated domain fingerprints to conduct WFP at large.

D. Location Inference

Location inference is a widely studied topic by computer
scientists. We have seen myriad work focusing on using social
network information [119], [120], smartphone accelerome-
ter [121], image content [122], etc. to infer users’ locations.
In the past decade, a few researchers began to use FGTA to
conduct location inference. The location we discuss here can
be either a geographical location or a contextual location, the
later one means the type of location the user is sending packets
from, such as an airport, a campus, or a residential building.
This subsection examines inference approaches for these two
types of locations.

1) Contextual location inference: The intuition behind con-
textual location inference with FGTA is straight forward—
users from different types of locations tend to generate differ-
ent traffic because they need to use different web applications
at different locations. Besides, different locations (e.g., cam-
pus, company, residential area) may process network traffic in
different manners. Contextual location inference using FGTA
aims to measure and analyze a group of network traffic and
infer where this group of traffic is coming from.

Back in 2009, Trestian et al. [123] conducted a detailed
study on applications accessed by users at different locations.
They demonstrated that users are more likely to evince interest
in a particular class of applications than others at certain
locations, which is irrespective of the time of day. They
indicated that we can further use the traffic generated by these
applications to identify the type of locations (e.g., work versus
home). In 2014, Das et al. [124], [125] collected around 100
GBs of real-world network traffic from more 1700 users at dif-
ferent types of locations (e.g., cafeteria/restaurant, university
campus, airport/travel, etc.). By measuring and analyzing this
dataset, Das et al. selected sets of features for packet-level,
flow-level traffic and built a decision-tree-based classification
model to predict contextual location with an overall accuracy
of 87%. Later, a few similar works also demonstrated that

User ABTS

Observation Point
For Location
InferenceLBS

Fig. 5: Operation model for geographical location inference.

mobile traffic from different cellular towers [126]–[128] tend
to have different characteristics.

The drawback of contextual location inference is that it
only works on a group of network traffic sending from many
endpoints. It cannot infer a device’s contextual location by
only analyzing its own network traffic.

2) Geographical location inference: Purely using network
traffic to infer a user’s geographical location seems impossible.
However, in 2015, Ateniese et al. [129] demonstrated that it
is actually feasible under certain assumptions.

Nowadays, location-based applications (LBA), such as
Facebook, Yelp, Google Map, etc., are widely used. These
LBAs obtain user locations through location-based services
(LBS). LBS providers usually use a base transceiver station
(BTS) to locate a user and send real-time location information
to the user. Ateniese et al. proposed an approach (illustrated
in Figure 5) that simply monitors the traffic between the
BTS and the LBS to identify user locations. They found that
different locations will trigger LBS packets of different sizes.
An adversary can potentially create a location knowledge base
of different locations’ packet sizes and their corresponding
timestamps to conduct geographical location inference. Still,
this approach has many limitations (e.g., low accuracy, difficult
to build the location knowledge base at large, etc.). This work
is more about demonstrating the feasibility of geographical
location inference with FGTA than launching a full-fledged,
ready-to-use approach.

E. Device/OS Identification

TA has been used to identify user devices or the OS running
on the device for a long time. For example, Lippmann et
al. [130] focused on extracting TCP or IP packet metadata to
recognize different OSes in 2003. However, with the increase
in the variety and complexity of user device and OS, simply
identifying the device/OS type according to rules in packet
header is no longer effective. Thus, researchers turn to use
FGTA to investigate if specific traffic patterns can be correlated
with some OSes or devices, which not only can recognize a
few rough device/OS types, but also can pinpoint the device
model or OS for various IoT and mobile devices. In this
subsection, we introduce such FGTA approaches that deal with
device/OS identification.

1) OS identification: Chen et al. [131] perform OS iden-
tification and detection of NAT and tethering (i.e., multiple
devices sharing the Internet connection of a mobile device,
which can lead to multiple OSes in a single IP address)
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by inspecting TCP/IP headers of packet traffic. They lever-
age a probability-based method by applying the naı̈ve bayes
classifier to effectively combine multiple features (e.g., TTL
value, IP ID monotonicity, TCP timestamp, clock frequency,
etc.), thereby fingerprinting and recognizing different OSes in
different environments. Laštovička et al. [132] also proposed
an OS identification method by inspecting the TLS handshake,
HTTP headers, and TCP/IP features with a decision tree.
However, these approaches cannot distinguish between minor
versions of the same OS. To tackle this problem, Ruffing et
al. [133] identify different versions of smartphone OSes by
using the frequency spectrum of packet timing from encrypted
traffic. By identification through correlations of the feature-
extracted spectra, the authors demonstrate that even a network
traffic input of 30 seconds can be enough for high accuracy
identification results.

2) IoT device identification: Compared with OS identifica-
tion, IoT device identification can be more challenging due
to the complexity of their network environments and their
wide variety. Lopez-Martin et al. [134] extract a time-series
feature vectors from network traffic, where each element of
the time-series vector contains the features of a packet in
the flow. They then proposed a classifier that is based on
both a recurrent neural network (RNN) model and a CNN
model to separate heterogeneous IoT traffic using the features.
Meidan et al. [135] collected and labeled network traffic from
nine distinct IoT devices (e.g., baby monitor, motion sensor,
printer, security camera, etc.), PCs, and smartphones. They
then utilized a multi-stage machine-learning-based classifier to
classify traffic of IoT devices in two phases. In the first stage,
the classifier can distinguish traffic between IoT and non-IoT
devices. In the second stage, the classifier can further identify
traffic from different IoT devices. The authors demonstrate that
their approach is able to classify IoT traffic with an accuracy
of 99.281%.

However, these two researches do not consider complicated
network environments (e.g., smart homes, enterprises, and
cities) of IoT devices. Sivanathan et al. [136] addressed this
challenge by developing a robust framework for IoT device
traffic classification with a multi-stage machine-learning-based
algorithm. The authors instrumented a smart environment with
28 different IoT devices that consist of spanning cameras,
lights, plugs, motion sensors, appliances, and health-monitors.
They then collected and synthesized network traffic traces
from this infrastructure for a period of six months. By extract-
ing statistical features such as activity cycles, port numbers,
signaling patterns, and cipher suites from the traffic and using
naı̈ve bayes and random forest as the identification models,
they are able to classifying heterogeneous IoT devices with
an accuracy over 99%. Yao et al. [137] further proposed an
end-to-end IoT traffic classification method that eliminates the
multi-stage classification for high accuracies and efficiencies.
It relies on a deep-learning-aided capsule network to construct
an efficient classification mechanism that integrates feature
extraction, feature selection, and classification model. Even
though, the evaluations of these approaches are all based on
close-world datasets, which may not be able to precisely reflect
their true efficacy in the real world.

