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Abstract—High Performance Computing (HPC) is a powerful
tool in scientific research for experimental simulation and data
analysis. However, it has not been well studied and applied
for earthquake cycle simulation. In this work, we explore
computational methods and HPC techniques for earthquake
cycle simulation with a focus on iterative methods and pre-
conditioning techniques. The problem that we target is solving
Poisson’s equation numerically with boundary conditions derived
from geophysics. Specifically, we use summation-by-parts (SBP)
finite difference operators with simultaneous-approximation-term
(SAT) method. The combined SBP-SAT scheme has high-order
accuracy and provable stability for our problem. The purpose of
this work is to examine existing research on problems similar to
ours, so we can design algorithms for a large-scale 3D earthquake
cycle simulation suitable for HPC platforms in the future. We
begin with a mathematical introduction to our problem, and then
iterative methods for solving this problem numerically. Finally,
we explore the HPC aspects of these different iterative methods.

I. INTRODUCTION

In mathematics, a partial differential equation (PDE) is
an equation that describes the relationship between various
partial derivatives of a multivariable function. PDEs are widely
used to describe laws in science and engineering. Analytical
solutions to these PDEs are often hard or impossible to obtain.
In these cases, numerical methods, such as finite difference
methods (FDM) or finite element methods (FEM), are often
applied to obtain numerical solutions to these PDEs. Numer-
ical discretizations to PDEs give rise to a multitude of linear
algebra operations including matrix-vector products and linear
and non-linear solves (i.e. solving systems of equations). SBP-
SAT methods are used for approximating solutions to PDE, but
so far the application domains remain largely confined to serial
code and small problems. Their ubiquity in modern scientific
computing applications, however, means their development for
HPC would have much larger impacts in many scientific fields.

We are particularly motivated by the simulations of the
earthquake cycles, where long quiescent periods are character-
ized by static deformation and a wide range of spatial scales
(due to mm-scale frictional effects and km-long faults) give
rise to large-scale problems [28]. High-performance code for
these long-term earthquake dynamics is still in its infancy,
due to the somewhat daunting reality that the static solution
(i.e. solving Ax = b) involves a huge computational cost.
Simulations of earthquakes in 3D volumes involve upwards of
∼ 109 degrees of freedom. Even though the matrix A is sparse
(i.e. most entries of the matrix are zeroes), factoring the matrix
has a significant cost in terms of floating point operations and
memory. In addition, direct methods for solving a large linear

system (e.g., matrix factorization) in parallel are challenging
for many reasons.

Iterative methods, on the other hand, use an initial value to
generate a sequence of improving approximate solutions to the
original problem. There are different types of iterative methods
suitable for different types of problems. Traditional iterative
methods like the Jacobi method and the Gauss-Seidel method
are suitable for linear systems whose matrices have a spectral
radius of less than one. Modern Krylov subspace methods such
as Conjugate Gradient (CG) are suitable for linear systems
with positive definite matrices. [17] These different iterative
methods have various properties in computation. Gauss-Seidel
is known to have reduced memory requirements compared
to the Jacobi method, and CG has much faster convergence
for positive definite matrices compared to the Gauss-Seidel
method. In practice, we need to consider different properties
of our linear system as well as the computational platforms
and environments when choosing the optimal iterative solver
for our problems. Another nice advantage of using iterative
methods compared to direct methods is that they do not require
explicit matrix formulation. Instead, a matrix-free function can
replace matrix-matrix or matrix-vector multiplication used in
these methods, which can reduce the memory requirement for
these methods and reduce data input and output (I/O) signif-
icantly. The latter property is vital when using architectures
with high latency in data I/O such as graphics processing unit
(GPU) for the HPC purpose.

II. HPC IN EARTHQUAKE SIMULATIONS

A. Earthquake Cycle Simulation

Earthquake cycle simulations with laboratory-derived fric-
tion laws have been studied to simulate sequences of large-
scale historical earthquakes. Recent work includes a large-
scale simulation of earthquake occurrences along the Nankai
Trough in southwest Japan [67], and the simulation of the
recurrence of two asperity ruptures including the afterslip
which triggers the other earthquake in the Sanriku region
in northeast Japan [49]. In these papers, the authors studied
the large-scale heterogeneity of parameters or asperities in
friction laws. Another approach is to consider microscopic
structures, examining the earthquake occurrences on a large
fault with different levels of heterogeneity to produce seismic
patterns with Gutenberg-Richter statistics resembling those
natural earthquakes [43]. Meanwhile, long-term and short-term
slow slip events, as well as low-frequency events have been
observed on the plate interfaces in the deep extended regions of
seismogenic zones [44]. Furthermore, recent simulations have
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demonstrated the possibility that the activity of such events
could change before the occurrence of large interplate earth-
quakes [5]. To achieve realistic earthquake cycle simulations, it
is necessary to develop large-scale models of earthquake cycle
simulation that capture the earthquake mechanisms for these
different regions with multiple scales. However, it is difficult
to achieve this kind of multi-scale simulation in larger regions
without HPC techniques.

B. HPC in Geophysics Simulation

HPC is not something novel in geophysics. Traditionally it
has been used in seismic data processing for understanding
earthquake mechanisms [31] or imaging underground geolog-
ical structures to search for hydrocarbon deposits [80]. How-
ever, these applications mainly involve data analysis instead
of computational simulation. More recent progress was made
in simulating earthquake impacts and hazard prevention. The
integrated earthquake simulation (IES) is used to seamlessly
simulate three earthquake processes, namely, the earthquake
hazard process, the earthquake disaster process, and the anti-
disaster action process. [78]. HPC is essential to IES if the
simulation is done in an urban area where 104 ∼ 106 struc-
tures are located. This paper applied HPC to the earthquake
disaster and hazard estimation for the urban area in Tokyo
metropolis [45]. These simulations and related work were
done to study the post-earthquake response from architectural
structures to urban management using various methods from
geophysics to computational sociology. Similar work includes
the study of the tsunami generated from an earthquake using
HPC based on laboratory-derived physics laws [84]. However,
the applications of HPC directly to the study of earthquake
nucleation which can help explain how earthquake starts are
minimal. Results from such research would help with hazard
prevention better in addition to post-earthquake response in
traditional studies. The most related research in this sense was
using hierarchical matrices (H-matrices) for fast computation
of quasi-dynamic earthquake cycle simulation [67]. Due to
the limitation of the computational capability available, the
authors used hierarchical matrices to calculate approximations
for multiplicative computations of N × N slip response
function matrix and slip deficit rate vector, where N is the
number of divided cells on the plate surface. The N used
in this paper ranges from 104 to 106, representing roughly
100 to 1000 cells along one direction in a 2D surface. By
using H-matrices, the computational time and memory size in
earthquake cycle simulations were greatly reduced, so large-
scale simulations were possible. The drawback is also obvious,
using H-matrices only provides a lower-rank approximation to
the original matrices without proven convergence or numerical
stability. This also differs from finite difference methods where
the discretization of a real domain is adopted. Therefore,
this can not be used for the SBP-SAT method. Thus, we
need to look for other HPC approaches to apply the SBP-
SAT method to our research. Also, since this work was done,
the computational capabilities of modern supercomputers have
increased exponentially. This allows us to work on a much
finer resolution that can simulate earthquake cycles better.

However, the increased amount of data and computation
compared to this work has raised several HPC challenges
in problem formulation and algorithm implementation that
weren’t encountered with reduced computation and memory
from approximation.

III. ELLIPTIC PARTIAL DIFFERENTIAL EQUATION AND
FINITE DIFFERENCE METHOD

A. Elliptic PDEs

1) Governing Equations: Second-order linear partial dif-
ferential equations are classified as either elliptic, hyperbolic
or parabolic depending on the coefficients of the PDEs. In
general, second-order linear PDEs with two variables can be
written in the following form

Auxx + 2Buxy +Cuyy +Duz +Euy +Fu+G = 0 (III.1)

where A,B,C,D,E, F,G are functions of x and y, and ux =
∂u
∂x , ux,y = ∂2u

∂x∂y and similarly for uxx, uy, uyy . A PDE written
in this form is called elliptic if

B2 −AC < 0 (III.2)

The simplest example of elliptic PDEs is Poisson’s equation
∆u = uxx + uyy = f(x, y), where f(x) is called the
source term. When f(x) = 0, there is no source term in
this equation. This simplified version of Poisson’s equation is
called Laplace’s equation. Poisson’s equation has been used in
a lot of different fields. For example, the solution to Poisson’s
equation is the potential field caused by a given electric charge
or mass density distribution.

Poisson’s equation also describes the static deformation of
the solid Earth over the time scales of earthquake cycles for
the equilibrium state. The standard assumption is that the Earth
is linear elastic, giving rise to the PDE

(λ+ µ)∇(∇ · u) + µ∇2u + f = 0 (III.3)

defined on a sub-domain of R3. Here λ and µ are material
parameters (Lamé’s first parameter and the shear modulus,
respectively), u is the vector of particle displacements, and
f encompasses source terms.

Due to the computational complexity of Poisson’s equation
in 3D with fine spatial discretization for stability, the problem
is often reduced to 2D to satisfy the current computational
tools available. We assume the motion of the Earth is antiplane
shear, where only one non-zero component of the displacement
vector exists, depending only on two spatial variables, giving
rise to the 2D Poisson equation [58].

2) Initial Boundary Value Problem: In mathematics, initial
values and boundary conditions are a set of additional con-
straints associated with a PDE to ensure that the solutions to a
PDE also satisfy the settings of a problem. A PDE formulated
with these constraints is called an initial boundary value
problem (IBVP) [7]. An IBVP is called well-posed if it has a
unique solution. The discretization of a such problem results
in an invertible matrix that gives a unique solution to the
linear system. Fourier analysis is a powerful tool for solving
these IBVPs with analytical solutions if the problem is well-
posed with simple initial and boundary conditions[7]. For real
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problems with more complex initial and boundary conditions,
numerical methods are used to obtain numerical solutions.
There are mainly two types of numerical methods for solving
PDEs, finite difference methods (FDM) and finite element
methods (FEM). We will be focusing on the finite difference
methods in subsection III-B as our numerical method for
discretization is a type of FDM. Still, we will also cover some
basic concepts of FEMs that are widely used for geophysics
study, especially handling meshes with complex geostructures
[14, 24, 50].

3) Types of Boundary Conditions: There are many different
types of boundary conditions in IBVP. We summarize them in
the following table Table I.

Name 1st part of boundary 2nd part of boundary

Dirichlet u = f

Neumann ∂u
∂n

= f

Robin c0u+ c1
∂u
∂n

= f

Mixed u = f c0u+ c1
∂u
∂n

= f

Cauchy u = f and ∂u
∂n

= g

TABLE I: Summary of boundary conditions for the unknown
function, u, constants c0, c1 specified by the boundary

conditions, and known scalar functions f and g specified by
the boundary conditions.

