
1

In Situ Visualization of Performance Data for
High-Performance Computing Applications

Dewi Yokelson
Computer Science, University of Oregon

Abstract—Performance visualization of high-performance
computing (HPC) codes, while complex, can be one of the most
useful tools in analysis. Moving the visualization earlier in a
workflow can save scientists enormous amounts of time and
money when they are optimizing and running their experiments
on expensive and in-demand, HPC resources. This paper surveys
current performance visualization capabilities and challenges,
and analyzes the possibilities of taking a more in situ approach.
This approach would boost efficiency and enable visualizations
that might otherwise require prohibitively large amounts of data,
thus incurring too much I/O overhead. One potential enabler for
this approach is the application of machine learning, such as,
using trained models to predict results, or generate visualizations
from smaller samples of performance data, before the application
has finished running. We look at current work in this area, as well
as the neighboring fields of scientific visualization, information
visualization, and and relevant subsets of machine learning.

I. INTRODUCTION

HPC systems have been driving scientific discovery in many
domains, yet utilizing them as efficiently as possible still poses
a major challenge. The benefits of running simulations on
HPC systems are countless. They have made it possible to
model extremely intricate scientific systems that require a large
volume of data, complex calculations, and high precision.
It is necessary to expose, and use the parallelism in HPC
applications in order to process these volumes of data quickly.
Scaling these simulations across multiple nodes, each of which
contain many cores can become difficult quickly, even for
experts in the HPC domain.

Effectively using the necessary tools and programming
models such as CUDA [1], OpenMP [2], and MPI [3], presents
developers with additional challenges. This is especially true
when these are used in conjunction with highly optimized
for parallel performance math and modeling libraries, e.g.,
BLAS [4], LAPACK [5], and FFTW [6]. The steps to compile
and marry together different versions and implementations of
these libraries with the best thread and rank count can create
an prohibitively large search space for optimal parameters.

In order to achieve optimal wall clock time for the applica-
tion, it is important to monitor and analyze the performance,
which adds yet another layer of data complexity. For an
HPC application, this performance is a crucial consideration.
Without sufficient performance of the application, both time
and money are wasted on expensive resources. However, it can
be difficult to understand the performance of such applications
and systems. There are many aspects to this, including: under-
standing what the current application performance is, figuring
out a realistic performance benchmark to achieve, the optimal

parameters, and diagnosing reasons for poor performance so
as to improve it.

One such way to help communicate these concepts and
metrics is via data visualizations of performance data gathered
from many of the different measurement applications. There
are many tools that profile, measure, and can describe the per-
formance of an application or of specific hardware. However,
performance data in HPC is notoriously difficult to manage
and make sense of because it is complex, and high in volume.
Despite these challenges, performance visualization has come
a long way in the last decade, including many new tools and
novel graphs that help scientists on this path.

Performance visualization can be organized into a taxonomy
comprising four contexts, as shown by K.E. Isaacs et al.: hard-
ware, software, tasks, and application [7]. Hardware covers
physical structures of the hardware and their performance. The
software category encompasses the source code, or application
that is being run. Tasks are similar to software but with the
source code context removed, still actions that are happening,
but without any relation to how the code was written. The
application context contains things like linear algebra calcu-
lations or the computational aspects of the program. Isaacs
points out that some visualizations are characterized by more
than one of these contexts.

The contexts provided by Isaacs et al. help us to understand
what kinds of performance visualizations already exist, what
they do well, and where there are opportunities for improve-
ment. As a general example, some of these visualizations,
especially of the hardware nature, rely on reducing the di-
mensionality of the data in order to present something easily
digested by the reader. As problem spaces get larger, with
increasingly complex code on larger clusters with more cores
per node, reducing the dimensionality proves to be a bigger
challenge [7]. We center our work on these premises in order
to discuss new methods for analyzing performance data and
generating hardware-specific visualizations.

Visualizations are critical in presenting performance data in
an understandable format. Yet knowing what data to present,
and how is a challenge in and of itself. As the volume
of performance data grows, there is an increasing need to
be able to do more with less data. As one example, if a
full simulation takes days to run, it can be unreasonable
to do many runs to tune parameters, i.e., different libraries,
number of ranks, threads. The ability to know if we have
better performance earlier in the simulation would speed up
productivity immensely. Another example is when a simulation
is run on hundreds of nodes, with hundreds of processes and



2

threads, and per rank, per thread metrics are gathered. This
can actually create I/O or data storage problems, especially
if analysis is done post hoc (after completion). Thus being
able to conduct in situ (during execution) performance analysis
becomes necessary.

In this paper, we contribute discussion on the following
recent advances in the field of performance visualization:

1) Successful performance visualization concepts, common
challenges, and how they have been managed.

2) An analysis of many of the current tools and their
“readiness” for in situ performance visualization.

3) Current in situ and post hoc performance prediction and
problem diagnosis techniques and what opportunities
have arisen there.

4) A look into the fields of scientific visualization and
information visualization for inspiration.

5) Suggested opportunities for applying machine learning
techniques to solve some of the common issues and
better enable in situ performance visualizations.

Further research opportunities are also discussed in terms
of the following challenges that are related to implementing
in situ performance analysis in table I.

TABLE I
FOUR OF THE UNIVERSAL CHALLENGES ASSOCIATED WITH

IMPLEMENTING IN SITU PERFORMANCE VISUALIZATION

Challenge Description

(A) Superfluous Data
A direct effect of the high-dimensionality
problem, managing large amounts of data

and visualizing only items of interest

(B) Incomplete Data
Because a program has not completed, not all

the possible data will have been collected,
could lead to incorrect conclusions

(C) Distributed Data
The parallel nature of applications means
that performance data could be distributed

across resources and require synchronization

(D) Limited Resources
Collecting performance metrics already
increases overhead, adding visualization

generation can exacerbate this issue

Here we list the layout of this paper for ease of reading.
Section II begins with background information on performance
data. In section III we discuss the state of the art of per-
formance visualization. This includes the current performance
visualization capabilities and concepts, and which have proved
most effective. This is followed by a discussion of the biggest
challenges and opportunities in performance visualization,
especially in relation to moving towards increasingly in situ
methods. Section V takes a look into the neighboring domains
of scientific visualization and information visualization and
how they approach in situ, or exploratory, data visualization.

Finally, in section VI we take a look at the different machine
learning projects that are, or can be, applied to the HPC
domain. This includes current research in the HPC domain
for performance diagnostics and improvement using machine
learning techniques. It also includes discussion of using
machine learning for generating big data visualizations. We
conclude with discussion about reasons for success and failure
of certain projects, and where we see the most potential for
future work. Included here is an analysis of likely challenges
and some mitigation strategies.

II. PERFORMANCE DATA AND VISUALIZATION
BACKGROUND

The following sections provide some background on how
performance data of HPC codes is gathered and structured
for use. The structure of the data and it’s many possible
dimensions is one of the largest contributing factors to the
challenge of visualization.

A. Dimensions

The high-dimensional nature of performance data is one
of the challenges to creating 2d, 3d or even 4d (showing a
change over time) visualizations. When thinking about the
environment that HPC codes run in, we can quickly see why.
First, there can be the code logging events and gathering
timing data for specific functions to complete. Then this code
could be multi-threaded or multi-processed, with numerous
threads or processes executing simultaneously. It could be
a hybrid application with multiple processes and multiple
threads per process. This could then be running across many
compute nodes. Parallel-enabling programs such as MPI and
CUDA have their own overhead and sometimes functions
that should be tracked for timing data. Then there are the
hardware metrics that can be tracked, such as the memory
bandwidth during an application run. The data can quickly
become unwieldy, for a program running on multiple compute
nodes, for multiple days, with multiple ranks and threads.

B. Profiles

A large subset of performance analysis of HPC codes is
done with the use of profile data. Profiles are essentially
metadata about the code running that gets written out during
runtime (dynamic). This metadata usually includes informa-
tion like the function name, current line in the code, and
performance information such as thread ID that can be used
to determine how long certain sections of code take to run,
among other things. These profiles are multi-dimensional data
files, often containing information per thread, or node, etc.
They can be tricky to parse into a format that cooperates with
non HPC specific visualization tools.

Profile data can be gathered either through instrumentation
or sampling. Instrumentation of the code is a more involved
method that requires recompiling the code - the tool used to
instrument will insert code that writes out performance data
periodically. This is the most comprehensive method, but it
can often be time-consuming to implement and may not be
necessary if sample data is sufficient. Sampling is when the
tool interrupts the HPC application periodically to query for
the metadata mentioned above. Sampling usually requires less
set up but offers the programmer less control over when and
how the application is monitored. For a large application that
runs for a significant period of time, sampling can often be
sufficient as it averages out to being quite accurate over many
timesteps.

C. Trace Data

The second category of performance data that is widely used
in analysis and visualization tools is trace data. Traces can



3

include the same data as a profile, but contain more detail,
most notably with the addition of a temporal dimension. It
can be thought of as a detailed log of events happening while
the codes run. Trace data can be generated at many different
levels including: the application, the compute node, the rank
or process, and the thread. While this level of detail can be
extremely useful, it can also quickly become unwieldy.

Because of this complexity and potential volume of trace
data as well as the wide array of tools that use it. A stan-
dardization project has been in place for some time. The
current standard format for trace data is give by Open Trace
Format 2 (OTF2) [8]. This built on the predecessor Open Trace
Format (OTF) [9], [10] and the EPILOG format [11]. The main
improvements were adding more flexibility between different
use cases and additional scalability.

D. Important Performance Metrics

One of the most common metrics that is used when ana-
lyzing performance of an application is the wall clock time.
This is simply the full length of time that it takes for the
application to run from start to finish. While this measurement
is an excellent indicator of the performance of the system, and
is often the main target for decreasing, it lacks the nuance that
may be required to gain additional performance. To identify
these further opportunities, function or kernel specific data, or
hardware specific data is more helpful. For example, knowing
how long a program spent executing one specific loop can give
insight into how it could be optimized.

Hardware performance counters are registers that keep
track of the count of certain events (e.g., number of cache
misses). These events imply how efficiently code is executed
on the hardware, and can be gathered by accessing API’s
like PAPI [12], [13]. Efforts to standardize this access across
tools have been taken on with projects such as Score-P [14].
Examples of tools used to gather hardware counter information
include: TAU [15], HPCToolkit [16], Caliper [17], Survey [18],
[19], and Likwid [20].

