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Abstract

Applications such as automated personal as-
sistants, automatic question answering, and
machine-based translation systems have be-
come mainstays of modern culture thanks to
the recent considerable advances in Natural
Language Processing research. However, a
vast majority of such efforts remain limited
to a small set of languages. With 7000+
languages spoken around the world, this un-
balanced focus leaves marginalized communi-
ties unable to take advantage of such techno-
logical innovations. Cross-Lingual Learning
looks to address this inequality by transfer-
ring knowledge from a high-resource source
language into a low-resource target language.
This paper provides a survey of recent Cross-
Lingual efforts for Information Extraction
(CLIE). We first provide some background on
the resources leveraged by cross-lingual meth-
ods and the knowledge-transfer paradigms that
characterize them. Then, state-of-the-art meth-
ods are organized into a taxonomy based on
the information extraction sub-task they tackle
and the knowledge-transfer archetype they em-
ploy. Finally, we discuss several suitable direc-
tions for future CLIE research efforts.

1 Introduction

Recent years have seen development and wide-
spread adoption of Machine Learning (ML) based
applications with Natural Language Processing
(NLP) backbones. For instance, applications such
as automatic question answering, automated per-
sonal assistants, fake news identification, and prod-
uct review sentiment analysis make use of NLP-
based models which are usually trained on a su-
pervised manner by leveraging large amounts of
labeled data. Large annotated datasets are, however,
remain a luxury reserved for a handful of widely-
spoken languages, e.g., English, Chinese, Spanish.
As such, the vast majority of NLP research efforts
focus on these, so-called, high-resource languages.

This biased focus marginalizes communities where
low-resource languages are primarily spoken as
they are unable to take advantage of the aforemen-
tioned technological innovations.

Cross-Lingual Learning (CLL) provides an al-
ternative to address the lack of labeled data in low-
resource languages. The main idea behind CLL
is to utilize annotated data from a high-resource
source language to create models that work effec-
tively in a low-resource target language. As such,
CLL opens up the possibility of creating entirely
new NLP models for languages suffering from data
scarcity, or increasing the performance of already
existing ones, allowing them to benefit from the
aforementioned NLP-based tools. Additionally,
CLL efforts usually work under the assumption
that no annotated data is available for the target
language. This setting is referred to as zero-shot
cross-lingual learning.

A prominent NLP task to which CLL can be
applied is Information Extraction (IE). The infor-
mation extraction task, as a whole, can be thought
of as taking raw, unstructured texts and producing
structured versions. It has acquired great signifi-
cance in the past couple of decades due to the in-
creasing amount of unstructured information avail-
able from online platforms: social media posts,
discussion forums, crowd-maintained archives, etc.
Being able to perform computations on the previ-
ously unstructured data is the ultimate goal of in-
formation extraction. Nonetheless, such objective
is complicated which is why the IE task has been
broken down into several, simpler sub-tasks: Entity
Mention Detection (EMD), Event Extraction (EE),
Relationship Extraction (RE), and Co-Reference
Resolution (CRR). We refer to this area of NLP
research as Cross-Lingual Information Extraction
(CLIE).

The objective of this survey paper is to provide a
taxonomy of recent CLIE research works. Nonethe-
less, CLL efforts can be categorized by a number



of distinct factors: the languages they address, the
cross-lingual resources they leverage, the tasks they
tackle, or the knowledge-transfer paradigm they uti-
lize. For instance, Pikuliak et al. (2021) provide
a comprehensive CLL survey and base their cat-
egorization on what is being transferred between
languages: labels, features, parameters, or represen-
tations. Alternatively, given its focus on CLIE in
particular, in this survey we choose to employ the
addressed IE sub-task as the main categorization
feature for the surveyed works. Then, we utilize
knowledge-transfer paradigm as a secondary char-
acteristic to create our proposed taxonomy.

We organize the rest of the document as follows:
Section 2 describes general cross-lingual terminol-
ogy used throughout this work. Sections 3, 4, 5, 6
delve into each of IE’s composing sub-tasks EMD,
EE, RE, and CRR, respectively. Each one includes
a definition and an overview of recent CLIE works
for the corresponding task. Finally, Section 7 dis-
cusses several research directions for future CLIE
efforts.

2 Cross-Lingual Concepts

Before discussing the details of current CLIE ap-
proaches, this section presents a brief description
of relevant cross-lingual concepts that are used
throughout this work.

2.1 Cross-Lingual Resources

Depending on the chosen pair, the differences be-
tween the source and target languages can be quite
significant. For example, the languages could have
different word orders, vocabularies, syntax, or even
use completely distinct sets of characters. As such,
when creating cross-lingual models, it is neces-
sary to have resources that show how the two lan-
guages relate to one another. This section describes
the most commonly used of such cross-lingual re-
sources.

2.1.1 Parallel Corpus
A parallel corpus is one of the most useful, but
also the most scarce, bilingual resource. Creating
a parallel corpus can, in some cases, be even more
expensive than creating a labeled dataset for a spe-
cific task (Langedijk et al., 2022). Though parallel
corpora have been created for specific domains,
e.g., the Bible has been translated for multiple lan-
guages, this domain-specificity limits their general
application.

2.1.2 Pseudo-parallel Corpus
Automated machine translation has witnessed great
advances in recent years by leveraging encoder-
decoder models (Bahdanau et al., 2015; Liu et al.,
2020) and, of course, Google’s translation API (Wu
et al., 2016) continues to make state-of-the-art
translation available for the general public. As
such, machine-translation systems can be leveraged
to obtain pseudo-parallel text. Afterwards, words
in pseudo-parallel sentences can be aligned using
automatic tools such as GIZA++ (Och and Ney,
2003), Fast-align (Dyer et al., 2013) and Awesome-
align (Dou and Neubig, 2021). A pseudo-parallel
corpus via machine translation is an attractive op-
tion for cross-lingual models. However, it is limited
by the availability of a translation system for the re-
quired target language. Furthermore, the quality of
the translations plays a crucial role in cross-lingual
model performance.

2.1.3 Bilingual Dictionaries/Gazetteers
Bilingual dictionaries, also called lexicons, are col-
lections of pairs of matching words from two dif-
ferent languages. They provide a very natural way
of linking the source and target languages and are
commonly used to guide the training process of
other cross-lingual resources such as bilingual em-
beddings. Though they are readily available for
many language pairs (Mayhew et al., 2017), they
also have significant drawbacks as they are fre-
quently incomplete or are plagued with incorrect
translations which can lead to noisy cross-lingual
results.

2.1.4 Multilingual Word Embeddings
Monolingual word embeddings such as
Word2Vec (Mikolov et al., 2013c) and Glove (Pen-
nington et al., 2014) are collections of dense,
high-dimentional, real-valued vectors that capture
the semantic of words in a language by training
them on large amounts of unlabeled monolingual
text. These embeddings were the de facto standard
for word representations in machine learning
models for several years (Pikuliak et al., 2021).
Multilingual word embeddings, also called
bilingual word embeddings, are obtained by
having the representations of multiple languages
share the same semantic vector space. This is
usually achieved by either (1) training monolingual
embeddings individually for each language and
then learning a projection into a single shared
space, or (2) by jointly training using unlabeled



data from multiple languages directly (Ruder
et al., 2019). In a sense, multilingual embeddings
are secondary cross-lingual resource since they
need additional cross-lingual resources, e.g., a
bilingual dictionary, to guide the alignment process.
There have been, however, proposals for entirely
unsupervised multilingual embeddings (Chen and
Cardie, 2018; Artetxe et al., 2018; Bojanowski
et al., 2017).

2.1.5 Multilingual Language Models
A Language Model (LM) is a probability distri-
bution over sequences of words in a particular
language. Language models are trained so that
word sequences that appear more frequently in a
language will have a higher probabilities. In re-
cent years, large transformer-based (Vaswani et al.,
2017) language models trained on large amounts
of unlabeled data have obtained state-of-the-art re-
sults in several NLP tasks. BERT (Devlin et al.,
2019) and GPT (Radford and Narasimhan, 2018)
and their variations (RoBERTa, GPT-2, GPT-3)
are probably the most well-known monolingual
LMs. Multilingual Language Models (MLMs)
are just extensions of their monolingual counter
parts. They are trained using unlabeled data from
multiple languages, e.g, multilingual BERT was
trained on Wikipedia content from 104 different
languages, and can be leveraged to obtain contex-
tualized multilingual representations that display
language-independent features to an extent. Mul-
tilingual BERT (mBERT, Devlin et al., 2019) and
XLM-RoBERTa (Conneau et al., 2020) are two of
the most popular pre-trained MLMs.

2.2 Cross-Lingual Transfer Paradigms

With some exceptions, cross-lingual learning meth-
ods can be broadly classified into two categories
based on the approach to transfer knowledge from
source to target: Data transfer and Direct transfer.

2.2.1 Data Transfer
Cross-lingual learning data transfer methods train
a model directly in the target language. Given the
unavailability of labeled target-language data under
the usual zero-shot setting, this requires projecting
the labels from the annotated source data to unla-
beled target data. Many approaches in this category
rely on the availability of either sentence-aligned
parallel corpora (Yarowsky et al., 2001; Hwa et al.,
2005; Zeman and Resnik, 2008; Ehrmann et al.,
2011; Fu et al., 2014), or neural machine transla-

tion systems (Shah et al., 2010; Tiedemann et al.,
2014; Jain et al., 2019). In both cases, obtaining
good word alignments is key for successful anno-
tation projection as method performance is highly
correlated with the quality of the generated data.
As such, they usually make use of state-of-the-
art automated alignment methods (Och and Ney,
2003; Dyer et al., 2013; Dou and Neubig, 2021)
or employ manually-crafted alignments (Jain et al.,
2019). An alternative to get around the need for
word alignments is to instead do word-by-word,
or phrase-to-phrase, translations (Mayhew et al.,
2017; Xie et al., 2018). However, these methods
do not consider factors such as different word or-
ders in the source and target languages which can
introduce noisy training signals.

Data transfer methods can have several advan-
tages over direct transfer methods. In particular,
they can directly exploit the lexical features, and
other language-specific information, of the target
language. Lexical features are very important for
several tasks and can be particularly useful useful
if the target language is close to the training/source
language (Tsai et al., 2016). However, model per-
formance will ultimately depend on how well these
language-specific features are explored.