F. Application Identification

Using the network traffic from a device to identify the ap-
plications that are running on the device, even in the presence
of traffic encryption, is one of the most classic use cases of
TA. Decades ago, people have investigated using traditional
TA approaches to classify traffic from different applications.
Before 2000, many researchers simply used traffic ports to
identify some popular applications that have well-established
ports (e.g., port 443 for HTTPS, port 110 for POP3). Port-
based approaches fail for most emerging applications such as
gaming, streaming, and messaging [138]. Later, Karagiannis et
al. proposed BLINC [139], which not only looks at port-based
features, but also inspect the host’s social behavior and its
community behavior to determine the applications. Bernaille
et al. [140] observe the sizes of the first few packets of an
SSL connection to identify the web application, which can
achieve an accuracy of more than 85%. There are also many
machine-learning-based traditional TA approaches [14], [141]–
[143] that classify application traffic according to the traffic
patterns.

However, application identification with traditional TA can
hardly adapt to the current network environment and meet
current needs due to several limitations:

• Traditional TA can only identify some high-level pro-
tocols (e.g., HTTP, HTTPS, SMTP, POP3, etc.) and a
few frequently used applications that have obvious traffic
patterns (e.g., MySQL, BitTorrent, MSN, etc.).

• Traditional TA-based application identifications only
work in relatively simple network environments. For
example, endpoints only consist of servers, clients, and
peers; devices communicate without encrypted tunneling
protocols (e.g., virtual private network (VPN)).

Nowadays, network environments are becoming far more com-
plicated that before. Different types of nodes (e.g., smartphone,
IoT, middlebox) may communicate through complicated net-
work environments (e.g., VPN, network address translation
(NAT), WiFi). Besides, millions of web applications are used
on different platforms, with more complex communication
mechanisms and much less regular traffic patterns. Therefore,
people started to leverage FGTA in identifying specific ap-
plications among miscellaneous traffic from different types
of devices. In this subsection, we introduce typical FGTA-
based application identification approaches (Table V shows an
overview).

1) Application identification for general-purpose devices:
General-purpose devices, such as personal computers and
servers, supports the operation of countless web applications.
Recently, FGTA-based application identifications for general-
purpose devices focus on identifying more specific applica-
tions in more complicated network environments.

Chen et al. proposed Seq2img [144], an application traffic
classification framework based on an online CNN model.
Seq2img employs a data fusion method based on Reproducing
Kernel Hilbert Space (RKHS) to convert flow sequences into
images, which can fully capture the static and dynamic behav-
iors of different applications. Then, Seq2img utilize a CNN
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TABLE V: Comparisons of selected FGTA approaches for application identification (#: not support; G#: partially support;  :
support).

Category Approach Year Target Application Traffic Feature Method Real-World
Evaluation

App Identification
for

General-Purpose
Devices

Chen et al.
[144]

2017 Instagram, Skype,
Facebook, Wechat,
Youtube, etc.

Images converted from flow
sequences

RKHS-based data fusion
and CNN

#

Rezaei et al.
[145]

2018 Google Drive, Youtube,
Google Docs, Google
Search, Google Music, etc.

Time series features ex-
tracted from sampled pack-
ets

Semi-supervised CNN #

Lotfollahi et al.
[146]

2020 Vimeo, YouTube,
VoipBuster, Spotify, Netflix,
Hangouts, Facebook, etc.
(with or without VPN)

Normalized features
extracted from packet
headers

CNN and SAE #

Mobile App
Identification

Wang et al.
[147]

2015 Snapchat, Tecent QQ, Mint,
Tinder, YouTube, etc.

Statistical features from
packets (e.g., STD time,
average size, STD size,
etc.)

Random forest G#

Alan et al.
[148]

2016 1595 applications on four
different devices

Features from TCP/IP head-
ers (e.g., packet size, timing,
direction)

Jaccard’s coefficient and
naı̈ve bayes

G#

Taylor et al.
[149]

2016 110 most popular applica-
tions in Google Play Store

Two sets of features from
flow-level traffic-flow vec-
tor and statistical features

SVM and random forest G#

Aceto et al.
[150]

2018 49 mobile applications (i.e.,
QQ, SayHi, eBay, 6Rooms,
NetTalk, PureVPN, etc.)

Statistical features (e.g.,
packet length, percentiles,
deviation, etc.) for
incoming, outgoing, and
bidirectional packets

A multi-classification (viz.
fusion) model consists of
naive bayes, random forest,
SVM, and decision tree

#

Aceto et al.
[151]

2019 Facebook, Facebook Mes-
senger, and other 49 apps on
both Android and IOS

Automatically-extracted
features using neural
networks

Multiple machine learning
models (e.g., CNN, LSTM,
MLP, etc.)

#

Van et al. [152] 2020 More than 1M apps from
three datasets.

Packet and flow-level fea-
tures selected by adjusted
mutual information

A semi-supervised finger-
printing with destination-
based clustering, browser
isolation, and pattern recog-
nition

#

Decentralized App
Identification

Shen et al.
[153]

2019 Aragon, Bancor, Canwork,
Chainy, Cryptopepes,
Eth town, Etheremon, etc.

57 features of packet
lengths, 72 features of
bursts, and 54 features of
time series, fused by kernel
functions

KNN, SVM, and random
forest

G#

Aiolli et al.
[154]

2019 BTC.com. BitPay, Bread,
Wirex, Copay, etc.

Vectors of statistical
features about the packet
length from traffic flow

SVM and random forest G#

model to recognize network traffic of popular applications,
such as Facebook, Instagram, Wechat, etc.

Rezaei et al. [145] investigated using a few labeled, sam-
pled packet-level dataset to train a comprehensive application
identification model. They first pre-train a CNN-based model
on a large unlabeled dataset where the input is the time series
features of a few sampled packets. Then, the learned weights
are transferred to a new CNN model that is re-trained on
a small labeled dataset. They demonstrated that this semi-
supervised approach achieves almost the same accuracy as
a fully-supervised method with a large labeled dataset. The
proposed approach is able to identify applications like Google
Drive, Google Doc, Google Search, Google Music, etc.

