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Abstract—A Physics-Informed Neural Network (PINN) is a Deep
Learning (DL) framework for approximating solutions to Partial
Differential Equations (PDE). Though PINNs benefit from the
power and flexibility of DL, they lack the robust approximation
theory of traditional numerical methods and, in the absence of
real-world data, traditional methods outperform PINNs when
solving PDE except in very high dimensions. However, the
network architecture of PINNs is amenable to PDE for which
traditional methods cannot be employed. This study highlights
ways that the traditional and DL methods can be hybridized
to exploit advantages inherent to both frameworks. We focus
on the class of neural nets trained to satisfy Initial Boundary
Value Problems (IBVP) (starting with the PINN framework) and
investigate an approximation theory that is emerging in response
to this class of physics-informed networks. We also present
three areas of current research utilizing DL methods: First, us-
ing implicitly-computed antiderivatives, a mesh-free integration
technique is presented on a 2D square domain as a starting
point for approximating integrals in higher dimensions. Then,
by investigating both continuous and discrete time formulations
we may develop an efficient network for accelerating iterative
methods. Lastly, the DeepONet solution for parametric PDE
could allow us to create efficient and persistent physical systems
which can generate data in a coupled system via a network
forward pass.

I. INTRODUCTION

In mathematics, PDE are used to encode physical phenomena
in terms of differential relationships. Solutions to PDE are
functions which exhibit the desired physical property, but such
solutions are not guaranteed to have an analytic form so we
often turn to numerical schemes like the Finite Difference
Method(FDM) or Finite Element Method(FEM) to approx-
imate solutions. However, an emergent Deep Learning(DL)
framework has recently demonstrated a surprising capacity
for approximating PDE solutions. Though this DL framework
lacks the robust mathematical theory of the traditional meth-
ods, it shows particular promise in solving problems for which
traditional numerical methods are ill suited.

Traditional numerical methods are typically solved on a mesh
which, due to the curse of dimensionality [1], leads to com-
putationally intractable problems in higher dimensions. Addi-
tionally, traditional approaches are not amenable to real-world
observation and ultimately cannot be efficiently generalized

to solutions of parametric PDE. This is contrasted by the
DL framework which produces a closed, analytic form for
the solution. Because of this, the solution is continuous and
defined at every point in the domain allowing one to evaluate
the solution ’off-grid’ without having to solve the PDE again.
While the DL framework cannot compete with traditional
methods in lower dimensions, the 2017 foundational frame-
work, PINNs, [2] suggests that both approaches may be used
in tandem to offset specific weaknesses of a method.

The rest of this paper is organized as follows: In section II
we provide brief history of Artificial Neural Networks (ANN)
in solving PDE. section III Introduces the PINN framework
and we give details for handling forward and inverse learning
problems along with a formulation for discretizing the network
with respect to time. Once we have established the basic
PINNs framework section IV covers some ways that the PINN
framework may be altered to enhance certain model features.
section V introduces operator methods which provide a means
by which PINNs can be generalized to a family of PDE
solutions. section VI provides a look at the current state
of an emerging approximation theory for physics-informed
networks. Finally, I will conclude the paper with section VII
in which I give my thoughts on the framework and carve out
future areas of research.

II. BACKGROUND

We begin by introducing the Feed Forward Neural Network
(FFNN) architecture and give its Universal Approximation
Theorems (UAT). FFNN also inherit regularity from their
activation functions and, along with UAT this allows them to
be infinitely differentiable function approximators, a property
that is shared with polynomials. This makes FFNN a valid
option in solving PDE and we will show how Machine
Learning (ML) can be constrained by PDE.

A. Feed Forward Neural Network (FFNN)

Let x ∈ Rn,W ∈ Rm×n and b ∈ Rm. Then a single hidden
layer of a neural network can be expressed as

ℓ(x; θ) = φ.(Wx+ b), θ = (W, b)
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where φ is an activation function. That is, φ is bounded and

lim
x→+∞

φ(x) = α

lim
x→−∞

φ(x) = β

with α ̸= β. The notation φ.(∗) signifies component-wise
application of the activation function. We construct a deep
neural network by repeated composition of hidden layers. Let
L ∈ N>0 be the network depth and let {ϕi}Li=1 be a collection
of activation functions along with a sequence of trainable
network parameters {θi}Li=1 where θk = (Wk, bk) for each
0 < k ≤ L. Take x ∈ Rn to be the network input and network
parameters (W1, b1) ∈ Rm×n×Rm, (Wk, bk) ∈ Rm×m×Rm

for 1 < k < L, and (WL, bL) ∈ Rd×m × Rd. Then the
recursive composition

ℓ0 = x, (1a)
ℓk = φk.(Wkℓk−1 + bk) for 0 < k < L (1b)

defines a neural network N : Rn → Rd (of depth L and
width m) with network parameters θ by

N (x; θ) = WLℓL−1 + bL. (2)

B. Universal Approximation Theorems

When considering such neural networks as function approxi-
mators there are two primary avenues to consider: arbitrary
width and arbitrary depth. The arbitrary width formulation
considers a continuous activation function ϕ : R → R and
a collection of feed-forward neural networks N ϕ

n mapping Rn

to R which have a single hidden layer with an arbitrary number
of neurons. Then we get the following universal approximation
theorem (UAT):

Theorem 1 (Arbitrary-Width UAT[3]):
For compact subsets K ⊆ Rn, N ϕ

n is dense in C(K) if and
only if ϕ is nonpolynomial.

Theorem 1 can be trivially extended to networks with a
bounded number of hidden layers by including identity map-
ping layers [4], [5], [6], [7], [3].