Yarmohammadi et al. (2021) present an in-depth
analysis on the benefits of data projection for zero-
shot cross-lingual learning on several tasks. They
point out that, even though using multilingual pre-
trained encoders, e.g., mBERT (Devlin et al., 2019)
or XLM-R (Conneau et al., 2020), leads to a strong
cross-lingual results, their performance on target
languages is usually below that of source languages.
The core idea in their work is to augment the train-
ing data with so-called “silver” data generated by
(1) translating the source sentences into the tar-
get language, (2) aligning the words between the
original and translated parallel sentences, and (3)
projecting the labels using the obtained alignments.
Then, the obtained silver data is used alongside
the original gold (source) data to train a cross-
lingual model. To evaluate the usefulness of their
data projection scheme, they compare against a
self-training approach in which a zero-shot cross-
lingual model trained solely on source data is used
to obtain the labels of the translated sentences.
For machine translation, they compare a publicly
available one (Tiedemann, 2020) with several of
their own models that incorporate using pretrained
encoders. For the word alignment, they com-



pare using the statistical model Fast-align (Dyer
et al., 2013) and Awesome-align (Dou and Neu-
big, 2021) which computes alignments based on
contextualized-embedding similarity. They evalu-
ate their approach in five downstream tasks: event
extraction, using ACE05 (Walker et al., 2006) and
BETTER1, Named Entity Recognition (NER), Part-
of-Speech (POS) tagging, and dependency parsing.
Their results show that the best-performing model
is task dependent given that none of the configura-
tions clearly outperformed the rest. An important
finding is that the large versions of multi-lingual
encoders do not seem to benefit from the additional
training data as it is the case for their base counter-
parts.

2.2.2 Direct Transfer
In contrast to data transfer, direct transfer meth-
ods train models exclusively on labeled source-
language data and rely on developing delexical-
ized language-independent features so that the task
knowledge acquired from the training data can be
directly applied to unlabeled target data.

A common approach for direct transfer cross-
lingual models is to exploiting a shared representa-
tion for the source and target languages (Täckström
et al., 2012; Bharadwaj et al., 2016; Kozhevnikov
and Titov, 2014; Chaudhary et al., 2018). For in-
stance, Ni et al. (2017) propose to project mono-
lingual word embeddings into a common space as
language independent features. More recently, it
is usual to leverage the encoding capabilities of
pre-trained multilingual language models such as
mBERT (Devlin et al., 2019) or XLM-R (Conneau
et al., 2020).

The greater appeal of direct transfer models is
evident: they do not require any labeled data for the
target language which is a highly-desirable charac-
teristic, specially for low-resource languages. Fur-
thermore, by not relying on translations or word
alignments, they avoid introducing noise into the
training signals which can deteriorate model perfor-
mance. In their work, Artetxe et al. (2020) found
that the translation process can introduce subtle ar-
tifacts that have a notable impact for cross-lingual
transfer learning. For example, for the Natural Lan-
guage Inference (NLI) task, they found that trans-
lating the premise and hypothesis independently
reduces the lexical overlap between them which
devolves into lower classification performance.

1https://www.iarpa.gov/index.php/research-
programs/better

Nonetheless, direct transfer techniques have dis-
advantages as well. Mainly that they cannot lever-
age target-language lexical features or learn from
word-label relations. This puts them at a clear
disadvantage when applied to markedly dissimi-
lar languages. Lauscher et al. (2020) found that
zero-shot transfer is most successful when applied
among typologically similar languages, and less so
for languages distant from each other.

To address this limitation, some direct transfer
methods have started leveraging unlabeled target
data as a means to integrate target-language specific
information into the training process via using ad-
versarial learning for instance (Ahmad et al., 2019;
Keung et al., 2019; Chen et al., 2021; Phung et al.,
2021; Guzman-Nateras et al., 2022c).

2.2.3 Hybrid Transfer
The data transfer and direct transfer paradigms are
orthogonal and can be used in tandem (Tsai et al.,
2016). That is, a cross-lingual model can bene-
fit from training with language-agnostic features
and also exploit target-language-specific lexical
features via annotation projection.

An example of such hybrid training is the work
by Yarmohammadi et al. (2021) described above
(Section 2.2.1) where they leverage the language-
invariant capabilities of pre-trained multilingual
encoders and so-called silver target-data generated
with annotation projection.

Knowledge distillation (Wu et al., 2020a,b;
Liang et al., 2021; Chen et al., 2021) has also
been leveraged for hybrid cross-lingual training:
a source-trained multilingual teacher model (direct
transfer) annotates unlabeled target data which is
then used to train a student model (data transfer).

A direct transfer model can still benefit from
data transfer even if a translation system for the
target language does not exist. Some studies have
shown that learning from multiple source languages
can be ultimately beneficial for cross-lingual mod-
els (Moon et al., 2019). As such, the original source
data can be projected into a second source language
(ideally a language close to the desired target) and
the cross-lingual model can be trained on both sets
of data.

The work by Singh et al. (2019) exemplifies this
approach. They propose XLDA: a simple but ef-
fective approach to improve the performance of
cross-lingual NLP models by using bilingual train-
ing samples. Such bilingual examples are created
by translating mono-lingual training data into a sec-



ond augmentor language and combining both the
original text and its translation into a single sample.
They evaluate their approach on the Question An-
swering (QA) and NLI tasks. In NLI, for example,
they create the inputs to the model by either trans-
lating the premise or the hypothesis. Their experi-
ments use language pairs created from 14 different
languages ranging from high (English, Chinese) to
very low-resource (Urdu, Swahili). Some interest-
ing findings from their work are: (1) for every lan-
guage they tested, there is an augmentor language
that improves performance over the mono-lingual
setting; (2) most languages, other than very low-
resource ones, work as suitable augmentors; and
(3) low-resource languages benefit the most from
XLDA.

3 Entity Mention Detection

3.1 Task Definition
Entity Mention Detection (EMD), also referred to
as entity extraction or recognition, is an NLP task
for detecting entities in unstructured text and clas-
sifying them into a discrete set classes defined by
a particular ontology. Commonly used categories
include names for organizations, locations, persons,
companies, and numerical values such monetary
amounts, percentages, time expressions, and codes.
For example, in the sentence:

John bought a Dell computer in 2018.

an EMD system would recognize John as a Person
entity, Dell as an Organization/Company entity,
and 2018 as a Time entity type.

EMD is a complex task that is usually decom-
posed as two distinct sub-tasks: segmentation and
classification (Carreras et al., 2003). The segmen-
tation sub-task deals with identifying contiguous
spans of tokens representing an entity. A common
restriction assumed by EMD systems is that there
can be no nesting. For instance, in the sentence:

Bank of America closed its doors permanently.

the tokens Bank of America should be considered
as a single entity, disregarding that the token Amer-
ica could be considered an entity itself. As for the
classification sub-task, once entity candidates have
been identified, they are categorized into ontology-
specific types. This means that the same entity
can be designated to a different type when another
ontology is used.

A cross-lingual setting implies additional com-
plexity for the EMD task. While some entities such

as proper names can remain unchanged in different
languages, other, more nuanced, entities can have
significant differences. For example, in the English
sentence:

Mark Zuckerberg testified before the US Senate.

Mark Zuckerberg should be identified as a Person
entity and US Senate should be identified as an
Organization entity. However, the same sentence
in Spanish becomes:

Mark Zuckerberg testificó ante el Senado de los
Estados Unidos.

and while the Person entity remains the same, the
Organization entity is very different: it is composed
by five tokens instead of two.

3.2 Data Transfer Cross-lingual EMD
Mayhew et al. (2017) refer to their approach as

“Cheap Translation” as it is not based on large paral-
lel corpora. Instead, they leverage smaller bilingual
dictionaries called lexicons which contain word-to-
word translations as well as word-to-phrase, phrase-
to-word, and phrase-to-phrase translations. Using
these lexicons they create target-language training
data by doing one-to-one word translations from
the labeled source-language data. The limited size
of the lexicons (not every word from the source
language is covered) and the simplicity of their ap-
proach (their translations do not account for word
re-ordering) means that the translated data contains
several issues: some words are not translated or
translated incorrectly. Nonetheless, the authors ar-
gue that despite this problems, most of the context
around entities is reasonably preserved which still
leads to good entity detection performance. In their
experiments, they also notice that their approach
works better when the source and target languages
have similar properties (e.g., word order, alphabets)
or belong to the same language family.

In semi-concurrent work, Feng et al. (2018)
propose to enrich the representations of target-
language words by incorporating information from
their corresponding source-language translations.
Their intuition is that different languages provide
complementary information about entities and that
these cues can be transferred via bilingual dictionar-
ies. Thus, they generate a translation memory unit
for each target-language word by stacking together
the embeddings of all suitable translation candi-
dates obtained from a bilingual dictionary (a single
word usually has several translation candidates).
Additionally, the embeddings in these translation



units are weighted by an attention network that es-
timates the semantic relatedness of each translation
candidate with the target word. To deal with out-
of-lexicon words, they introduce lexicon extension
strategy in which they learn a linear transforma-
tion between the target-word embeddings and the
translation-unit embeddings. Finally, to perform
entity detection, the target-word embeddings are
concatenated with their corresponding translation
units and fed into a Bi-LSTM with a CRF layer on
top.

Following on the work by Ni et al. (2017), Xie
et al. (2018) present an approach that combines
the use of Bilingual Word Embeddings (BWE)
with word-by-word translation. They assert that,
while BWE-based approaches have small cross-
lingual resource requirements, approaches that at-
tempt to model such shared space directly fail
to obtain better results due to the differences in
each language’s linguistic properties. These dif-
ferences lead to an imperfect alignment between
the two embedding spaces which results in re-
duced model performance. Furthermore, they
also state that translation-based approaches can
leverage lexical information from the target lan-
guage which complements the BWE approach.
Thus, in their Bilingual-Word-Embedding-based
Translation (BWET) model, they obtain BWE for
the source and target languages but then use this
shared space to perform word-by-word sentence
translations via nearest neighbor search. Their
EMD model is then trained on the translated target-
language data. Furthermore, in order to account
for word ordering, they propose incorporating self-
attention (Vaswani et al., 2017) which allows their
model to consider the most relevant context for
each word in the sentence. Their architecture con-
sists of a hierarchical Bi-LSTM-CRF model. A
character-level Bi-LSTM is followed by a word-
level Bi-LSTM that incorporates self-attention. Fi-
nally, a CRF layer makes the label predictions.