III. PERFORMANCE VISUALIZATIONS AND THEIR
EFFECTIVENESS

This section encompasses the current work and effectiveness
within the field of performance visualization. First, we discuss
what is currently being visualized, and at what granularity.
Second, what makes these visualizations effective, including
examples of some such successful ones. Following this is a
deep dive into the cache-aware roofline model, one of the most
successful performance visualization concepts.

A. Current Performance Visualization

Current capabilities for performance visualization span
across many scopes, including, the actual code performance,
single-node hardware performance (FLOP rates and memory
bandwidth), distributed memory system performance (multiple
node), and the relationship between some of these. Table II
categorizes the different capabilities of many of the existing
tools. From an application/software perspective, we can visu-
alize something as high level as the differences between wall

Fig. 1. An example of four different call graphs generated by the Hatchet tool
for data gathered for the same code, CalcHourglassControlForElems, by three
heavily used analysis tools, Caliper, HPCToolkit, and TAU [21]. There are
notable differences between the clarity of the call graphs with data obtained
through instrumentation.

clock times, or as granular as how long a loop takes to execute.
Other concepts that are often visualized are a full call graph
of the application, and time spent in each function over the
course of an application run, denoted in the “Profile” column
of table II. Table II also specifies in the tools that do trace
visualization, which is simultaneously the most useful data
due to its detail, but the least user-friendly due to its volume.
This is discussed in much further detail within the next section,
section III-B.

Call graphs and calling context trees are the two most
common formats for structured profile data acquired through
instrumentation or sampling. Call graphs provide a more
static view of any interrelated functions (that call each other),
disregarding how the application currently got to the specific
function sampled, see Figure 1. Calling context trees show
a more dynamic view by using the stack trace to expose to
the programmer what functions called each other to get to the
current state in this run of the application. Both are extremely
important ways to structure the data as the call graphs are
more straightforward but the calling context tree provides more
detail and potentially important context about the application.

Another concept that researchers have been visualizing
is memory bandwidth, as the majority of applications are
memory bound [22]. Two concepts to visualize here are the
hardware capacity (maximum), and how well the applica-
tion is utilizing the full bandwidth available. MemAxes is
a tool developed to target specifically the memory domain
of performance data [23]. Their approach takes into account
source code, data structures, and hardware. They create in-
teractive visualizations to communicate potential bottlenecks
or issues with this complex relationship. Their sunburst-like
visualizations are quite unique, which can be helpful if it can
communicate well, yet require the consumer to adapt to a new
visualization type.

While they may represent the complex structures of mem-
ory, they are not that intuitive since they are an uncommon



4

TABLE II
VISUALIZATION CAPABILITIES OF SOME PERFORMANCE VISUALIZATION TOOLS

Tool Trace Profile Architecture Distributed CPU GPU PortableThread Rank Instrumentation Sampling (Roofline) Memory Loop Function Loop Function
Intel Advisor X X X
Intel VTune X X X X

NSight Compute X X X
NSight Systems X X X X

Apprentice2 X X X
Paraprof X X X X X X
Perfetto X X X X X X X

Chrome Tracing X X X X X
Hpcviewer X X X X X X

Traveler/Ravel X X X X
ERT X X

Boxfish X X X
Vampir X X X X X X X

ParaGraph X X X X
Jumpshot X X X X
TRIVA X X X X
Hatchet X X X X

CallFlow X X X X
VIPACT X X X X
Grafana X X X X

type of chart. With extended exposure to this tool, we can
see how it could be quite useful. However, this is another
example of a performance visualization project that did not
have a significant impact in the industry. While out-of-the-
box thinking like this is a good step in the right direction and
demonstrates a need for a vast overhaul of how these concepts
are communicated, we see that it must be balanced with ease
of utility.

Hardware performance visualization is often encompassed
by showing the peak performance of the compute node or
cluster. The cache-aware roofline model, which is discussed in
detail in section III-C displays both the theoretical maximum
memory bandwidth of the hardware system (per cache level),
and the theoretical maximum FLOP rates. It also allows for
incorporating a visual of the actual bandwidth and FLOP
rates (arithmetic intensity) achieved by the software for a full
application, function, or loop. Another method of hardware
performance visualization that is common to see is the stacked
bar chart displaying the Top-Down metrics in conjunction with
Top-Down Analysis. This method allows users to visualize at
a high level and dive into more detail on hotspots [24]. This
method was developed at Intel and has been incorporated into
Intel VTune [25].

B. Effective Performance Visualization

For a performance visualization to be effective, it needs
to communicate some result about the software or hardware
to the viewer. The less time the viewer needs to confirm a
hypothesis, spot a trend, or identify a problem, the better the
visualization. This is, of course, subjective to a degree, as
different humans find different graphs easier to understand.
However, the most successful and popular approaches are that
way for a reason, heavily adopted for their usefulness.

For the complex nature of performance data, the ability to
flatten the data into something human digestible is a necessity.
Heatmaps that display data on a per-thread or per-process basis

are one effective approach. With a different color per proce-
dure, a user can immediately see which procedures are taking
the longest, and if there is inconsitency between processes or
threads. Many tools employ this technique, including but not
limited to HPCToolkit [16], TAU [15], and Grafana [26].

One of the major issues facing the visualization of software
trace data today is that they do not scale well with the amount
of data collected, and for HPC applications, visualizations
need to scale to be useful. To address this issue, Ravel, struc-
tures the typical trace data, into that of logical time [27] based
on the happened-before relation intorduced by Lamport [28].
Logical time in this context means looking at relationships
between events, and the order in which they occur, rather
than when events occur on a physical timeline. It takes the
code structure into account, as well as making grouping of
events easier. More details about the specific implementation,
and topics like lateness can be read in section 3 of their
paper [27]. Through preserving important physical timing data
and different applications of clustering data and color coding,
they create visualizations that are more easily understood, even
at a higher processor count.

Ravel presents four views for the user, logical time, clus-
tered logical time, classic physical time, and metric overview,
see figure 2. The case studies of Ravel show improvement
in visualizing high processor counts over the similar case
examples generated by other tools. Some issues were also
found by using Ravel that had previously been unknown by the
developers [27]. This new concept proves promising, it is clear
that visualizing performance data requires a paradigm shift
such as this. More recent projects reference this work [29] and
look into the problem of scaling performance visualizations
with processor count. However, whether these visualizations
are understandable enough to become mainstream, and widely
adopted by modern tools is yet to be seen.

Another tool Isaacs has been working on is Traveler, as the
performance visualization slice of the JetLag interactive com-



5

Fig. 2. An example of the trace visualizations generated by Ravel, each row represents a thread and the color represents a procedure. [27]. By nature, trace
data can get unwieldy quickly, and Ravel was built specifically to tackle the challenge A (scalability) in table I could be a particular challenge when visualizing
trace data like this.

puting system [30]. This environment contains a python asyn-
chronous array library, the APEX performance measurement
capabilities, and a jupyter notebook interface, among other
components. The goal of the JetLag system is to provide a
development environment where the user only completes tasks
on their local computer, and heavier computations are sent to
HPC resources an back as needed, but in the background. The
result is more supportive of the exploratory nature of data
analysis, and allows for a more seamless experience.

HPCToolkit is a popular and relatively widely used across
domains and platforms. HPCToolkit gathers performance met-
rics with only a few percent overhead [16]. The HPCToolkit
workflow includes measurement, analysis, correlation, and
presentation. Presentation in HPCToolkit is comprised of two
tools, hpcviewer and hpctraceview. Hpcviewer is simply a user
interface for displaying profile data, it allows the programmer
to view their callpath data. It can help with digging into
problem areas in the code, and navigating through the call path
in a few different views. Hpctraceview creates visualizations of
how a parallel execution unfolds over time using asynchronous
sampling. An example visualization they create is where each
line in the chart represents a thread, and each color represents
a different procedure. This view helps a programmer identify
patterns based on color and size and helps communicate said
patterns for this data which varies in both time and space.

TAU and TAU Commander, are widely-used tools built by
ParaTools that can generate profile and trace data for applica-
tions on many different platforms. TAU can be complicated to
build and configure correctly for an application and on specific
hardware, TAU Commander was introduced as the solution

for these challenges. It works much faster out of the box by
adding some user friendly features to set up experiments [15],
[31]. Recent updates allow output into a SQLite database as
opposed to a profile file, this allows for easier access and
flexibility manipulating the output.

Tau tools provide insight via the five modes: interval events,
atomic events, query, control, and sampling. The output profile
text data is then fed into Paraprof for analysis and visual-
ization. Paraprof focuses on four domains: the Data Source
System, the Data Management System, the Event System, and
the Visualization System [15]. Resulting visualizations can
even be interactive, so that a user can dig deeper into specific
issues by clicking on areas of interest, e.g., a particularly large
exclusive time value for a specific function.

Trace visualizations are supported by TAU as well, data is
collected and formatted in a way that is compatible with Vam-
pir for visualization. Vampir supports many different views
for analysis beyond just tracing, including summarizing and
clustering [32], [33]. Other trace visualization and analysis
tools are also supported by converting the TAU trace data with
one of their supported conversion tools i.e., EPILOG converter
and the Expert tool. Grafana is a visualization dashboard that
incorporates trace/time series data in more of a monitoring
approach which will be discussed further in section IV-D [26].

Google has also created a robust trace analysis and visual-
ization tool called Perfetto. Perfetto can analyze and visualize
data from a number of different sources. It runs completely
inside of the web browser and has interactive zoom and select
capabilities. This allows the user to control their view and dive
deeper into areas of interest. This can even be done offline



6

Fig. 3. An example roofline plot displaying multiple cache levels (diagonal lines), multiple peak flop rates (horizontal lines), and some example application
data points (dots). Once an architectural roofline is created (lines), application points from functions or kernels could be plotted as soon data becomes available,
which could integrate well into an in situ visualization workflow.

once the trace file is opened inside the browser window [34].