The arbitrary-depth formulation, on the other hand, considers
the approximation capabilities of networks with an arbitrary
number of hidden layers each with fixed width. This formula-
tion has been explored for Rectified Linear Units(ReLU) [8],
[9], [10] and a minimal network size has been established
as a necessary condition for deep networks to be universal
approximators. However, as we will see later in the paper, the
ReLU activation function cannot be utilized when constraining
a network to satisfy PDE. More recently, a more general
theorem has been proposed which shows the following: Let
ϕ : R → R and n, d,m ∈ N. Denote by N ϕ

n,d,m the class
of functions mapping Rn to Rd described by feed forward
neural networks with n input neurons, d output neurons, and
an arbitrary number of hidden layers, each with m neurons
and activation function ϕ. Each neuron in the output layer uses
the identity activation function. Then we have the following
theorem:

Theorem 2 (Arbitrary-Depth UAT[3]):
For any non-affine continuous function ϕ : R → R which is
continuously differentiable at at least one point (with nonzero
derivative at that point), and compact subset K ⊆ Rn, the set
N ϕ

n,d,n+d+2 is uniformly dense in C(K;Rd).

Note that this theorem is quite general as far as the allowable
activation functions. It includes polynomial activation func-
tions which distinguishes it significantly from Theorem 1.
Moreover, [3] proves that Theorem 2 can be extended to
networks with activation functions which are bounded and
continuous, but differentiable nowhere.

Theorem 3:
Let w : R → R be any bounded continuous nowhere
differentiable function. Let ϕ(x) = sin (x) + w(x)e−x, which
is also nowhere differentiable. Let K ⊆ Rn be compact. Then
N ϕ

n,d,n+d+1 is dense in C(K;Rd) with respect to the uniform
norm.

The oddity of this result lies in the fact that the set of dif-
ferentiable functions is contained within the set of continuous
functions. This means that we can uniformly approximate dif-
ferentiable functions using activation functions which are dif-
ferentiable nowhere. Thus deep neural networks maintain their
universal approximation property for a pretty non-restrictive
class of activation functions. Considering that gradient descent
will require almost-everywhere differentiable activation func-
tions, the choice of activation functions is limited by network
training. The universal approximation theorems (in addition
to the Neural Net’s closed, analytic form) establishes ANN as
potential PDE solvers. To train a Network to satisfy a PDE
we first need to augment the ML optimization problem to
incorporate information from IBVP. Inclusion of the IBVP is
what makes a network Physics Informed.

C. Enforcing PDE in ML Training

One of the earlier appearances of a physics-informed network
was proposed by [11] as a numerical solution for PDE on
orthogonal box domains and was later expanded to domains
of complex geometry by [12]. They use the compact and
differentiable closed form of an Artificial Neural Network
(ANN) solution to construct a trial function consisting of two
terms: One term has no trainable parameters and satisfies a
desired Boundary Condition (B.C) while the second term is a
trainable feed-forward network which does not contribute to
B.C but can be trained to solve a minimization problem. While
this approach is fairly simple on orthogonal box domains, it
becomes more involved on complex domains. Additionally,
the manual computation of the loss function derivative terms
is prone to error and becomes quite burdensome on deep neural
networks.

More recently, [13] presents a unified framework for approx-
imating PDE solutions using artificial neural networks and
gradient-based optimization. This approach captures the idea
proposed in [11] and provides a good basis for understanding
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physics-informed networks. We start with the general form of
a PDE

O[u](x) = f(x), x ∈ Ω, (3a)
B[u](x) = g(x), x ∈ Γ ⊂ ∂Ω, (3b)

where O is a differential operator, f a forcing function, B a
boundary operator and g the boundary data. Here we take
Ω = Rn and Γ is the region on the boundary ∂Ω where
boundary conditions are imposed. We approximate the solution
by u(x) ≈ N (x; θ) and consider NΩ, NΓ ∈ N>0 collocation
points taken from Ω and Γ respectively. Then we may define
the constrained optimization problem

θ∗ = argmin
θ

NΩ∑
i=1

1

2

1

NΩ

∣∣∣∣O[N ](xi; θ)− f(xi)
∣∣∣∣2, (4)

subject to constraints at the boundary defined by

B[N ](xi) = g(xi) ∀i = {1, . . . , NΓ}. (5)

This can be reformulated as an unconstrained optimization
problem by training a network G = G(x) to be a smooth
extension of boundary data g and training a distance network
D = D(x) to be a smooth distance function that computes the
distance from an internal point x ∈ Ω to the nearest boundary
point in Γ. Then, define a new network approximation for u
by

Ñ (x; θ) = G(x) +D(x)N (x; θ) (6)

and the unconstrained optimization problem becomes

θ∗ = argmin
θ

NΩ∑
i=1

1

2

1

NΩ

∣∣∣∣O[Ñ ](xi; θ)− f(xi)
∣∣∣∣2. (7)

The particular form of Equation 6 guarantees that the boundary
conditions are satisfied on Γ. By building the boundary data
in to the approximate solution, we are implementing a hard
enforcement of boundary conditions. Now, we point out that
the unconstrained optimization problem given by Equation 7
is very similar to the framework proposed in [11], [12] but
the trial solution is vastly simplified by training boundary
and distance networks. Additionally, manual differentiation
of the loss function is no longer necessary as Automatic
Differentiation (AD) can be used. Using AD, it is now possible
to efficiently construct loss functions that constrain a network’s
derivatives without needing to massively restrict the network’s
depth. This allows for deeper, more expressive networks to be
used when approximating PDE with ANN.

III. PHYSICS-INFORMED NEURAL NETWORKS

The 2017 framework, PINNS, establishes a class of neural
networks that are trained to respect the physical laws encoded
by general nonlinear PDE [2]. By constraining the network
using an Initial Boundary Value Problem (IBVP), we effec-
tively reduce the complexity of the network solution space
which allows the network to be trained on a smaller set of data
points. While this kind of network constraint is not novel [11],
the framework proposes a model set up that can be minimally

Fig. 1: Network diagram for a generic PINN with activations
φ, input x, output u and PDE F . Network connections
shown with dashed lines represent non-trainable parameters.

modified to handle two main classes of problems: data driven
solutions and data-driven discovery of PDE. Furthermore,
temporal evolution can be handled continuously or discretely.
This gives the framework significant flexibility and efficiently
exploits the predictive power of neural networks [14]. In this
section we will first detail the model set up for data-driven
solutions and data-driven discovery before showing how to
handle the discrete-time formulation.