In 2020, Lotfollahi et al. [146] proposed an application
identification method that can work in both VPN and non-
VPN networks. After extracting features from packet headers,
they used both CNN and stacked autoencoder (SAE) to train
the classification models. Evaluation results show that this
approach can achieve a recall score of 0.98 in application

identification tasks.
2) Mobile application identification: With the raising of

mobile network, mobile application identification becomes
an emerging research topic in recent years. Unlike general-
purpose devices, mobile devices are less regularized in port
usage. In addition, a wide variety of mobile applications may
utilize some common libraries in communication, generating
similar network traffic patterns. Thus, mobile application iden-
tification can be more challenging.

Wang et al. [147] use random forest algorithm to analyze
packet-level traffic in wireless networks. Their approach is able
to detect the usage of 13 selected popular mobile applications
on IOS platform, such as Snapchat, Tecent QQ, Mint, Tinder,
YouTube, etc., with an accuracy of more than 87.23%. They
demonstrate that by using the mobile applications the privacy
of the user is more at risk compared to using online services
through browsers on mobile devices.

Many researchers also studied application identification on
Android platform. Enlightened by some WFP approaches
(Section III-C), Alan et al. [148] use Jaccard’s coefficient
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and naı̈ve bayes to analyze features (e.g., packet size, timing,
direction) from TCP/IP headers to identify 1595 applications
on four different devices. Taylor et al. [149] proposed App-
Scanner, a framework that can automatically fingerprint and
identify Android applications from their encrypted network
traffic. The authors extracted two sets of features (i.e., flow
vector and statistical features) from flow-level network traffic
and implemented this approach using both SVM and random
forest algorithms. The evaluations show that AppScanner
can identify the 110 most popular applications in Google
Play Store with more than 99% accuracy. In the next year,
Taylor et al. further extended AppScanner in a succeeding
research [155]. They investigated how application fingerprints
change over time, across different devices, and across different
application versions.

Recently, many similar works (e.g., [150]–[152], [156])
have been proposed to enhance the efficacy, efficiency, and
coverage of mobile application identifications.

3) Application identification on other platforms: A few
researches have been focusing on identifying decentralized
applications on blockchain systems. Shen et al. [153] proposed
an encrypted traffic classification of decentralized applications
(e.g., Cryptopepes, Matchpool, Lordless, etc.) on Ethereum
with features like packet lengths, bursts, and time series. Aiolli
et al. [154] focused on identifying user activities on Bitcoin
wallet applications (e.g., BTC.com, Bitcoin Wallet, Coinbase,
etc.). The authors used SVM and random forest models to
conduct the identification.

We also studied the application identification approaches for
IoT devices. However, as each IoT device is usually bundled
with a IoT application, the identification of IoT application
is equal to the identification of IoT devices in most cases.
Therefore, we introduce these approaches in Section III-E (IoT
device identification).

G. Application Usage Inference

Application usage inference aims to analyze encrypted
network traffic to identify certain application events, infer user
behaviors, and measure specific service usage. It is one of
the most challenging FGTA tasks, as it not only classifies
the network traffic that is associated to different applications,
device, or web pages, but also leverages the traffic patterns to
recognize the application-layer activities that users conducted
with the applications, devices, or web pages. Therefore, many
application usage inference approaches may take extra steps
(e.g., clustering, pre-filtering, etc.) to narrow down the scope
before the final traffic classification. Besides, they need to
perform traffic segmentation to locate different traffic bursts,
where each burst represents a group of adjacent packets that
support an application event.

In this subsection, we introduce representative application
usage inference approaches, demonstrating their applicable
scenarios and methodologies (Table VI shows a comparison).

1) Messager/Online social network usage inference: User
activities on messaging or OSN applications are very private
and sensitive. However, although being encrypted, a third party
can still infer the rough messaging/OSN activities that users

have performed only through content-agnostic network traffic
data.

Back in 2009, Schneider et al. [169] investigated OSN
usages from the perspective of network traffic for four dif-
ferent platforms—Facebook, LinkedIn, Hi5, and StudiVZ.
The authors studied how users actually interact with OSNs
by extracting clickstreams from passively monitored network
traffic. They found that different OSN operations (e.g., login,
open friend list, logout, select profile, etc.) will trigger statis-
tically different network traffic. This research later leads many
researchers to dig deeper into using the traffic differences to
classify different user actions on OSNs. Coull et al. [157]
analyzed the network traffic of encrypted messaging services
such as Apple iMessage. The authors demonstrated that an
eavesdropper can learn information about user actions (e.g.,
control, read, start, stop, image, and text), the language of
messages, and even the length of those messages with greater
than 96% accuracy simply by observing the sizes of encrypted
packets. They used three algorithms to perform the inference—
linear regression, naı̈ve bayes, and rule lookup table. However,
they only evaluated their approach in close-world environ-
ments with a small dataset. Fu et al. [158] extended the
inference to more messaging applications (i.e., Wechat and
WhatsApp) and more activities (e.g., stream video call, news
feed, location sharing, etc.). By segmenting Internet traffic into
sessions with a number of dialogs, extracting discriminative
features from the perspectives of packet length and time delay,
and leveraging multiple machine learning models to conduct
the classification, The proposed approach can achieve 96%
and 97% accuracy in WeChat and WhatsApp respectively. Liu
et al. [159] further extended the inference coverage to more
OSN applications (e.g., Facebook, Wechat, and WhatsApp)
and evaluated their approach in a real-world environment
with real-time traffic data streaming. Real-world evaluation
is essential to reveal the true performance and efficacy of
application usage approaches, but many approaches were
only evaluated through close-world off-line cases, leaving the
inference throughput and abilities to handle noise mysteries.
Feng et al. [63], [170] developed and evaluated their OSN
usage inference approach in a larger network environment—a
campus network. Although their approach is mainly built for
social bot detection, it can identify some commonly seen user
activities (i.e., posting, reading, liking, etc.) on Twitter and
Facebook.

2) Streaming service usage inference: There are a few
works focusing on leveraging FGTA to extract behavioral
information from network traffic of streaming service (e.g.,
VoIP, audio streaming, and video streaming). Researchers have
demonstrated the feasibility of revealing voice information
from encrypted VoIP conversations or identifying encrypted
video streams [6].