C. Rooflines: A Visualization Success Story

The graphical Roofline model is one of the most successful
visualization concepts of hardware performance to come out
of the literature in recent history. It has taken off like not
many other concepts have, being incorporated into professional
tools and used in the majority of papers discussing hardware
performance. It’s success is owed in part to it’s simplicity,
with a straightforward shape that is easily understood. Part
of it’s success is due to it’s portable and flexible nature, one
must only collect the correct values from their hardware and
they are easily comparable across different architectures. The
Cache-aware Roofline model (CARM) incorporates multiple
cache levels [35]. Rooflines can also include multiple peak
flop rates (roofs), for example, when looking at differences
between scalar and vectorized peaks and/or enabling Fused
Multiply Add (FMA). A Roofline model also lends itself well
to customization, allowing additional plotting of measured
application performance or kernel performance in regards to
the theoretical peaks.

The original roofline model was outlined by Williams et
al. out of Berkeley Labs in [36]. First emerging in 2009,
it was instrumental in assisting scientists moving to parallel

programming from serial programming. The basic concept
behind the roofline graph is that it plots GFLOPs per second on
the y-axis, and Arithmetic Intensity on the x-axis. Arithmetic
intensity is defined as the total number of FLOPs computed,
divided by the total number of bytes transferred between the
processor and the specified memory level. Plotted on a log-
log scale, this creates the visual of a sloped roof, connected
to a flat roof, indicating the peak values achievable on this
particular hardware. The ability to evaluate how a kernel is
performing based on the limits of the hardware was a key for
scientists porting their code to new hardware, or improving
their code on existing hardware. It was now easier than ever to
answer questions about performance and work towards greater
optimization of codes.

Ilic et al. made some extremely useful updates to the
original Roofline model when they introduced the Cache-
aware Roofline model (CARM). They take into account the
different cache levels, not just the DRAM, and thus the
different bandwidth measurements for each of these cache
levels. The bandwidth to the L1 cache is higher than the
bandwidth to DRAM and thus there is now opportunity for
understanding performance within the two bounds. The result
is an improvement on the older model, and has been widely
adopted, often replacing the original Roofline model.



7

Intel Advisor is one of the tools that has incorporated the
CARM into it’s suite of offerings [37], [38], see table II in the
“Architecture (Roofline)” column. Expanding and building on
the models proposed in [39] which focus on understanding
the memory access can affect the energy efficiency. Intel
Advisor’s capabilities extend to plotting the kernels on the
graphical CARM, and whether those kernels are vectorized.
Intel Advsior has made it more straightforward to profile
an application and generate a graphical CARM bringing the
concept to the forefront. It is easier, especially for domain
scientists who do not have the time or expertise to dig into
the specifics of the machine and application, to create these
visualizations and understand the performance of their code.
Because of this adoption by professional tools and the ease
of understanding, it is likely to see a roofline visualization of
some variety in any performance analysis of an application
now.

The Roofline Model tools have been extended to support
GPU architectures as well, using the same Graphical Roofline
concept [40]–[42]. This is another example of how flexible
and portable the roofline concept is, that without changes to
the visualization, it can be extended to different architectures.
The extension to GPUs from CPUs allows for far more robust
comparisons of application performance. With the increasing
use of GPUs to accelerate code it is crucial to be able to
characterize application performance on these architectures.

A recent extension includes the Instruction Roofline Model,
which deviates from the traditional floating point metric ap-
proach, and instead focuses on representing integer operations.
The Instruction Roofline Model incorporates the number of in-
structions issued, and can help to highlight bottlenecks, instead
of just overall performance. A couple of Instruction Roofline
Models have recently been proposed for both NVIDIA and
AMD GPU architectures [43], [44]. In general the Instruction
Roofline Model allows for deeper insight into the memory
performance, enabling identification of issues with shared
memory conflicts and memory access patterns.

IV. CHALLENGES AND OPPORTUNITIES WITH PARALLEL
PERFORMANCE VISUALIZATION

This section discusses some of the major issues that re-
searchers within the field of massively parallel performance
visualization have to contend with today. First, it elaborates on
the different approaches to different types of performance data.
Then moves into the challenges of performance analysis and
visualization on heterogeneous architectures and some vendor-
specific solutions. This section also describes some current in
situ performance visualization efforts, including performance
monitoring.

A. Different Data, Different Views

While trace (time-series), and profile (summary) perfor-
mance visualization, have been discussed in some detail al-
ready. it is worth mentioning some other approaches to the
standards.

VIPACT is a visualization tool that is built to take in
profile data from a tool such as HPCToolkit and generate

Fig. 4. An example of a the “halo node” visualization generated by VIPACT
as an alternative to a traditional Calling Context Tree. This conceptualizes
the distribution of work across processes, the halo on the left had unevenly
distributed work and the halo on the right was well-distributed (functions
executed close to the mean across all processes) [45].

a more intuitive visual representation. VIPACT differs from
most other tools because it maintains per process performance
data separately [45].

VIPACT introduces the visualization concept of a “halo
node”, a new approach to contextualizing a normally flat call-
ing context view. These show the distribution of performance
data over per process calling context trees, see Figure 4. The
other novel visualization that they have created is the directed
acyclic graph (DAG) with interactive nodes. This halo node-
DAG view allows a programmer to “zoom in” on specific
graph nodes which represent a function. Zooming in on node
can show the runtime compared to other functions in the graph
[45]. This gives new perspective to programmers to identify
which processes are slow.

Hatchet is a python library specific for handling structured
profile data that contains information about the code the
programmer is analyzing. It presents three options for viewing
the same profile data, the traditional callgraph, a tree-based
version, and a flamegraph, see figure 5. It builds on the
python pandas data library concept of a dataframe to shape
this performance data into something more easily manipulated.
Bhatele et. al. created the main data structure called a graph
frame which is made up of a graph and a dataframe that
contains information about nodes in the graph [46], [47].

One of the concepts that is new with the release of Hatchet
is the ability to use the graphframes in ways similar to
a dataframe to easily shape the data for visualiztion. For
example, you can add and subtract from each other, and
quickly generate tree-like representations. It is also possible to
load the data directly from some performance analysis tools



8

Fig. 5. An example of the three different profile visualizations of the same
data, generated by Hatchet, including the traditional call graph, a tree-based
call path, and a flame graph [46]. These are generated post-hoc, as that is the
only time it is guaranteed that the full call stack is known. However, partial
profiles could be generated in situ, especially in the case of a simulation that
repeats function calls over each timestep, with the understanding that the stack
could still be incomplete.

like HPCToolkit and Caliper [46]. Though for other tools that
generate profile files it won’t necessarily work the same way,
and a custom parser may be needed.

Both Hatchet and VIPACT rely on existing tools to gather
the performance data and then simply work with the output
from these. As there are a significant number of tools that
gather the desired metrics, the creators of Hatchet and VIPACT
did not feel the need to rewrite this functionality, instead
building on what is already available. This shows that what
they felt was lacking most from the existing tools was the
visualization aspect, especially in this multi-dimensional data
domain. This also presents a potential approach for incorpo-
rating timing-agnostic visualization-specific tools with in situ
metric gathering programs. However, updating only the output,
and not restructuring the data in the first place is limiting
in its own way. Both Hatchet and VIPACT are reliant on
getting the correct information from existing tools, they cannot
customize this beyond the measurement tool’s capabilities if
the programmer deems something is missing. These tools
focus on how to best display the data we can already get. There
is room in this exploration to look at how to restructure the
source of the data, perhaps the profile files. Each of the earlier
tools that gathers their own data takes advantage of this, by
making sure to gather the data they they think a programmer
will want to display. Clearly, though, they are still missing
some important factors in visualization if tools like Hatchet
and VIPACT need to be developed.

Recent work in the visualization of calling context trees
includes an interactive approach built into jupyter notebooks
that allow a user to manipulate the visualization and script

in tandem so as to have a truly exploratory environment for
analysis, see Figure 6. They used a node-link representation of
the calling context tree and had users conduct both open-ended
exploration as well as complete some pre-defined tasks [48].
While this specific project utilizes the summarized profile
data from a complete application run, this is an approach
that would lend itself well to an in situ workflow, as a user
could interact with the data as it is being produced and make
decisions based on their findings. CallFlow is another tool
for visualization call graph and context data and make use of
a Sankey diagram to indicate the flow of certain metrics, see
figure 7. Recent developments include functionality to conduct
analysis an ensemble of call graphs [49], [50].

B. Distributed Memory

This section discusses the class of tools that can visu-
alize performance of distributed memory applications that
run across multiple compute nodes. Understanding how each
MPI rank is accessing memory and communicating between
nodes gives insight into the effectiveness and scalability of an
application on large compute clusters. Sometimes the ranks
are consistent in their performance, and sometimes there In
a general sense, collection information per process for these
tools creates more overhead through instrumentation of the
code. In one way, the creation of more detailed data suggests
it may be harder to use in an in situ fashion. On the other
hand, instrumenting the code also allows for a level of access
to the code and any important metrics that could support a
robust in situ performance visualization pipeline.

Perhaps one of the most well known in this category
is Vampir [32], [51]. Since the initial release in the early
1990’s there have been numerous new releases and updates.
Vampir and VampirServer (a distributed version of Vampir)
can perform analysis and visualization on trace data from
VampirTrace or other collection tools such as TAU [33]. The
Vampir tools enable data management through filtering and
specific views. Reducing the amount of informational noise
presented can sometimes allow performance bottlenecks to be
discovered. Another helpful bottleneck identification feature
is the ability to zoom in and out on a view, which allows for
discovery at multiple different levels of granularity.

An interesting performance visualization concept was intro-
duced by Isaacs et al. with Boxfish [52]. They capitalize on the
idea of visualizing a projection, a projection refers to mapping
data from one domain to another. For example OpenMP
threads and hardware processing cores could be linked to
provide insight about how an application is performing. The
entire tool is built around supporting these types of projections.
Their mapping concepts including many-to-one relationships
which helps enable some of the more complex mappings. The
visualizations that it can generate include scatter plots, his-
tograms, 2D and 3D Meshes, and communication graphs [52].
Although in concept this seemed promising, Boxfish did not
seem to gain very much traction after its initial release.