Consider a spatial domain Ω ⊆ Rn and time interval τ =
[0, T ] for some T > 0. Then Ω̂ = Ω× τ is a spatio-temporal
domain with boundary ∂Ω̂ on which we may define the general
boundary value problem

ut +O[u;λ] = f, (x, t) ∈ Ω̂ (8a)

B[u] = g, (x, t) ∈ Γ̂ ⊆ ∂Ω̂ (8b)

where O[·;λ] is a nonlinear differential operator parametrized
by λ, while f , B, and g are similarly defined as in Equation 3.
When the operator parameters λ are known apriori, we can
solve the forward problem which approximates a solution u
to Equation 8.

A. Data-Driven Solutions

We start by approximating the solution to Equation 8 using a
feed-forward, multilayer neural network u(x, t) ≈ N (x, t; θ)
and define a physics-informed neural network F by

F := Nt +O[N ;λ]− f. (9)

Figure 1 shows the network diagram for a general PINN. Note
that F and N will have the same set of trainable network pa-
rameters which can be learned by minimizing a mean squared
error loss. To define this loss, we will consider N∂ many
initial/boundary points {xi

∂ , t
i
∂ , g

i}N∂
i=1 where gi = g(xi

∂ , t
i
∂)

for each 1 ≤ i ≤ N∂ and a set of NΩ̂ internal collocation
points {xi

Ω̂
, ti

Ω̂
}NΩ̂
i=1. Then for a set of Ndata points given by
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{xi, ti, ui}Ndata
i=1 we define the mean squared loss as

MSEdata =
1

Ndata

Ndata∑
i=1

|N (xi, ti)− ui|2 (10a)

MSE∂ =
1

N∂

N∂∑
i=1

∣∣B[N ](xi
∂ , t

i
∂)− gi

∣∣2 (10b)

MSEΩ̂ =
1

NΩ̂

NΩ̂∑
i=1

|F(xi
Ω̂
, ti

Ω̂
)|2 (10c)

MSE = ωdMSEdata + ωBMSE∂ + ωFMSEΩ̂ (10d)

where ωd, ωB, ωF are, respectively, penalty weights associ-
ated with enforcement of the data, boundary, and differential
conditions. The penalty terms can be learned by the network
or set manually. Solving Equation 8 is done by minimizing
Equation 10d with respect to the network parameters θ. That
is, we employ a gradient descent algorithm to approximate the
set of solution parameters θ∗ such that

θ∗ = argmin
θ

MSE. (11)

This results in the network N becoming an approximate solu-
tion to Equation 8. Moreover, the PINN given by Equation 9
includes the velocity term Nt, so the resulting solution is
continuous in time as well as in space. The data-driven solution
can actually be carried out in the absence of any labelled
data. In the event that {ui}Ndata

i=1 = ∅, the data-driven solution
problem reduces to an unsupervised learning task [15]. This
is one of the small differences to consider when dealing with
data-driven discovery which requires that we have training
data.

B. Data-Driven Discovery

The setup of a data-driven discover PINN is nearly the same
as in subsection III-A but with a minor change. Instead
of knowing the parameters λ of the nonlinear differential
operator, we establish them as trainable network weights in
Equation 9. This means that N and F no longer share the
same set of trainable parameters as F is composed of the
parameter set θ′ = θ ∪ λ. In order for the network to learn
the operator weights we must have {ui}Ndata

i=1 ̸= ∅, ideally with
Ndata sufficiently large so that the network accurately learns
the operator parameters. This is all that is different between
the two problem set ups. The collocation and boundary points
are the same in each case and so is the definition of the loss
function MSE. It is worth noting that the inverse problem
of inferring system parameters is just as simple to set up
as the forward problem of solution approximation. For both
the solution and the discovery class of problems we have
used a continuous-time formulation. While this formulation
is fine for a small number of spatial dimensions, it can
cause a significant bottleneck in higher dimensional problems
as global enforcement of the PDE condition would require
an exponential increase in collocation points [2]. The PINN
framework circumvents this issue by introducing numerical
quadrature along the time axis.

C. Discrete Time Model

For dynamic problems like Equation 8, PINNs may implement
either continuous or discrete time evolution. The continuous
model arises when we include a loss term approximating the
velocity ut. While this results in a solution that is continuous
in time, the continuous model can be challenging to train.
Alternatively, we can use a more traditional approach and
discretize the time-axis. Perfmorning a time discretization
leads to a solution that will be continuous in space but discrete
in time. Moreover, we show how PINNs can exploit implicit
Runge-Kutta methods to perform large time steps without
accumulating temporal error. Let r > 0 and consider the
r−stage general Runge-Kutta discretization of Equation A.3
defined for each i = {1, 2, . . . , r} at time tη

uη
i := uη+ci −∆t

r∑
j=1

aijO[uη+cj ], (12a)

uη
r+1 := uη+1 −∆t

r∑
j=1

bjO[uη+cj ]. (12b)

This approach uses two sub-networks. The first of which uses
input x ∈ R to approximate a vector of evaluations for u at
each temporal RK-stage. Let N η be a neural net defined by

N η(x; θ) ≈


uη+c1(x)
uη+c2(x)

...
uη+cr (x)
uη+1(x)

 . (13)

The second sub-net uses Equation 13 as its input along with
Equation 12 to define a network encoding the PDE derivative
conditions. To simplify notation, take A = (aij), b = (bi),
and c = (ci). Define the network H and composite network
N̂ by

H[N η](x; θ′) = N η(x)−∆t

[
A
b⊺

]
O[N η](x), (14)

N̂ = H[N η]. (15)