Another translation based approach is presented
by Jain et al. (2019). They focus on so-called
medium-resource languages that do not have large
task-specific annotated datasets (EMD in their
case) but for which there are off-the-shelf ma-
chine translation systems. As such, instead of
performing word-to-word translations like previ-
ous approaches (Mayhew et al., 2017; Xie et al.,
2018), they leverage Google Translate2 to generate

2https://cloud.google.com/translate/

a target-language version of the annotated source-
language data. Then labels are projected onto the
translated data by matching the annotating entities
with their corresponding translations. The match-
ing process consists of several steps. First, they
translate each annotated entity into the target lan-
guage by itself. This is done because translation
results vary depending on the context and there are
instances in which the translation for an instance by
itself is different from its translation within a full
sentence. They also augment each entity’s trans-
lation set using publicly-available bilingual dictio-
naries. In the next step, they perform token-level
matching where each token in an entity’s transla-
tion set is matched with a token in the translated
target-language sentence. This matching is per-
formed using an heuristic that incorporates ortho-
graphic (character affixes) and phonetic features
(transliterations using the International Phonetic
Alphabet). After token-level matching, they gener-
ate a list of potential entity spans by grouping adja-
cent tokens in the target sentence above a certain
threshold. Afterwards, the best matching pair of
entities is selected by greedily aligning each source
entity with the span that has the least character edit
distance. Source entities that are not aligned after
the first three steps are annotated by constructing
a set of top-k potential matches using their tf-idf
scores where term frequency is calculated over all
sentences that contain at least one unmatched entity
and the inverse document frequency is computer
over the entire dataset. The unmatched entity is
aligned with the candidate with the highest score.
Finally, a self-attention-assisted BiLSTM-CRF tag-
ger is trained on the annotated target data.

3.3 Direct Transfer Cross-lingual EMD

Tsai et al. (2016) present an interesting approach
in which they leverage Wikipedia as their sole mul-
tilingual resource. Their model depends on the
existence of a cross-lingual wikifier. However, the
wikifier only requires a multilingual Wikipedia sec-
tion for the target language, no sentence or word
alignments at all. Their core contribution is to make
use of wikification (i.e., the process of linking an
entity to its corresponding Wikipedia page) and en-
tity linking and apply them to EMD. They use wik-
ification to obtain language-independent features
that provide useful information for EMD classifi-
cation such as FreeBase (a now-deprecated knowl-
edge base, succeeded by Wikidata (Vrandečić and



Krötzsch, 2014)3) types and Wikipedia categories.
Their model also makes use of both non-lexical
(e.g., previous tags) and lexical features (word
form, capitalization, affixes, word type). Their ap-
proach obtained state-of-the-art performance at the
time and did so without the requirement for parallel
texts or interactions with a target-language native
speaker. They also show that the obtained language-
independent features are beneficial in for monolin-
gual training as they improve the performance of
monolingual models. Moreover, their approach is
particularly interesting as wikification is tradition-
ally considered a downstream task of EMD, i.e.,
entities are first identified and then linked to their
respective Wikipedia pages.

Ni et al. (2017) instead propose a transfer-
learning approach based on bilingual word em-
beddings (BWE). Their core idea is to project the
monolingual embeddings (Mikolov et al., 2013c;
Pennington et al., 2014; Bojanowski et al., 2017)
from the source and target languages into a shared
space to create a universal representation of the
words. Such projection is guided by relatively
small bilingual dictionaries (5K entries). After-
wards, their EMD model is trained using the la-
beled data from the source language and can be
directly applied to the target language without hav-
ing to re-train the model.

Wu and Dredze (2019) present one of the first
efforts addressing the zero-shot, cross-lingual capa-
bilities of pre-trained multilingual language mod-
els. They evaluate the performance of multilin-
gual BERT (Devlin et al., 2019) in five different
NLP tasks, including entity detection, under cross-
lingual settings. They find that using mBERT as
the encoder alongside simple, task-specific, neural-
network architectures displays strong cross-lingual
performance across all five tasks, in some cases
even state-of-the-art performance for the time, with-
out additional cross-lingual training signals. For
entity detection in particular, they use a simple lin-
ear classification layer with softmax. Given that
mBERT splits words into multiple sub-words, to
perform the word-level predictions they utilize the
representation of the first sub-word.

An extension of the previous work is proposed
by Keung et al. (2019) where they introduce adver-
sarial training which encourages the model to gen-
erate language-independent embeddings. The au-
thors leverage unlabeled data in the target language

3www.wikidata.org

by introducing a language discriminator which is
trained to predict whether a sample sentence be-
longs to the source or the target languages. To
force the encoder to generate embeddings that do
not contain language-specific information, the au-
thors include a generator loss that is only applied
to the encoder parameters and works in the oppo-
site direction of the discriminator loss. In their
implementation, their EMD model follows Wu and
Dredze (2019) and the language discriminator is a
simple linear binary classifier.

In their work, Moon et al. (2019) do not propose
a novel model architecture. Instead, their effort
focuses on testing different training schemes for
the usual mBERT + classifier model. Their exper-
iments show that training a model with data from
multiple source languages can be beneficial even if
the languages used are not from the same language
family or use the same script. They also exper-
iment with multi-task learning, i.e., training the
model with additional objectives to solve different
tasks. However, their results with additional tasks,
such as Language Identification or the Cloze task,
do not show generalized improvements for every
tested target language. Instead, some task/target-
language pairs seem to be beneficial while others
deteriorate the baseline performance.

Bari et al. (2020) propose a model that lever-
ages two distinct BiLSTM-based encoders, one for
each language. They argue that a separate encoders
allow them to explicitly model specific characteris-
tics, such as word order or morphology, of each lan-
guage. These encoders are linked together by shar-
ing character-level embeddings. They then learn
a mapping between the source and target embed-
ding spaces through word-level adversarial train-
ing. Furthermore, since the adversarially-learned
mapping does not provide task-specific informa-
tion, they propose a fine-tuning method where they
jointly train the source and target encoders. This ap-
proach seems somewhat out of place as its method
is fairly complex but reports lower performance
than other previous efforts (Wu and Dredze, 2019;
Keung et al., 2019) that leverage simpler model
architectures.

A meta-learning-based approach for EMD is pre-
sented by Wu et al. (2020c). Though it can still be
classified as a direct transfer method, the authors
argue that source-trained models can be further
improved if meta learning is used to learn good
parameter initializations. Meta learning is split



into two phases: 1) meta training and 2) adaptation.
During the meta-training phase the model is trained
on a set of tasks so that it can quickly adapt to new
tasks with only a small number of training exam-
ples. They simulate these tasks by leveraging the
fact that, in the mBERT (Devlin et al., 2019) gen-
erated latent space, sentence representations that
are close to each other display similar structural
and/or semantic properties. Thus, for each source
training example xi ∈ DT

train a task Ti is defined
by a pseudo testing set DTi

test = xi, and a pseudo
training set DTi

train comprised by K of xi most sim-
ilar examples in the latent space. Then the model is
trained on a randomly-sampled task Ti to minimize
the loss computed on DTi

train (inner update)
to obtain an updated set of parameters θ′. These up-
dated parameters θ′ are then evaluated onDTi

test and
another update is made (meta update). During
the adaptation phase, the model is applied on target
languages. Here, each target-language test exam-
ple xj ∈ DT

test is used as the test set DTj
test for a

target task Tj . The task training set DTj
train is again

obtained by retrieving the top-k similar examples
of xj from DT

train. Once more, the model is first
fine-tuned to minimize the error on DTj

train using a
single gradient update and then used to predict the
labels for xj . A noteworthy observation from the
authors is that, as entity-related words have consid-
erably lower frequency than common words in the
training corpus, their representations are not well-
aligned across languages in the shared space. Thus,
to address this issue they propose to randomly mask
some entity tokens during the meta-training phase
to encourage the model to make predictions using
context information instead of relying on their rep-
resentations. As for their tagging model, they use
the same architecture as Wu and Dredze (2019): a
linear classifier on top of mBERT.

3.4 Hybrid Transfer Cross-lingual EMD

Wu et al. (2020a) propose a teacher-student learn-
ing model to distill knowledge directly from single
and multiple language sources. They propose to ad-
dress the limitations of previous EMD approaches,
both entity projection and direct transfer models.
Mainly, they argue that (1) entity projection efforts
require labeled data in the source language which
may not be readily available and (2) direct transfer
models do not leverage unlabeled data in the target
language which is cheap to obtain and contains use-
ful language information. As such, they propose

to leverage previously trained EMD models for
the source language as the teacher model. These
teacher models must, nonetheless, be able to gen-
erate multilingual representations as they are then
used to predict the label distributions (soft labels)
for unlabeled data in the target language. Such dis-
tributions are then used to train a student model in
the target language using the pseudo-labeled data
obtained from the teacher model. They claim that
their method does not rely on annotated data in
the source language, however, it does indirectly de-
pend on it as a core requirement is the existence of
a previously trained EMD model to use as teacher.
They also experiment with multi-source learning
by leveraging several teacher models (trained on
distinct source languages) at once. In order to do
so, they propose a weighting scheme in which they
leverage the language similarity (McClosky et al.,
2010) between the target language and each corre-
sponding source language.

The UniTrans model (Wu et al., 2020b) at-
tempts to unify the model transfer and projec-
tion approaches. The authors argue that both ap-
proaches provide complementary information as
the language-independent features used by direct-
transfer models allow making predictions through
contextual information while data-projection mod-
els benefit from word-label relations in the target
language. Their approach consists of several steps.
First, they create a pseudo training set in the target
language by performing word-to-word translations
and then projecting the labels directly from the
annotated source data, similar to Mayhew et al.
(2017). However, unlike Mayhew et al. (2017),
their translations are not guided by a bilingual dic-
tionary. Instead, they generate a dataset-specific
seed dictionary by leveraging identical “charac-
ter strings” (Smith et al., 2017) in both languages.
Then, they learn a linear mapping between the mul-
tilingual embeddings of such identical character
strings. To perform word-to-word translations, a
source-word embedding is mapped into the target-
language embedding space and its corresponding
translation is obtained by nearest-neighbor search.
A teacher EMD model is then trained using the
annotated source data (Θsrc) and fine-tuned on the
translated target data. In this manner, the teacher
model (Θteach) is expected to obtain the advan-
tages of both model transfer and data projection.
Afterwards, they leverage a teacher-student learn-
ing setup similar to (Wu et al., 2020a): the teacher



model is applied to unlabeled target-language data
and the generated label distributions are used to
train a student model. This allows the student
model(Θstu) to capture target-language-specific in-
formation and improve upon the teacher model.
Additionally, the student model training is comple-
mented by incorporating hard-label training. Since
no ground-truth labels are available for the target-
language data, the authors propose a voting scheme
to generate pseudo hard labels. First, a new model
(Θtrans) is trained exclusively on the translated tar-
get data. Then, its predictions are compared with
the predictions from (Θsrc) and (Θteach) models.
A “hard label” is only generated if the predictions
of such three models coincide. Finally, the student
model (Θstu) is trained using the generated hard
labels.