Wright et al. [160] demonstrated that when the audio is
encoded using variable bit rate codecs, the lengths of encrypted
VoIP packets can be used to identify the phrases spoken within
a call. By leverage a hidden Markov model (HMM), the
authors indicated that an eavesdropper can identify phrases
from a standard speech corpus within encrypted calls with
an average accuracy of 50%, and with accuracy greater than
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TABLE VI: Comparisons of selected application usage inference approaches (#: not support; G#: partially support;  : support).

Category Approach Year Analysis Object Feature Method Real-World
Evaluation

Messager/OSN

Coull et al. [157] 2014 Apple iMessage: language,
control, read, start, stop, im-
age, text, etc.

Payload length and the mes-
sage length; a binary feature
vector of packet length and
direction pairs

Linear regression, naı̈ve
bayes, and rule lookup table

#

Fu et al. [158] 2016 Wechat and WhatsApp:
stream video call, news feed,
location sharing, etc.

Discriminative features from
the perspectives of packet
length and time delay

Traffic segmentation with
hierarchical clustering and
thresholdingheuristics; HMM-
based classifier.

G#

Liu et al. [159] 2017 Facebook, Wechat, and What-
sApp: short video, video call,
text, picture, etc.

A selected feature set ex-
tracted from traffic packet
sequences by a Maximizing
Inner activity similarity and
Minimizing Different activity
similarity measurements.

A recursive time continuity
constrained K-means cluster-
ing algorithm for traffic flow
segmentation and a random
forest classifier for segmented
traffic classification.

 

Feng et al. [63] 2021 Facebook and Twitter: post,
chat, read, etc.

Images converted from Net-
Flow records

Clustering-based traffic seg-
mentation; CNN

 

Streaming Service Wright et al. [160] 2008 Identify the phrases spoken
within a call from a standard
speech corpus.

The lengths of encrypted VoIP
packets

HMM #

Schuster et al. [161] 2017 Identify the videos streamed
by YouTube, Netflix, Ama-
zon, and Vimeo.

Time series data of the
following flow attributes:
down/up/all bytes per second,
down/up/all packet per
second, and down/up/all
average packet length.

Time-based burst; CNN #

General-Purpose
Conti et al. [162] 2015 User activities in Gmail, Face-

book, Twitter, Tumblr, Drop-
box, etc.

Features from TCP/IP packet
fields (e.g., IP address, port
number, packet size, direction,
and timing)

Dynamic time warping, ran-
dom forest, and a hierarchical
clustering algorithm called ag-
glomerative

#

Saltaformaggio et al. [163] 2016 User activities on Android and
IOS platforms

Features extracted from IP
packet headers, divided by be-
havior measurements (a small
time window)

A K-means clustering model
and an SVM model

G#

Papadogiannaki et al. [164] 2018 User activities (e.g., voice
call, video call, messaging,
etc.) in popular Over-The-
Top mobile applications (e.g.,
WhatsApp, Skype, Viber, etc.)

Customizable A pattern language to identify
application events, rule min-
ing

 

Others

Yan et al. [165] 2018 Red packet transactions and
fund transfers in Wechat

Overall statistics, packet
length, number of TCP
handshakes, inbound and
outbound statistics

Threshold-based traffic seg-
mentation, random forest

#

Wang et al. [166] 2019 Classify specific actions (e.g.,
transfer payment, transfer re-
ceipt, QR code payment, etc.)
on the mobile payment ap-
plication, and then detect the
detailed steps (e.g., click the
button, receive the fund, open
the red packet, etc.) within the
action

Overall statistics of the packet
length, range statistics of the
packet length, flow statistics,
incoming and outgoing statis-
tics.

Threshold-based traffic seg-
mentation, hierarchical iden-
tification with random forest,
AdaBoost, GBDT, and XG-
Boost

#

Jiang et al. [167] 2019 Application usage information
(e.g., reading documents, surf-
ing webs, editing documents,
etc.) on remote desktop

Statistic features of flow burst Threshold-based traffic seg-
mentation, logistic regression,
SVM, GBDT, random forest

#

Wang et al. [168] 2020 Identify DApp (e.g., Super-
rare, Editional, John Orion
Young, etc.) user behaviors
(e.g., open DApps, open mar-
ket, view detail, etc.)

Selected DApps features,
behavior-sensitive features,
and improved inter-arrival
time series

Random forest, decision tree,
and GBDT

#

90% for some phrases. Schuster et al. [161] demonstrated
that many video streams are uniquely characterized by their
burst patterns, and classifiers based on CNN models can
accurately identify these patterns given very coarse network
measurements. The authors only extracted features from flow
attributes, such as inbound/outbound bytes per second, in-
bound/outbound packet per second, and inbound/outbound
average packet length. They have examined this approach on
Netflix, YouTube, Amazon, and Vimeo.

3) General-purpose application usage inference: The ap-
proaches discussed in this subsection aim at inferring all types

of application-layer events rather than only recognizing certain
event categories.

Conti et al. [162], [171] analyzed encrypted mobile traffic to
infer user actions on Android devices, such as email exchange,
posting a photo online, publishing a tweet, etc. They extracted
features from TCP/IP packet fields (e.g., IP address, port
number, packet size, direction, and timing) and use a random
forest to perform the inference. They trained and evaluated
their approach using collected a dataset that is associated
to several Android applications with diverse functionalities,
such as Gmail, Facebook, Twitter, Tumblr and Dropbox.
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The evaluation results demonstrate that it can achieve more
than 95% of accuracy and precision for most of the actions
within the dataset. However, this approach was not evaluated
in the real-world environments. In 2016, Saltaformaggio et
al. [163] proposed NetScope, a framework that can perform
robust inferences of user activities for both Android and
IOS devices by only inspecting IP packet headers. NetScope
leverages a K-means model and an SVM model to learn
and detect network traffic generated by different application
behaviors. By testing the approach in a lab environment, the
authors demonstrated that despite the widespread use of fully
encrypted communication, NetScope can distinguish subtle
traffic behavioral differences between user activities (e.g.,
Instagram browse versus post, Yelp browse versus search,
Facebook feed versus post, etc.). Papadogiannaki et al. [164]
further pushed application usage inference to a much larger
scale. They proposed OTTer, a highly scalable engine that
identifies fine-grained user actions (e.g., voice call, video call,
messaging, etc.) in popular Over-The-Top mobile applications,
such as WhatsApp, Skype, Viber, and Facebook Messenger
with encrypted network traffic connections. By evaluating
OTTer is a real-world test bed, the authors demonstrated that
it can operate at traffic loads with an average of 109 Gbps.