B. Finite Difference Methods

In numerical analysis, finite-difference methods are a class
of techniques for solving differential equations by approxi-
mating derivatives with finite differences. The discretization
is applied to both spatial domain and time interval (if the
problem is time-dependent) where they are broken into a
finite number of steps, and the value of the solution at
different discrete points is approximated via solving algebraic
equations with finite differences and values from neighboring
points. Ordinary differential equations or partial differential
equations are converted into linear or nonlinear systems via
finite difference methods. These systems can be solved using
methods in linear algebra. Particularly, modern computers are
very efficient for calculations in these methods.

The finite difference approximations are derived from Taylor
series expansions. The orders and accuracy of different finite
differences are related to the order of the remainder term in
the Taylor series expansions, and they play an important role
in the accuracy of the finite difference methods as well as in
the convergence rate when using iterative methods to solve the
linear or nonlinear system. In this work, we focus on solving
linear systems that finite difference methods give rise to.

When solving IBVPs with finite difference methods, how to
enforce boundary or initial conditions in Table I is the main
challenge. There are two ways to enforce boundary conditions.
Strong enforcement of boundary conditions or injection is
used in traditional finite difference methods [16]. Because
symmetric positive definiteness is an important condition for
many iterative solvers, additional techniques might be used
in strong enforcement to form a symmetric positive definite
matrix. For example, when enforcing Neumann boundary

conditions, it is common to divide the rows in the linear system
for the Neumann boundary conditions by half [16].

Another way to enforce boundary conditions is to use weak
enforcement. This approach is important for the summation-
by-parts finite difference methods introduced in the next
section.

C. Finite Element Method

The finite element method (FEM) is another way to solve
partial differential equations in two or three space variables
by subdividing a large system into smaller, simpler parts that
are called finite elements. Finite element methods use weak
formulations to construct sub-problems on each finite element.
A finite element model of a problem gives a piecewise
approximation to the governing equations. The solution of a
finite element method is a combination of continuous solutions
vs the discrete solutions only for grid points in an FDM.

FEMs usually have an accurate representation of complex
geometry and the inclusion of dissimilar material properties.
The total solution usually has an easier form than FDM.
However, FEMs usually require a large amount of data for
nodal connectivity information in the mesh, and higher com-
putational costs than FDMs for complex problems[47, 42].

IV. SBP-SAT METHOD

A. SBP-SAT Method

Summation-By-Parts (SBP) finite difference methods have
been proposed to solve problems with complex geometries
such as the problem in this paper due to their desirable prop-
erties of high order accuracy and provable stability [52, 53,
82, 62]. The inter-block coupling conditions can be enforced
weakly using the Simultaneous-Approximation Term (SAT)
method [19, 20]. The SAT term here is analogous to the
penalty term in discrete Galerkin methods.

B. One Dimensional SBP Operators

We discretize the domain 0 ≤ x ≤ 1 with N + 1 evenly
spaced grid points xi = ih, i = 0, . . . , N with spacing h = 1/N.
We then project a function u onto the computational grid to be
u = [u0, u1, . . . , uN ]T . u is often taken to be the interpolant
of u at grid points. We define grid basis vector ej to be a
vector with value 1 at grid point j and 0 for the rest. We only
need e0 and eN to form projections at boundaries. Note that
in general we have uj = eTj u.

We apply the class of high-order accurate SBP finite differ-
ence methods for first-order derivatives which were introduced
in [52] and [53] and [82] as mentioned above. For second-
order derivatives, we apply [62], with variable coefficients
treated in [60]. The exact forms of definitions are given below.

Definition 1 (First Derivative). We define matrix Dx to be
an SBP approximation to ∂u/∂x if it can be decomposed as
HDx = Q with H being symmetric positive definite and Q
satisfying uT (Q + QT )v = uNvN − u0v0.

Here, we only consider diagonal-norm SBP, i.e. finite dif-
ference operators where H is a diagonal matrix and Dx is the
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standard central finite difference matrix in the interior which
transitions to one-sided at boundaries. The condition of Q
defined above can be written as Q + QT = eNeTN − e0e

T
0 .

The reason why the operator Dx is called SBP is that it
mimics the integration-by-part property∫ 1

0

u
∂v

∂x
+

∫ 1

0

∂u

∂x
v = uv

∣∣∣∣1
0

, (IV.1)

in a discrete form

uTHDxv+uTDT
xHv = uT

(
Q + QT

)
v = uNvN−u0v0.

(IV.2)
Following the same pattern of the first derivative, we can

define the second derivative.

Definition 2 (Second Derivative). We define matrix D(c)
xx to be

an SBP approximation to ∂
∂x

(
c∂u∂x

)
if it can be decomposed

as HD(c)
xx = −A(c) +cNeNdTN−c0e0d

T
0 where A(c) is sym-

metric positive definite and dT0 u and dTNu are approximations
of the first derivative of u at the boundaries.

Similarly, the operator D(c)
xx mimics the integration-by-parts

property∫ 1

0

u
∂

∂x

(
c
∂v

∂x

)
+

∫ 1

0

∂u

∂x
c
∂v

∂x
= uc

∂v

∂x

∣∣∣∣1
0

, (IV.3)

in a discrete form

uTHD(c)
xxv + uTA(c)v = cNuNdTNv − c0u0d

T
0 v. (IV.4)

As noted above, we only consider diagonal-norm SBP finite
difference operators here. In the interior, the operators use
the minimal bandwidth central difference stencil and transition
to one-sided boundaries in a manner that preserves the SBP
property.

It has been known that for SBP operators defined above, if
the interior operator has an accuracy of 2p, then the interior
stencil bandwidth is 2p + 1 and the boundary operator has
an accuracy of p. If we use operators with interior accuracy
2p = 2, 4, and 6, the expected global order of accuracy is the
minimal of 2p and p+2 as evidenced by empirical study ([61]
[89]) and proved for the Schrödinger equation [66].

C. 2D SBP Operators

2D SBP operators can be developed by applying the Kro-
necker product. For example, we discretize the 2D square
domain (x, y) ∈ [0, 1]× [0, 1] using N + 1 grid points in each
direction, resulting in an (N+1)×(N+1) grid of points where
grid point (i, j) is at (xi, yj) = (ih, jh) for 0 ≤ i, j ≤ N with
h = 1/N . 2D SBP operators for the second partial derivatives
are thus obtained from the 1D SBP operators, namely

∂2

∂x2
≈ I ⊗Dxx,

∂2

∂y2
≈Dyy ⊗ I, (IV.5)

see [51] for more details. We should note that Kronecker
products are used here mainly for the purpose of simplicity in
theoretical analysis. In computer memory, data are stored in
a one-dimensional array. Hence, the Kronecker products here
mainly affect the order in which we read data from a 1D array.

D. SAT Penalty Terms

SBP operators compute approximations to derivatives at all
grid points, as opposed to traditional finite difference methods
that only do this at interior nodes, and inject boundary data
(i.e. overwrite the grid function at the boundaries to strongly
enforce boundary conditions). SAT terms weakly enforce
boundary conditions, penalizing the grid point at the boundary
towards the boundary data. In 1D for example, if a Neumann
boundary condition ∂u

∂x |x=0 = g is specified, the SAT term
bSAT (a vector) takes the following form:

bSAT = α(Bu− g)e0. (IV.6)

Here, u is the grid vector (the numerical approximation to the
solution) for boundary data g. B = eT0 Dx is the operator
that computes a one-sided difference approximation at the
domain boundary. α is a penalty parameter that is chosen under
stability constraints from a discrete energy estimate. More
detailed examples of SAT terms in practice can be found in
[28]. Multiple boundary conditions can be enforced by adding
the corresponding bSAT terms to the discretization of the
PDE. Compared to the traditional method of using injection
or strong enforcement of boundary/interface conditions that
would destroy the SBP property defined in equations IV.2 and
IV.4, using SAT terms enables proof of the method’s stability
[63].

E. An example of the SBP-SAT technique for PDE

We use the following example from [73] to showcase an
example of applying the SBP-SAT method for PDEs. Let’s
consider the advection problem in 1D.

ut + ux = 0, 0 < x < 1, t > 0

u(0, t) = g(t), t > 0

u(x, t) = h(x), 0 < x < 1

(IV.7)

where both g and h are known for initial and boundary
conditions. The problem Equation IV.7 has an energy-estimate
and is well-posed. We can easily learn that the analytical
solution for this equation is a right-traveling wave.

We discretize 1D domain with N + 1 points in a uniform
grid on [0, 1] using the method described in subsection IV-B.
By applying SBP-SAT discretization in space to Equation IV.7,
we get

ut +D1u = P−1σ(u0 − g)e0, t > 0

u(0) = h
(IV.8)

where u = [u0, . . . , uN ]T ,h = [h0, . . . , hN ]T , σ ∈ R is
a penalty parameter which is determined through stability
condition. e0 = [1, 0, . . . , 0]T ∈ RN+1. To determine the
value for σ so that the problem Equation IV.8 is strongly
stable, we have

||u(t)||2 ≤ K(t)(||h||2 + max
τ∈[0,t]

|g(τ)|2) (IV.9)

The K(t) in Equation IV.9 is independent of the data and
bounded for any finite t and meshsize ∆x. Further details
about K(t) are given in [85, 36]. Applying the energy method
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by multiplying the equation Equation IV.8 with uTP and
adding the transpose with the SBP property Equation IV.2,
we find

d

dt
||u||2P = − σ2

1 + 2σ
g2−u2

N+
[(1 + 2σ)u0 − σg]2

1 + 2σ
(IV.10)

By time-integration, this leads to an estimate of the form
Equation IV.9 for σ < −1/2.

F. Poisson’s equation with SBP-SAT Methods

We consider the 2D Poisson equation on the unit square Ω
with both Dirichlet and Neumann conditions for generality, as
each appears in earthquake problems (e.g. Earth’s free surface
manifests as a Neumann condition, and the slow motion of
tectonic plates is usually enforced via a Dirichlet condition).
This is an important and necessary first step before additional
complexities such as variable material properties, complex
geometries, and fully 3D problems. The governing equations
are given by

−∆u = f, for (x, y) ∈ Ω, (IV.11a)
u = gW, x = 0, (IV.11b)
u = gE, x = 1, (IV.11c)

n · ∇u = gS, y = 0, (IV.11d)
n · ∇u = gN, y = 1, (IV.11e)

where ∆u = ∂2u
∂x2 + ∂2u

∂y2 , the field u(x, y) is the unknown
particle displacement, the scalar function f(x, y) is the source
function, and vector n is the outward pointing normal to the
domain boundary ∂Ω. The g’s represent boundary data on the
west, east, south, and north boundaries.

The SBP-SAT discretization of (IV.11) is given by

−D2u = f + bN + bS + bW + bE , (IV.12)

where D2 = (I ⊗Dxx)+(Dyy ⊗ I) is the discrete Laplacian
operator and u is the grid function approximating the solu-
tion, formed as a stacked vector of vectors. The SAT terms
bN , bS , bW , bE enforce all boundary conditions weakly. To
illustrate the structure of these vectors, the SAT term enforcing
Dirichlet data on the west boundary is given by

bW = α
(
H−1 ⊗ I

)
(EWu− eTWgW) (IV.13)

−
(
H−1e0d0

T ⊗ I
)

(EWu− eTWgW), (IV.14)

where α again represents a penalty parameter, EW is a sparse
boundary extraction operator, and eTW is an operator that lifts
the boundary data to the whole domain. Details of all the SAT
terms can be found in [28]. System (IV.12) can be rendered
SPD by multiplying from the left by (H ⊗H), producing the
sparse linear system Au = b.