RIKD (Liang et al., 2021) introduces a
reinforcement-learning-based approach that
smartly selects instances to improve teacher-
student knowledge transfer. Their teacher-student
framework has a similar structure as Wu et al.
(2020a) where the initial EMD teacher model lever-
ages a multilingual encoder and is trained using
annotated source-language data. A student model,
with the same architecture, is then trained to mimic
the probability distributions (soft labels) generated
by the teacher model on unlabeled target-language
data. The distinctive feature of their approach is
that not all pseudo-labeled target-language exam-
ples are used to train the student model. Instead,
they first perform a reinforcement-learning-guided
selection of target-language examples to filter
out noisy predictions from the teacher model.
States, actions, and rewards for their reinforcement
learning approach are modeled as follows: (1) The
state of each target-language instance is modeled
by a continuous real-valued vector. These state
vectors are created from the concatenation of
features such as the number of predicted entities,
the length of the instance, and the inference loss
of the source model on the instance. (2) Their
action space is binary ai ∈ {0, 1} (to either select
the example for training or discard it) and the
policy network π is implemented by a two-layer
linear network. (3) Delayed rewards are assigned
using the improvement, or deterioration, between
the training loss reported by the current and
previous step models. Furthermore, as the student
model outperforms the teacher thanks to the smart
selection of training examples, the authors propose

a bootstrapping-inspired scheme in which the
student becomes a new teacher and the whole
process is repeated for K iterations.

AdvPicker (Chen et al., 2021) improves upon
the approach presented by Keung et al. (2019) by
leveraging adversarial training and knowledge dis-
tillation in complementary ways. First, a teacher
EMD model is trained on the source-language anno-
tated data with adversarial training so as to encour-
age the encoder to produce language-independent
token representations. It is relevant to point out
that, while the approach proposed by (Keung et al.,
2019) deals with sentence-level adversarial training
(i.e., sentence-level representations are presented to
the discriminator), the AdvPicker model deals with
token-level adversarial training. Once the teacher
model is trained, it is used on unlabeled target-
language data to produce pseudo-labels. However,
not all of these pseudo-labeled examples are uti-
lized to train the student model. Instead, they are
first passed through the language discriminator and
only the most language-independent samples are
selected. An example’s language independence is
measured by the discriminator’s confidence in clas-
sifying it as coming from either the source or target
languages. Examples that are hard for the discrimi-
nator to classify contain less language-specific in-
formation which is helpful for cross-lingual learn-
ing. Finally, the student model is trained on the
selected target-language data using the soft-labels
produced by the teacher model as ground-truth.

3.5 Performance Comparison

Table 1 presents the EMD performance of the
works discussed in this section when tested on the
commonly-used CoNLL-2002 (Tjong Kim Sang,
2002) and CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003) datasets. Detailed information
about these datasets can be found in Appendix B.

4 Event Extraction

Event Extraction (EE) task aims to obtain structure
from text by answering WH questions related to
events that are present in it, i.e. What happened?
Who did it? When did it happen? Where did it
happen? Why did it happen?, etc.

An event can be described as the occurrence of
an activity or, in more general terms, as a change
of state. Nonetheless, the concept of what is con-
sidered an event is domain dependent and context
dependent as something that is admissible in one



Target Language
Model ES NL DE

Tsai et al. (2016) 60.55 61.56 48.12
Ni et al. (2017) 65.10 65.40 58.50

Mayhew et al. (2017) 65.95 66.50 59.11
Xie et al. (2018) 72.37 71.25 57.76
Jain et al. (2019) 73.5 69.9 61.5
Bari et al. (2020) 75.93 74.61 65.24

Wu and Dredze (2019) 74.96 77.57 69.56
Keung et al. (2019) 74.3 77.6 71.9
Moon et al. (2019) 75.67 80.38 71.42
Wu et al. (2020c) 76.75 80.44 73.16
Wu et al. (2020a) 76.94 80.89 72.32
Wu et al. (2020b) 77.30 81.20 73.61
Liang et al. (2021) 77.84 82.46 75.48
Chen et al. (2021) 79.00 82.90 75.01

Table 1: EMD model performance comparison on the
CoNLL-2002 & 2003 datasets. English is used as the
source language.

domain might not be pertinent in a different one.
As such, there are general domain datasets, e.g.,
ACE05 (Walker et al., 2006) and MAVEN (Wang
et al., 2020), but there also are domain-specific
datasets, such as BRAD (Lai et al., 2021) for histor-
ical events and SuicideED (Guzman-Nateras et al.,
2022a) for suicide-related events, each with its own
event definition and event-type categories.

Altogether, event extraction is a complex task
which is why it is further divided into two main sub-
tasks: Event Detection (ED) and Event Argument
Extraction (EAE).

4.1 Event Detection

4.1.1 Task Definition
Event Detection (ED), IE’s first main sub-task, con-
sists in, first, selecting the words or phrases, com-
monly referred to as triggers, that denote the oc-
currence of events in a sentence. This first step
is often referred to as trigger identification. In a
second step, known as trigger classification, the
event triggers are allocated into a discrete set of
categories called event types. In the literature, the
term event detection refers to performing both the
identification and classification of the trigger words
simultaneously (e.g. using sequence labeling). For
example, in the sentence:

John recently bought a house.

an ED system should first identify the word bought
as a candidate event trigger and then classify it

as a Transaction:Transfer-Ownership
event type4.

As is the case for EMD, the cross-lingual set-
ting brings with it additional complexities for a
CLED model to tackle. For instance, event trig-
gers are known to be frequently related to the verb
a sentence (Majewska et al., 2021). In a cross-
lingual setting, the target language could have verb
tenses/conjugations that do not exist in the source
language, or vice versa. Spanish, for example,
has 18 distinct verb tenses while English only has
12 of them. Complications such as this one have
nudged CLED research efforts to favor direct trans-
fer approaches to take advantage of their language-
agnostic training.

4.1.2 Data Transfer Cross-lingual ED
The only recent data-transfer-based method for
CLED we could find is the work by Liu et al.
(2019). They present an approach that aims at
addressing the different-order problem of cross-
lingual ED. Languages such as English and Chi-
nese can have rather different word orders, however,
they share similar syntactic structures. As such, in
their approach, they first train monolingual word
embeddings via the skip-gram model (Mikolov
et al., 2013c) and then compute a context-
depending lexical mapping for the source and tar-
get languages. In order to create such mapping,
they first learn a multilingual alignment leverag-
ing a small seed bilingual dictionary. Notably, the
alignment parameters are not learned through train-
ing, instead a closed-form solution is computed
using singular value decomposition (SVD). Next,
a set of translation candidates is retrieved for each
token in the sentence via the cross-domain simi-
larity local scaling (CSLS) metric (Lample et al.,
2018). Finally, a translation candidate is selected
via a contextual self-attention mechanism (Vaswani
et al., 2017). With this procedure, the authors
obtain a translated version of the original sen-
tence. The last step in their approach is to gener-
ate order-independent token representations which
they achieve by feeding the syntactic tree of the
sentence to a Graph Convolutional Neural Network
(GCN, Kipf and Welling, 2017) where the initial
node representations are set as the translated-word
embeddings. Then their model is co-trained on
both the source and target languages at the same
time via cross-entropy loss. Their results show

4This type example is taken from the ACE05 dataset event
types.



that their approach outperforms monolingual state-
of-the-art models at the time by training on both
the translated data from the source language and
labeled data in the target language. Furthermore,
the authors acknowledge that their approach de-
pends on the availability of syntactic parsers for
each language which could potentially affect its
applicability.

4.1.3 Direct Transfer Cross-lingual ED
The work by Caselli and Ustun (2019) is probably
the first to evaluate the generalization abilities of
Multilingual BERT (mBERT, Devlin et al., 2019)
for the ED task in a zero-shot cross-lingual setting.
They do not report their performance on the ACE
datasets and instead make use of the TempEval-3
corpus (UzZaman et al., 2013) for English, and the
EVENTI dataset (Caselli et al., 2014) in Italian.
Both of these datasets share the same annotation
scheme and are annotated with only 7 event cate-
gories. Their straightforward approach consists of
an mBERT-based encoder and a softmax classifier
over each token. For multi-token words, they take
the first token of each word to make the predictions.
In their experiments, they found that their simple
multilingual approach lagged behind its state-of-
the-art monolingual counterparts but still achieved
acceptable performance, specially when a minimal
amount of target-language labeled data was intro-
duced.

In a concurrent approach for the Cross-Lingual
Event Detection (CLED) task, M’hamdi et al.
(2019) also cast the task as a sequence-labeling
problem and compare the performance of two dif-
ferent neural architectures harnessing distinct multi-
lingual resources. In their first approach, they make
use of the MUSE bilingual word embeddings (Con-
neau et al., 2017) alongside a bidirectional-LSTM
encoder with a CRF (Lafferty et al., 2001) layer
on top of a classifier linear layer. The second
model shares the same classifier/CRF setup but
instead leverages a pre-trained multilingual lan-
guage model (mBERT) as the encoder. Their ex-
periments exemplify the advantages of using con-
textualized word representations versus static word
embeddings as the representations from mBERT
greatly outperform the ones generated by the bi-
LSTM on the CLED task.

Lu et al. (2020) present a cross-lingual struc-
ture transfer approach in which sentences are rep-
resented by language-universal structures: either
dependency trees or fully connected graphs. The

nodes of these structures are the multilingual em-
beddings (Lample et al., 2017) of the words in each
sentence. The structure is then fed to an encoder
which produces contextualized representations for
the words in the sentence. They do not really do
ED and instead tackle the simpler Event Trigger
Labeling (ETL) task in which triggers are already
identified and must only be classified. Each can-
didate trigger representation is passed through a
linear layer followed by a Softmax transformation
to predict its class. The dependency parsers for
each language are manually trained using Tree-
banks (Nivre et al., 2016). They experiment with
both Tree-LSTM (Tai et al., 2015) and Transformer-
based (Vaswani et al., 2017) encoders and find the
best model performance using a transformer en-
coder and a fully-connected graph structure. Their
results also show that their model, trained exclu-
sively on English data, achieves comparable perfor-
mance on the target languages (Spanish, Russian,
Ukrainian) as a supervised model trained on about
1,500 annotated sentences.

Another effort that addresses the CLED task
via direct transfer is the work by Majewska et al.
(2021). The key contribution of their work is incor-
porating external, language-specific, verb knowl-
edge into the training process. The intuition behind
their proposal is that, as verbs are prominently re-
lated to events in sentences, incorporating specific
verb-processing information should be beneficial
for event-related tasks. As such, they use Verb-
Net (Kipper et al., 2006) and FrameNet (Baker
et al., 1998) as external knowledge sources and
utilize dedicated adapter modules (Pfeiffer et al.,
2020) to seamlessly incorporate the new knowl-
edge while avoiding catastrophic forgetting during
training. Verb-knowledge injection is performed
through an intermediate binary classification task:
using verb pairs, their model predicts if they be-
long to the same class (according to either VerbNet
of FrameNet). They follow a similar architecture
to M’hamdi et al. (2019) using an mBERT encoder
with a CRF layer on top. They experiment with
two training settings: full-model training, where
the encoder’s parameters are trained alongside the
adapters; and adapter-only training, where they
freeze the encoder’s parameters. Their results show
that their approach does improve performance over
a zero-shot mBERT/CRF setting. However, their
results on trigger detection and classification are be-
low those reported by M’hamdi et al. (2019). This



could be due to the fact that their model concur-
rently performs both the ED and EAE tasks instead
of following a training objective specifically de-
signed for event detection.