4) Others: There are a few application usage inference
approaches tackling different problems. For instance, Yan et
al. [165] segmented the network traffic into several bursts
and trained a random forest model to identify red packet
transactions and fund transfers in Wechat; Wang et al. [166]
proposed an approach to identify the mobile payment appli-
cations from traffic data, then classify specific actions (e.g.,
transfer payment, transfer receipt, QR code payment, etc.)
on the mobile payment application, and finally, detect the
detailed steps (e.g., click the button, receive the fund, open
the red packet, etc.) within the action; Jiang et al. [167]
studied encrypted remote desktop traffic and found that an
eavesdropper can reveal application usage information (e.g.,
reading documents, surfing webs, editing documents, etc.) due
to side-channel privacy leakage. Wang et al. [168] aimed
at identifying DApp (e.g., Superrare, Editional, John Orion
Young, etc.) user behaviors (e.g., open DApps, open market,
view detail, etc.) on Ethereum by using random forest, decision
tree, and gradient boosting decision tree (GBDT).

IV. LIMITATION

Although it seems effective in inferring different high-level,
fine-grained behaviors, FGTA still has many limitations. In
fact, FGTA approaches are far from what they have promised
in the real world, and their efficacies depend on many condi-
tions. In this section, we discuss the limitations of FGTA.

A. Coverage of train data

As most FGTA approaches are based on machine learning
algorithms or prior knowledge about specific traffic, the effi-
cacy of such approaches is highly dependent on the coverage
of training datasets or rules learned beforehand. Unfortunately,
existing datasets or rule can only represent a small fraction
of real-world scenarios. It is actually impossible to collect

All the websites around the world

Unmonitored 
(over 1 billion) 

ccsp.uoregon.edu 
uoregon.edu 
...

Monitored 
(several thousand) 

facebook.com 
twitter.com 
...

Fig. 6: Training data coverage for WFP.

a dataset to cover all possible scenarios. Take the WFP
attack discussed in Section III-C as an example, as shown in
Figure 6, state-of-the-art datasets from public repositories can
only cover less than 0.001% of all websites around the world.
FGTA approaches built upon such datasets then have little
effect in practice. Furthermore, network traffic of websites,
applications, or OSes is dynamic. For instance, the layouts
of Facebook websites have been changed for several times
since its birth, and so has the network traffic associated with
Facebook. Therefore, a FGTA approach worked before may
no longer be effective if we do not update its analysis model
with the latest training datasets.

B. Uncertainties in real-world environments

As can be seen from our previous discussion (Section III),
many approaches were only evaluated in close-world environ-
ments, which means they were only tested with a small amount
of labeled traffic, with a little noise or without noise. Such
close-world evaluations cannot objectively reveal the efficacy
of proposed approaches in the real world. Network traffic
from real-world environments can be very quite different from
laboratory environments:

• Real-world network configurations can be complicated,
with traffic going through NATs, Wi-Fi connections, or
special middle boxes. All these factors can significantly
change the original traffic characteristics.

• Edge users have different habits of using web applica-
tions. Some may send traffic with VPN, Shadowsocks,
or Tor. Although many FGTA approaches claim to be
effective even with traffic tunneling techniques, many
researchers found their efficacy will actually be reduced
under such circumstances [172].

• The ratio of different network traffic in the real world is
different from that in the laboratory environment, making
accuracies fetched from close-world evaluations hardly
representative.

Therefore, real-world evaluations or large-scale pilot studies
are essential for developing and polishing a usable FGTA
approach.

C. False alarm

FGTA aims to identify specific types of user activities from
network traffic. Usually, the analysis object only occupies
a very tiny proportion of the whole traffic (e.g., less than
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TABLE VII: Comparisons of selected well-known FGTA countermeasures (None: 0; Low: 0-30%; Medium: 30%-60%; High:
more than 60%).

Category Approach Usage Scenarios Time Overhead Bandwidth Overhead Additional Requirements

Network-
Layer

Pinheiro et al. [173] All web applications None Medium Middlebox and SDN controller
FRONT and GLUE [174] Tor None Low None
Traffic morphing [175] All web applications None Low Knowledge about other traffic classes
Walkie-Talkie [111] Web browsing Medium Low Knowledge about some web traffic
WTF-PAD [112] Web browsing None Low None
Liberatore et al. [90] All web applications None High None
BuFLO [106] Web browsing High High Network Transfer with fixed rates
TrafficSliver [104]
(network-layer mode) Tor None None Multiple entry ORs in Tor network

Application-
Layer

HTTPOS [176] Web browsing None Low None
TrafficSliver [104]
(L7 mode) Tor None None Multiple entry ORs in Tor network

LLaMA and ALPaCA [177] Tor

Server-side:
Medium;

Client-side:
Low

Server-side:
Medium;

Client-side:
Low

None

0.01%). Thus, a very small false positive rate can be amplified
in deployment, making the proposed FGTA approach hardly
usable.

D. Integrity of network traffic

As discussed in Section II, the integrity of the network
traffic collected in the real-world cannot be guaranteed. The
traffic flow can be asymmetric or highly sampled, which will
certainly reduce the efficacy of existing FGTA approaches.
However, FGTA with incomplete network traffic was not
widely discussed in existing papers.

V. COUNTERMEASURE

Besides the aforementioned limitations of FGTA ap-
proaches, Internet users can also adopt various tricks or
methods to escape being inferred. From the perspective of
illegitimate users, these countermeasures can make them stay
sneaky and avoid being discovered when conducting malicious
activities. On the other hand, legitimate users can also leverage
these countermeasures to perturb FGTA, thereby protecting
their privacy. This section investigates FGTA countermeasures,
comparing their efficacy and use cases.

Naı̈ve countermeasures send individual or aggregated traf-
fic through encrypted channels to escape the inferences of
traditional TA approaches, such as VPN, Shadowsocks, and
Tor. However, these approaches are proven to be vulnerable
to many FGTA approaches [178]–[181]. Therefore, people
began to modify the features of traffic flows to perturb FGTA
approaches’ classification models. Such perturbations can be
conducted from either network layer or application layer [104].
Table VII shows a comparison of some well-known counter-
measure approaches.