V. ITERATIVE METHODS

This section will present a brief review of iterative methods
for solving large linear systems in our research.

A. Stationary Iterative Methods

Stationary iterative methods can be expressed in the simple
form

uk+1 = Quk + q (V.1)

where Q and q are placeholders for a matrix and a vector
respectively, both independent of iteration step k. Stationary
iterative methods, such as the Gauss-Seidel method, act as
smoothers for damping frequency components of the solution
vectors. Further backgrounds of these iterative methods can
be found in [74]

The considered problem for iterative methods is a linear
equation system of the form Au = f . We introduce splitting
matrix S as follows:

A = S + (A− S) (V.2)

With this introduced splitting matrix S, we can rewrite the
linear equation system as

Su = (S −A)u + f (V.3)

and the iterative scheme of the splitting method is defined as

uk+1 = S−1((S −A)uk + f) (V.4)

For further analysis, it is useful to introduce the iteration
matrix M as

M = S−1(S −A) (V.5)

.
If we define Q = M and q = S−1f , then Equation V.4

can be written as u = Qu + q, and it satisfy

ek+1 = Mek (V.6)

where ek is the error uk−u for the iteration step k. Because
M is only determined by the initial linear system and the
splitting matrix S, and it is not changed in each iteration step,
this method is called the stationary iterative method.

The spectral radius ρ is the largest absolute eigenvalue of a
matrix. The stationary iterative method converges if and only
if the spectral radius ρ of the iteration matrix M satisfies the
following condition

ρ(M) < 1 (V.7)

Such convergence holds for any initial guess u0 and any
right-hand side f . Different stationary iterative methods differ
in the choice of splitting matrix S. We will present the Jacobi
method and the Gauss-Seidel method for comparison here.

1) The Jacobi Method: In the Jacobi method, the diagonal
D of the matrix A for the linear system is chosen as the
splitting matrix S. Hence the decomposition is expressed as

A = D + (A−D) or A = D + (−L−U) (V.8)

Where −L denotes the strictly lower triangle and −U de-
notes the strictly upper triangle of the matrix A. Similar to
Equation V.4, the Jacobi method is then

uk+1 = D−1((L + U)uk + f) (V.9)
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In terms of matrix indices, the Jacobi method can be written
as

uk+1
i =

1

Aii
(fi −

∑
j=1,i6=j

Aiju
k
j ) (V.10)

For matrix-free forms, similar results can be obtained via slight
modifications to this form.

2) The Gauss-Seidel Method: In the Gauss-Seidel method,
the splitting matrix is chosen as S = (D − L). The decom-
position is then expressed as

A = (D −L) + (A− (D −L)) or A = D −L + (−U)
(V.11)

Similar to Equation V.4, the Gauss-Seidel method is then

uk+1 = (D −L)−1(Uuk + f) (V.12)

To derive the index form of the Gauss-Seidel method, some
further transformations are needed.

Duk+1 −Luk+1 = Uuk + f (V.13)

and

uk+1 = D−1(Luk+1 + Uuk + f) (V.14)

and the index form is given as

uk+1
i =

1

Aii
(fi −

i−1∑
j=1

Aiju
k+1
j −

n∑
i+1

Aiju
k
j ) (V.15)

3) Comparison of the Jacobi and the Gauss-Seidel Method:
It might seem that in Equation V.14 the right-hand side
contains the result from the iteration step k+1 and such an
iterative scheme would fail. However, a closer observation
would notice that the uk+1 is multiplied by the negation of
the lower triangle −L of the matrix A. This means for each
element j in the vector uk+1, only newly updated elements
before index j are used, hence there is no logical problem in
this iterative scheme. This is more obvious in the index form
Equation V.15

This is the most important difference between the Jacobi and
the Gauss-Seidel method. When computing the i-th element
uk+1
i in the iteration step k+1, the Gauss-Seidel method

already uses all available iterates uk+1
j with j = 1 . . . (i− 1),

while the Jacobi method only uses the iterates from the
previous iteration step k. In other words, while the Jacobi
method adds all increments simultaneously only after cycling
through all degrees of freedom, the Gauss-Seidel method adds
all increments successively as soon as available. As a result,
the Gauss-Seidel method has the advantage that one vector
is sufficient to update its vector elements i successively, in
contrast to the Jacobi method where an additional vector
is required. However, in terms of computational cost, the
difference in memory requirement is negligible in practice.

On the other hand, the operations for the iteration of
different vector elements do not coincide in the Jacobi method,
which means the parallelization for the Jacobi method is
straightforward. However, in the Gauss-Seidel method, the
nodal ordering influences the convergence behavior. There

are various nodal orderings summarized in [38], such as
red-black, lexicographical, zebra-line, and four-color ordering.
More advanced algorithms are required for the successful
parallelization of the Gauss-Seidel method. Otherwise, uncon-
trolled splitting of the process leads to the so-called chaotic
Gauss-Seidel method.

In terms of convergence, both stationary methods depend
on the spectral radius of the corresponding iteration matrix
Q, which is affected by the splitting matrix S chosen for
each of these two methods. If both methods converge, the
convergence rate of the Gauss-Seidel method is better as each
iteration would use the updated data as soon as available.

Specifically, it is sufficient for the Jacobi method to con-
verge if the system Matrix A is strictly diagonally dominant
[35]

|Aii| >
n∑

j=1,j 6=i

|Aij | for all i (V.16)

For a linear system that doesn’t satisfy this condition,
convergence can be achieved by additional damping. For
the Gauss-Seidel method, other than the given condition in
Equation V.16, the convergence is also guaranteed if the
system matrix A is positive definite. The second condition
is usually satisfied for the finite difference method or the
finite element method if properly restrained and stabilized.
[11] Other than directly used as standalone iterative solvers,
the damped Jacobi method or the Gauss-Seidel method can be
applied as smoothers within the multigrid method.

4) Relaxation methods: Relaxation methods are also sta-
tionary iterative methods, thus they can also be presented in the
form Equation V.1. For each of the methods introduced pre-
viously, there also exists a corresponding relaxation method.
In comparison to the precedent methods, the relaxation meth-
ods scale each increment by a constant relaxation factor ω.
The general form of the relaxation methods is given by the
following simplified algorithmic expression

uk+1
i := (1− ω)uki + ωŭk+1

i (V.17)

where for each individual index i, the temporary variable ŭk+1
i

is computed as the uk+1
i of the Jacobi method in the case

of the simultaneous over-relaxation method (JOR method) or
as the uk+1

i of the Gauss-Seidel method in the case of the
successive over-relaxation method (SOR method). Thus when
ω = 1, the relaxation scheme is identical to the Jacobi or the
Gauss-Seidel method.

The optimum relaxation factor can be derived theoretically
from the spectral radius of the iteration matrix. However, this
is expensive. For more practical use, several methods for the
determination of ω were proposed in [35] and [96].

B. Krylov Subspace Methods

Stationary iterative methods have been applied for a long
time in history, but over the last few decades, Krylov subspace
methods become more popular. These methods focus on build-
ing Krylov subspaces, named after Aleksei Nikolaevich Krylov
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who used these spaces to analyze oscillations of mechanical
systems [54]. The Krylov subspace takes the form

Kk(A,v) := span{v, Av, . . . , Ak−1v} (V.18)

where A ∈ Cn×n and v ∈ Cn
1) Conjugate Gradient Method: The conjugate gradient

(CG) method was developed by Hestenes & Stiefel [41] as the
first Krylov subspace method, and has been one of the most
popular iterative methods in solving linear systems. Compared
to the iterative methods mentioned in previous sections which
are known to be stationary, the CG method is non-stationary.
Let A ∈ Rn×n be a symmetric positive definite (SPD) matrix,
and f ∈ Rn be a real vector, then the minimization problem
of the quadratic form F (x) = min

F (u) =
1

2
uTAu− fTu (V.19)

is equivalent to getting its derivative

gradF (u) = Au − f (V.20)

equal to the zero vector

gradF (u) = 0 (V.21)

The CG method is an iterative minimizer of the given
quadratic form and therefore an iterative solver for the linear
equation system Au = f when A is SPD. The quadratic form
is always minimized from an approximate vector uk in the
direction of a provided search vector pk 6= 0, which can be
written as

F (uk + λpk) = min (V.22)

where both uk and pk are constant vectors ∈ R and a scalar
variable λ ∈ R. This leads to the following parabola function
of λ

(
1

2
pk

T
Apk)λ2 + (pk

T
Auk − pk

T
f)λ

+ ((
1

2
uk

T
Auk)− uk

T
) = min (V.23)

This quadratic form is minimized for

λ =
pk

T
(f −Auk)

pk
T
Apk

(V.24)

The ideal search direction pk would be the error e, however,
this would require us to know the exact solution u. As a
compromise, the negative gradient of the quadratic form at
uk is the best intuitive search direction from the local view
of uk. The search direction corresponds to the residual rk is
now

− gradF (uk) = f −Auk = rk (V.25)

with pk = rk. We define the following equations

λk =
rk
T
rk

rk
T
Ark

(V.26)

uk+1 = uk + λkr
k (V.27)

to describe the iterative process for one iterative step, which
is called the method of steepest descent due to the fact that

for any iteration step k, the search direction pk is defined by
(-gradF (uk)).

The method of the steepest descent is a key step in the
CG method, but the choice of search directions pk is not the
optimal one. As uk+1 is optimized with respect to the previous
search direction pk = rk, it is clear that the successive search
directions are not orthogonal (−gradF (uk+1) ⊥ pk). It can
be shown that rk ⊥ rk+1 and rk+1 ⊥ rk+2, but it is general
not true for rk ⊥ rk+2. Therefore, uk+1 has lost its optimum
with respect to the previously optimized direction rk.