Jumpshot is a tool for conducting “post-mortem” analysis
through a graphical interface. This includes multiple views, i.e.
a timeline per process, or a “mountain range” (histogram) view



9

Fig. 6. The interactive jupyter notebook approach for visualizing calling context trees in [48]. While the data is currently being analyzed post hoc, the
interactive nature of code to visualization would integrate well in an in situ workflow where the data is still changing.

Fig. 7. The ensemble-sankey visualization for calling context trees from CallFlow [50] is the only tool utilizing a sankey diagram to denote the flow of certain
metrics. In addition, this was targeted for comparative analysis of multiple calling context trees, which can be seen especially in the runtime comparison
sections, (d) and (e), and the ensemble supergraph (a).



10

of processes and their states [53]. It relies on fully formed
timestamped data files (logfiles) as input, and was not meant
for any in situ capabilities. While it has specific integration to
work well with MPI, it seems that the choice to use Java to
implement it led to major portability issues. ParaGraph [54]
is another tool that provides uniquely animated visualizations
of distributed memory parallel systems.

C. Portability
Another crucial difficulty facing all creators of performance

visualizations is the ability to use tools or techniques across
heterogeneous architectures. A scientist will find themselves
faced with the dilemma of running their codes on a new
architecture anytime they gain access to upgraded equipment,
or explore other options for acceleration. It is very useful to
performance across different CPU architectures, or analyze
their application’s performance with the addition of GPU
acceleration. Vendors will often build a visualization tool to
support their own architecture, but Tools like TAU, that use
standard formats such as OTF2 attempt to bridge this gap, yet
many vendor-specific tools remain that

Intel OneAPI is a suite of tools built for HPC programming
which includes the three performance analysis tools, VTune,
GDB (a debugging tool), and Advisor which is referenced
earlier when discussing roofline models. The focus for this
study is on VTune and Advisor as they are more focused on
displaying aggregated results in an intelligent manner. While
some functions of these tools work on multiple hardware
platforms and with compilers such as gcc, some features are
only supported - or easier to implement - when using Intel
hardware and an Intel compiler. Advisor makes heavy use of
the roofline concept and plotting application data with respect
to the hardware roofline. VTune on the other hand relies more
on presenting the data in an almost spreadsheet like format,
with some color coding to indicate outliers etc. [25], [55]

Intel Advisor can plot the roofline graph for the hardware
environment as well as the performance of the application
(kernels, functions, loops) as points on the graph. Advisor
determines whether the kernels are compute or memory bound
and can even offer suggestions for ways to improve per-
formance [37]. Kernels that take up a higher percentage of
the runtime are larger in size, making it easy to visually
identify problem areas. Kernels can also be filtered out to
focus on and compare fewer at a time. Custom color coding
can also be applied to the kernels to classify them beyond the
default format. Intel Advisor can also load different multiple
views (into different windows), to compare versions of the
application. For example, performing one of the suggested
tasks for optimization, i.e., optimizing a loop, and comparing
the before and after performance of the loop and application
can be quite insightful. The loop could change from compute
bound to memory bound, or could see a significant increase in
performance, depending on the change made. Using this tech-
nique an application can be tuned over and over, continuously
making improvements and visualizing the results. While CPU
systems have historically been the focus, GPU systems are
also supported, including showing the GTI bandwidth as one
of the cache levels, to indicate external memory performance.

NVIDIA Visual Profiler automatically generates a plethora
of performance data for the programmer to navigate through
their UI. This tool is to be used with any CUDA-enabled
application, and comes basically automatically for anything
written with CUDA [57]. NVIDIA Visual Profiler provides
many different “views” to the programmer, these“views” high-
light different aspects of the performance, GPU details, CPU
details, etc. All these views are inside a graphical user interface
for ease of navigation. Nsight is another NVIDIA tool, meant
to eventually completely replace NVIDIA Visual Profiler,
however it does not contain all the overlapping features yet.
One major update for Nsight is that NVIDIA wanted it to be
less CUDA-centric than Visual Profiler [58].

For programmers who are used to using these kinds of tools,
it may be quite intuitive to interpret the visualization. Yet
often for those unfamiliar it can take some time to understand,
much like many of the other tools mentioned thus far. Due to
the complex nature of performance data it is hard to see a
way around this fact. One other limitation of NVIDIA Visual
Profiler is that it only works for CUDA-enabled applications,
a problem they are trying to improve on with Nsight. Nsight
also has updated usage methods and outputs, attempts to make
both using it, and communicating results more intuitive [59].

RocProf is the profiling tool for AMD GPU hardware,
with Chrome Tracing as the front end for visualization [60].
It utilizes the RocProfiler and RocTracer APIS to collect
metrics and counter data. The output file is in JSON trace
event format [61], meant to be used with the Chrome Tracing
for viewing [62], [63]. Chrome Tracing was built for other
purposes (visualizing web usage) and is thus quite limited in
it’s capabilities for performance data. Unfortunately, unlike
the NVIDIA and Intel vendor tools, this data format and
tool choice does not allow for visualizing a roofline or the
architecture limits. However, Chrome Tracing is set to be
replaced by Perfetto, which offers many more features.

The Cray architecture performance measurement suite in-
cludes CrayPat and MPP Apprentice2 for visualization [64],
[65]. Cray performance measurement tools create the required
data file that serves as input into Apprentice2. Apprentice2
can then generate a number of different tables and plots of
report information, i.e. Call Stack, I/O. Plots can be zoomed
in to show less data, or zoomed out to show a bigger picture
of the data. Gathering the appropriate data for an effective
performance visualization is a large task, most tools that
generate visualizations gather their own in order to properly
visualize it. These are powerful, delivering rich features and
interesting views that can help a scientist understand the
performance of their application. However, there is a subset
of tools that rely on data gathered by other tools and focus
on just making it visually interactive and appealing. There
is an exploratory aspect to some of these tools that we like
– allowing the user to create something that makes sense to
them. Both of these categories of software visualization tools
will be discussed in this section.

D. In Situ Performance Visualization Developments
The concept of performance monitoring is not new, there are

numerous systems already that can help with gathering the data



11

Fig. 8. An example of a GPU roofline visualization generated by NVIDIA’s Nsight Compute [56], similar to Intel Advisor, it also provides suggestions for
optimizing performance. When compared to the roofline in figure 3 they are both generated with post hoc data, however, Nsight’s is interactive. Once the
architectural roofline is generated, kernel profiles could theoretically be added in situ.

required to conduct performance analysis online. Wood pro-
vides an excellent survey in the area of online monitoring [66].
Visuzaliation of this data ranges in these systems from very
basic text/table output to more comprehensive graphs. The
term “monalytics” was used as a combination of the terms
“monitoring” and “analysis”, referencing the approach for
detecting and managing system and applications behaviors in
a data center. [67]

One such example is SosFlow [68]. SosFlow shows how
the Scalable Observation System (SOS) can collect low-level
data from instrumented software for use in analysis. They
support complex scientific workflows running on clusters
by implementing an integration with TAU (called TAUflow)
which intermittently submits the regularly collected TAU data
to SOSflow. This is a useful integration as it makes use of
existing tools for collecting performance metrics and couples
it with an in situ analysis framework. They evaluated the
overhead for this extra processing in the general range of 1%-
3% of the total walltime of the application. Visualization of
this data was extended using Alpine, mapping the performance
data to the geometry of simulation data [69].

The Falcon system provides application-specific monitoring,
information about the overhead of the current monitoring, as
well as graphical monitoring views [70]. This is useful in
steering the application towards better performance. The visu-
alization capabilities are relatively basic and two-dimensional,
and some custom work was done for their evaluation to be
able to create useful visualizations in a short enough period to
enable on-line analysis and steering. While this is a promising
start, realistically, scientists cannot be expected to do custom
visualization work for each application they wish to monitor

and analyze on-line.
DIMVisual Hierarchical Collection Model (DIMVHCM) is

perhaps the most visualization focused of recent monitoring
tools. Two major goals were to visualize the behavior of large
scale parallel programs as well as collect this data in an on-line
manner. DIMVHCM consists of three different types of data
collectors and a push mechanism, e.g. data sent when certain
conditions are met [71]. The system includes DimVisual [72],
which aggregates the data for the visualization component
TRIVA [73]. However, in order to actually run the graphical
interface in situ they were required to implement a workaround
client that integrated with TRIVA based on timestamps of
the data. The ultimate effect was essentially in situ graphical
monitoring, but with perhaps too many required steps and
workarounds for mass adoption. While TRIVA is capable of
some interesting distributed memory visualization, it is not
clear what was taken advantage of in the DIMVHCM case
studies.

Ganglia, Nagios, and Lightweight Distributed Metric Ser-
vice [74] are primarily entire cluster monitoring systems [75],
[76]. The focus here is on the behavior and health of the
entire cluster, and not of a specific application performance
and/or how to improve it. Ganglia has interesting visualization
capabilities though, specifically, it integrates with RRDtool
(Round Robin Database), a circular database, [77] to visualize
the time series data that is collected. The final output is web-
based and separated from the performance data, which allows
for customization of the visualizations without accidentally
manipulating the collected data. While this is interesting and
necessary for understanding the full context of application
performance, it is not the granularity of information needed



12

for on-line tuning of specific scientific codes.
TACC Stats is similarly focused on a full data center,

and can offer insights such as when an application has idle
nodes. [78] Some plotting functionality is included with some
optional scripts/workflows that are designed to be run on a
predetermined intermittent basis, not based on any conditional
fulfillment. These plots are useful, but not able to be cus-
tomized, two-dimensional, or interactive.

Grafana is an open-source and enterprise tool that offers
a dashboard of customizable visualizations for a number of
different data types, including trace data. This is often used as
a monitoring dashboard for users to understand the overall
health and performance of their system. Users can build
visualizations that make sense for their system, including bar
charts for categorical data and heatmaps. As their interface
is an API, it is already used in an in situ fashion, with live
updates as changes happen on the system [26].

V. RELATED DOMAINS AND THEIR APPROACH TO IN SITU
OR EXPLORATORY VISUALIZATION

A. In Situ Scientific Visualization
The visualization of scientific simulation data has become

increasingly challenging area as the volume of data grows. Sci-
entists in this field face similar issues to those in performance
data, with large amounts of complex data that needs to be
visualized in a way that is digestible by the end user. Thus, the
demand for in situ functionality grows, often in such a way that
a user or program can “steer” the application based on these
visualizations. One such example of a response to handling
this data is with VisIt [79]–[81]. VisIt’s focus is delivering
scientific visualization capabilities for large datasets that have
been generated on parallel clusters.