Inspired by Du and Cardie (2020), which re-
frames the event extraction task as a question an-
swering one, the authors of Fincke et al. (2021)
present a language-agnostic method of incorpo-
rating task-specific information for cross-lingual
event extraction. Their IE-PRIME approach con-
sists in including augmented inputs for a pre-
trained multilingual transformer encoder so that
it learns to generate task-specific word representa-
tions. For event detection, the priming is performed
by concatenating each token from the sentence to
the input as a candidate trigger. Their model then
targets two training objectives from two different
modules: (1) a BIO-label-based span prediction
performed by a bi-LSTM with a CRF layer on
top, and (2) an event type classification objective
performed with a linear layer that takes as input
the concatenation of the representations of the can-
didate trigger and [CLS] token. An important
drawback of their approach is its efficiency as it
must perform a forward pass for each word in the
sentence.

The work by Nguyen et al. (2021b) proposes
to refine the alignment of cross-lingual word rep-
resentations by conditioning on class information
and language-universal word categories. They ar-
gue that previous cross-lingual approaches suffer
from monolingual bias as they are trained exclu-
sively on source language data and that, even when
leveraging unlabeled target data with adversarial
training (Joty et al., 2017; Chen et al., 2018; Keung
et al., 2019; He et al., 2020), a target language ex-
ample from a class can be incorrectly aligned with
source examples from a different class, thus hinder-
ing the model performance on downstream tasks.
Their core intuition is that class information can be
used to bridge the representation vectors between
languages. As such, they obtain two representation
vectors for each class: one from the source and one
from the target language. The source class represen-
tations are computed as the average of the source
examples belonging to each class. However, as the
class information for target examples is unknown,
the target class representations are obtained via a
weighted aggregation of examples by estimating
the probability that each example belongs to any
of the classes. Then, during training, they encour-

age these two representations to be closer to each
other which serves as a class-aware cross-lingual
alignment mechanism. Additionally, they also pro-
pose to exploit dependency relations and universal
parts of speech as language independent informa-
tion that can further improve the learned represen-
tations. Similar to the class-aware alignment, they
encourage the representations from words in the
source and target languages that belong to the same
part-of-speech category, or dependency relation, to
be closer to each other. They test the performance
of their CCAR model on three downstream tasks:
ED, EAE, and RE. Their experiments show that
their approach effectively effectively addresses the
cross-class alignment issue which translates into
improved task performance.

Extending on the work by M’hamdi et al. (2019),
the authors of Guzman-Nateras et al. (2022b) use
a similar architecture, a multilingual transformer
encoder with a CRF-based classifier, but improve
upon it in two main ways. First, make use Adversar-
ial Language Adaptation (ALA) (Joty et al., 2017;
Chen et al., 2018), a technique based on domain
adaptation research (Ganin and Lempitsky, 2015)
training, to generate language-invariant word rep-
resentations that are not indicative of the language
used for training but remain informative for the task
at hand. ALA leverages unlabeled target-language
data by introducing a language discriminator mod-
ule that learns to discern between the source and
target languages. Concurrently, the model encoder
is trained in the opposite direction in an attempt to
fool the discriminator. This adversarial training
is what allows the encoder to generate language-
invariant representations. Their main contribution
is optimizing the adversarial training process by
only presenting the discriminator with informative
examples that force it to learn the fine-grained dis-
tinction between the languages which, in turn, im-
proves the language-invariance of the encoder’s rep-
resentation. They base their notion of what makes
an example informative on contextual semantics
similarity and event presence likelihood. They pro-
pose Optimal Transport (OT) (Villani, 2008) as
a natural solution to incorporate these two met-
rics into a single framework. Even though most
of their performance improvements over previous
work come from using a different encoder (XLM-
RoBERTa, Conneau et al., 2020), their results show
that their approach successfully generates refined
language-invariant word representations that lead



to better CLED results and better handling of diffi-
cult cross-lingual instances.

4.1.4 Hybrid Transfer Cross-lingual ED

Similar to the previously-described work by Lu
et al. (2020). The work by Muis et al. (2018)
does not really address the ED task and focuses
instead the simpler ETL task. Thus, they tackle
event-type classification task with 11 categories
that are referred to as Situation Frames (SF): is-
sues or needs being described in text extracts. They
compare two distinct approaches: (1) a keyword-
matching system that leverages a small bilingual
dictionary and (2) a neural-network-based model
that generates bilingual word representations. In
their keyword-based approach, they first build a list
of keywords for each SF using the source language,
and then translate such words into the target lan-
guage with the bilingual dictionary. The keyword
lists are generated in a two-step process: an ini-
tial candidate list is created by taking the top-100
words with the highest tf-idf scores for each class,
and for each of these candidate words the 30 most
similar words (based on word2vec Mikolov et al.,
2013a cosine similarity) are added to the list. Then,
for each candidate in the extended list, they com-
pute a label-affinity score with the labels of each
SF class using the cosine similarity between their
embeddings. The final keyword set contains only
those words whose label-affinity scores are above
a threshold. For their neural-network-based ap-
proach, they first train bilingual word embeddings
for the words in the source and target languages
using XlingualEmb (Duong et al., 2016): a cross-
lingual extension of word2vec. Then, they use a
CNN encoder to generate contextualized word em-
beddings. These contextualized representations are
then fed to a classifier that performs the predic-
tion. However, they note that the bilingual word
embeddings fail to capture the ground-truth map-
ping between the source and target languages, and
propose to minimize this issue via standard ALA
training. As these two approaches show similar
performances, the authors also propose a data aug-
mentation approach in which the keyword-based
system is used to generate new training data to be
used by the neural-network system. They found
that they could considerably improve the perfor-
mance of their neural network model using such
bootstrapping approach.

4.1.5 Performance Comparison
Table 2 presents the CLED performance of the
works discussed in this section when tested on the
commonly-used ACE05 (Walker et al., 2006) and
ACE05-ERE (Song et al., 2015) datasets. Detailed
information about these datasets can be found in
Appendix B.

Target
Model ZH AR ES

Liu et al. (2019) 27.0 X X
M’hamdi et al. (2019) 68.5 30.9 X

Lu et al. (2020) X X 41.77
Fincke et al. (2021) X 51.0 X

Majewska et al. (2021) 46.9 29.3 X
Nguyen et al. (2021b) 72.1 42.7 X

Guzman-Nateras et al. (2022b) 74.64 46.86 47.69

Table 2: Model performance comparison on the ED for
the ACE05 dataset. English is used as the source lan-
guage.

4.2 Event Identification
Event Identification (EI), not to be confused with
the aforementioned trigger identification step in
the ED task, is a binary classification task for pre-
dicting whether or not an event is present in a text
sample. As such, it is sometimes also referred to
as Event Presence Prediction (EPP). EI is usually
performed at the sentence level. For instance, the
sentence:

John recently bought a house.

should be classified as containing an event (posi-
tive instance). Meanwhile, the prediction for the
sentence:

John likes to eat pizza.

should be that it does not contain an event (negative
instance).

Event identification is a simple, low-level task
which is why there are not many research efforts
that focus solely on it. Instead, EPP can be useful
for other, higher-level tasks. Awasthy et al. (2020)
show, for instance, that including an additional EI-
based training signal can improve the performance
of an event detection system. Although their work
does not present a cross-lingual setting, they report
monolingual settings for three languages showing
that their approach is language agnostic.

A cross-lingual data-transfer effort focused on
EI is presented by Hambardzumyan et al. (2020).
The authors leverage Google’s translation API
to translate English and Arabic sections of the



ACE05 dataset into German to obtain a parallel
corpus. They then train their encoder (multilingual
BERT Devlin et al., 2019) to generate representa-
tions that are aligned (i.e., close to each other in the
embedding space) for pairs of parallel sentences.
Their intuition is that training the encoder in such a
manner can help with zero-shot cross-lingual trans-
fer for event presence prediction. Their results,
however, show that while their approach does gen-
erate aligned sentence-level representations, using
such aligned representations does not provide sig-
nificant performance improvements.

4.3 Event Argument Extraction

4.3.1 Task Definition
The Event Argument Extraction (EAE) task con-
sists in identifying the participants of an event (ar-
gument identification) and classifying them into a
discrete set of categories called roles (Argument
Role Labeling (ARL)). For example in the sen-
tence:

John recently bought a house.

an EAE system should recognize the word John as
a Buyer argument and the word house as the Ob-
ject argument for the event denoted by the bought
trigger.

The cross-lingual-associated adversities men-
tioned for EMD and ED apply for cross-lingual
EAE as well: different word orders, distinct char-
acter sets, non-existing words, polysemous words,
etc.

4.3.2 Direct Transfer Cross-Lingual EAE
Though not exclusive to the EAE task, Subburathi-
nam et al. (2019) present an approach based on
cross-lingual structure transfer. The key idea be-
hind their work is to take advantage of the obser-
vation that some relational facts, such as the rela-
tionship between an event and its arguments, are
expressed through identifiable patterns that display
some consistency across languages. Hence, these
patterns can be considered as language-universal
features. They propose dependency trees as one
of such language-independent features as similar
event-argument relations in different languages
share common dependency paths. As such, the first
step in their approach is to convert sentences in
both the source and target languages into language-
universal dependency tree structures. Each node in
the tree is represented by a vector made from the
concatenation of each word’s multilingual word em-

bedding, POS embedding, entity-type embedding,
and dependency-role embedding. Then, they lever-
age a Graph Convolutional Network (GCN, Kipf
and Welling, 2017) encoder to obtain a contextu-
alized representation for each node that takes into
account information from the node’s neighbors in
the dependency tree. They train their EAE system
using these language-independent representations
using labeled data from the source language which
can then be seamlessly applied to target-language
data that has been encoded in a similar manner. For
the EAE task, a full-sentence representation hs is
obtained by max-pooling over the representations
of all nodes in the tree. Then, argument ha and trig-
ger ht representations are obtained by max pooling
over the representations of the nodes comprising
the candidate argument a and the corresponding
event trigger t. Their classifier is trained using the
concatenation of these three vectors ([ht;hs;ha]).
In their experiments, they use the MUSE (Joulin
et al., 2018) multilingual embeddings which are,
in turn, obtained by aligning monolingual embed-
dings learned with FastText (Bojanowski et al.,
2017) from Wikipedia; 17 universal POS tags and
27 dependency relations defined by the Universal
Dependencies program (Nivre et al., 2016); and the
seven entity types defined in the ACE05 dataset.