If uk+1 is optimal with respect to pk 6= 0, then this property
is passed to uk+1 if and only if

Apk+1 ⊥ pk (V.28)

The vectors pk+1 and pk are called conjugate. In the
conjugate gradient method, the search directions are pairwise
conjugate. Each time a new search direction is derived from the
actual residual and conjugated with the prior search direction.
It is also conjugate to all previous search directions. Thus a
system of conjugate search directions is obtained or equivalent
to a system of orthogonal residuals. This can be proven by
induction. The initial values are defined as

r0 = f −Au0

p0 = r0 (V.29)

The following equations describe the algorithm of the
conjugate gradient method

λk =
rk
T
pk

pk
T
Apk

(V.30)

uk+1 = uk + λkp
k (V.31)

rk+1 = rk − λkApk (V.32)

pk+1 = rk − rk+1TApk

pk
T
Apk

pk (V.33)

As shown in [35], for an efficient implementation, it is
possible to use an alternative form for λk and pk+1

λk =
rk
T
rk

pk
T
Apk

(V.34)

pk+1 = rk +
rk+1Trk

rk
T
rk

pk (V.35)

It can be proven that the CG method will converge to the
exact solution after given finite steps. In theory, this method
can achieve the same level of accuracy as a direct solver.
However, due to numerical round-off errors, the orthogonality
is often lost and such ideal theoretical results can not be
achieved. In practice, given reasonable error tolerance, the
CG method can generally be terminated after the convergence
criteria have been met. This supports the view of the CG
method as an iterative method, while an iterative method often
would not converge to the exact solution, especially in theory.
Thus the CG method is sometimes treated as a semi-iterative
method.
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VI. MULTIGRID METHODS

A. General Multigrid Method

The multigrid method is a scheme applied to solving a
linear equation system with iterative solvers. It provides a
convergence acceleration that improves the performance of
these iterative solvers using grid coarsening [29] [87]. In
practice, it can be implemented as a standalone method or
as a preconditioner for other iterative methods such as the
conjugate gradient method [86]. Various multigrid methods
are used in different branches of applied mathematics and
engineering. such as electromagnetics [81] and fluid dynamics
[2].

The two important components of multigrid methods are
the restriction and prolongation operators which transfer infor-
mation between fine grids and coarse grids. These operators
are typically based on linear interpolation procedures and are
connected through variational properties [17] to ensure optimal
coarse-grid correction in the Ah-norm with Ah being the
left-hand side of the linear system defined on the fine grid.
The multigrid method can be also applied to the SBP-SAT
method with specific grid transfer operators. In this section,
we will provide a brief review of the multigrid method and
its implementation. We consider the following steady-state
problem:

Lu = f, in Ω (VI.1)
Hu = g, on ∂Ω (VI.2)

where L is a differential operator on domain Ω, and H is a
boundary operator on the boundary ∂Ω. This is a generaliza-
tion of many linear systems with various boundary conditions.

1) The multigrid algorithm: In general, the construction of
a multigrid consists of the following four basic steps:

1) Fine-grid discretization
2) Error smoothing
3) Coarse-grid correction
4) Fine-grid update

Different combinations of these steps result in different
multigrid schemes. The most simple scheme is a two-level
multigrid V cycle. We will expand these four steps in the
following sections.

2) Fine-grid discretization: Consider a fine grid meshing
Ω1 on Ω. A discrete linear system associated to Equation VI.1
on this fine grid Ω1 has the general form

L1u = F (VI.3)

where L1 is the discrete version of the operator L in
Equation VI.1 which also include boundary conditions in
Equation VI.2. The vector F approximates f on the grid
points of Ω1 which already incorporates data for the boundary
conditiong in Equation VI.2. u is the discretization of the
solution u in the steady-state problem. We assume L1 to be
positive definite which also implies that L1 is invertible. This
is property is usually satisfied from discretization methods.

3) Error smoothing: Error smoothing is required prior to
grid coarsening. Suppose we have an initial guess u0, the
iterative approach towards the solution to Equation VI.3 is
through solving

wτ + L1w(τ) = F, 0 < τ < ∆τ (VI.4)

w(0) = u(0) (VI.5)

where ∆t > 0 is the smoothing step. The solution to this
equation is

w(∆τ) = e−L1∆τu0 + (I1 − e−L1∆τ )L−1
1 F (VI.6)

where I1 is the identity matrix on Ω1, and the following
condition holds for any norm if L1 is positive definite

||w(∆τ)− u|| < ||u(0) − u|| (VI.7)

Smoothing technique for the solution can be defined as
follows

wk = Swk−1 + (I1 − S)L−1
1 F, k = 1, . . . ν

w0 = u0
(VI.8)

where S is the smoother. If S is an exponential smoother
Sexp = e−L1∆τ , this will yield the pseudo time-marching
procedure in Equation VI.4. This iterative method would
converge after ν steps to

w = Sνu0 + (I1 − Sν)L−1
1 F (VI.9)

The convergence criteria for this procedure is mentioned in
the overview of iterative methods.

4) Coarse-grid correction: Next, consider the error e =
L−1

1 F−w and the residual problem

L1e = F− L1w (VI.10)

Instead of solving this system directly, we introduce a subset
of Ω1 called the coarse grid Ω2, and solve the associated
coarse grid problem on Ω2

L2d = Ir(F− L1w) (VI.11)

This problem is obtained from the finer grid problem
Equation VI.10 by using the following operators

1) a restriction operator Ir : Ω1 −→ Ω2

2) a coarse-grid operator L2: Ω2 −→ Ω2

The coarse-grid operator can be built by using the Galerkin
condition

L2 = IrL1Ip (VI.12)

where Ip : Ω2 −→ Ω1 is a the prolongation operator. In some
situations, L2 can be built independently through the direct use
of discretization methods, but Ir and Ip needs to be carefully
defined so the Galerkin condition Equation VI.12 still holds.

The prolongation operator Ip is commonly chosen through
linear interpolation. Assume Ω1 had a grid spacing of ∆x =
1/N , and Ω2 consists of the even grid points of Ω1. This leads
to
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(Ipv)m =

{
vj , m = 2j, j = 0, . . . , N/2
1
2 (vj + vj+1), m = 2j + 1, j = 0, . . . , N/2

(VI.13)
As we already define the prolongation operator, the restric-

tion operator is given as

Ir = ITp /C (VI.14)

which is called the variational property. The C is a constant
determined by the discretization method. In this problem, the
value for C is 2.

5) Fine-grid update: Finally, we update the fine grid solu-
tion with correction d as

u(1) = w + Ipd (VI.15)

The relation Equation VI.15, together with Equation VI.9 and
Equation VI.11 provides an iterative method for solving the
steady-state problem

un+1 = Mun +NF (VI.16)

where

M = CSν (VI.17)

C = I1 − IpL−1
2 IrL1 (VI.18)

N = (I1 −M)L−1
1 (VI.19)

M is called the multigrid iteration matrix here and C is referred
to as the coarse grid correction operator. Here, M plays a
central role in the convergence of the iterative method. We
can see this by the definition of the error at step n e(n) =
u(n) − L−1

1 F as we get

e(n+1) = Me(n) (VI.20)

which again leads to the same convergence criteria for the
iterative method depending on the spectral radius of M .

To demonstrate the actual process of a multigrid scheme, we
use the following two-grid correction scheme as an example

1) Relax ν1 times on Lh1u
(1) = F(1) on Ω1 with the initial

guess v1

2) Compute the fine-grid residual r(1) = F(1) − L1v
(1)

and restrict it to the coarse grid by r(2) = Irr
(1)

3) Solve L2e
(2) = r(2) (or relax ν1 times) on Ω2

4) Interpolate the coarse-grid error to the fine grid by
e(1) = Ipe

(2) and correct the fine-grid approximation
by v1 ←− v(1) + e(1)

5) Relax ν2 times on L1u
(1) = F(1) on Ω1 with the initial

guess v(1)

There are more schemes for multigrid, and the main
schemes are summarized inFigure 1.

Earlier work in multigrid relies on the geometric structure
to construct coarse problems, thus this approach is called
geometric multigrid. In problems where the computational
domain is not composed of well-structured meshes, the multi-
grid method can be also applied via algebraic operators rather
than a geometric grid. This approach is called the algebraic
multigrid. We will cover this approach in the next subsection.

Fig. 1: Schedule of grids for (a) V-cycle, (b) W-cycle, and
(c) FMG scheme, all on four levels. [16]

B. Algebraic Multigrid

The classical multigrid formed around the geometric struc-
ture has been generalized that the multigrid is analyzed in
terms of the matrix properties [64]. This algebraic approach
to theory was further extended to form the basis for much of
the early development that led to the so-called Ruge-Stüben
or classical algebraic multigrid (CAMG) method [15, 59, 71].
A detailed overview of the algebraic multigrid can be found
in this recent paper [93]. Here, we want to present it more
concisely. We begin this subsection with the following theorem
in linear algebra.

Theorem 1 (Solvability and the Fundamental Theorem of
Linear Algebra). Suppose we have a matrix A ∈ Rm×n. The
fundamental theorem of linear algebra states that the range
(column space) of the matrix,R(A), is equal to the orthogonal
complement of N (AT ), the null space of AT . Thus, spaces
Rm and Rn can be orthogonally decomposed as follows:

Rm = R(A)⊕N (AT ) (VI.21)
Rn = R(A)⊕N (A) (VI.22)

For the equation Au = f to have a solution, it is necessary
that the vector f lie in R(A). Thus, an equivalent condition
is that f be orthogonal to every vector in N (AT ). For the
equation Au = f to have a unique solution, it is necessary
that N (A) = {0}. Otherwise, if u is a solution and v ∈ (A),
then A(u + v) = Au + Av = f + 0 = f , so the solution is
not unique[16].
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This is another point to view the coarse-grid correction
scheme, and this leads to the algebraic multigrid. More theo-
ries related to this topic and the spectral picture of multigrid
can be found in [16].

The unique aspect of the CAMG is that the coarse problem
is defined on a subset of the degrees of freedom of the initial
problem, thus resulting in both coarse and fine points, which
leads to the term CF-based AMG. A different approach to con-
structing algebraic multigrid is called smoothed aggregation
AMG (SA), where collections of degrees-of-freedom define a
coarse degree-of-freedom [88]. Together, CF and SA form the
basis of AMG and led to several developments that extend
AMG to a wider class of problems and architectures.

AMG does not depend on the geostructure of the problem
and discretization schemes, and due to this generalizability,
it has been implemented in different forms in many software
libraries. The original CAMG algorithm and its variants are
available as amg1r5 and amg1r6 [71]. A parallel implemen-
tation of the CF-based AMG can be found in the BoomerAMG
package in the Hypre library [95]. The Trilinos package
includes ML as a parallel SA-based AMG solver [32]. Finally,
PyAMG includes a number of AMG variants for testings, and
Cusp distributes with a standard SA implementation for use
on a GPU [25, 13].

C. The Multigrid Method Within the SBP-SAT Scheme

Since the SBP-SAT scheme is a framework for discretization
to form a linear system, it is compatible with the multigrid
method and can be accelerated using this technique. The key
challenge from simply applying the common prolongation
and restriction operators with the Galerkin condition Equa-
tion VI.12 is that the summation-by-parts property would
not be preserved for the coarse grid operators. In order to
accurately represent the coarse-grid correction problem for
the SBP-SAT scheme, a more suitable class of interpolation
operators needs to be proposed. Many works have been done
to address this issue [72, 73].

To overcome this issue, consider defining the restriction
operator as

Ir = H−1
2 ITp H1 (VI.23)

which was first introduced in [73]. This involves the coarse
grid SBP norm H2 and is obtained by enforcing that two scalar
products

(φ1, ψ1)H1 = (φ1H1ψ1) (VI.24)
(φ2, ψ2)H2 = (φ2H2ψ2) (VI.25)

are equal for φ1 = Ipφ2 and ψ2 = Irψ1. φ and ψ correspond
to the u and v in section IV-A. We use these new notations to
avoid confusion with the u used in the previous subsection on
the multigrid method. As a result, the interpolation operators
Ir and Ip are adjoints to each other with respect to the SBP-
based scalar products defined in [38].