A. Network-layer Countermeasures

Network-layer FGTA countermeasures directly modifying
the network traffic by adding padding packets, changing
packet bytes, or delaying existing packets, thereby obfuscating
specific features that FGTA approaches rely on, making the

current traffic look like other activities’, or regularizing the
traffic patterns of different applications [174]. Such approaches
usually come with some side effects. They might increase the
overheads of the network system, including time overhead,
bandwidth overhead, and potentially computational overhead.

Among all the network-layer countermeasures, traffic obfus-
cation is the most classic approach. Back in 2006, Liberatore et
al. [90] leveraged per-packet padding (i.e., increasing the bytes
of packets) in an attempt to defeat host profiling system. They
found that per-packet padding is reasonably effective, which
can lower predictive accuracy to less than 8% with a cost
of increasing traffic volume by 145%. However, per-packet
padding cannot defend against many WFP attacks [95], [106]
because this approach still preserves some key traffic features
that can help classify the traffic. To fix the drawbacks, WTF-
PAD [112] extends per-packet padding to link-based padding
to modify more traffic features. It detects large time gaps
between packets and covers them by adding dummy packets.
Further, to obscure traffic bursts, it also adds delays between
packets to make them statistically different. Due to its low
computational overhead and time overhead, WFP-PAD has
been used in many real-world FGTA defense systems [182],
[183]. Still, WTF-PAD leaks a portion of information in trans-
mission and can be broken by some FGTA approaches [97],
[184]. Gong et al. [174] proposed FRONT and GLUE. FRONT
focuses on obfuscating the trace front with dummy packets.
It also randomizes the number and distribution of dummy
packets to impede the attacker’s inferring process. GLUE adds
dummy packets between separate traces so that they appear to
the attacker as a long consecutive trace, making the attacker
unable to find the start or end points.

Compared with traffic obfuscation that freely modifies traf-
fic features, traffic confusion mimic other groups of traffic
to let FGTA approaches generate wrong outputs, which is
sometimes more effective, especially when defending against
WFP attacks. Wright et al. proposed traffic morphing [175]. It
can thwart statistical TA approaches by morphing one class of
traffic to look like another class using convex optimizations.
Although it cannot defend against some types of FGTA
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approaches [95], [106], this approach enlightens many subse-
quent countermeasure approaches. For example, Glove [185]
first leverages a clustering algorithm to group web pages with
similar traffic, and then inserts only a small amount of dummy
traffic to hide the web page traffic in a close group; Super-
sequence [94] also clusters network traffic traces of different
web pages and extracts the shortest common supersequence
to cover current web traffic; Walkie-Talkie [111] modifies the
browser to communicate in half-duplex mode (buffer traffic
and send in bursts) rather than the usual full-duplex mode
(immediately send available data). By combining with dummy
packets, Walkie-Talkie can modify the traffic of monitored
sensitive pages and benign non-sensitive pages, so that these
packet sequences are exactly the same (each packet has the
same timing, length, direction and ordering). However, traffic-
confusion-based approaches requires a priori knowledge about
popular web pages’ network traffic. It cannot tackle traffic of
dynamic content or unpredictable activities. Moreover, such
approaches can lead to noticeable computational overhead.

Another direction is to regularize the network traffic, mak-
ing different groups of traffic have relatively uniform pat-
terns. For instance, Buffered Fixed-Length Obfuscation (Bu-
FLO) [106] obfuscates page transmissions by sending packets
of a fixed size at a fixed interval and using dummy packets to
both fill in and potentially extend the transmission. Thus, the
traffic generated by different websites has a similar continuous
traffic flow. However, BuFLO can cause very high time and
bandwidth overhead, sometimes can even bring congestion
problems to the network [93]. To alleviate the problem,
Congestion-Sensitive BuFLO (CS-BuFLO) [186] was pro-
posed to vary the packet transmission rate. Tamaraw [110]
achieves a better security/bandwidth trade-off by using smaller
fixed packet sizes and treating incoming and outgoing packets
differently to avoid unnecessary padding and dummy traffic.
DynaFlow [187] morphs packets into fixed bursts, dynamically
changes packet inter-arrival times to generate constant traffic
flows, and pads the number of bursts. Theoretically, DynaFlow
leads to less network overhead compared with BuFLO, CS-
BuFLO, and Tamaraw.

The recent development of FGTA countermeasures mainly
focuses on two aspects:

1) The countermeasure should lead to nearly zero overhead
to both the data plane and the endpoints.

2) The countermeasure should be applicable to various web
applications (e.g., web page visiting, video streaming,
VoIP, etc.) and scenarios.

For instance, Henri et al. [188] splitting traffic exchanged
between the user and Tor nodes over two different, un-
related network connections (e.g., DSL, Wi-Fi, or cellular
networks) to protect against FGTA by a malicious ISP; Traf-
ficSliver [104] limits the data a single observation point can
observe and distorts repeatable traffic patterns exploited by
FGTAs with user-controlled splitting of traffic over multiple
Tor entry nodes. TrafficSliver also offers an application-layer
solution, which will be discussed in Section V-B; Wang [189]
points out that an attacker may only need to successfully
identify a single web page (which they define as the one-page

setting) in reality, and a WFP countermeasure must still thwart
that attempt. Based on this assumption, Wang fortify WFP
countermeasures by exploring randomness and regularization
options for several existing countermeasures; To protect IoT
networks, Pinheiro et al. [173] implement a middlebox to
modify the outbound and inbound traffic’s packet size They
also leverage an SDN application to obtain information of
network traffic from both sides (source and destination) to
manage the size-based padding mechanism.

B. Application-layer Countermeasures

Unlike network-layer countermeasures that directly mod-
ify network traffic to cover user activities, application-layer
countermeasures use dummy applications to generate unnec-
essary traffic, thereby indirectly perturbing FGTA approaches.
However, most application-layer countermeasures are limited
in covering traffic of web page visiting.

Panchenko et al. [92] proposed a browser plug-in that adds
traffic noise by loading another random web page in parallel.
However, it may fail to defend against some WFP attacks
if users lower the page loading frequency to decrease the
bandwidth overhead [94]. Another Tor-based countermeasures
approach [190] randomizes the order of requests for embedded
website content and the pipeline size (i.e., the number of
requests processed in parallel) to perturb WFPs. Cherubin et
al. [177] propose LLaMA and ALPaCA, defenses for client
side and server side. LLaMA reorders outgoing HTTP requests
by randomly delaying them and adding dummy HTTP re-
quests. On the server side, ALPaCA conducts traffic morphing
by padding web objects of a page and inserting invisible
dummy web objects. The three methods above only work in
Tor environments.