Numerous in situ scientific visualization frameworks have
emerged in recent years. Paraview focuses on generating
interactive and exploratory scientific visualizations for large
scale datasets [82], [83]. Paraview Catalyst has been incor-
porated into in situ scientific work flows as the visualization
component in [84]. Alpine is an in situ scientific visualization
infrastructure built upon the Strawman prototype [85], [86].
The ALPINE API uses VTK-h, Flow, and Ascent to generate
in situ data analysis and visualizations.

One key difference between the two fields that may be
to the advantage of performance visualization is the fact
that it may be more plausible to ignore, or lose data. Many
scientific applications must be paused in order for the scientific
visualizations to be generated, because if the simulation were
allowed to continue on then important discoveries could be
overlooked or missed completely. However, because of the
nature of performance issues, it is much less likely that any
such insight is only able to be made at a single point in
the application. This opens the door to the possibility of
reducing the overhead seen by some of these in situ scientific
visualizations, and allowing the simulation to continue while
performance metrics are analyzed and produce results.

B. Exploratory Information Visualization
Exploratory information visualization or visual analysis is

the ability for a user to interact with their data visualizations

Fig. 9. An example of an interactive, clickable dashboard in Tableau, that
enables a user to change the data they are viewing [88]. The data behind these
visualizations could be considered post hoc, as it is gathered from a previously
completed time period, yet is made interactive for exploratory purposes.

in order to guide what is being visualized and uncover new
insights. A user may start with a general hypothesis, and refine
the visualization until they have a solution, or uncovered a
problem. Or a user may have an “open ended” approach,
without a specific goal in mind. Either way, exploratory visual
analysis is a crucial component of visualization research, yet
because of these differing goals, can be difficult to implement
well [87]. The domain of the data, and goals of the user may
be key in producing an effective tool here.

The increase of big data collected by businesses has given
rise to tools like Tableau which can provides insights into
their data through exploratory visual analysis [88]–[90]. While
business data is not the exact same as HPC data, there can
be multi-dimensional and temporal qualities, i.e., number of
units of each item sold, across different types of stores, in
different regions, within certain time periods [88]. Tableau’s
main approach is to enable exploratory visual analysis via
clickable dashboards that can change what data is viewed
to answer different questions, and remove the need for pro-
gramming analysis written in Python or R, see Figure 9 [89].
Their VizQL solution enables the majority of their interactive
visualization functionality, allowing the user to learn with
feedback from the visualization, and vice versa [90]. Applying
a similar technology in the performance data domain would
be groundbreaking.

Other research projects looking at visual analytics of high-
dimensional data can provide other perspectives. For example,
mapping multi-variate data to a concept that people already
understand, in this case, interactive route planning [91]. This
creates a visualization that the user can understand and
interact with more readily from data that might otherwise
be unmanageable. Another project explores the relationship
between the data analyst and a machine learning model of
the data, allowing the analyst to interact and refine the model.
At the same time the model learns to identify relationships



13

and patterns in the data, which may be difficult for a human
to identify. This project supports “both model-driven data
exploration, as well as data-driven model evolution” [92].

VI. MACHINE LEARNING FOR PERFORMANCE
IMPROVEMENT AND VISUALIZATION

This section discusses current and potential applications of
machine learning for diagnosing bottlenecks and identifying
opportunities for performance improvement as well as through
performance prediction or modeling. Performance modeling
is determining how an application will perform on a different
architecture, or with different configurations. This section also
discusses how machine learning can be used to generate better,
more effective performance data visualizations. Similar tactics
are being used in many fields with large search spaces for
their data already, i.e., scientific visualization. Finding the best
visualization from an exponentially large number of options
can be time-consuming and tedious, even if automated.

A. Machine Learning for Performance Analysis

1) Diagnostics: The following approach to understanding
the I/O throughput is crucial in that every HPC system will
have a significant amount of data I/O. This is often to write
out intermediate solutions or calculations for validation or use.
Gauge is a tool used to analyze logs from HPC applications to
identify I/O bottlenecks [93]. They showed success wherein a
Gauge user was able to successfully identify problem nodes
in their cluster that were causing a slowdown in performance.
This success, based on their analysis of groups of jobs with
similar traits, shows that with the correct training data an
effective diagnostic tool can be created. Similarly, in [94], they
build a predictive model for the output on the supercomputer
cluster Titan.

Tuncer et al. introduce [95] which looks at the frequent
performance variations on systems that disrupt job runs and
result in worse performance. Problems can range on clusters
from software to hardware changes that can negatively affect
performance and they are difficult to identify due to the large
volumes of data collected. These performance changes can be
caused by resource availability on shared clusters, or hardware
fluctuations. This particular project utilizes performance coun-
ters and resource usage in their training data to train a model
that can identify the reasons for the performance variations for
an application. Their experiments cover both an HPC cluster
and a public cloud service.

Examples of the node-level anomalies they identify are
out-of-memory (typically caused by a memory leak), orphan
processes, and hidden hardware problems. They use 7 different
models, including two baseline models, ST-Lan and FP-Bodik.
The five models evaluated were k-nearest neighbors, support
vector classifier, AdaBoost, decision tree, and random forest.
Tests of their models were conducted with the NAS Parallel
Benchmarks. Their results were quite good, showing a low-
overhead and performant framework of models. They are also
able to extract some of the most important features to the
models, which provides a good understanding of where and
why the causes of performance variation tend to arise. This

work in [95] shows significant promise for this area of using
machine learning to sift through large volumes of HPC data
and identify problems.

A later extension of this work by Tuncer et al. includes [96]
where they transform time-series data into statistical features
and train the model on this transformed data. Here they
focus on the tree-based models used in earlier works, decision
tree, AdaBoost, and random forests, because they were more
successful than other model types. They also focus heavily
on selecting the most useful features for training, using
the Kolmogorov-Smirnov test with the Benjamini-Yakutieli
procedure. Their experiments are run on a CRAY cluster,
and they use over 500 metrics collected on the system by
Lightweight Distributed Metric Service. They use the FP-
Bodik as a baseline model again, but replace ST-Lan with
ICA-Lan. Ultimately their method results in a 98% correct
identification rate of the anomaly types, and is independent
of the application. It is important for it to be independent of
the application, because the real value of this model is that it
could be applied to new applications/environments it has never
been trained on before.

In another anomaly detection project, [97], an auto-encoder
neural network is used to identify problems. A unique facet
of their approach is to actually embed a monitoring board
onto each computer, to gather the training data, and then later,
housing the trained model. While this likely results in less
overhead on the compute node, this requires their trained auto-
encoder to be very lightweight, because the boards are not very
powerful. Their results are highly accurate with up to 98%
accuracy. Their results also show that they can run their model
on the cluster computers without any significant overhead.

Targeting similar issues is Proctor [98], which aims to iden-
tify similar anomalies, but using a semi-supervised framework.
One of the largest challenges facing machine learning models,
and this domain is no exception, is the scarcity of labeled
training data. Acquiring enough labeled training data to train
a model can require countless hours of manual work if the
data is not structured/categorized already in a way that makes
sense for predicting the targets. Their solution to this is to use
an unsupervised model initially combined with a supervised
one for the final steps. They use the best random forest results
from previous work in Tuncer et al [96].

2) Performance Prediction: Performance prediction or
modeling is a related but somewhat different field to diagnos-
tics. Performance modeling looks across different hardware or
settings to predict where comparable or better performance
can be achieved. This is useful when porting code to newer
architecture, or when deciding what architecture to use in the
beginning. Autotuning is an area within the performance pre-
diction domain, relating specifically to automatically exploring
the large search space of parameters into an application to
optimize performance. This can be extremely useful as it can
reduce the need to manually launch hundreds to thousands
of different jobs in order to find the best combination of
parameters.

WOWMON is a machine-learning based profiler, integrated
with TAU, and provides on-line analysis, but there are no built-
in visualization capabilities [99]. It’s workflow manager MCo-



14

ordinator, uses some machine learning techniques to determine
which metrics have strong correlation with latency. This is
relayed back to communicate which metrics are important,
and when to change them. Apollo and Artemis are two other
machine learning based autotuners that are actually meant to
be used for online tuning. Pretrained models that can quickly
decide on new parameters during an application run make for
minimal overhead [100], [101].

Other interesting approaches to autotuning include a couple
of Bayesian Optimization models, one for selecting pragma
parameters in a kernel [102], and HiPerBOt for exploring
a larger parameter space of runtime settings, compiler flags,
etc. [103]. Neural networks have also been applied towards
performance prediction and tuning in [104] and [105]. There
is also a tool specifically looking at OpenMP thread count
and scheduling (binding) as a means of optimization [106].
Numerous other machine learning-based kernel tuning projects
have been implemented across both CPUs and GPUs includ-
ing [107], [108].

B. Machine Learning for Generating Visualizations

1) Learning from the Scientific Visualization Domain:
The neighboring field of scientific visualization is currently
grappling with many of the same issues as performance
visualization. For scientific visualization, the data can also
be multi-dimensional and complex, but unlike performance
data, it is domain specific, concerned with displaying the
scientific results that are being calculated by the application.
For example, the data might be used to generate intermediate
and final visualizations that model weather patterns or states
in some other physical system. However, there are enough
similarities to performance data, that looking to what they are
doing as an example could prove useful. The first is that there
can be a lot of data - and not all of it will be necessary for
generating a meaningful visualization. Choosing the important
features, and transforming the data in such a way that spot-
lights interesting findings are the two main goals in both cases.
Another interesting similarity is that data can be collected and
analyzed in situ or post mortem. In situ visualization has been
an important field of scientific visualization for many years,
and recently, some researchers are using machine learning to
improve it. A recent project combines the Paraview scientific
visualization tool with PyTorch. Allowing a user to select a
visualization filter that is based on a trained deep learning
model [109].