(Ip, ξ2, ξ1)H1
= (ξ2, Irξ1)H2

(VI.26)

by using Equation VI.23, it is possible to build pairs of
consistent and accurate prolongation and restriction operators.

Fig. 2: The 2nd-order SBP-preserving restriction operator Ir

The following definition of the SBP-preserving interpolation
operators was given in [73], where the operators were used
to couple SBP-SAT formulations on grids with different mesh
sizes with numerical stability.

Definition 3. Let the row-vectors xk1 and xk2 be the projections
of the monomial xk onto equidistant 1-D grids corresponding
to a fine and coarse grid, respectively. Ir and Ip are then
called 2q-th order accurate SBP-preserving interpolation op-
erators if Irxk1−xk2 and Ipxk2−xk1 vanish for k = 0, ..., 2q−1
in the interior and for k = 0, ..., q − 1 at the boundaries.

The sum of the orders of the prolongation and restriction
operators should be at least equal to the order of the differential
equation. As a consequence, the use of high-order interpolation
is not required here to solve the linear system with the
multigrid method. However, high-order grid transfer operators
can be used in combination with high-order discretization [83].

SBP-preserving interpolation operators with minimal band-
width are given in Appendix A. The restriction operator Ir,
which differs from the conventional one at boundary nodes, is
shown in Figure 2.

1) SBP-preserving interpolation applied to the first deriva-
tive: Using Galerkin condition Equation VI.12 and SBP-
preserving operators, we can construct the linear system with
the multigrid method. We first consider the first derivative fine-
grid SBP operator D1,1 and its coarse-grid counterpart D1,2

constructed as follow

D1,2 = IrD1,1Ip (VI.27)

We now show that D1,2 preserves SBP property in such ways.
To start with, we rewrite the left-hand side of the following
SBP property

(φ,D1ψ)H = φNψN − φ0ψ0 − (D1φ, ψ)H (VI.28)

with the adjoint relation Equation VI.26 as follows

(φ2, D1,2ψ2)H2
= (φ2, Ir(D1,1Ipφ2))H2

= (Ipφ2, D1,1(Ipψ2))H1
(VI.29)

Next, the SBP property for the finite-grid operator D1 leads
to

(φ2, D1,2ψ2)H2
= (Ip, φ2)N (Ip, ψ2)N

− (Ip, φ2)0(Ip, ψ2)0 − (D1,1(Ipφ2), Ipψ2)H1

(VI.30)

Both grids are conforming to the domain boundaries, and
the prolongation onto the boundary nodes of the fine grid is
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exact. Furthermore, by applying Equation VI.26 to the right-
hand side of Equation VI.30, we obtain

(φ2, D1,2ψ2)H2
= φ2,N/2ψ2,N/2−φ2,0ψ2,0− (D1,2φ2, ψ2)H2

(VI.31)
And we’ve shown that the coarse grid operator D1,2 con-
structed in a such way preserves the SBP property. Also, the
coarse grid first derivative SBP operator D1,2 retains the order
of accuracy of the original scheme at the interior nodes if 2qth
order SBP-preserving interpolations are used. The proof can
be found in [72].

2) SBP-preserving interpolation applied to the second
derivative: The SBP-preserving interpolation can also be
applied to the second derivative operator. Similar to the proof
for the first derivative operator, we can prove that the coarse
grid operator constructed in such ways preserves the SBP
property.

The interpolation operators in Equation VI.23 lead to a
coarse-grid second derivative operator D2,2 which preserves
the summation-by-parts property Equation IV.4. We can show
that by rewriting the left hand side of the Equation IV.4 for
D2,2 and the two coarse-grid functions φ2 and ψ2 by using
Equation VI.26.

(φ2, D2,2ψ2)H2 = (φ2, Ir, D2,1Ipψ2)H2 = (Ipφ2, D2,1Ipψ2)H1

(VI.32)
By applying the SBP property Equation IV.4 for the fine-grid
second derivative D2,1, we have

(φ2, D2,2ψ2)H2 = (Ipφ2)N (SIpψ2)N

− (Ipφ2)0(SIpψ2)0 − (SIpφ2)TA(SIpψ2)H2

(VI.33)

Both grids are conforming to domain boundaries, implying
that (Ipφ2)i = φ2,i/2 and (SIpψ2) = (Sφ2)i/2 for i ∈ {0, N}.
Thus

(φ2, D2,2ψ2)H2 = φ2,N/2(Sφ2)N/2

− φ2,0(Sφ2)0 − (SIpφ2)TA(SIpψ2)H2

(VI.34)

where S is equivalent to dT0 in subsection IV-A which approx-
imates the first derivative at the boundaries.

Additional proofs or propositions to SBP-preserving in-
terpolations can also be found in [72]. Furthermore, several
model problems have been tested with multigrid iteration
schemes using these SBP-preserving interpolations. These
problems include a Poisson equation, the anisotropic ellip-
tic problem, and the advection-diffusion problem. Numeri-
cal experiments show that the SBP-preserving interpolation
improves convergence properties of the multigrid scheme
for SBP-SAT discretizations regardless of the order of the
discretization and smoother chosen. Moreover, the excellent
performance in combination with the smoother SOR, clearly
indicates that multigrid algorithms with SBP-preserving in-
terpolation can be designed to get fast convergence. The
paper mainly covers the steady model problem to compare the
effect of different grid transfer operators. For time-dependent
problems, the effectiveness of multigrid algorithms with these
SBP-preserving interpolations needs to be tested [72].

VII. PRECONDITIONER

A. Preconditioner for Linear Systems

As we discussed stationary iterative methods in subsec-
tion V-A, we now review these methods from a precondition-
ing perspective.

The Jacobi and Gauss-Seidel iterations are of the form

uk+1 = Quk + q (VII.1)

in which

QJA = I −D−1A (VII.2)

QGS = I −D −L−1A (VII.3)

for the Jacobi and Gauss-Seidel iterations, respectively.
Given the matrix splitting

A = S − (S −A) (VII.4)

a linear fixed-point iteration can be defined by the recurrence

uk+1 = S−1(S −A)uk + S−1f (VII.5)

which has the form Equation VII.1 with

Q = S−1(S −A) = I − S−1A, q = S−1f (VII.6)

For example, for the Jacobi iteration, S = D,S − A =
D−A, while for the Gauss-Seidel iteration S = D−L,S−
A = D −L−A = U .

The iteration uk+1 = Quk + q can also be viewed as a
technique for solving the system

(I −Q)u = q (VII.7)

Since Q has the form Q = I − S−1A, this system can be
rewritten as

S−1Au = S−1f (VII.8)

We call this system that has the same solution as the orig-
inal system Au = f the preconditioned system and S
the preconditioning matrix or preconditioner. It’s often to
use M to denote S when the splitting matrix S is used
in the preconditioning. In other words, a relaxation scheme
is equivalent to a fixed-point iteration on a preconditioned
system. The preconditioning matrices can be easily derived for
the Jacobi, Gauss-Seidel, SOR and SSOR iterations as follows

MJA = D (VII.9)
MGS = D −L (VII.10)

MSOR =
1

ω
(D − ωL) (VII.11)

MSSOR =
1

ω(2− ω)
(D − ωL)D−1(D − ωU) (VII.12)

The matrix M−1 should be symmetric and positive definite.
Even though M is sparse most of the time, there is no
guarantee that the M−1 is sparse. And this limits the number
of techniques that can be applied to solve the preconditioned
system. Also the computation of M−1b for any vector b so
the actual solution to the problem can be easily obtained from
the solution to the preconditioned system.
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B. General Convergence Results

In this section, we examine the convergence behaviors of
the general preconditioners above. The detailed analysis can
be found in [75]. We choose the most important results to
present here with notations adapted to match the other sections
of the paper. All methods seen in the previous section define
a sequence of iterates of the form

uk+1 = Quk + q (VII.13)

where Q is the iteration matrix. We need to answer these two
questions
• If the iteration converges, is the limit indeed a solution

of the original system?
• Under which conditions does the iteration converge?
• How fast is the convergence?

If the above iteration converges to u, and it satisfies

u = Qu + q (VII.14)

Recall the definition in Equation VII.6, it’s easy to verify the
u satisfies Au = f . This answers the first question. We now
consider the next two questions.

If I −Q is nonsingular, then there is a solution u∗ to the
equation Equation VII.14. Substracting Equation VII.14 from
Equation VII.13 yields

uk+1 − u∗ = Q(uk − u∗) = · · ·Qk+1(u0 − u∗) (VII.15)

If the spectral radius of the iteration matrix Q is less
than 1, then uk − u0 converges to zero. And the iteration
Equation VII.13 converges toward the solution defined by
Equation VII.14. Conversely, the relation

uk+1 − uk = Q(uk − uk−1) = · · ·Qk(q − (I −Q)u0))
(VII.16)

shows that if the iteration converges for any u0 and q, then
Qkb converges to zero for any vector b. As a result, ρ(Q)
must be less than 1. The following theorem is proved:

Theorem 2. Let Q be a square matrix such that Q < 1. Then
I−Q is non-singular and iteration Equation VII.13 converges
for any q and u0. Conversely, if the iteration Equation VII.13
converges for any q and u0, then ρ(Q) < 1

Since it is often expensive to compute the spectral radius
of a matrix, sufficient conditions that guarantee convergence
can be useful in practice. One such sufficient condition could
be obtained by utilizing the inequality ρ(Q ≤ ||Q||) for any
matrix norm.

Corollary 2.1. Let Q be a square matrix such that ||Q|| < 1
for some matrix norm || · ||·. Then I −Q is non-singular and
the iteration Equation VII.13 converges for any initial vector
u0

Other than knowing that Equation VII.13 converges, we can
also know how fast it converges. The error ek = uk − u∗ at
step k satisfies that

ek = Qke0 (VII.17)

We can prove this by expressing Q in Jordan canonical form

Q = XJX−1 (VII.18)

For simplicity, we assume that there is only one eigenvalue of
Q of the largest modulus denoted by λ. Then

ek = λkX(
J

λ
)kX−1e0 (VII.19)

The matrix J/λ shows that all its blocks, except the block
associated with the eigenvalue λ, converge to zero as k →∞.
Let this Jordan block be of size p, and of the form Jλ =
λI +L. Here L is nilpotent of p, i.e. Lp = 0. Then for k ≥ p

Jkλ = (λI + L)k = λk(I + λ−1L)k = λk(

p−1∑
i=0

λ−i
(
k

i

)
Li)

(VII.20)
If k is large enough, then for any λ the dominant term in

the above sum is the last term, i.e.,

Jkλ ≈ λk−p+1

(
k

p− 1

)
Lp−1 (VII.21)

Thus, the norm of ek = Qke0 has the asymptotical form

||ek|| ≈ C × |λk−p+1|
(

k

p− 1

)
(VII.22)

where C is some constant. The convergence factor of a
sequence is the limit

ρ = lim
k→∞

(
||ek||
||e0||

)1/k (VII.23)

From above analysis, ρ = ρ(Q). The convergence rate τ is
the natural logarithm of the inverse of the convergence factor

τ = − ln ρ (VII.24)

Note that the above definition depends on the initial vector
e0, so it maybe be termed a specific convergence factor. A
general convergence factor can be defined by

φ = lim
k→∞

( max
u0∈Rn

||ek||
||e0||

)1/k (VII.25)

This satisfies

φ = lim
k→∞

( max
u0∈Rn

||Qke0||
||e0||

)1/k (VII.26)

= lim
k→∞

(||Qk||)1/k = ρ(Q) (VII.27)

Thus, the global asymptotic convergence factor is equal to
the spectral radius of the iteration matrix G. The general
convergence rate differs from the specific rate only when the
initial error does not have any components in the invariant
subspace associated with the dominant eigenvalues. Since it is
hard to know a priori, the general convergence factor is more
useful in practice.