Let {xk, uη,k}Nη

k=1 be system data associated with time tη and
take enforced boundary points {xk

∂}
N∂

k=1. Then the network
parameters common to N and H can be learned by minimizing
the sum of square errors

SSEη =

r+1∑
j=1

Nη∑
i=1

∣∣N̂ η
j (x

i)− uη,i
∣∣2, (16a)

SSEb =

r+1∑
i=j

N∂∑
i=1

∣∣B[N̂ η
j ](x

i
∂)− g(xi

∂)
∣∣2, (16b)

SSE = SSEη + SSEb. (16c)

This formulation may seem a bit odd at first. The neural net is
set up so that we can use the known solution at each time step
(starting with the initial condition) to train the intermediate
network to approximate the solution along the Runge-Kutta
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quadrature points in time. A network diagram is given in
Figure 3 that shows how the RK PINN is connected. Because
the new network is trained only on the known solution at the
current time we no longer need any collocation points and
MSEF is dropped from the loss function. It is important
to note that this formulation has a distinct advantage over
classical Runge-Kutta methods. Namely, the number of RK
stages can be increased without significantly increasing the
training cost of the network. For each additional stage we
just need to add a neuron to the output layer and include its
associated network parameters. So the network parameters will
only increase linearly with the number of Runge-Kutta stages
[14], [2].

Note that if we choose A,b, c according to the Gauss-
Legendre quadrature and Equation A.5 then the RK method
is an implicit method with truncation error ε = O(∆t2r) for
time step ∆t and an r−stage method. This gives us a standard
way of determining how many stages are necessary to bound
the numerical approximation by some tolerance ε when ∆t is
known. That is, we may choose the number of RK stages by

r =
1

2

log ε

log (∆t)
. (17)

and since the Gauss-Legendre RK method is implicit and
therefore unconditionally stable we may use large time steps
and only need concern ourselves with the method’s accuracy.
Though the number of stages becomes unreasonable close to
∆t = 1, we are permitted to take a time step of ∆t = 0.85
and only need r = 110 to ensure the time-component of error
is below ε. This means that the DL framework is capable
of utilizing arbitrarily high order implicit RK methods for a
relatively small cost. Considering the recent advancements that
have been made in computing the GL quadrature weights and
nodes [16], [17], along with the presentation of simple forms
for the RK coefficient matrices [18], this particular feature of
the DL method shows great potential as a numerical tool in
scientific computing.

The use of the implicit RK method in tandem with PINNs
suggests that hybridizing discrete and DL methods could yield
powerful numerical tools. It is not yet clear how effective the
hybridized approach is but we are compelled to investigate
further. It seems natural to then wonder if the PINN frame-
work could benefit from hybridization with other traditional
numerical techniques.

IV. ALTERNATE PINN FORMULATIONS

Since the PINN was proposed in [2] there has been a massive
uptick in publications relating to deep neural network applica-
tions in solving PDE [15], [19]. PINNs have been implemented
in solutions for a variety of physical problems like Navier-
Stokes [20], [21], [22], convection heat transfer [23], solid
mechanics, [24], [25] and the Euler equations [26]. Many of
these studies apply the PINN framework on a very specific
class of problems that range in complexity. We are concerned
with PINNs as a framework so rather than delving too far into

Fig. 2: Number of Runge-Kutta stages necessary to bound
the temporal error accumulation (for GLRK) below machine
precision ε = 2.220e− 16.

specific problems we consider a more general approach that
utilizes alternate forms of the PINN framework.

Though the standard PINN outlined in section III is the most
commonly used formulation, there are a number of modi-
fied approaches that draw inspiration from more traditional
numerical methods. While these alternate formulations may
provide some computational advantage[27], [28], [29] they
also highlight the flexibility of the deep neural network model
and how it can be effectively hybridized with traditional
numerical methods.

A. Variational Form (vPINN)

The vPINN, presented in [27], draws inspiration from the
Petrov-Galerkin method for finite element approximations for
solving PDE. We proceed by defining test and trial function
spaces and using integration-by-parts to reduce the differential
order of the governing problem [30], [31]. Consider the
following initial boundary value problem,

O[N ;λ](x) = f(x), x ∈ Ω (18a)
B[N ](x) = h(x), x ∈ ∂Ω, (18b)

where O is a (potentially) non-linear differential operator with
parameters λ, B a boundary operator, and f some external
forcing function. Equation 18 is known as the strong-form
of the mathematical problem. By considering an appropriate
test function ϕ(x), we may multiply Equation 18a by ϕ and
integrate over Ω to get(

O[N ;λ](x), ϕ(x)
)
Ω
=

(
f(x), ϕ(x)

)
Ω

(19a)

B[N ](x) = h(x), x ∈ ∂Ω, (19b)

where we use (·, ·)Ω to denote the usual inner product
of functions on Ω. Though the boundary residual term is
essentially the same as it is in the standard PINN formulation,
the differential residual is no longer trained on collocation
points within the domain. Instead we consider a collection
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Fig. 3: A physics-informed neural net diagram for a discrete-time model using a general Runge-Kutta method. Dashed
connections represent non-trainable network parameters.

Φ = {ϕk, k = 1, . . . ,K} of admissable test functions and
construct the residuals

MSEν =
1

K

K∑
k=1

∣∣(O[N ], ϕk

)
Ω
−
(
F, ϕk)Ω

∣∣2, (20a)

MSE∂ = τ
1

N∂

N∂∑
i=1

∣∣B[N ](xi
∂)− h(xi

∂)
∣∣2, (20b)

MSE = MSEν +MSE∂ , (20c)

where {xi
∂}

N∂
i=1 is a set of boundary points of Ω and τ is

a penalty term. The penalty term helps enforce data at the
boundary points and is typically chosen based on the problem
but can also be included in the set of learned parameters[27].
It is worth noting that the integration required in this approach
only has an analytic representation for very simple networks
and requires traditional numerical integration for deep neural
networks. Note that this formulation changes the space of
training data. Here one must define a set of domain points
to be fixed as quadrature points while the variational PINN is
trained using test functions. The spatial integral reduces the
order of the PDE by one, allowing for the network to be more
easily trained.