HTTP Obfuscation (HTTPOS) [176] is countermeasure that
can be used in environments other than Tor. By modifying
HTTP requests and basic TCP features, it manipulates four
fundamental network flow features, including packet size, web
object size, flow size, and timing of packets. It can also modify
and reorder HTTP headers and insert dummy HTTP requests.
Another general countermeasure is TrafficSliver’s application-
layer defense [104]. This approach is on the client side. By
sending single HTTP requests for different web objects over
distinct Tor entry nodes, this application-layer defense can
reduce the detection rate of WFP classifiers by almost 50
percentage points.

VI. FUTURE RESEARCH DIRECTION

Although FGTA has been developed for decades, there
still exists room for further development, enhancement, and
exploration. In this section, according to our observations
about recent research trends, existing literature, industry de-
ployments, and major problems to be solved in this domain,
we discuss avenues for future research.

A. Improvement of Analysis Efficacy and Coverage

FGTA has been used in many different subfields of com-
puter network, including attack detection, traffic measure-
ment, side-channel attack, and network management, etc.
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Researchers have constructed myriad analysis models and
collected plenty of datasets specifically for different categories
of tasks. But there are still many use cases or scenarios that
have not been covered by existing approaches. For example,
with the raising of Unmanned Aerial Vehicle (UAV), FGTA
can be potentially refined for UAV anomaly detection [191];
FGTA can also be adopted to monitor and safeguard network
traffic of automatic vehicles; with the emergence of new forms
of applications, attacks, and communication protocols, existing
FGTA approaches may not be able to handle today’s traffic.
Therefore, researchers can gather more updated traffic datasets
to enhance the coverage of existing FGTA approaches, so that
they can be used in more types of tasks and scenarios.

In addition, the efficacy of many current FGTA approaches
are not ideal for real-world deployments. Depending on the
observation points, FGTA approaches may easily see millions
of traffic flows over a short time period in the real world.
Under such circumstances, an FGTA approach could generate
large numbers of false positives or false negatives, even if it
achieves more than 95% accuracies in close-world evaluations.
Thus, increasing the efficacy of FGTA is a timeless topic for
researchers and developers.

B. Evaluation Enhancement

As we elaborate in Section IV, current close-world evalua-
tion methods are far away from revealing an FGTA approach’s
real capability and many open-world evaluations are not
very standardized and effective. It is therefore profound to
propose a new, operable, and effective evaluation paradigm
for FGTA. Such an evaluation paradigm should contain a
testing dataset similar to a real-world test case in terms of
volume, environment, and data distribution. Simultaneously,
the dataset should have comprehensive labels for almost all
traffic flows, not only for analysis targets. This can be achieved
by either constructing a large scale sandbox to simulate and
collect all types of traffic from a white box view, or collect
a large-scale, real-world traffic dataset and carefully label it
using knowledge of endpoints from all perspectives. Besides,
the testing data portion that is visible to the observation
point should be consistent with accordingly to the real-world
deployment conditions.

C. Dealing with Complex Network Environments

In real-world deployments, the network environments and
configurations can be quick different from researchers’ as-
sumptions. The following factors were not widely discussed
in previous papers, but can be common for network service
providers.

• Many observation points can only see asymmetric net-
work traffic, which can lead to disfunctions for most
FGTA approaches.

• Some networks are composed of multiple subnets, includ-
ing but not limited to wireless network, optical network,
or radio frequency network. Traffic flows collected from
such a network can have different delays and congestion
control mechanisms. Tackling this type of traffic can be
challenging.

• Due to deployments of modern traffic engineering ap-
proaches, traffic captured from some observation points
is inconstant, posing difficulties to many FGTA methods.

We believe designing and implementing new FGTA ap-
proaches that can work under these circumstances are direc-
tions worthy of our concerns.

D. Integrating FGTA into Other Analytical Systems
Information contained in network traffic is essentially lim-

ited. Even though FGTA can already reveal considerable
amount of information, the detailed behavior models of end-
points are still hidden behind the curtain. To more comprehen-
sively investigate the network situation, researchers can try
to combine FGTA with information from other dimensions
(e.g., application-layer activities, server specifics, hardware
conditions, etc.), which can provide a better ability for situa-
tional awareness. So far, there are a few researches combine
TA with information from other layers for more accurate at-
tack/anomaly detection and timely threat response (e.g., [192]–
[194]). We can push this idea forward by further integrate
FGTA into this idea.

Furthermore, cyber threat intelligence (CTI) [195], allow-
ing entities to share attack/anomaly information with trusted
partners and peers, is becoming a powerful tool to quickly
and accurately tackle intractable attacks. By embedding results
from FGTA into CTI systems, participated entities can raise
awareness of the current situation, thereby more quickly
responding to incoming attacks. Designing attack defense
systems with both FGTA and CTI is thus a promising research
direction.

VII. CONCLUSION

With the increasing complexity of network transmission
technology, FGTA is becoming a crucial tool to gain a finer
granularity of visibility over the network. From the perspective
of attackers, it can analyze the content-agnostic metadata and
statistical information of network traffic to infer the website
visited by users, estimate locations of traffic sender, or decode
the video content streamed in the link. As for the network
administrators, FGTA can be used to detect application-layer
threats even with layer 3 or layer 4 data, investigate quality of
experience without collect sensitive user data, or perform fine-
grained traffic measurement to better configure the network.