Using convergence analysis here, the convergence criteria
for several iterative methods such as Richardson’s Iteration,
and regular splitting can be derived with simpler forms. One
type of matrices that is worth notice is diagonally dominant
matrices. We begin with a few standard definitions

Definition 4. A matrix A is
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• (weakly) diagonally dominant if

|aj,j | ≥
i=n∑

i=1,i6=j

|ai,j |, j = 1, . . . , n (VII.28)

• strictly diagonally dominant if A is irreducible, and

|aj,j | >
i=n∑

i=1,i6=j

|ai,j |, j = 1, . . . , n (VII.29)

• irreducibly diagonally dominant if

|aj,j | ≥
i=n∑

i=1,i6=j

|ai,j |, j = 1, . . . , n (VII.30)

with strict inequality for at least one j

The diagonally dominant matrices are important as many
matrices from the discretization of PDEs are diagonally dom-
inant. When solving these linear systems with iterative meth-
ods, the spectral radius can be estimated using Gershgorin’s
theorem. Gershgorin’s theorem allows rough locations for all
eigenvalues of A to be determined. In situations where A is
so large that the eigenvalues of A are unable to obtain, for
example, a linear system from extremely fine discretization,
the spectral radius can be directly obtained via the entries of
the matrix A. The simplest such result is the bound

|λi| ≤ ||A|| (VII.31)

for any matrix norm. Gershgorin’s theorem provides a more
precise localization result

Theorem 3 (Gershgorin). Any eigenvalue λ of a matrix A
is located in one of the closed discs of the complex plane
centered at ai,i and has the radius

ρi =

j=n∑
j=1,j 6=i

|ai,j | (VII.32)

In other words,

∀λ ∈ σ(A),∃i such that|λ− ai,i| ≤
j=n∑

j=1,j 6=i

|ai,j | (VII.33)

Proof. Let x be an eigenvector associated with an eigenvalue
λ, and let m be an index of the component of largest modulus
in x, scale x so that |ξm| = 1, and ξi ≤ 1,∀i 6= m. Since x
is an eigenvector, then

(λ− am,m)ξm = −
n∑

j=1,j 6=m

am,jξj (VII.34)

which gives

|λ− am,m| ≤
n∑

j=1,j 6=m

|am,j ||ξj | ≤
n∑

j=1,j 6=m

|am,j | = ρm

(VII.35)

This result also holds for the transpose of A, so this theorem
can also be formulated based on column sums instead of
row sums. The n discs defined in the theorem are called

Gershgorin discs. The theorem states that the union of these
n discs contains the spectrum of A. It can also be shown that
if there are m Gershgorin discs whose union S is disjoint
from all other discs, then S contains exactly m eigenvalues
(with multiplicities counted). Additional refinement which has
important consequences concerns of a particular case when A
is irreducible is given here.

Theorem 4. Let A be an irreducible matrix and assume that
an eigenvalue λ of A lies on the boundary of the union of
the n Gershgorin discs. Then λ lies on the boundary of all
Gershgorin discs

This theorem and its proof can be found in [75] where
an immediate corollary of the Gershgorin theorem and this
theorem follows

Corollary 4.1. If a matrix A is strictly diagonally dominant
or irreducibly diagonally dominant, then it is nonsingular.

This leads to the following theorem

Theorem 5. If A is a strictly diagonally dominant or an
irreducibly diagonally dominant matrix, then the associated
Jacobi and Gauss-Seidel iterations converge for any u0.

The convergence condition for SPD matrices is given as
follows

Theorem 6. if A is symmetric with positive diagonal elements
and for 0 < ω < 2, SOR converges for any u0 if and only if
A is positive definite.

These theorems for convergence play an important role in
the study of various preconditioners. That’s why we dedicate
a huge portion of the paper to them. More iterative methods
and preconditioners as well as their convergence criteria can
be found in [75].

C. Multigrid Preconditioned Conjugate Gradient

In the previous sections, we introduce the classical iterative
solvers and Krylov subspace methods as a solver. Moreover,
we show that the classical iterative solvers can be used in
the multigrid method as smoothers. And we provide the
basic knowledge on preconditioners for iterative methods.
However, using multigrid as a preconditioner for the conjugate
gradient is a relatively new approach motivated by engineering
problems.

The multigrid method is a very effective iterative method
for the mechanical analysis of heterogeneous material samples
in [39]. However, the increase in the ratio of Young’s moduli
between matrix material and inclusion leads to a significantly
worse condition number of the system, which slows the
solution process. This could be also the result of the worse
material representation on coarse grids. For a similar problem,
Poisson’s equation with large coefficient jumps or differences
of grid spacing in coordinate transformation, the worse con-
dition number will also lead to the slow solving process
with the iterative methods mentioned above. As Poisson’s
equation is the key challenge in earthquake cycle simulation,
an effective approach to solving linear systems with worse
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condition numbers is worth exploring. It has been shown that
the multigrid preconditioned conjugate gradient method has
a superior convergence rate over the multigrid method as a
solver [86]. This approach is less dependent on the considered
problem.

The conditions of the multigrid preconditioners are exam-
ined in [86]. According to [91], the multigrid method will
potentially provide a valid preconditioner if the smoother is
symmetric. For a derivation of the preconditioned conjugate
gradient method, we would introduce a matrix L which
satisfies M−1 = LTL as shown in [91] (Our notation M is
equivalent to H in the paper). The Equation VII.8 improves
the convergence if the condition number of the preconditioned
matrix M−1A is lower than that of the original matrix A,
which can be determined from the analysis of eigenvalues
as presented in [37]. If the preconditioning matrix is exactly
M−1 = A−1, the after one iteration step, the exact solution
u is found. An ideal preconditioning matrix M−1 should be
a reasonably close approximation of A−1. With respect to
the initial search direction, the vector p0 = M−1r0 would
correspond to the error −e0, if M−1 = A−1. An adequate
matrix M−1 leads to an improved initial search direction
p0. Therefore, the preconditioned conjugate gradient method
applies the following start conditions

r0 = f −Au0; r̃0 = p0 = A−1r0 (VII.36)

The following equations give a preconditioned conjugate
gradient method adapted from [86] in the notation of the
conjugate gradient method in subsection V-B.

λk =
r̃k

T

rk

pk
T
Apk

(VII.37)

uk+1 = uk + λkp
k (VII.38)

rk+1 = rk − λkApk (VII.39)

r̃k+1 = M−1rk+1 (VII.40)

pk+1 = r̃k+1 +
r̃k+1T

rk+1

r̃k
T

rk
pk (VII.41)

In each iteration step, preconditioning only takes place in
Equation VII.40 and generates a new vector r̃k+1. The pre-
conditioning matrix M−1 does not need to be explicitly built.
The operation defined in Equation VII.40 can be replaced by a
multigrid cycle that solves a linear system with rk+1 being the
right hand side, and the solution is then assigned to r̃k+1. The
preconditioned conjugate gradient method preserves a system
of conjugate directions, while each increment is optimized for
each improved search direction based on the multigrid method.
Therefore, this optimization leads to considerably improved
increments, if the stiffness of the coarse meshes is generally
overestimated.

D. Machine-learned Preconditioner

The purpose of the preconditioner is to create a matrix M or
an equivalent form that is approximate to the A−1 to accelerate
the convergence of iterative methods. Machine learning has
been applied to various fields of research to approximate any
function or mapping given the input data and the output data.

Recently, machine learning has been applied to solve PDEs
which can be difficult to handle with numerical methods. This
new approach of physics-informed machine learning (PIML)
or specifically physics-informed neural networks (PINN) has
gained a lot of attention over the past decade [48]. If a
linear system can be solved efficiently with machine learning,
then similar to the multigrid, this machine-learned solver can
be used as a preconditioner for iterative methods. Machine
learning can be used to generate sparsity patterns for tra-
ditional block-Jacobi preconditioners[33]. Machine learning
can be also used to generate local approximate inverse pre-
conditioners for studying geophysical fluid flows [33]. One
nice feature of preconditioners obtained in this approach is
that machine learning is usually built with frameworks like
Pytorch or Tensorflow that support parallel processing on
multiple different platforms. Thus these approaches are highly
parallel by nature. However, integrating tools built in another
high-level language can often be challenging for performance
optimization if the main code is written in languages like
C++/FORTRAN for high-performance computing. Precondi-
tioners that are designed with parallel implementation in mind
will be covered in subsection IX-A. More detailed parallel
preconditioners will be covered in subsection IX-A.

VIII. INTIAL GUESS FOR ITERATIVE METHODS

Preconditioners have been powerful tools to improve the
performance of iterative methods by reducing the number of
iterations. Another way to reduce the number of iterations is
to use a good initial guess. It is not always easy to obtain good
initial guesses for iterative methods, but in a time-dependent
PDE simulation, using the solution computed at the previous
time step as an initial guess for the solution at the current one
is a natural choice. This requires no additional computation.
An even better initial guess can be obtained by combining
the solutions at several previous time steps instead of just
one [76]. This method takes the linear combination of the
previous solutions that minimize the norm of the residual when
substituted into the linear system by orthogonal projections.
This method requires growing storage costs as the simulation
runs, however, this can be reduced by periodic restarts which
discard the entire history space of stored solutions of the right-
hand side vectors. Another way to avoid this issue is to use
a classical technique for updating QR factorization[4]. This
approach of obtaining initial guesses has been successfully
applied to the study of incompressible flow, but similar ideas
can be also applied to nuclear physics [18] and computational
electromagnetics [22, 23].

Another method for using prior solutions to generate initial
guesses is polynomial extrapolation. Solutions from previous
time steps can be used to fit a polynomial curve, and the
initial guess for the current time step can be obtained by
evaluating the polynomial curve at the current time step.
The most basic version of this method is to fit a simple
(Lagrange) interpolant curve. Approximations based on Taylor
expansions are also proposed [22]. Simply using a solution at
the previous time step can be considered as a zeroth-order or
constant interpolation of this technique. Extrapolation based on
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higher-order polynomial interpolation has been also considered
[18, 34, 69]. The results of polynomial extrapolation show
the limitation of efficiency. A right-hand side projection is
guaranteed to provide a reduction in the residual norm, while
there is no guarantee for the extrapolation.