Though I have not seen it mentioned in any literature thus
far, the variational problem allows us yet another option for
handling the boundary conditions. One can build the B.C into
the network(hard enforcement) or you can include it as a
term in the loss function (soft enforcement). Because we are
solving a variational problem over a space of test functions, the
original boundary conditions of the problem may be enforced
essentially or naturally depending on the quantity enforced by
the B.C. Since we are approximating the solution using a space
of functions we can choose to use functions which inherently
satisfy the boundary conditions. The essential b.c are those
which are imposed explicitly on the solution while natural b.c
are imposed on solution derivatives. As an example, suppose
we have the following boundary value Poisson problem:

−∆u = f on Ω, (21a)
u = 0 on Γ ⊂ ∂Ω, (21b)

∂u

∂n
= 0 on ∂Ω \ Γ, (21c)

where ∂u
∂n is the derivative of u in the direction normal to

the boundary ∂Ω. Then we construct a variational space to
incorporate the essential boundary condition Equation 21b

V := {v ∈ H1(Ω): v|Γ = 0} (22)

where H1(Ω) is the space of L2 functions on Ω whose first
order derivatives are also in L2. Additionally, v|Γ is interpreted
using the trace theorem in L2(∂Ω), so we consider it to mean
v · χΓ = 0 where χ is the usual characteristic function. With
the choice of test space V , the natural boundary condition
Equation 21c is automatically met for a u ∈ V satisfying the
variational form a(u, v) = (f, v) for every v ∈ V [32], [33].

Then the loss function consists solely of the term MSEν

and boundary conditions are enforced exactly. Though this
approach requires more manual overhead for the user, we can
see how the variational form along with function space theory
can reduce the cost of training the network. The drawback of
this approach lies in establishing a numerical quadrature and
being able to precisely choose a valid test space of functions.

B. Conservative Form (cPINN)

cPINNs, presented in [28], partitions the computational do-
main and defines a separate PINN on each sub-domain. Each
PINN is tasked with approximating a solution locally on
the sub-domain while preserving global requirements through
interface conditions.

Recall the general IBVP given by Equation 8

ut +O[u;λ] = 0, (x, t) ∈ Ω̂

B[u] = g, (x, t) ∈ Γ̂ ⊆ ∂Ω̂

where this formulation refers to O as a nonlinear flux
parametrized my λ. On each sub-domain we define a neural
net training problem constrained by the IBVP for the system
along with a conservative flux at sub-domain interfaces which
maintain global conditions.
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Let on sub-domain p we let Np(x, y, t; θ) ≈ u(x, y, t) and
define the local loss function

MSE∂p =
1

N∂p

N∂p∑
i=1

∣∣gi − B[Np](x
i
∂p, y

i
∂p, t

i
∂p)

∣∣2 (23a)

MSEFp
=

1

NFp

NFp∑
i=1

∣∣Fp(x
i
Fp

, yiFp
, tiFp

)
∣∣2 (23b)

MSEI =
1

NI

NI∑
i=1

∣∣Op[Np](x
i
I , y

i
I , t

i
I) · n

−O+
p [Np](x

i
I , y

i
I , t

i
I) · n

∣∣2 (23c)

MSEavg =
1

NI

NI∑
i=1

∣∣Np(x
i
I , y

i
I , t

i
I)

−
{
N (xi

I , y
i
I , t

i
I)
}∣∣2 (23d)

MSEp = ω∂MSE∂p + ωFMSEFp

+ ωIMSEI + ωaMSEavg (23e)

where F is the residual for the governing PDE, Op ·n and O+
p ·

n are interface fluxes across subdomains. N∂p, NFp
, and NI

are the number of boundary/initial data, number of collocation
points, and the number of interface points, respectively, within
sub-domain p. Additionally, the average of N is{

N
}
= Navg :=

Np +N+
p

2
(24)

This formulation allows for meticulous control over the total
network. Since each subnetwork only interacts with its neigh-
bors, training the network is very amenable to parallelization
and would only require a small number of data transfers
between neighboring networks. Additionally, each subnetwork
need not be the same. Then shallower networks could be
used in areas where the solution is well-behaved and more
complex networks used on less behaved regions of the domain.
Individual networks on each subdomain also increase the
network expressivity while the flux conditions at interfaces
reduce error propagation across subdomains [28].

V. PARAMETRIC PDE

Up until now we have been primarily concerned with solutions
for IBVP in which every parameter of the problem is fixed and
the resulting numerical output can only describe the fixed-
state system. Instead, we may wish the solve the PDE over a
range of possible scenarios (such as varying boundary/initial
conditions, operator parameters, or domain geometries) so that
our trained network represents a family of PDE solutions. This
generalized problem is referred to as a parametric PDE and it
cannot be solved using the traditional finite difference/element
methods. Because traditional numerical methods would require
a simulation to be carried out for every single scenario, the
computational cost (along with the need to store each solution)
quickly becomes prohibitive. While it is possible to adjust
the PINNs framework for this task by introducing new input
variables, this results in a high-dimensional PDE that will drive

up the computational cost of higher-order derivatives in the
loss function [34]. A number of techniques known as Neural
Operator Methods have been proposed for this kind of problem
[35], [36], [37], but there exists a fairly simple architecture
which is established using a universal approximation theorem
for operators.

A. DeepONet

The 2020 neural net architecture, DeepONet[38], employs a
lesser known universal approximation theorem that established
neural networks as universal approximators of functionals and
operators[39], [40]. Like with Neural Operator methods, this
shift in learning focuses on the approximation of infinite-
dimensional function spaces rather than a finite-dimensional
map between Euclidean spaces. We outline the approach in
this section.