HPC codes are already heavily optimized to fully utilize
fast computers and environments, when machine learning is
added, sometimes additional HPC resources are needed to
train or run a model to generate the needed visualizations.
When running the models in situ, the problem then becomes
how best to manage the available resources to support both
the application code and the machine learning models at the
ideal level. PAVE [110], is a framework that attempts to find
the correct balance between the scientific application and the
machine learning required to generate the visualizations.

2) Recommendation Engines: Ehsan et al. present a promis-
ing approach to searching for the top-k data visualizations

Fig. 10. An example of the incremental steps of visualization (rows 2 and
4) that IncVisage generates, detecting trends earlier, and with less fluctuation,
than a traditional data sampling method (rows 1 and 3) [112].

and efficient pruning mechanisms to reduce data processing
costs [111]. This method trains a model to recommend the
top-k data visualizations after evaluating the usefulness of
many more than a human could manually. They introduce
three schemes that allow for more efficient pruning of poor vi-
sualizations, Multi-Objective View Recommendation for Data
Exploration (MuVE), upper MuVE (uMuVE), and Memory-
aware uMuVE (MuMuVE). These three schemes achieve
comparable results and mostly differ in their tuning parameters
and memory usage allowed.

Applying existing machine learning algorithms, from the
MuVE family or others could be very effective in the per-
formance data domain. The data domains used share some
common traits, the first and foremost of which is that there
can be so much data that it is next to impossible to manually
sort through it all.

3) Other Visualization Models: Due to the high volume of
data that can go into a performance visualization, looking at
methods that seek to produce better visualizations with less
information, or before processing all of the data are a promis-
ing endeavour. In [112] they do just this, by presenting a tool
called IncVisage that can generate trend lines and heatmaps
for large datasets in an incremental but quick fashion. This
takes the approach of building out a visualization in stages,
so as to identify areas of interest early on, allowing for
faster understanding, decision making, and exploration by the
viewer, see figure 10. This approach yields potential because
it solves the major issue with most sampling methods for
visualizations, which is that correctness can not typically be
guaranteed when only using a subset of the data.

When considering how best to help users interact with
creating or understanding their visualization, this notion of
fast, incremental updates is quite attractive. Imagine using an
interactive in situ visualization tool, shifting to a new view
or deep diving into a particular area and waiting minutes for
a new visualization to appear. This would be unacceptable,
tools need to be responsive to be usable. Most vendor tools
on the market get around this by relying on collecting the
performance data, and pre-processing it all at one time so
preset views can be displayed once the user is ready to view.
A user has access to a variety of views, but they are limited



15

to However, this new research opens up a world of flexibility
and exploration that is not supported by current tools. A user
could quit the program early if they have already discovered
the information they were after. They could build visualization
on-the-fly, with less limitations from the tool.

Projects such as DeepEye [113] provide a user interface
that involves using a “Google-like” search to specify the
type of visualization a user wants generated. The user then
chooses among multiple highly ranked data visualizations
that have been generated with their input data. They use a
combination of binary classifiers and supervised learning to
achieve this goal. Similarly to Ehsan’s recommendation engine
described above, the user can select “good” visualizations and
be presented with additional visualizations in a somewhat
exploratory manner. Their case studies provide interesting
insights and stories about the user data, and generate but a
more quantifiable analysis would be interesting to see.

VISER is another project that shows promising results
for automatically generating data visualizations [114]. VISER
is a multi-part algorithm that takes in a simple “sketch”
and the initial dataset, and generates multiple visualizations
using some of the most popular visualization libraries. They
call this visualization-by-example because they start with the
initial sketch and generate the necessary code to create the
user’s desired visualization. One of the biggest challenges
they had to overcome was the difficulty in preparing the data
correctly, as data needs to be reshaped, columns need to be
added, etc. With performance data, this challenge would be
exacerbated, beyond what they study with VISER, by the level
of complexity. They create a search algorithm that transforms
the data and selects the best transformations. Combining this
technique with their other algorithms for generating the code,
they have successful initial results, with 70% of their solved
trials culminating with the desired visualization being among
the top five generated by VISER.

VII. CONCLUSION

Current advances in effective performance visualization
have trended towards more exploratory and interactive ap-
proaches, as evidenced by [37], [46], [48], and many more.
These aid the user in performing visual analytics, diagnosing
performance issues and finding opportunities for speedup.
These also lend themselves to interfacing with in situ per-
formance data in a way that could make the best use of real-
time decisions by a user. Addressing the complications, i.e.,
superfluous data, lack of data, distributed data, and limited
resources, listed in table I with a new perspective could warrant
exciting results.

There is a large window of opportunity when it comes to
using machine learning to enable in situ visualization and
analysis in the performance data domain. Machine learning
may be one of the best ways of dealing with the challenges
listed in table I, as it can allow more analysis with less data,
and faster results. We see from some of the other applications
to complex data that these approaches can be not only interest-
ing, but useful and even practical to implement in production.
There is already the projects for analyzing performance data

directly to diagnose bottlenecks or suggest ways to improve
performance. There is also an opportunity to automatically
generate insightful performance data visualizations from the
raw data.

One of the challenges is structuring and labeling perfor-
mance data in such a way as to be successful training a
working model. However, there are many ways to address
this challenge. Unsupervised methods can be implemented,
or datasets can be curated for supervised strategies more
easily if it is planned ahead. Automated application profiling
approaches, such as in [115], could be built to collect labeled
performance data. Automatic data visualization generation at
this scale in the HPC domain is yet relatively unproven by
consistent use in the wild. Although many of the models listed
in this paper have shown potential, they are still mostly in the
research phase.

Profile data is usually a summary over the entire application
run, but now, using only a sample of the full data set becomes
possible if we are able to feed it to a trained model. This
sample could be taken from the application as it is running,
or it could even be taken from a subset of nodes if collecting
the data becomes too cumbersome. The model could be used
to predict the performance once the codes have completed its
run. This means that calling context trees could be generated
earlier, even if some final data is missing. It could still be
enough to get an idea of the performance.

Processing trace data in situ will be a huge win, as that
means less data will need to be manipulated at the end of
the application run. As an example, using a model similar to
IncVisage [112], to generate heatmaps from trace data during
execution, could allow a user to identify performance issues
with specific functions or processes early on. Or they could
see they are not achieving the performance they desire and
kill the application early, make code changes, rebuild, rerun,
and finally compare. Both of these scenarios will help save
the user time and cut down on the cost of the HPC resources
they utilize.

REFERENCES

[1] J. R. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” 2008 IEEE Hot Chips 20 Symposium (HCS),
pp. 1–2, 2008.

[2] L. Dagum and R. Menon, “Openmp: an industry standard api for
shared-memory programming,” 1998.

[3] W. Gropp, E. L. Lusk, N. E. Doss, and A. Skjellum, “A high-
performance, portable implementation of the mpi message passing
interface standard,” Parallel Comput., vol. 22, pp. 789–828, 1996.

[4] B. Kågström, P. Ling, and C. V. Loan, “Gemm-based level 3 blas:
high-performance model implementations and performance evaluation
benchmark,” ACM Trans. Math. Softw., vol. 24, pp. 268–302, 1998.

[5] E. Anderson, “Lapack users’ guide,” 1987.
[6] M. Frigo and S. G. Johnson, “Fftw: an adaptive software architecture

for the fft,” Proceedings of the 1998 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP ’98 (Cat.
No.98CH36181), vol. 3, pp. 1381–1384 vol.3, 1998.

[7] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
B. Hamann, and P.-T. Bremer, “State of the art of performance
visualization,” in EuroVis, 2014.

[8] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E. Nagel, and
F. A. Wolf, “Open trace format 2: The next generation of scalable trace
formats and support libraries,” in PARCO, 2011.



16

[9] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel,
“Introducing the open trace format (otf),” in Computational Science
– ICCS 2006, V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot,
and J. Dongarra, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 526–533.

[10] A. Malony and W. Nagel, “Open trace—the open trace format (otf)
and open tracing for hpc,” 01 2006, p. 24.

[11] F. Wolf and B. Mohr, “Epilog binary trace-data format,” 01 2004.
[12] S. Browne, C. Deane, G. Ho, and P. Mucci, “Papi: A portable interface

to hardware performance counters,” 1999.
[13] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-

mance data with papi-c,” in Tools for High Performance Computing
2009, M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 157–173.

[14] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm,
D. Eschweiler, M. Geimer, M. Gerndt, D. Lorenz, A. D. Malony, W. E.
Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende,
R. Tschüter, M. Wagner, B. Wesarg, and F. A. Wolf, “Score-p: A
joint performance measurement run-time infrastructure for periscope,
scalasca, tau, and vampir,” in Parallel Tools Workshop, 2011.

[15] S. Shende and A. Malony, “The tau parallel performance system,” The
International Journal of High Performance Computing Applications,
vol. 20, pp. 287 – 311, 2006.

[16] L. Adhianto, S. Banerjee, M. W. Fagan, M. Krentel, G. Marin,
J. Mellor-Crummey, and N. R. Tallent, “Hpctoolkit: tools for per-
formance analysis of optimized parallel programs,” Concurrency and
Computation: Practice and Experience, vol. 22, 2010.

[17] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,
M. LeGendre, O. Pearce, and M. Schulz, “Caliper: Performance
introspection for hpc software stacks,” in SC ’16: Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, 2016, pp. 550–560.

[18] (2022) Overview survey. [Online]. Available:
https://trenza.gitlab.io/survey.io/docs/introduction.html

[19] P. J. Nichols, “Nmsba: Continuous application benchmark-
ing analysis – caba,” 1 2021. [Online]. Available:
https://www.osti.gov/biblio/1756775

[20] T. Röhl, J. Eitzinger, G. Hager, and G. Wellein, “Likwid monitoring
stack: A flexible framework enabling job specific performance monitor-
ing for the masses,” in 2017 IEEE International Conference on Cluster
Computing (CLUSTER), 2017, pp. 781–784.

[21] O. Cankur and A. Bhatele, “Comparative evaluation of call graph
generation by profiling tools,” in ISC, 2022.

[22] R. Robey and Y. Zamora, Parallel and High Performance Computing.
Shelter Island, NY: Manning Publications, 2021.