A very similar, though more straightforward,
work is presented by Lu et al. (2020) who also
propose to leverage language-universal structures
such as dependency trees and fully connected
graphs. In their approach, they feed these structures
into a Tree-LSTM (Tai et al., 2015) or a Trans-
former (Vaswani et al., 2017) encoder to obtain
contextualized representations for each word in a
sentence. Then a concatenation of the representa-
tions of the event trigger and a candidate argument
are passed through a linear layer and a softmax
transformation to predict the argument’s role.

The work by Majewska et al. (2021) (section 4.1
also addresses the EAE task. As a reminder, their
approach integrates verb lexical knowledge into
the training process as verbs and their arguments
are commonly related to the events in a sentence.
They do so by training dedicated adapters (Pfeiffer
et al., 2020) to predict whether two verbs belong to
the same class according to an external knowledge
base. Then, these pre-trained verb adapters are
integrated into their model when fine-tuning for the
downstream EAE task. Though their experiments
show an improvement when the verb adapters are



used, their reported results for EAE are well below
other contemporary efforts.

In Nguyen and Nguyen (2021), the authors pro-
pose to incorporate language-independent knowl-
edge to improve transfer learning for cross-lingual
EAE. They utilize 3 distinct sources of informa-
tion: syntax based, semantic based, and relation
based. For syntax information, they use the adja-
cency matrix obtained from the sentence depen-
dency tree. The semantic information is a simi-
lar matrix whose values are obtained by learning
a semantic-similarity score between the multilin-
gual representation vectors of pairs of words in
the sentence. Such multilingual representation vec-
tors are obtained through the concatenation of a
word’s MUSE embedding, POS tag embedding,
entity type embedding, and dependency-relation
embedding. Finally, relation-based information
is incorporated by creating another matrix whose
values are learned using embedding vectors for
each dependency relation between a word and its
governor. These three matrices are then linearly
combined and passed through a GCN to obtain the
final representation for each word in the sentence
which is then used to predict the distribution over
all possible argument roles. Their results show that
incorporating these additional sources of informa-
tion leads to better cross-lingual EAE performance
as it allows their model to assign more nuanced im-
portance scores to each word in the sentence with
respect to the event trigger.

Ahmad et al. (2021) present the Graph Attention
Transformer Encoder (GATE) model that, simi-
lar to previous works, leverages universal depen-
dency parses to capture long-rage dependencies
and mitigate the word-order difference issue in
cross-lingual transfer. However, unlike the ef-
forts by Subburathinam et al. (2019) and Nguyen
and Nguyen (2021), they use self-attention mech-
anisms (Vaswani et al., 2017), instead of GCNs,
to encode the dependency trees as GCNs tend to
perform poorly in capturing long-distance depen-
dencies and disconnected words in the tree (Zhang
et al., 2019; Tang et al., 2020a). Their key idea is
to allow attention between inter-connected words
in the dependency tree and aggregate information
across layers. Furthermore, they propose a revi-
sion of the self-attention mechanism in order to
incorporate syntactic structure and distances into
the computation. They use a non-parameterized
function to modify the attention weights that, in

essence, divides each of them by the syntactic
distance between the related tokens as computed
from the universal dependency parse. When encod-
ing the input sentences, they first utilize multilin-
gual pre-trained language models (mBERT, XLM-
RoBERTa) to obtain contextualized word embed-
dings which are then concatenated with POS tag
embeddings, dependency-relation embeddings, and
entity-type embeddings, similar to the approach
by Nguyen and Nguyen (2021). To perform clas-
sification, they generate fixed-length vectors for
the candidate argument ea, the event trigger et and
the full sentence s, each of which is obtained by
max-pooling over their respective set of contex-
tual representations. Afterwards, the concatenation
of these three vectors [et; ea; s] is fed to a linear
classifier that predicts the role label.

As discussed in detail in section 4.1, the IE-
PRIME model (Fincke et al., 2021) leverages model
priming: augmenting a model’s input with task-
specific information. For argument extraction, IE-
PRIME augments the input in two distinct ways:
(1) by pre-pending the trigger to the input sentence
and (2) by also pre-pending one of the argument
roles associated with the trigger event type. The
argument roles are codified as integer numbers to
keep their system language agnostic. This second
approach obtains better EAE performance, how-
ever, it has the considerable drawback of requiring
one forward pass for each possible argument role.

The CCCAR model (Nguyen et al., 2021b) seeks
to improve cross-lingual representation learning by
conditioning on class information and universal
word categories such as POS and dependency re-
lations. Section 4.1 provides further details on the
model.

Huang et al. (2022b) present their X-GEAR
model that leverages generative models to per-
form cross-lingual EAE, instead of the more com-
monly used classification-based models such as CL-
GCN (Subburathinam et al., 2019) and GATE (Ah-
mad et al., 2021). Their key idea is to fine-tune a
pretrained multilingual generative language model
such as mBART (Tang et al., 2020b) or mT5 (Xue
et al., 2021) with training samples where the input
has been augmented with a template. Their pro-
posal entails two main challenges: (1) in the cross-
lingual setting, the input language changes during
training and testing, and (2) the generated outputs
must be parsed into final predictions. To address
these challenges they design language-agnostic



templates. A template includes the event trigger
and all possible argument roles associated with
the corresponding event type, encoded as special
tokens, with the appropriate arguments. By for-
matting the templates in such a manner, the event
type information does not need to be explicitly in-
cluded as such information is implicitly included.
Furthermore, by using special tokens to represent
the argument roles, the templates are completely
language agnostic. Their model is then trained to
generate output strings that conform to the tem-
plate format. The inputs to their model are com-
posed by the original passages and a prompt that
includes the event trigger and the type-specific tem-
plate. In these input templates, each argument role
is filled with a special [None] token that is to be
replaced by the generative model. For their exper-
iments on the ACE05 and ACE05-ERE datasets,
they compare against their own implementations
of CL-GCN and GATE and found that that their
approach outperforms these classification-based
cross-lingual EAE models, and even other genera-
tive models that use language-dependent templates
such as TANL (Paolini et al., 2021).

4.3.3 Hybrid Transfer Cross-Lingual EAE
Ahmad et al. (2019) present a hybrid multilin-
gual effort for EAE. The core of their approach
is to learn a mapping between monolingual word
embeddings obtained with fastText (Bojanowski
et al., 2017) via adversarial language adaptation.
Then, they use a hybrid CNN-LSTM encoder to ob-
tain the representation of each word in a sentence.
These representations are then passed to a feed-
forward network to obtain a shared representation
for the EAE task. Afterwards, they propose adding
a separate language layer for each language they
consider (English, Hindi, and Bengali). Each of
these language layers is only trained when the input
data matches their corresponding language. Finally,
after each language layer, they use six independent
fully connected layers, one for each argument type,
for a total of 18. The reasoning behind this deci-
sion is that argument types are not mutually exclu-
sive and, consequently, a single word could display
multiple roles simultaneously. For their experi-
ments, they use their own human-annotated dataset
crawled from popular news websites in each lan-
guage. Their results show that multi-lingual train-
ing generally improves their model’s performance
for argument types with fewer training examples.
However, they also notice that it can deteriorate

the performance of types with lots of training ex-
amples in which the monolingual models perform
better. Though they focus their experiments on
a domain-specific dataset, their approach can be
readily applied to any domain.

4.3.4 Performance Comparison
Table 3 presents a comparison between the cross-
lingual EAE performance of the works discussed
in this section when tested on the commonly-
used ACE05 (Walker et al., 2006) and ACE05-
ERE (Song et al., 2015) datasets. Detailed infor-
mation about these datasets can be found in Ap-
pendix B.

Target
Model ZH AR ES

Subburathinam et al. (2019) 59.0 61.8 X
Lu et al. (2020) X X 17.35

Majewska et al. (2021) 1.9 7.1 X
Nguyen and Nguyen (2021) 58.4 62.9 X

Ahmad et al. (2021) 63.2 68.5 X
Fincke et al. (2021) X 74.7 X

Nguyen et al. (2021b) 65.5 69.4 X
Huang et al. (2022b) 54.0 44.8 59.7

Table 3: Model performance comparison on the EAE
for the ACE05 dataset. English is used as the source
language.

5 Relation Extraction

5.1 Task Definition

Relation Extraction (RE) is the task of identifying
and classifying the semantic relations that exist be-
tween entities (organizations, persons, locations,
events) in a text sample. For example, in the sen-
tence:

John was born in Eugene, Oregon.

an RE system would predict that the entities John
and Eugene participate in a bornInCity type rela-
tion and that Eugene and Oregon participate in a
locatedIn type relation. Relation extraction is a
useful task for other higher-level task such as ques-
tion answering, text summarization, text mining,
and knowledge base population.

As is the case with other tasks, traditional RE
models relied on feature engineering by combining
syntactic, lexical, and semantic features (Zelenko
et al., 2003; Kambhatla, 2004; Li and Ji, 2014).
These methods were later replaced by approaches
that make use of deep neural networks trained in a



supervised manner (Zeng et al., 2014; dos Santos
et al., 2015; Nguyen and Grishman, 2015; Miwa
and Bansal, 2016; Wang et al., 2016). Regarding
cross-lingual efforts for RE, over the past decade
the have been approaches based on active learn-
ing (Qian et al., 2014), knowledge bases (Verga
et al., 2016), and bilingual representations learned
through language independent concepts (Min et al.,
2017).

5.2 Data Transfer Cross-lingual RE
Earlier methods for cross-lingual RE relied the data
transfer paradigm and were based on annotation
projection using either parallel corpora (Kim et al.,
2014) or pseudo-parallel corpora obtained via ma-
chine translation (Faruqui and Kumar, 2015).