A recent work re-examined two different approaches in the
context of PDE solvers running on modern HPC architectures
that employ GPUs for acceleration. Because GPUs can be
challenging to program effectively, the performances of two
different approaches on GPUs are also explored [8]. In addi-
tion to the methods mentioned above, a stabilized polynomial
extrapolation method based on solving a least-square problem
instead of naive Lagrange interpolation has been proposed.
The proposed extrapolation methods perform comparably to-
and, in some cases, slightly better than-equivalent projection
methods while requiring less storage, moving less data, and
performing fewer operations that require global communica-
tions[8]. The scalability study of this method on multiple
GPUs and compute nodes and HPC applications of other
approaches for improving initial guesses are still a research
gap. New findings in this field will certainly change how
numerical algorithms are designed for modern HPC platforms.

2 All suggestions

IX. PARALLEL IMPLEMENTATIONS

A. Parallel Implementation of Iterative Methods

The iterative methods are ideal for their low memory
requirements, and this becomes extremely important as the
simulations in many fields of study have moved towards
three-dimensional models. Another appealing part of iterative
methods is that they are far easier to implement in parallel than
sparse direct methods because they only require a small set of
computational kernels. However, iterative methods are usually
slower than direct methods, requiring suitable preconditioning
techniques for accelerated convergence. The parallel aspect of
preconditioners also becomes very important naturally.

This subsection gives a short overview of various parallel
architectures as well as different types of operations in iterative
methods that can be parallelized.

There are currently three leading architectures of parallel
models around which modern parallel processors are designed.
These are
• The shared-memory model
• Single-instruction-multiple-data (SIMD)
• The distributed memory message passing model
1) Shared memory computers: A shared memory computer

has processors connected to a large global memory, and the
address space is the same for all processors. Data stored in
a large global memory is readily accessible to any processor.
There are two possible implementations of shared memory
machines:
• bus-based architectures
• switch-based architectures
These two architectures are illustrated in Figure 3 and

Figure 4. So far, the bus-based model has been used more
often. Buses are the backbone for communication between
the different units of most computers, and usually have higher

Fig. 3: A bus-based shared memory computer [75]

Fig. 4: A switch-based shared memory machine [75]

bandwidth for data I/O. The main reason why the bus-based
model is more common is that the hardware involved in such
implementation is simpler [1]. However, memory conflicts as
well as the necessity to maintain data coherence can lead to
worse performance. Moreover, shared memory computers can
not take advantage of data locality in problems such as solving
PDEs. Some machines can even have logically shared but
physically distributed memory.

2) Distributed Memory Architectures: The distributed
memory model can refer to distributed memory SIMD archi-
tecture or distributed memory with memory passing interface.
A typical distributed memory system consists of a large
number of identical processors and each processor has its
own memory. These processors are interconnected in a regular
topology. This can be shown with Figure 5. In these diagrams,
each processor unit can be viewed as a complete processor
with its one memory, CPU, I/O subsystems, control unit,
etc. These processors are linked to a number of “neighbor-
ing” processors. In the “message passing” model, no global
synchronizations are performed of the parallel tasks. Instead,
computations are data driven because each processor performs
a given task only when the operands it requires become
available. The programmer needs to explicitly instruct data
exchanges between different processors.

In the SIMD model, a different approach is used. A host
processor stores the program and each slave processor holds
different data. The host broadcasts instructions to each pro-
cessor to execute them simultaneously. One advantage of this
approach is that there is no need for large memories in each
node to store the main program since the same instructions
are broadcast to each processor.

Unlike the shared-memory model, distributed memory com-
puters can easily exploit the data locality of data to reduce
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Fig. 5: An eight-processing ring (left) and 4 × 4
multiprocessor mesh (right) [75]

communication costs. Modern GPUs are designed with the
SIMD model [68], and clusters with multiple CPUs are
connected using a message passing interface (MPI) [9].

B. Key Operations in Parallel Implementation

1) Types of Operations: We use the preconditioned Conju-
gate Gradient to demonstrate the typical operations involved
that can be parallelized. The PCG algorithm consists of the
following types of operations:

• Preconditioner setup
• Matrix-vector multiplications
• Vector update
• Dot Product
• Preconditioning operations

Matrix-vector multiplications, vector updates, and dot prod-
ucts are common operations in so-called Basic Linear Algebra
Subprograms (BLAS) that can be easily parallelized and have
been well studied and implemented [26, 21, 30]. In terms of
the computational costs, the vector update and dot product
are much lower compared to the matrix-vector multiplication,
which can still be carried out very quickly on the latest GPUs.
The tricky part or the bottleneck for both memory and the
runtime lies in the first step of preconditioner setup and the
last step of preconditioning operations. We will discuss these
two key operations in the next subsection. For now, let’s
focus on the Matrix-vector multiplication that has much higher
computational costs than the vector update and the dot product.

2) Sparse Matrix-vector Products: The linear system com-
ing from the discretization in the finite difference method
is often sparse, which allows us to store them efficiently
and use sparse matrix-vector products (SpMVs) for efficient
computation. Different formats for storing sparse matrices can
be found in [75]. Compressed Sparse Row (CSR) sparse matrix
format is one of the earliest sparse formats developed. It is
ideal for parallelization since the data from each row can be
handled independently. The SpMV algorithm for CSR format
as well as the demonstration of the storage scheme of the CSR
format is shown in Figure 6

A summary of different sparse matrix formats in the fol-
lowing table as well as a detailed performance comparison
of these different formats can be found in [79]. There are
also recent work on developing new sparse matrix formats for

Fig. 6: The val array stores the nonzeros by packing each
row in contiguous locations. The rowptr array points to the
start of each row in the val array. The col array is parallel

to val and maps each nonzero to the corresponding
column.[65]

Short Name Short Name

DNS Dense Ell Ell-pack ItPack
BND Linpack Banded DIA Diagonal
COO Coordinate BSR Block Sparse Row
CSR Compressed Sparse Row SSK Symmetric Skyline
CSC Compressed Sparse column BSR Nonsymmetric Skyline
MSR Modified CSR JAD Jagged Diagonal
LIL Linked List

TABLE II: A summary of different sparse matrix formats
and their short names

optimal performance for different use cases [77, 27] or imple-
menting SpMV algorithms on parallel architectures [12, 94,
56]. Using the right sparse matrix formats and implementing
them on suitable architectures can reduce the time spent on
these SpMV calculations significantly, which makes iterative
methods run faster. Another way to accelerate these iterative
methods is to use the preconditioners that we mentioned
before. A parallel implementation of these preconditioners
becomes more challenging because of the complex arithmetic
operations compared to the SpMV or other BLAS operations.
We will focus on the parallel preconditioning technique in the
next subsection.

C. Parallel Preconditioning

1) Parallelism in Solving Linear Systems: Each precondi-
tioned step from the previous subsection requires the solution
of a linear system of equations of the form Mz = y. We
consider traditional preconditioners such as ILU or SOR or
SSOR, in which a solution with M is the result of solving
triangular systems. Since these preconditioners are commonly
used, it’s important to explore their efficient parallel imple-
mentations for the iterative methods to be parallel. These
preconditioners are mostly implemented on shared memory
parameters. The distributed memory computers would use
different strategies. These preconditioners require some sort of
factorization, and the parallelism is done by sweeping through
the lower triangular matrix or upper triangular matrix. Typical
parallelism can be seen using a forward sweep.
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It’s typical for solving a lower triangular system that the
solution is overwritten onto the right-hand side. So there is
only one array u needed for both the solution and the right-
hand side. The forward sweep for solving lower triangular
systems with coefficients A(i, j) and right-hand-side b is
defined as follows:

Algorithm 1: Sparse Forward Elimination

for i = 2 . . . n do
for all j that A(i, j) is nonzero do

u(i) ← u(i)−A(i, j) ∗ u(j)
end

end

Here A(i, j) refers to the element in the sparse matrix. The
different sparse matrix formats will have different implemen-
tations of locating this element, so the inner for loop will be
implemented differently and the A(i, j) will be replaced by
different indexing code in different sparse matrix formats.

2) Parallel preconditioners: Several techniques can be for
parallel implementations of the preconditioners. They can
be summarized into three types of techniques. The simplest
approach is to use a Jacobi or block Jacobi approach. In this
case, a Jacobi preconditioner may be consist of a diagonal or
a block-diagonal of A

To improve the performance, these preconditioners can be
accelerated by polynomial iterations. For example, the second
level of preconditioning is called polynomial preconditioning.

A different strategy is to enhance parallelism by using graph
algorithms, such as graph-coloring techniques. The gist of this
approach is that all unknowns associated with the same color
can be determined simultaneously in the forward or backward
sweeps.

The third strategy uses generalizations of ”partitioning”
techniques which can be also called ”domain decomposition”
approaches.

We will give a brief overview of these methods in this part.
Overlapping block-Jacobi preconditioning is a parallel pre-

conditioner similar to the general block-Jacobi approach with
overlapping blocks as shown in Figure 7. Enlarging a system
of algebraic equations by including duplicate copies of several
rows, leads to an efficient iterative scheme on a multiprocessor
MIMD array [90].

Polynomial preconditioners are another family of parallel
preconditioners. In polynomial preconditioners, the matrix
M is defined by M−1 = s(A), where s is a polynomial,
typically of low degree. Thus the original system can be
preconditioned by

s(A)Au = s(A)f (IX.1)

Note that the s(A) and A commute, and as a result, the pre-
conditioned matrix is the same for left or right preconditioning.
In addition, the matrix s(A) or As(A) does not need to
be formed explicitly in matrix form, which allows the use of
matrix-free methods. This approach was initially motivated by
the good performance of matrix-vector operations on vector
computers. It has now become more popular on iterative

Fig. 7: The block-Jacobi matrix with overlapping blocks [75]

methods for GPU computing because of the similar SIMD
architecture. There are several ways to construct polynomials
in this method. The simplest polynomial s is the polynomial
of the Neumann series expansion

I +N +N2 + · · ·+Ns (IX.2)

In which
N = I − ωA (IX.3)

ω is called the scaling parameter. The series above comes from
expanding the inverse of ωA using the splitting

ωA = I − (I − ωA) (IX.4)

This approach can be generalized using the splitting of the
form

ωA = D − (D − ωA) (IX.5)

where D can be a diagonal of A, or a block diagonal of A.
Then

(ωA)−1 = [D(I − (I − ωD−1A))]−1

= [I − (I − ωD−1A)]−1D−1 (IX.6)

Thus, setting
N = I − ωD−1A (IX.7)

results in the approximate s-term expansion

(ωA)−1 ≈M−1 = [I +N + · · ·+Ns]D−1 (IX.8)

Since D−1A = ω−1[I −N ], note that

M−1A = [I +N + · · ·+Ns]D−1A

=
1

ω
[I +N + · · ·+N2](I −N)

=
1

ω
(I −Ns+1) (IX.9)
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The matrix operation with the preconditioned matrix can be
difficult numerically for large s. If the original matrix is SPD,
then even though M−1A is not symmetric, it is self-adjoint
with respect to the D − inner product.