[23] A. Giménez, T. Gamblin, I. Jusufi, A. Bhatele, M. Schulz, P. Bremer,
and B. Hamann, “Memaxes: Visualization and analytics for character-
izing complex memory performance behaviors,” IEEE Transactions on
Visualization and Computer Graphics, vol. 24, pp. 2180–2193, 2018.

[24] A. Yasin, “A top-down method for performance analysis and counters
architecture,” 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 35–44, 2014.

[25] (2021) Intel vtune profiler performance
analysis cookbook. [Online]. Available:
https://www.intel.com/content/www/us/en/develop/documentation/vtune-
cookbook/top.html

[26] (2022) Grafana documentation. [Online]. Available:
https://grafana.com/docs/grafana/latest/

[27] K. E. Isaacs, P. Bremer, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
and B. Hamann, “Combing the communication hairball: Visualizing
parallel execution traces using logical time,” IEEE Transactions on
Visualization and Computer Graphics, vol. 20, pp. 2349–2358, 2014.

[28] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” in CACM, 1978.

[29] C. Scully-Allison and K. E. Isaacs, “Design and evaluation of scal-
able representations of communication in gantt charts for large-scale
execution traces,” ArXiv, vol. abs/2107.00065, 2021.

[30] S. R. Brandt, A. Bigelow, S. A. Sakin, K. Williams, K. E. Isaacs,
K. Huck, R. Tohid, B. Wagle, S. Shirzad, and H. Kaiser, “Jetlag: An
interactive, asynchronous array computing environment,” in Practice
and Experience in Advanced Research Computing, ser. PEARC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
8–12. [Online]. Available: https://doi.org/10.1145/3311790.3396657

[31] A. D. Malony, S. Ramesh, K. A. Huck, C. Wood, and S. Shende,
“Towards runtime analytics in a parallel performance system,” 2019
International Conference on High Performance Computing & Simula-
tion (HPCS), pp. 559–566, 2019.

[32] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Müller, and W. E. Nagel, “The vampir performance analysis tool-
set,” in Parallel Tools Workshop, 2008.

[33] H. Brunst, D. Hackenberg, G. Juckeland, and H. Rohling, “Comprehen-
sive performance tracking with vampir 7,” in Parallel Tools Workshop,
2009.

[34] (2022) Perfetto - system profiling, app tracing and trace analysis.
[Online]. Available: https://perfetto.dev/docs/

[35] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware roofline model: Upgrad-
ing the loft,” IEEE Computer Architecture Letters, vol. 13, pp. 21–24,
2014.

[36] S. Williams, A. Waterman, and D. A. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, pp. 65–76, 2009.

[37] D. Marques, H. Duarte, A. Ilic, L. Sousa, R. Belenov, P. Thierry, and
Z. Matveev, “Performance analysis with cache-aware roofline model
in intel advisor,” 2017 International Conference on High Performance
Computing & Simulation (HPCS), pp. 898–907, 2017.

[38] D. Marques, A. Ilic, Z. Matveev, and L. Sousa, “Application-driven
cache-aware roofline model,” Future Gener. Comput. Syst., vol. 107,
pp. 257–273, 2020.

[39] A. Ilic, F. Pratas, and L. Sousa, “Beyond the roofline: Cache-aware
power and energy-efficiency modeling for multi-cores,” IEEE Trans-
actions on Computers, vol. 66, pp. 52–58, 2017.

[40] C. Yang, T. Kurth, and S. Williams, “Hierarchical roofline analysis for
gpus: Accelerating performance optimization for the nersc-9 perlmutter
system,” Concurrency and Computation: Practice and Experience,
vol. 32, 2020.

[41] C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. O. Adetokunbo,
B. Friesen, B. Cook, D. Doerfler, L. Oliker, J. R. Deslippe, and
S. Williams, “An empirical roofline methodology for quantitatively as-
sessing performance portability,” 2018 IEEE/ACM International Work-
shop on Performance, Portability and Productivity in HPC (P3HPC),
pp. 14–23, 2018.

[42] Y. Wang, C. Yang, S. A. Farrell, T. Kurth, and S. Williams, “Hier-
archical roofline performance analysis for deep learning applications,”
ArXiv, vol. abs/2009.05257, 2020.

[43] N. Ding and S. Williams, “An instruction roofline model for gpus,”
2019 IEEE/ACM Performance Modeling, Benchmarking and Simula-
tion of High Performance Computer Systems (PMBS), pp. 7–18, 2019.

[44] M. Leinhauser, R. Widera, S. Bastrakov, A. Debus, M. Bussmann,
and S. Chandrasekaran, “Metrics and design of an instruction roofline
model for amd gpus,” ArXiv, vol. abs/2110.08221, 2021.

[45] H. T. Nguyen, L. Wei, A. Bhatele, T. Gamblin, D. Böhme, M. Schulz,
K.-L. Ma, and P.-T. Bremer, “Vipact: A visualization interface for
analyzing calling context trees,” 2016 Third Workshop on Visual
Performance Analysis (VPA), pp. 25–28, 2016.

[46] A. Bhatele, S. Brink, and T. Gamblin, “Hatchet: pruning the overgrowth
in parallel profiles,” Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis,
2019.

[47] S. Brink, I. Lumsden, C. Scully-Allison, K. Williams, O. Pearce,
T. Gamblin, M. Taufer, K. E. Isaacs, and A. Bhatele, “Usability and
performance improvements in hatchet,” 2020 IEEE/ACM International
Workshop on HPC User Support Tools (HUST) and Workshop on
Programming and Performance Visualization Tools (ProTools), pp. 49–
58, 2020.

[48] C. Scully-Allison, I. G. Lumsden, K. Williams, J. Bartels, M. Taufer,
S. Brink, A. Bhatele, O. Pearce, and K. E. Isaacs, “Designing an in-
teractive, notebook-embedded, tree visualization to support exploratory
performance analysis,” ArXiv, vol. abs/2205.04557, 2022.

[49] H. T. Nguyen, A. Bhatele, N. Jain, S. P. Kesavan, H. Bhatia, T. Gam-
blin, K.-L. Ma, and P.-T. Bremer, “Visualizing hierarchical performance
profiles of parallel codes using callflow,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 27, pp. 2455–2468, 2021.

[50] S. P. Kesavan, H. Bhatia, A. Bhatele, T. Gamblin, P.-T. Bremer, and
K.-L. Ma, “Scalable comparative visualization of ensembles of call
graphs,” IEEE transactions on visualization and computer graphics,
vol. PP, 2021.

[51] M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix,
and W. E. Nagel, “Developing scalable applications with vampir,
vampirserver and vampirtrace,” in PARCO, 2007.

[52] K. E. Isaacs, A. G. Landge, T. Gamblin, P.-T. Bremer, V. Pascucci, and
B. Hamann, “Abstract: Exploring performance data with boxfish,” 2012
SC Companion: High Performance Computing, Networking Storage
and Analysis, pp. 1380–1381, 2012.



17

[53] O. A. Zaki, E. L. Lusk, W. Gropp, and D. Swider, “Toward scalable
performance visualization with jumpshot,” The International Journal
of High Performance Computing Applications, vol. 13, pp. 277 – 288,
1999.

[54] M. T. Heath and J. A. Etheridge, “Visualizing the performance of
parallel programs,” IEEE Software, vol. 8, pp. 29–39, 1991.

[55] A. R. Pandey, D. Tesfay, and E. Jarso, “Performance analysis of intel
ivy bridge and intel broadwell microarchitectures using intel vtune
amplifier software,” 2018 2nd International Conference on Inventive
Systems and Control (ICISC), pp. 423–426, 2018.

[56] (2021) Nsight compute. [Online]. Available:
https://docs.nvidia.com/nsight-compute/2022.2/index.html

[57] (2021) Cuda toolkit documentation. [Online]. Available:
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

[58] (2019) Migrating to nvidia nsight tools from nvvp and nvprof. [Online].
Available: https://developer.nvidia.com/blog/migrating-nvidia-nsight-
tools-nvvp-nvprof/

[59] (2021) Nvidia nsight systems user guide. [Online]. Available:
https://docs.nvidia.com/nsight-systems/UserGuide/index.html

[60] (2022) Amd rocm profiler. [Online]. Available:
https://rocmdocs.amd.com/en/latest/ROCm Tools/ROCm-Tools.html

[61] (2022) Trace event format. [Online]. Avail-
able: https://docs.google.com/document/d/1CvAClvFfyA5R-
PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit

[62] (2022) Chrome tracing as profiler frontend. [Online]. Avail-
able: https://aras-p.info/blog/2017/01/23/Chrome-Tracing-as-Profiler-
Frontend/

[63] (2022) The trace event profiling tool (about:tracing). [Online].
Available: https://www.chromium.org/developers/how-tos/trace-event-
profiling-tool/

[64] (2017) Cray performance measurement and analysis
tools user guide 7.0.0 s-2376. [Online]. Available:
https://support.hpe.com/hpesc/public/docDisplay?docId=a00113917en
uspage=About the Cray Performance Measurement and Analysis To
ols User Guide.html

[65] W. Williams, T. W. Hoel, and D. M. Pase, “The mpp apprentice™
performance tool: Delivering the performance of the cray t3d®,” 1994.

[66] C. Wood, “Online monitoring for high-performance computing sys-
tems,” 2021.

[67] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and
M. Wolf, “Monalytics: online monitoring and analytics for managing
large scale data centers,” in ICAC ’10, 2010.

[68] C. Wood, S. Sane, D. A. Ellsworth, A. Giménez, K. A. Huck,
T. Gamblin, and A. D. Malony, “A scalable observation system for
introspection and in situ analytics,” 2016 5th Workshop on Extreme-
Scale Programming Tools (ESPT), pp. 42–49, 2016.

[69] C. Wood, M. Larsen, A. Giménez, K. A. Huck, C. Harrison, T. Gam-
blin, and A. D. Malony, “Projecting performance data over simulation
geometry using sosflow and alpine,” in ESPT/VPA@SC, 2017.

[70] W. Gu, G. B. Eisenhauer, E. T. Kraemer, K. Schwan, J. T. Stasko,
J. Vetter, and N. Mallavarupu, “Falcon: on-line monitoring and steering
of large-scale parallel programs,” Proceedings Frontiers ’95. The Fifth
Symposium on the Frontiers of Massively Parallel Computation, pp.
422–429, 1995.