5.3 Direct Transfer Cross-lingual RE
Ni and Florian (2019) propose an approach that
relies on embedding projections instead of par-
allel corpora or machine translation. Their ap-
proach consists in, first, generating monolingual
Word2Vec (Mikolov et al., 2013c) word embed-
dings for both the source and target languages and,
then, learning a linear mapping between the two
latent spaces by minimizing the mean squared er-
ror between the representation vectors of aligned
word pairs obtained from a small (1K words) bilin-
gual dictionary. Their model has four main layers.
An embedding layer maps every word in an input
sentence to its corresponding monolingual vector
representation. They also make use of entity-label
embeddings: randomly initialized, real-valued vec-
tors to represent entity types. Next, a context layer
whose purpose is to create context-aware represen-
tations for each word in the sentence. Here, they ex-
periment with both LSTM-based and CNN-based
context encoders. A summarization layer that gen-
erates a single fixed-length vector to be used for
classification purposes. They perform element-
wise max pooling among the context-aware vec-
tors of all words that appear before the first entity,
the words that comprise the first entity, the words
in-between the first and second entity, the words
comprising the second entity, and the words ap-
pearing after the second entity. Then, these five
vectors are concatenated into a single vector that is
used as the input for the output layer. Finally, the
output layer returns a probability distribution over
the set of relation types. To perform cross-lingual
classification, the sentence word embeddings in
the target language are projected into the source

language embedding space using the learned lin-
ear mapping and the model is applied normally on
the projected embeddings. The authors mention
that they specifically do not use language-specific
resources such as dependency parsers as their avail-
ability cannot be guaranteed for low-resource target
languages. They experiment with both an in-house
dataset with six languages and 56 entity types and
ACE05 dataset that has seven entity types. Their
monolingual results on source data (English) lag
behind the state-of-the-art ensemble model VOTE-
BW (Nguyen and Grishman, 2015). Their perfor-
mance on cross-lingual RE also seems to be lack-
ing with respect to the previously released CNN-
GAN (Zou et al., 2018) as their reported F1 scores
on the En-Zh language pair 20% lower. However,
this might be due to the use of a distinct data split
from previous works. From their experiments they
also recognize that their approach works best with
languages that share the same syntactic structure as
the source language. In the case of English, for ex-
ample, languages such as German, Spanish, Italian,
and Portuguese that follow the same SVO (subject,
verb, object) structure perform considerably better
than, for instance, Japanese which has an SOV con-
vention. While the performance reported in this
work seems to be lacking, it has several characteris-
tics that work in its favor such as its simplicity and
its general applicability due to its low requirements
of cross-lingual resources.

The work by Subburathinam et al. (2019), de-
scribed in greater detail in section 4.3 for the EAE
task, also addresses the RE task. For relation extrac-
tion, the authors train a classification layer using a
concatenation of the representations of each entity
in the relation pair under consideration, hm1 and
hm2 , with the full sentence representation hs. Re-
call that, in their approach, these representations
are obtained by max-pooling over the language-
universal representations obtained by a GCN-based
encoder of the nodes in a dependency tree.

The authors of Köksal and Özgür (2020) present
the first transformer-based approach for the cross-
lingual RE task. Their model leverages a multilin-
gual pretrained transformer (mBERT Devlin et al.,
2019) as its encoder which is then pretrained on a
proxy task via distant supervision. To this end, they
collect a large number of sentences from Wikipedia
in several languages with entities marked by hyper-
links. Afterwards, sentences including entity pairs
with Wikidata relations (Vrandečić and Krötzsch,



2014) are selected. They generate positive sam-
ples by selecting pairs of sentences that share the
same entities and relation type in two distinct lan-
guages. Negative examples are created by selecting
sentences that share one entity but that do not be-
long to the same relation type. Then, mBERT is
trained on the binary classification task of predict-
ing whether the two sentences in a pair show the
same relation or not. Furthermore, in the collected
sentence pairs, the entities are replaced by a spe-
cial token [BLANK] with a fixed probability, so
that mBERT learns to capture text patterns instead
of memorizing the entities. In essence, they fine-
tune mBERT using the standard masked-language
modeling objective and their matching the multi-
lingual blanks (MTMB) objective – a multilingual
version of the approach proposed by Baldini Soares
et al. (2019). They publicly release the two new
cross-lingual RE datasets used in their experiments:
RELX and RELX-Distant. In their experiments,
the authors compare a baseline model – a standard
mBERT encoder with a classification layer on top
– with their proposed with their version that pre-
trained using MTMB and find that the pre-training
improves cross-lingual RE performance by as much
as 4.5% in some languages (Spanish). In additional
experiments, they show that their approach greatly
outperforms the baseline in low-resource settings.
In Spanish, for instance, the MTMB-trained model
achieves the same performance as a vanilla mBERT
model using only around 20% of the training data.
Unfortunately, their results are not directly compa-
rable with other previous efforts as they only report
their performance on their proposed datasets.

The GATE model (Ahmad et al., 2021), de-
scribed in detail in section 4.3 also addressed the
RE task. Similar to their EAE approach, for RE
they obtain fixed-length representations for the full
sentence s, and each entity in an entity pair (es, eo)
by performing a max-pooling over their contextual-
ized word representations. Then, a concatenation
of these vectors [es; eo; s] is passed through a linear
classifier that outputs the predicted relation types
(if any). Their RE classifier is trained with the
standard cross-entropy loss.

The authors of Nguyen et al. (2021b) also test
the performance of their CCAR model on the RE
task. As mentioned in section 4.1, their intuition
is to improve the alignment of cross-lingual repre-
sentations by conditioning on language-invariant
information: class information, POS category, and

dependency relation.

5.4 Hybrid Transfer Cross-lingual RE

In their work, Zou et al. (2018) propose utiliz-
ing two twin encoder networks – for source and
target languages – that learn to extract language-
invariant features that remain indicative of relation
information but not of originating language. They
obtain pseudo-parallel target-language sentences
by leveraging Google’s machine translation API5.
Then they transform both the original and trans-
lated sentences into vector sequences by utilizing
bilingual word embeddings (Shi et al., 2015) along-
side randomly-initialized positional and entity-type
embeddings. These sequences are then used as
the input for the twin encoder networks. Their en-
coders output a single vector which is then fed into
a discriminator network tasked with identifying the
originating language. During training the source-
language representations are also fed to a classifier
network that predicts the relation contained in the
sample. The target encoder is trained in an adver-
sarial manner in an attempt to fool the discrimina-
tor. As such, as the source encoder learns to gen-
erate representations that are informative for the
relation extraction task, the target encoder learns
to generate similar features stemming from target-
language samples which should share the aforemen-
tioned informative qualities. At testing time, target-
language samples are fed into the corresponding
encoder and its output is passed to the classifier. In
their experiments, they explore both CNN-based
and LSTM-based encoder networks with CNNs
coming slightly on top. They compare their model
performance against the state-of-the-art model at
the time BI-AL (Qian et al., 2014) which they sub-
stantially improve upon (∼ 4%improvement). Sup-
plemental experiments also show that their unsu-
pervised approach outperforms a supervised model
when the size of the available labeled training data
is small (< 700 samples) and that their model is
able to make effective use of the available source
training data as training with limited amounts –
only 10% of the data, for instance – led to small
performance declines (∼ 6%) compared to the BI-
AL baseline (∼ 20%).

5.5 Performance Comparison

Table 4 presents a comparison between the cross-
lingual RE performance of the works discussed in

5https://translate.google.com/



Target
Model ZH AR

Zou et al. (2018) 68.4 X
Subburathinam et al. (2019) 42.5 58.7

Ni and Florian (2019) 46.8 36.4
Ahmad et al. (2021) 55.1 66.8

Nguyen et al. (2021b) 58.1 67.9

Table 4: Model performance on the RE for the ACE05
dataset. English is used as the source language.

this section when tested on the commonly-used
ACE05 (Walker et al., 2006) dataset. Detailed in-
formation about this dataset can be found in Ap-
pendix B.

6 Co-Reference Resolution

6.1 Task Definition

A co-reference occurs when there are several ex-
pressions (mentions) in a text sample that mention
the same entity. For example, in the sentence:

John said he did not got to the party.

the words “John” and “he” refer to the same per-
son.

The definition of an entity in the context of this
task is different from that of the EMD task as it has
a broader interpretation: it includes persons, things,
organizations, but it can also involve events, con-
cepts, or other intangible abstractions. For example,
in the sentence:

This year there wasn’t much inflation, but it will
get much worse.

the words “inflation” and “it” should be identified
as referring to the same entity even thought such
entity is just a concept. A Co-Reference Resolution
(CRR) system should then be able to identify any
co-references that occur in a text sample.

Systems that use entity-related features to make
mention-wise linking decisions are called entity-
mention. Whereas, mention-pair models use
only local information to determine mention co-
reference (Cruz et al., 2018).

6.2 Data Transfer Cross-Lingual CRR

Cross-lingual data-transfer-based approaches for
CRR are limited to a couple of shared tasks (Ji et al.,
2015) and are primordially based on annotation
projection.

6.3 Direct Transfer Cross-Lingual CRR

For the purposes of this survey, we focus on direct-
transfer-based CRR efforts which has been the fa-
vored approach in recent years.

Kundu et al. (2018) propose an entity-mention
approach that gradually merges the mentions
in a document to produce entities leveraging a
zero-shot Entity Linking system (Sil and Florian,
2016). They train their own monolingual word-
embeddings for the source and target languages
and then build a cross-lingual embedding space
following Mikolov et al. (2013b). Their system
receives entity pairs (not mention pairs) as inputs.
Since each entity represents a set of mentions, the
entity-pair embedding is obtained from the embed-
dings of mention pairs produced using the cross
product of the entity pairs. Then, for each men-
tion pair in the cross product a set of features is
computed and embedded as a real-numbered vector.
Among the features they use are: string matching,
word/sentence distance between mentions, men-
tion types, entity types, and whether one mention
is an acronym of the other. The embedded features
are concatenated with the average of the mentions’
word embeddings and passed through an attention
layer before the classifier.

Cruz et al. (2018) present instead a mention-
pair approach in which they leverage a large
coreferentially-annotated Spanish corpora (Re-
casens and Marti, 2010) to create a cross-lingual
model for the lower-resourced Portuguese (Fonseca
et al., 2017) language. In their approach, they lever-
age FastText (Bojanowski et al., 2017) multilin-
gual embeddings along with language-agnostic fea-
tures such as the sentence/word distance between
mentions. The mentions’ word-level embeddings
are combined by either non-parametric methods
(e.g., summation) or using neural encoders (CNNs,
LSTMs, dense layers) and then concatenated with
the distance features before being passed to a dense-
layer-based binary classifier network.

Urbizu et al. (2019) work on a CRR for the
Basque language. Being a language spoken only
on specific regions of Spain and France, Basque is
a low-resource language for which not many mono-
lingual CRR efforts exist (Soraluze et al., 2016,
2017). The authors explore leveraging a large En-
glish corpora (OntoNotes) to create a cross-lingual
Basque model given that the largest CRR corpora
for Basque (Cerberio et al., 2018) is insufficient to
effectively train a monolingual neural model. They



use a straightforward neural model comprised of
three dense layers (500, 300, and 100 neurons, re-
spectively) with ReLU activations. As inputs, they
utilize FastText multilingual embeddings and com-
plemented by a few independent features such as
the distance in words between mentions, the dis-
tance in mentions between the mentions, whether
or not the mentions are in the same sentence, and
string matching. They report improved CRR re-
sults from their cross-lingual model compared to
those of a monolingual model trained in a super-
vised manner with the Basque corpus. These results
assert the usefulness of a CLL approach when tar-
get language resources are limited resources. In
cases such as Basque, the smaller-sized annotated
Basque corpora can be leveraged to fine-tune the
cross-lingually trained model.