Consider the operator G with input function u. Then, for y in
the domain of G(u), G(u)(y) is a real number. The DeepONet
architecture consists of two sub-networks each trained on a
separate space of inputs. The branch network is trained on
different function inputs while the trunk network is trained
on inputs from the PDE’s Euclidean domain. However, we
cannot simply train a newtwork on function inputs but rather
must train the network on the image of said inputs. To this
end, we define a set of sensor points {ξi}si=1 which are to
remain fixed across different function inputs. Then the branch
network NB : Rs → Rp is defined as

NB

(
[u(ξ1), . . . , u(ξs)]

T ; θB
)
= [b1, . . . , bp]

T , (25)

and the trunk network NT : Rn → Rp is defined as

NT (y; θT ) = [t1, . . . , tp]
T . (26)

The two networks are combined by using the output of the
branch network as weights to the output of the trunk network
in a straightforward linear combination the defines an operator
network Nθ by

Nθ[u](y) = NB

(
u(ξ); θB

)
· NT

(
y; θT

)
=

p∑
i=1

biti (27)

where θ = θB ∪ θT . This formulation is shown to exhibit an
approximation error which is dependent on the number of fixed
sensors, {ξi}si=1, and input function type while also demon-
strating a reduction in generalization error when compared to a
standard fully-connected network [38]. Moreover, [41] demon-
strates how the DeepONet architecture can be used alongside
PINNs to train an operator across various initial and boundary
conditions. This may allow for the construction of persistent
and efficient families of solutions for PDE. To develop the
appropriate loss function let {ui}Ni=1 be a collection of N
separate input functions and for each ui take {yi∂j}Pj=1 to be P
locations determined from data, initial, or boundary conditions
and {yiΩj}

Q
j=1 to be a set of collocation points sampled from

the domain of G[ui]. Here we use ui = [ui(ξ1), . . . , u
i(ξs)]

T .
Then the relevant loss function is given by
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L∂(θ) =
1

NP

N∑
i=1

P∑
j=1

∣∣∣∣B[G[ui]
]
(yi∂j)− ui(yi∂j)

∣∣∣∣2, (28a)

LΩ(θ) =
1

NQs

N∑
i=1

Q∑
j=1

s∑
k=1

∣∣∣∣O[
Gθ[u

i]
]
(yiΩj)

∣∣∣∣2, (28b)

L(θ) = L∂(θ) + LΩ(θ). (28c)

Figure 4 gives a network connectivity diagram for a physics-
informed deep operator network formulated across multiple
initial/boundary data functions.

VI. APPROXIMATION THEORY

Statistical Learning Framework for PINN Error Analysis

Consider {xi}Ni=1 collocation points of Ω̄ = Ω ∪ ∂Ω.

Let Nθ be a neural net approximation (realized with param-
eters θ) approximating a solution to Equation 8. Define the
residuals

RPDE[v] = vt +O[v]− f (29)
Rbdry[v] = B[v]− g (30)

The risk for a PINN can be defined as

E2
G(θ) =

∫
Ω̄

∣∣RPDE[Nθ](x, t)
∣∣2 dx dt

+

∫
∂Ω̄

|Rbdry[Nθ](x, t)|2 dx dt. (31)

While we cannot compute the risk, we can approximate it
using a discrete integral. The empirical risk is given by

E2
T (θ) =

1

N

N∑
i=1

∣∣RPDE[Nθ](xi, ti)
∣∣2

+
1

N∂

N∂∑
i=1

|Rbdry[Nθ](xi, ti)|2. (32)

Here, the training error ET approximates the generalization
error EG by a simple ’rectangular’ quadrature. Let θ∗ be the
final parameter set achieved by training the PINN. Then the
optimization error EO is given by

EO := E2
T (θ

∗)− inf
θ∈Θ

E2
T (θ) (33)

which measures the empirical risk of the final approximation
against the smallest attainable empirical risk. Next, measuring
the separation between risk and empirical risk we define EG
by

EG := sup
θ∈Θ

∣∣E2
G(θ)− E2

T (θ)
∣∣. (34)

Some of the literature involving PDE refers to EG as the
generalization error but I have opted to use generalization error
as it is used it ML. Namely, EG is the generalization error

and EG the risk approximation error. Lastly, the approximation
error EA given by

EA := inf
θ∈Θ

E2
G(θ). (35)

These errors give rise to an upper bound on the global error
between a trained network and the exact solution. The global
error bound

E2
G(θ

∗) ≤ EO + 2EG + EA (36)

also indicates how each error term is vital in constraining the
global error and define key research areas to improve mathe-
matical applications for deep neural networks [42], [15]. While
standard DL models can take advantage of ReLU activation
functions to establish bounds on approximation error EA [43],
solving PDE requires networks(and by extension activation
functions) which are sufficiently differentiable. While [44]
presents an error analysis framework for PINNs when applied
to linear PDE, a more general bound on approximation error
can be established on Sobolev spaces[45], [15].

A. Approximation Error EA
While universal approximation theorems Theorem 1 and The-
orem 2 can help identify a minimal network size for universal
approximation they do not provide any sufficiency conditions
to guarantee accuracy of the network. Specifying bounds on
approximation error requires one to choose an appropriate
network architecture and error is typically quantified as an
increase to network complexity as ϵ → 0(asymptotic approx-
imation rates). However, we instead would like to know how
large a network must be to guarantee a specified accuracy will
be reached. Such an error bound has recently been proposed
for networks with two hidden layers which utilize hyperbolic
tangent activation functions[45]. The choice to use a shallow
but wide network is backed by empirical observation that
shallow/wide networks perform better on scientific computing
problems where training data may be scarce [46]. To give the
approximation theorem we first define R > 0 such that |φ(m)|
is decreasing on [R,∞) for every 1 ≤ m ≤ k and define

∣∣Pn, d
∣∣ = (

n+ d− 1

n

)
. (37)