In this report, we analyze literature that deal with FGTA to
help researchers and developers learn the latest developments
in this area. After comparing different FGTA approaches by
their use cases, we found that most existing approaches are
based on machine learning or high-dimensional clustering.
They are effective in capturing the subtle differences between
network traffic generated by different activities. However,
many FGTA approaches still come with limitations related
to training data coverage, false positive rates, and real-world
usability. In addition, edge users of the network can adopt
a variety of countermeasures to defend against FGTA, with
some overheads regarding network bandwidth and delay.
Researchers can further study this domain to increase the
coverage of FGTA or make the approaches more practical in
complex real-world network environments.
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ACRONYMS

ABR Adaptive Bitrate
BTS base transceiver station
CDN content delivery network
CNN convolutional neural network
CTI cyber threat intelligence
DNN deep neural network
FGTA fine-grained traffic analysis
GBDTgradient boosting decision tree
HMM hidden Markov model
IoT Internet of things
KNN k-nearest neighbor
LBA location-based applications
LBS location-based services
MLP multi-layer perceptron
NAT network address translation
NDAEnonsymmetric deep autoencoder
OS operating system
OSN online social network
PII personally identifiable information
QoE quality of experience
QoS quality of service
QUIC Quick UDP Internet Connection
RKHS Reproducing Kernel Hilbert Space
RNN recurrent neural network
SAE stacked autoencoder
SMO Sequential Minimal Optimization
SVM Support Vector Machine
TA traffic analysis
UAV Unmanned Aerial Vehicle
VPN virtual private network
WFP website fingerprinting
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[177] G. Cherubin, J. Hayes, and M. Juárez, “Website fingerprinting defenses
at the application layer.” Proc. Priv. Enhancing Technol., vol. 2017,
no. 2, pp. 186–203, 2017.

[178] Z. Deng, Z. Liu, Z. Chen, and Y. Guo, “The random forest based detec-
tion of shadowsock’s traffic,” in 2017 9th International Conference on
Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 2.
IEEE, 2017, pp. 75–78.

[179] J. Beznazwy and A. Houmansadr, “How china detects and blocks
shadowsocks,” in Proceedings of the ACM Internet Measurement
Conference, 2020, pp. 111–124.

[180] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and vpn traffic using time-related,” in
Proceedings of the 2nd international conference on information systems
security and privacy (ICISSP). sn, 2016, pp. 407–414.

[181] P. Choorod and G. Weir, “Tor traffic classification based on encrypted
payload characteristics,” in 2021 National Computing Colleges Con-
ference (NCCC). IEEE, 2021, pp. 1–6.

[182] I. Goldberg and C. A. Wood, “Network-based website fingerprinting,”
https://datatracker.ietf.org/doc/html/draft-wood-privsec-wfattacks-00,
2019.

[183] “New tor release: Tor 0.4.0.5,” https://blog.torproject.org/
new-release-tor-0405/, 2019, accessed: 2022-02-15.

[184] S. Li, H. Guo, and N. Hopper, “Measuring information leakage in
website fingerprinting attacks and defenses,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
2018, pp. 1977–1992.

[185] R. Nithyanand, X. Cai, and R. Johnson, “Glove: A bespoke website
fingerprinting defense,” in Proceedings of the 13th Workshop on
Privacy in the Electronic Society, 2014, pp. 131–134.

[186] X. Cai, R. Nithyanand, and R. Johnson, “Cs-buflo: A congestion
sensitive website fingerprinting defense,” in Proceedings of the 13th
Workshop on Privacy in the Electronic Society, 2014, pp. 121–130.

[187] D. Lu, S. Bhat, A. Kwon, and S. Devadas, “Dynaflow: An efficient
website fingerprinting defense based on dynamically-adjusting flows,”
in Proceedings of the 2018 Workshop on Privacy in the Electronic
Society, 2018, pp. 109–113.

[188] S. Henri, G. Garcia-Aviles, P. Serrano, A. Banchs, and P. Thiran, “Pro-
tecting against website fingerprinting with multihoming,” Proceedings
on Privacy Enhancing Technologies, vol. 2020, no. 2, pp. 89–110,
2020.

[189] T. Wang, “The one-page setting: A higher standard for evaluating
website fingerprinting defenses,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021,
pp. 2794–2806.

[190] mikeperry, “Experimental defense for website
traffic fingerprinting,” https://blog.torproject.org/
experimental-defense-website-traffic-fingerprinting/, 2011, accessed:
2022-02-11.

[191] A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-
Rodriguez, and J. Yuan, “Survey on uav cellular communications: Prac-
tical aspects, standardization advancements, regulation, and security
challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4,
pp. 3417–3442, 2019.

[192] Y. Feng, J. Li, and T. Nguyen, “Application-layer ddos defense with
reinforcement learning,” in 2020 IEEE/ACM 28th International Sym-
posium on Quality of Service (IWQoS). IEEE, 2020, pp. 1–10.

[193] W. Wang, Y. Shang, Y. He, Y. Li, and J. Liu, “Botmark: Automated
botnet detection with hybrid analysis of flow-based and graph-based
traffic behaviors,” Information Sciences, vol. 511, pp. 284–296, 2020.

[194] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network
anomaly detection: methods, systems and tools,” Ieee communications
surveys & tutorials, vol. 16, no. 1, pp. 303–336, 2013.

[195] S. Barnum, “Standardizing cyber threat intelligence information with
the structured threat information expression (stix),” Mitre Corporation,
vol. 11, pp. 1–22, 2012.

https://datatracker.ietf.org/doc/html/draft-wood-privsec-wfattacks-00
https://blog.torproject.org/new-release-tor-0405/
https://blog.torproject.org/new-release-tor-0405/
https://blog.torproject.org/experimental-defense-website-traffic-fingerprinting/
https://blog.torproject.org/experimental-defense-website-traffic-fingerprinting/

	Introduction
	Input Data
	Network Observation Point
	Traffic Data Acquiring
	Packet-level capture
	Flow-level capture

	Widely used traffic capture engines
	Packet-level traffic capture engines
	Flow-level traffic capture engines


	Use Case and Representative Approach
	Attack/Anomaly Detection
	Intrusion detection
	Malware detection
	Data exfiltration detection
	Others

	Fine-Grained Quality of Experience Investigation
	Website Fingerprinting
	Early development of WFP
	Defeat encrypted tunnel
	WFP in Tor era

	Location Inference
	Contextual location inference
	Geographical location inference

	Device/OS Identification
	OS identification
	IoT device identification

	Application Identification
	Application identification for general-purpose devices
	Mobile application identification
	Application identification on other platforms

	Application Usage Inference
	Messager/Online social network usage inference
	Streaming service usage inference
	General-purpose application usage inference
	Others


	Limitation
	Coverage of train data
	Uncertainties in real-world environments
	False alarm
	Integrity of network traffic

	Countermeasure
	Network-layer Countermeasures
	Application-layer Countermeasures

	Future Research Direction
	Improvement of Analysis Efficacy and Coverage
	Evaluation Enhancement
	Dealing with Complex Network Environments
	Integrating FGTA into Other Analytical Systems

	Conclusion
	References