[71] R. K. Tesser and P. O. A. Navaux, “Dimvhcm: An on-line distributed
monitoring data collection model,” 2012 20th Euromicro International
Conference on Parallel, Distributed and Network-based Processing, pp.
37–41, 2012.

[72] L. M. Schnorr, P. O. A. Navaux, and B. de Oliveira Stein, “Dimvisual:
Data integration model for visualization of parallel programs behavior,”
Sixth IEEE International Symposium on Cluster Computing and the
Grid (CCGRID’06), vol. 1, pp. 473–480, 2006.

[73] L. M. Schnorr, G. Huard, and P. O. A. Navaux, “Triva: Interactive 3d
visualization for performance analysis of parallel applications,” Future
Gener. Comput. Syst., vol. 26, pp. 348–358, 2010.

[74] A. Agelastos, B. A. Allan, J. M. Brandt, P. Cassella, J. Enos, J. Fullop,
A. C. Gentile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan,
M. T. Showerman, J. Stevenson, N. Taerat, and T. W. Tucker, “The
lightweight distributed metric service: A scalable infrastructure for con-
tinuous monitoring of large scale computing systems and applications,”
SC14: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 154–165, 2014.

[75] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience,” Parallel
Comput., vol. 30, pp. 817–840, 2004.

[76] G. Katsaros, R. Kübert, and G. Gallizo, “Building a service-oriented
monitoring framework with rest and nagios,” 2011 IEEE International
Conference on Services Computing, pp. 426–431, 2011.

[77] S. Dargad and M. Singh, “Rrdtool: A round robin database for network
monitoring,” Journal of Computer Science, 2017.

[78] R. T. Evans, W. L. Barth, J. C. Browne, R. L. DeLeon, T. R.
Furlani, S. M. Gallo, M. D. Jones, and A. K. Patra, “Comprehensive
resource use monitoring for hpc systems with tacc stats,” 2014 First
International Workshop on HPC User Support Tools, pp. 13–21, 2014.

[79] H. Childs, “Visit: An end-user tool for visualizing and analyzing very
large data,” 2011.

[80] S. Ahern, K. S. Bonnell, E. Brugger, H. Childs, J. S. Meredith, and
B. Whitlock, “Visit: a component based parallel visualization package,”
2000.

[81] G. H. Weber, H. Childs, and J. S. Meredith, “Recent advances in visit:
Parallel crack-free isosurface extraction,” 2012.

[82] U. Ayachit, “The paraview guide: A parallel visualization application,”
2015.

[83] J. P. Ahrens, B. Geveci, and C. C. Law, “Paraview: An end-user tool
for large-data visualization,” in The Visualization Handbook, 2005.

[84] J. P. Ahrens, S. Jourdain, P. O’Leary, J. M. Patchett, D. H. Rogers,
and M. R. Petersen, “An image-based approach to extreme scale in
situ visualization and analysis,” SC14: International Conference for
High Performance Computing, Networking, Storage and Analysis, pp.
424–434, 2014.

[85] A. D. Malony, M. Larsen, K. A. Huck, C. Wood, S. Sane, and
H. Childs, “When parallel performance measurement and analysis
meets in situ analytics and visualization,” in PARCO, 2019.

[86] M. Larsen, J. P. Ahrens, U. Ayachit, E. Brugger, H. Childs, B. Geveci,
and C. Harrison, “The alpine in situ infrastructure: Ascending from
the ashes of strawman,” Proceedings of the In Situ Infrastructures on
Enabling Extreme-Scale Analysis and Visualization, 2017.

[87] L. Battle and J. Heer, “Characterizing exploratory visual analysis: A
literature review and evaluation of analytic provenance in tableau,”
Computer Graphics Forum, vol. 38, 2019.

[88] N. Matthew, “Why visual analytics?” [Online]. Available:
https://www.tableau.com/learn/whitepapers/why-visual-analyticsform

[89] P. Stull-Lane, “Define analytics: The changing role
of bi’s favorite catch-all term.” [Online]. Available:
https://www.tableau.com/learn/whitepapers/define-analyticsform

[90] “Tableau and big data: An overview.” [Online]. Available:
https://www.tableau.com/learn/whitepapers/tableau-big-data-overview

[91] Z. Zhang, K. T. McDonnell, and K. Mueller, “A network-based
interface for the exploration of high-dimensional data spaces,” 2012
IEEE Pacific Visualization Symposium, pp. 17–24, 2012.

[92] S. Garg, J. E. Nam, I. V. Ramakrishnan, and K. Mueller, “Model-driven
visual analytics,” 2008 IEEE Symposium on Visual Analytics Science
and Technology, pp. 19–26, 2008.

[93] M. Isakov, E. d. Rosario, S. Madireddy, P. Balaprakash, P. Carns, R. B.
Ross, and M. A. Kinsy, “Hpc i/o throughput bottleneck analysis with
explainable local models,” ser. SC ’20. IEEE Press, 2020.

[94] B. Xie, Y. Huang, J. S. Chase, J. Y. Choi, S. Klasky,
J. Lofstead, and S. Oral, “Predicting output performance of a
petascale supercomputer,” in Proceedings of the 26th International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 181–192. [Online]. Available:
https://doi.org/10.1145/3078597.3078614

[95] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. Leung, M. Egele,
and K. Coşkun, “Diagnosing performance variations in hpc applications
using machine learning,” 05 2017, pp. 355–373.

[96] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. M. Brandt, V. J. Leung,
M. Egele, and A. K. Coskun, “Online diagnosis of performance
variation in hpc systems using machine learning,” IEEE Transactions
on Parallel and Distributed Systems, vol. 30, pp. 883–896, 2019.

[97] A. Borghesi, A. Libri, L. Benini, and A. Bartolini, “Online anomaly
detection in hpc systems,” 2019 IEEE International Conference on
Artificial Intelligence Circuits and Systems (AICAS), pp. 229–233,
2019.

[98] B. Aksar, Y. Zhang, E. Ates, B. Schwaller, O. Aaziz, V. J. Leung,
J. M. Brandt, M. Egele, and A. K. Coskun, “Proctor: A semi-
supervised performance anomaly diagnosis framework for production
hpc systems,” in ISC, 2021.

[99] X. Zhang, H. Abbasi, K. A. Huck, and A. D. Malony, “Wowmon:
A machine learning-based profiler for self-adaptive instrumentation of
scientific workflows,” in ICCS, 2016.



18

[100] D. A. Beckingsale, O. Pearce, I. Laguna, and T. Gamblin, “Apollo:
Reusable models for fast, dynamic tuning of input-dependent code,”
2017 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pp. 307–316, 2017.

[101] C. Wood, G. Georgakoudis, D. A. Beckingsale, D. Poliakoff,
A. Giménez, K. A. Huck, A. D. Malony, and T. Gamblin, “Artemis:
Automatic runtime tuning of parallel execution parameters using ma-
chine learning,” in ISC, 2021.

[102] X. Wu, M. Kruse, P. Balaprakash, H. Finkel, P. Hovland, V. Taylor,
and M. Hall, “Autotuning polybench benchmarks with llvm clang/polly
loop optimization pragmas using bayesian optimization,” in 2020
IEEE/ACM Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS), 2020, pp. 61–70.

[103] H. Menon, A. Bhatele, and T. Gamblin, “Auto-tuning parameter choices
in hpc applications using bayesian optimization,” 2020 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pp.
831–840, 2020.

[104] M. R. Wyatt, S. Herbein, T. Gamblin, A. T. Moody, D. H. Ahn, and
M. Taufer, “Prionn: Predicting runtime and io using neural networks,”
Proceedings of the 47th International Conference on Parallel Process-
ing, 2018.

[105] A. Marathe, R. Anirudh, N. Jain, A. Bhatele, J. J. Thiagarajan,
B. Kailkhura, J.-S. Yeom, B. Rountree, and T. Gamblin, “Performance
modeling under resource constraints using deep transfer learning,”
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017.

[106] V. Sreenivasan, R. Javali, M. W. Hall, P. Balaprakash, T. R. W.
Scogland, and B. R. de Supinski, “A framework for enabling openmp
autotuning,” in IWOMP, 2019.

[107] B. van Werkhoven, “Kernel tuner: A search-optimizing gpu code auto-
tuner,” Future Gener. Comput. Syst., vol. 90, pp. 347–358, 2019.

[108] S. Muralidharan, M. Shantharam, M. W. Hall, M. Garland, and
B. Catanzaro, “Nitro: A framework for adaptive code variant tuning,”
2014 IEEE 28th International Parallel and Distributed Processing
Symposium, pp. 501–512, 2014.

[109] D. Maharjan and P. Zaspel, “Towards data-driven filters in paraview,”
ArXiv, vol. abs/2108.05196, 2021.

[110] S. Leventhal, M. Kim, and D. Pugmire, “Pave: An in situ frame-
work for scientific visualization and machine learning coupling,” 2019
IEEE/ACM 5th International Workshop on Data Analysis and Reduc-
tion for Big Scientific Data (DRBSD-5), pp. 8–15, 2019.

[111] H. Ehsan, M. Sharaf, and P. K. Chrysanthis, “Efficient recommendation
of aggregate data visualizations,” IEEE Transactions on Knowledge and
Data Engineering, vol. 30, pp. 263–277, 2018.

[112] S. Rahman, M. Aliakbarpour, H. Kong, E. Blais, K. Karahalios, A. G.
Parameswaran, and R. Rubinfeld, “I’ve seen ”enough”: Incrementally
improving visualizations to support rapid decision making,” Proc.
VLDB Endow., vol. 10, pp. 1262–1273, 2017.

[113] Y. Luo, X. Qin, N. Tang, G. Li, and X. Wang, “Deepeye: Creating
good data visualizations by keyword search,” Proceedings of the 2018
International Conference on Management of Data, 2018.

[114] C. Wang, Y. Feng, R. Bodı́k, A. Cheung, and I. Dillig, “Visualization
by example,” Proceedings of the ACM on Programming Languages,
vol. 4, pp. 1 – 28, 2020.

[115] C. Yang, B. Friesen, T. Kurth, and B. Cook, “Toward automated
application profiling on cray systems,” 2018.