Phung et al. (2021) present the first cross-lingual
effort focused on Event Co-Reference Resolution
(ECR). Event co-reference resolution is considered
a more challenging task than entity co-reference
resolution because of the more complex structures
of event mentions (Yang et al., 2015). They cast the
ECR problem as a binary classification task where
their model receives as input a sequence of words
that contains two event mentions and aims at deter-
mining whether the two mentions refer to the same
event or not. Being the first work on this problem,
they first establish a baseline model that uses a mul-
tilingual transformer (XLM-RoBERTa, Conneau
et al., 2020) as the encoder and augment the in-
put sequence with two special tokens (<e></e>)
that are used to identify the location of event trig-
gers. To predict the co-reference, they use the
concatenated representations of the special tokens
surrounding both triggers as the input for their clas-
sifier. Then they propose three main improvements
upon their baseline. First, the use of adversarial
training (Ganin and Lempitsky, 2015) to improve
the language-invariance properties of the represen-
tations generated by the encoder. Second, they
argue that, given the lack of co-reference labels for
pairs of event mentions in the target languages, the
discriminator can potentially align co-referential
with non co-referential examples. To address this
issue, they propose to generate two separate rep-
resentation vectors for each example for both the
source and target languages via two independent
neural networks. Then, the target-language repre-
sentations are regularized to be similar with each
other while the source-language representations are

regularized to be different from each other. These
two opposing regularizations help penalize unex-
pected alignments as they implicitly inject into the
loss function the difference between source and
target examples with different co-reference labels.

6.4 Performance Comparison

The research efforts discussed in for this sub-task
address different languages or even have distinct fo-
cus (e.g., entity co-reference vs event co-reference).
As such, they do not evaluate their results using
common dataset and cannot be directly compared.

7 Future Research Directions

This section presents a number of promising re-
search directions for future cross-lingual informa-
tion extraction efforts.

7.1 Lexical/syntactic target-language
information integration

The motivation behind the vast majority of cross-
lingual works is to provide low-resource target lan-
guages with NLP tools that could not be created
otherwise due to the lack of annotated data. In turn,
cross-lingual approaches usually refrain from lever-
aging potentially-useful information from lower-
level tasks, such as Part-of-Speech (POS) tagging
or dependency parsing, under the assumption that
these tools are not available for the target language.

However, as cross-lingual research gains traction
and public interest, there are more tools available
for an increasing amount target languages. For in-
stance, Google’s translation API 6 supports 133
languages at various levels and tool-kits such as
Trankit (Nguyen et al., 2021a) provide fundamen-
tal NLP tasks for over 100 languages. Thus, re-
search efforts focusing on these medium resource
languages (Jain et al., 2019) can benefit from incor-
porating target-language lexical/syntactic informa-
tion derived from such lower-level features.

7.2 Meta-learning/Few-shot learning

In standard supervised training tasks, models are
trained on large quantities of data with the expecta-
tion that they will learn to generalize and work ad-
equately on unseen samples. On the contrary, Few-
Shot Learning (FSL) is a setting where a model is
trained using very limited amounts of data. For this
reason, FSL models cannot be trained in the tradi-
tional supervised setting as the limited availability

6https://cloud.google.com/translate



of training data leads to poor generalization. This
training-data limitation is something FSL shares
with CLL where target-language data is scarce.

Few-shot training is performed via
episodes (Vinyals et al., 2016). An episode
is constructed by sampling a subset out of the
entire set of training classes and selecting a few
examples belonging to such classes. In this sense,
training is performed in N-way, K-shot settings
where N refers to the number of classes and K
refers to the number of examples for each class
(K is usually low in the [1 − 10] range). The
N × K samples that compose an episode are
called the support set. Additionally, there are
further examples belonging to the same classes
that are used to evaluate the performance of the
model while training, these are called the query set.
When the model is done training, at testing time,
new episodes are constructed using samples from
entirely different classes never seen during training.
The model is then evaluated on its performance on
the episode’s query set based on the knowledge of
its support set.

As such, FSL can be thought of as a type of
Meta Learning where the purpose is to teach a
model to learn how to learn. Meta-learning-based
approaches have already been proven successful in
cross-lingual IE tasks like EMD (Wu et al., 2020c)
and could make a significant impact in CLL given
their capability of learning from just a few labeled
examples which can be easily obtained, even for
the most obscure target languages.

7.3 Generative/Prompting Models

With the recent advancements in generative lan-
guage models like BART (Lewis et al., 2020), GPT-
3 (Brown et al., 2020), or T5 (Raffel et al., 2019),
several NLP tasks have been formulated as text-
generation tasks in monolingual settings. Informa-
tion extraction tasks have not been the exception
and generative-based approaches have been pro-
posed for relation extraction (Paolini et al., 2021),
argument extraction (Li et al., 2021), and end-to-
end event extraction (Lu et al., 2021; Hsu et al.,
2022). These approaches have since shown remark-
able performances that are competitive or even
better than the state-of-the-art traditional efforts.
Given that some of these models already have multi-
lingual versions (e.g., mBART, mT5), cross-lingual
variants of such approaches have already started
to appear. For instance, Huang et al. (2022a) for-

mulate EAE as a generative prompt-filling task.
They design language-agnostic templates that rep-
resent the event argument structures and leverage
pre-trained multilingual generative language mod-
els to generate sentences that fill such templates.

Another way in which generative models can be
exploited for IE tasks is to generate, or augment,
the existing annotated datasets. Efforts like the
one by Pouran Ben Veyseh et al. (2021) have al-
ready shown the value of this approach for tasks
like event detection. This approach could be par-
ticularly useful in cross-lingual settings where an-
notated target-language data scarcity is usually as-
sumed.

7.4 Multimodality
Leveraging non-textual sources of information
could help improve the performance of zero-shot
cross-lingual models. Images can be regarded as
language-independent so, for instance, visual fea-
tures extracted from pictures of recognizable enti-
ties could be integrated into a cross-lingual model
and be beneficial for entity mention detection.

Furthermore, the recently released Contrastive
Language-Image Pre-training model (CLIP Rad-
ford et al., 2021) from OpenAI provides a bridge
between text and images and offers an unprece-
dented opportunity to link these two, usually sepa-
rate, domains. Image-generation models that make
use of CLIP’s capabilities such as Dall-E (Ramesh
et al., 2021) and Dall-E2 (Ramesh et al., 2022) are
already being used by artists, researchers, and the
general public to generate high-quality realistic im-
ages from textual descriptions. Their public release
and widespread use could foster the creation of hy-
brid text-image datasets for cross-lingual IE tasks
such as event extraction or coreference resolution.
There already have been efforts at creating a mul-
tilingual version of CLIP by re-training its textual
encoder for various non-English languages (Carls-
son et al., 2022).

7.5 Robust Training
Robust training aims at creating models that are
not affected by noise or perturbations in the input
data (Goodfellow et al., 2015). Robust models are
created as a means to defend against adversarial
attacks which are input samples with small per-
turbations designed to fool classifiers into making
wrong predictions:

c(x̃) = c(x+ ∆) 6= c(x)



where c is a classifier, ∆ is a small perturbation,
and x̃ is a perturbed sample.

Multilingual encoders such as mBERT or XLM-
R have a shared embedding space for words in
different languages (Wu and Dredze, 2019). In
such space, the representations of similar words
are close to each other, e.g., the representations
for the word cat and its Spanish equivalent (gato)
should be similar. These representations, however,
are not completely aligned. In this sense, the dif-
ferences between the representations of the same
word in the source and target languages can be
considered as perturbations, similar to that of an
adversarial example. Thus, cross-lingual learning
can be approached as a robustness perspective.

For instance, Huang et al. (2021) propose
the idea of treating cross-lingual transfer as a
representation-alignment issue. It is their intuition
that by training a cross-lingual model to be robust
against such perturbations, the model becomes able
to better transfer the learned knowledge from one
language to the other. They explore two robust
training methods: adversarial training and random-
ized smoothing. In this context, adversarial training
means considering the most effective adversarial
perturbation at each iteration, i.e., the perturbation
that is most likely to change the prediction, while
at the same time ensuring the model remains able
to classify it correctly. On the other hand, random-
ized smoothing focuses on expectation and uses
random perturbations instead. They evaluate their
training scheme on two cross-lingual classification
tasks: paraphrase detection and Natural Language
Inference (NLI). In their experiments, they found
that randomized smoothing usually leads to bet-
ter performance than adversarial training. They
argue that the reason behind such behavior is that,
even though adversarial training is more suitable
to defend against examples specifically designed
to attack the classifier, for cross-lingual knowledge
transfer the average of randomized perturbations
better reflects the difference between languages.
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A Language Key

am - Armenian, ar - Arabic, bn - Bengali, de -
German, en - English, es - Spanish, eu - Basque, hi
- Hindi, it - Italian, ja - Japanese, ko - Korean, nl -
Dutch, no - Norwegian, or - Oromo, pt - Portuguese,
ru - Russian, ta - Tamil, ti - Tigrinya, tl - Tagalog,
tr - Turkish, yr - Yoruba, zh - Chinese

B Dataset Statistics

B.1 CoNLL

Table 5: Number of entity instances in the CoNLL-
2002 and CoNLL 2003 datasets.

Language Train Dev Test
German-de

(CoNLL-2003)
11,851 4,833 3,673

English-en
(CoNLL-2003)

23,499 5,942 5,648

Spanish-es
(CoNLL-2002)

18,798 4,351 3,558

Dutch-nl
(CoNLL-2002)

13,344 2,616 3,941

B.2 ACE

Table 6: Number of instances for ED, RE, and EAE in
the ACE05 and ACE05-ERE datasets.

Language Data RE
(#rels)

ED
(#trgs)

EAE
(#args)

Arabic-ar
Train 2,918 1,986 3,959
Dev 357 112 495
Test 378 169 495

English-en
Train 4,974 4,420 7,018
Dev 626 505 877
Test 620 424 878

Chinese-zh
Train 4,767 2,213 5,931
Dev 572 111 741
Test 605 197 742

English-en
(ERE)

Train 5,045 6,419 X
Dev 424 552 X
Test 477 559 X

Spanish-es
(ERE)

Train 1,698 3,272 X
Dev 120 210 X
Test 108 269 X
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Figure 1: Information Extraction Conceptual Map