Theorem 4 (tanh NN Sobolev Approximation [45]):
Let d, s ∈ N, R > 0, δ > 0 and f ∈ W s,∞([0, 1]d). There exist
constants c(d, k, s, f), N0(d) > 0, such that for every N ∈ N
with N > N0(d) there exists a tanh neural network f̂N with
two hidden layers, one of width at most 3⌈ s

2⌉|Ps−1,d+1| +
d(N −1) and another of width at most 3⌈d+2

2 ⌉|Pd+1,d+1|Nd,
such that∥∥∥f − f̂N

∥∥∥
L∞([0,1]d)

≤ (1 + δ)
c(d, 0, s, f)

Ns
, (38)
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Fig. 4: Presents the network connectivity graph for a physics-informed deep operator network formulated to learn the PDE
solution operator across various initial and boundary data functions. The DeepONet consists of a branch network
NB : Rs → Rp and trunk network NT : Rn → Rp. The branch network NB is trained using input functions evaluated along
a fixed set of sensors {ξi}si=1 while the trunk network NT is trained on the spatio-temporal domain Rn of the PDE. Dashed
connection signify non-trainable parameters. This figure is a recreation of Fig. 1 in [41].

and for k = 1, . . . , s− 1,∥∥∥f − f̂N
∥∥∥
Wk,∞([0,1]d)

≤3d(1 + δ)
(
2(k + 1)

)3k
×max

{
Rk, lnk(βNs+d+2)

}
× c(d, k, s, f)

Ns−k
(39)

where we define

β =
k32d

√
dmax{1, ∥f∥

1
2

Wk,∞([0,1]d)
}

δmin{1,
√

c(d, k, s, f)}
. (40)

If f ∈ Cs([0, 1]d), then it holds that N0(d) =
3d
2 and

c(d, k, s, f) = max
0≤ℓ≤k

1

(s− ℓ)!

(
3s

2

)s−ℓ

|f |W s,∞([0,1]d), (41)

otherwise N0(d) = 5d2 and

c(d, k, s, f) = max
0≤ℓ≤k

π
1
4
√
s

(s− ℓ− 1)!
(5d2)s−ℓ|f |W s,∞([0,1]d),

(42)

The weights of f̂N scale as

O

(
c(d, k, s, f)−s/2 Nd(d+s2+k2)/2

(
s(s+ 2)

)3s(s+2)
)
.

(43)

Equation 4 provides explicit approximation bounds character-
ized by d, problem dimension, k, order of the approximation
Sobolev space, s, order of the target Sobolev space, f , the
target function, and N , the number of training points. This
result pushes back against the idea that depth is a necessary
feature for highly expressive networks. Additionally, the theo-
rem extends to a wider class of activation functions including

logistic functions. However, approximation error is only part
of the total error and more work is required to bound the
generalization error.

B. Generalization Error EG
Recent work has provided bounds on PINN generalization
error for linear second-order PDE [47] (later extended to all
linear problems [44]) and some specific cases like Navier-
Stokes[48]. Of particular note, however, is the abstract frame-
work for PINNs in which generalization error EG is estimated
by the training error ET and number of training points for both
forward[49] and inverse[50] problems. Moreover, the abstract
framework leverages stability of PDE to provide conditions
under which generalization error is small whenever training
error is small. The formulation of the bounds on generalization
error is quite intricate and requires substantial use of functional
analysis. This falls outside of the scope of this study but we
include this section as it is important in the development of
PINNs.

VII. FUTURE RESEARCH AREAS

A. Mesh-Free Integration

It may be useful to have a DL process for integrating functions
over domains in higher dimensions. This issue briefly appears
in subsection IV-A where the variational form gives rise to a
numerical quadrature, which becomes numerically intractable
for high dimensional problems[51]. I have not encountered
any literature directly addressing this but I have seen some
mention that the numerical quadrature is necessary unless
we get access to DL integral methods [27]. However, in
solving differential equations we have already seen that a
mesh-free integral technique may be plausible. This is because
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constraining network derivatives results in a somewhat implicit
computation of an antiderivative. To be explicit, consider
the function f(x, y) = cos (x2 − y2) for which we wish to
compute the integral∫ 1

−1

∫ 1

−1

f(x, y) dx dy =

∫ 1

−1

∫ 1

−1

cos (x2 − y2) dx dy. (44)

Let N (x, y; θ1), M(y; θ2) each be Feed-forward deep neural
networks with parameters θ1 and θ2 respectively. The idea here
is to approximate an antiderivative of f (w.r.t x) using N and
then use M to approximate the antiderivative of N (w.r.t y).
Let {(xi, yi)}Ni=1 be collocation points chosen from [−1, 1]×
[−1, 1] and define the loss function

L∂x(θ) =
1

N

N∑
i=1

|Nx(xi, yi)− f(xi, yi)|2, (45a)

L∂y(θ) =
1

N

N∑
i=1

|My(yi)− F x(yi)|2, (45b)

L(θ) = L∂x(θ) + L∂y(θ), (45c)

where θ = θ1∪θ2 and F x(y) = N (1, y)−N (−1, y) computes
the internal integral w.r.t the x variable. The top row of
Figure 5 gives the exact integrand plot along with Nx ≈ f and
the error between the two while the bottom row plots My and
F x along the y− axis to track how well the internal integral
is approximated. By minimizing Equation 45c we train the
network M to approximate a mixed antiderivative and thus
the integral∫ 1

−1

∫ 1

−1

f(x, y) dx dy ≈ M(1)−M(−1). (46)

Comparing the neural net integral with the known exact
integral yields an error ϵ = 2.207e− 4.

This approach is fairly straight forward and easily generalizes
to integrals over domains of higher dimension. Rather than
using a network that is differentiated multiple times it seems
to be more efficient to use a separate network to approximate
each necessary antiderivative. Additionally, this approach only
works on simple, rectangular domains and some care will
be needed to extend this mesh-free integration to arbitrary
domains. It may be worthwhile to consider a DeepONet archi-
tecture as well as it may be necessary to learn a more general
antiderivative operator. We believe a careful formulation of a
DL technique for integration on generalized domains could
be a beneficial tool in computational mathematics. It would
provide another avenue of exploration for DL techniques and
could allow for a more general class of solutions to PDE.