The polynomial s can be selected to be optimal in some
sense, and this leads to the Chebyshev polynomials. The
criterion used to make the preconditioned matrix s(A)A as
close as possible to the identity matrix in some sense. For
example, the spectrum of the preconditioned matrix can be
made as close as possible to that of the identity. We denote the
spectrum of A by σ(A), and by Pk the space of polynomials
of degree not exceeding k. We need to solve the following
problem

Finds ∈ Pk which minimizes: (IX.10)
max
λ∈σ(A)

|1− λs(λ)| (IX.11)

This problem involves all eigenvalues of A, and is hard to
solve than the original problem. It can be replaced by the
following problem

Finds ∈ Pk which minimizes: (IX.12)
max
λ∈E
|1− λs(λ)| (IX.13)

which is obtained by replacing the set σ(A) by some continu-
ous set E that encloses it. Thus, a rough idea of the spectrum
of matrix A is needed. If A is SPD, then E can be taken as
an interval [α, β] containing the eigenvalues of A. A variation
of the approximation theorem says for any real scalar γ such
that γ ≤ α the minimum

min
p∈Pk,p(γ)=1

max
t∈[α,β]

|p(t)| (IX.14)

is reached for the shifted and scaled Chebyshev polynomial
of the first kind

Ĉk(t) =
Ck(1 + 2 α−tβ−α )

Ck(1 + 2α−γβ−α )
(IX.15)

When γ = 0, this gives the polynomial

Tk(t) =
1

σk
Ck(

β + α− 2t

β − α
) with σk = Ck(

β + α

β − α
) (IX.16)

The Chebyshev iteration can be found in [75]. One nice fea-
ture of the Chebyshev iteration is that it does not require inner
products, and this is very attractive for parallel implementation
as it does not require reductions.

Other polynomials include least-squares polynomials. A
comparison of Chebyshev polynomials and least-square poly-
nomials can be found in [6]. So far, Chebyshev polynomials
have been the most popular for parallel implementation, es-
pecially in the matrix-free setting where the assembly of the
matrix can be very expensive.

Multicolor preconditioners are similar to ILU precondition-
ers in the sense that the construction and factorization of
the matrices are required. Methods like these can be done in
parallel, but they are not suitable for GPUs.

D. CUDA architecture and CUDA

Given the increasing importance and popularity of GPUs
in modern supercomputers, this subsection is dedicated to
GPU architecture. As NVIDIA GPUs are mostly used in the
industry for scientific computing and machine learning, the
GPU programming model will be focused on CUDA (Compute
Unified Device Architecture) toolkit.

A GPU is built as a scalable array of multithreaded
Streaming Multiprocessors (SMs), each of which consists of
multiple Scalar Processor (SP) cores. To manage hundreds
or thousands of threads, the multiprocessors employ a Single
Instruction Multiple Threads (SIMT) model with each thread
mapped into one SP core and executing independently with
its own instruction address and register state [92].

The NVIDIA GPU platform has various memory architec-
tures. The types of memory can be classified as follows:
• off-chip global memory
• off-chip local memory
• on-chip shared memory
• read-only cached off-chip constant memory and texture

memory
• registers
The effective bandwidth of each type of memory depends

significantly on the access pattern. Global memory is relatively
large but has a much higher latency. Using the right access
pattern such as memory coalescing and avoiding bank conflicts
will help achieve good memory bandwidth.

Threads are organized in warps. A warp is defined as a
group of 32 threads of consecutive thread IDs. More detailed
information on optimizing memory access patterns can be
found in [92].

GPUs were initially designed for graphics-related calcula-
tions such as image rendering. General-purpose GPU program-
ming on NVIDIA GPUs is supported by the NVIDIA CUDA
toolkit. CUDA programs use similar syntax to C++. The main
code on the host (CPU) would invoke a kernel grid that runs
on the device (GPU). The same parallel kernel is executed by
many threads. These threads are organized into thread blocks.
Blocks and threads are the logical division of the GPU and
are mapped to the actual SMs. Thread blocks are split into
warps scheduled by SIMT units. All threads in the same block
share the same shared memory and can be synchronized by
a barrier. Threads in a warp execute one common instruction
at a time. This is referred as warp-level synchronization [92].
It’s most efficient when 32 threads of a warp follow the same
execution path. Branch divergence in which threads within the
same warp are executing different instructions often causes
worse performance/

CUDA is only a lower-level tool for direct kernel program-
ming. Libraries built on top of CUDA allow users to directly
use code and kernels written for different tasks without manu-
ally programming and optimizing kernels themselves. Existing
common CUDA libraries that supports GPU SpMV opera-
tion include CUDPP (CUDA Data Parallel Primitives)[40],
NVIDIA Cusp library [25], and the IBM SpMV library [10]. In
these packages, different formats of sparse matrices are studied
for producing high-performance SpMV kernels on GPUs.
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These include the compressed sparse row (CSR) format, the
coordinate format (COO), the diagonal (DIA) format, the ELL-
PACK (ELL) format., and a hybrid (ELL/COO) format. There
are other recent sparse matrix formats specifically designed
for GPU computing, but we will not go into detail to cover
each of them.

For dense linear algebra computations, the MAGMA (Ma-
trix Algebra for GPU and Multicore Architectures) project
hybrid multicore-multi-GPU system aims to develop a dense
linear algebra similar to LAPACK[3]. Since our numerical
methods for PDEs would generate a sparse linear system, we
did not explore this library in this paper.

E. A Review of Different Parallel Preconditioners on GPUs

As we are interested in solving PDEs on GPUs due to their
high memory bandwidth and FLOPS. We want to focus on
the preconditioners that are not only parallelizable but also
suitable for the GPU architecture. A detailed overview of
GPU-accelerated preconditioners can be found in [57]. We
summarize the parallel preconditioners mentioned in this paper
here with an emphasis on their compatibility with GPUs.

1) ILU/IC Preconditioners: The Incomplete LU(ILU) fac-
torization process for a sparse matrix A computes a sparse
lower triangular matrix L and a sparse upper triangular matrix
U such that the residual matrix R = LU − A satisfy
certain conditions [75]. Since the preconditioning matrix
M = LU and LU ≈ A, the preconditioning operation
is a back substitution followed by forward substitution. i.e.
u = M−1v = U−1L−1v. To retain the sparsity of the
original matrix A, we sometimes forbid certain fill-ins for
the ILU process. If no fill-in is allowed in the ILU process,
we obtain the so-called ILU(0) preconditioner, which has the
same sparsity pattern as A. However, this is achieved by
sacrificing accuracy. We can improve the accuracy by allowing
more fill-ins in ILU(k) factorization or ILUT factorization that
uses an alternative method to drop fill-ins [46]. When A is
SPD, the incomplete Cholesky (IC) factorization. However,
the IC factorization for an SPD matrix does not always exist.
The modified incomplete Cholesky (MIC) is proposed for any
SPD matrix [70]. The performance of a triangular solver on
GPUs deteriorates severely when the number of scheduling
levels increases. Triangular systems obtained from ILU or IC
factorization with many fill-ins usually have a large number
of levels. As a result, applying ILU/IC preconditioners may
not be a good choice.

2) Block Jacobi Preconditioners: The simplest parallel
preconditioner might be the block Jacobi technique, which
breaks up the system into independent local sub-systems.
These subsystems correspond to the diagonal blocks in the
reordered matrix. These subsystems correspond to the diagonal
blocks in the reordered matrix. The global solution is obtained
by summing up solutions of all local systems, and the local
systems can be solved approximately by the ILU factorization.
The setup and application phases of the preconditioner can
be performed locally without data dependency. Therefore, we
can use one CUDA thread block for each local block without
requiring global synchronization or communications. Threads

within each thread block can solve the local system in parallel
and save the local results to the global output vector.

Although a block Jacobi preconditioner with a large num-
ber of blocks can provide high parallelism, a well-known
drawback is that it usually requires a much larger number
of iterations to converge. However, this drawback can be
outweighed by the increased performance on new GPU ar-
chitectures with more computing power which makes highly
parallel algorithms more appealing than algorithms with fewer
computations but bad or parallel implementations.

3) Multicolor SSOR/ILU(0) preconditioners: Multicolor
SSOR/ILU(0) preconditioners improve the parallelism in the
SSOR/ILU(0) preconditioners by multicolor reordering. The
parallelism is of order n/p where p is the number of colors.

4) Polynomial Preconditioners: As we mentioned in the
previous section, the polynomial preconditioners are nice
because they do not require the construction of matrix A, and
the polynomial matrix s(A) can be obtained via a sequence
of SpMV operations. This is ideal for computations on GPUs
and for finite difference methods where the SpMV can be
replaced by matrix-free stencil computation. This method can
produce a good approximation of A−1 assuming that a tight
bound of smallest eigenvalues λn and the largest eigenvalue
λ can be found. As mentioned in [97], the upper bound must
be larger than λ, but it should not be too large as this would
otherwise result in slower convergence. The simplest technique
is to use Gershgorin’s theorem mentioned in subsection VII-B,
but bounds obtained in this way are usually big overestimates
of λ. A much better estimation can be obtained inexpensively
by using a small number of steps of the Lanczos method [55].
A safeguard term is added to the “quasi”-guarantee that the
upper bound is larger than ρ(A). Typically, a small number
of steps in Lanczos iterations are enough to provide a good
estimate of extreme eigenvalues. And the Lanczos algorithm
can be efficiently implemented in GPU as well.

X. SUMMARY

In this work, we reviewed different iterative methods for
solving earthquake cycle simulations. We start by describing
the background of the earthquake cycle simulations and the
mathematical problem that we are trying to solve, which
is the classical Poisson’s equation. We use the SBP-SAT
finite difference method for discretization. The linear system
generated from the SBP-SAT method is sparse and SPD,
making them ideal for iterative methods. We examined dif-
ferent traditional static iterative methods as well as Krylov
subspace methods with CG as an example. Multigrid is a
powerful framework for solving elliptic PDEs. It can be used
as a solver itself. The study of the multigrid focus on its
connection with the SBP-SAT method, which introduces SBP-
preserving interpolation techniques for the multigrid method.
Since iterative methods can be also used as preconditioners for
the linear system. We dedicated a section to cover the theory
and convergence analysis for different iterative methods. In
this section, we mainly use classical iterative methods to
showcase the different applications of the general convergence
theory. The general convergence theory can be also applied
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to other iterative methods such as Krylov subspace methods
and Multigrid methods. We used a multigrid preconditioned
conjugate gradient as an example. The convergence analysis of
this approach can be found in the paper that we cited as well as
much recent research on the convergence of multigrid. Since
we need to solve a large linear system, we did a review of HPC
techniques with a focus on GPU computing and connected
these different iterative methods and preconditioners with GPU
computing in the last section. We would like to use this work
to summarize the common techniques related to our research
to give us a better direction for solving a large-scale earthquake
cycle simulation that hasn’t been well studied but will certainly
have huge societal impacts. Research from this project can be
also applied to other related fields where solving a large linear
system on GPUs with different approaches is the bottleneck
for simulation.
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