B. Initial Guesses for Iterative Methods

The existence of continuous and discrete formulations for
time evolution in PINNs leads to two primary approaches
for implementing an iterative method accelerator. It has been
shown that using an implicit RK method of extremely high
precision in a discrete time model can provide a good initial

guess for Newton’s method [18]. The question then is about
efficiently learning these initial guesses. For the discrete-time
case, we must train the network at every time step and can
iterate using Newton’s method once the training process is
done. Alternatively, in the continuous-time model the network
could be trained across a time interval and results in a solution
which is continuous in time. If the continuous approximation
happens to provide a good initial guess, then an iterative
method could call the continuous PINN at each time step
to ensure convergence in a small number of iterations. It is
unclear which of these approaches would be more efficient or
if either is capable of outperforming a stand alone iterative
approach.

C. Persistent, General Solutions

When creating physical models it is common to identify
systems in which various physical models are coupled together
to simulate complex dynamical systems. In this case, each cou-
pled system is usually described by its own set of differential
equations and the result is a system of coupled PDE. Such
problems can become computationally expensive for relatively
simple physical systems. The idea behind this area of research
is to assess whether the DeepONet solution for parametric
PDE can be leveraged to build more efficient coupled physical
systems. Because PINN learn solutions to PDE, we believe that
training individual systems on a variety of boundary or initial
conditions, it may be possible to replace parts of a coupled
PDE system with forward passes of a PINN. To illustrate this,
consider the incredibly simplified magma reservoir problem.
Given a magma chamber that exerts uniform pressure P on
the surrounding medium let F(P ) = u represent the resulting
displacements induced by pressure P . Furthermore, suppose
that the change in pressure is determined by some change in
volume

dP

dt
= α

dV

dt
(47)

This defines a coupled system where the external problem
uses a pressure to compute Displacements and, by extension,
change in reservoir volume. This change in volume then causes
the internal system to change the exerted pressure. So the
two systems are coupled along the reservoir boundary and
exchange pressure and volume data.

Using the DeepONet architecture, solution for pressure can be
learned that is a function of time and dV

dt . Then the system
evolves from time tn to time tn+1 by

1) F(Pn) = un

2) ∆V =
∫
Γ
u · n

3) Pn+1 = P(tn+1,
∆V
∆t )

where Γ is the reservoir boundary, P the DeepONet pressure
approximation, and ∆t = tn+1 − tn. This way, it might be
possible to use pre-trained networks in coupled systems rather
than needing to solve the coupled system all at once.
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Fig. 5: For networks N , and M, each having 2 hidden layers with 25 neurons, approximate the integral of cos (x2 − y2)
over the 2D domain [−1, 1]× [−1, 1] by minimizing Equation 45c using stochastic gradient descent. The above figure tracks
intermediate training goals but method error is determined by how well the integral is approximated. This network
configuration gave error ϵ = 2.207e− 4.

VIII. FINAL REMARKS

DL shows incredible potential as a tool for numerical solutions
to PDE and recent developments show a promising, emerging
framework in the form of PINNs. In this study we see how
PINNs can be bolstered using traditional numerical methods
while also showing how some traditional methods can be
augmented with DL to overcome computational challenges.
This positions DL as a means to extend traditional methods to
problems they could not previously address, and in the case
of Parametric PDE we see how DL can perform where mesh-
based methods cannot. While DL approaches have typically
shown to perform well empirically, the recent progress in
PINN approximation theory is beginning to legitimize PINNs
as PDE solutions. Being able to predictably bound the error
of a method is critical in developing numerical solutions. As
PINNs become more reliable tools, we may apply them in
unique ways to expand the reach of physical models.

APPENDIX A
GAUSS-LEGENDRE RUNGE-KUTTA METHOD

Let t > 0 and consider the ordinary differential equation
d

dt
u(t) = f(t, u) (A.1)

where u : R → Rd and f : Rd+1 → Rd are vector-valued
functions. The Gauss-Legendre quadrature approximates the
definite integral of a function over the symmetric interval
[−1, 1] on n sample points∫ 1

−1

f(x) dx ≈
n∑

i=1

wif(xi) (A.2)

where {wi}ni=1 are the quadrature weights, xi the roots of the
nth degree Legendre polynomial, Pn(x), and {ki}ni=1 give the
sample velocities ki = f(xi) for 1 ≤ i ≤ n. For an ODE of
the form Equation A.1 the Runge-Kutta method approximates
a single time step tη → tη+1 using a sequence of q stages by
uη+ci = u(tη +∆tci), i = {1, 2, . . . , q}

uη+ci = uη +∆t

q∑
j=1

Aijf(tη +∆tcj , u
η+cj ) (A.3a)

uη+∆t = uη +∆t

q∑
i=1

bif(tη +∆tci, u
η+ci) (A.3b)

where A ∈ Rq×q is the Runge-Kutta coefficient matrix, b ∈
Rq the stage combination coefficients and c ∈ Rq the vector
of abscissa obtained by shifting the Legendre polynomial roots
from [−1, 1] → [tη, tη+1]. This gives the general form of RK
methods and selection of A and b will determine a precise
numerical scheme. The method will typically be an implicit
method except if A satisfies Aij = 0 for i ≤ j in which
case the result is an explicit method. The Gauss-Legendre
Runge-Kutta method defines an implicit method where A,b, c
are determined using Legendre polynomials. The choice of
quadrature weights and nodes in Equation A.2 gives the GL
quadrature the capacity to perform an exact integration of
polynomials with degree 2n− 1. While this approach offers a
very nice approximation with truncation error O(∆t2q) when
q stages are used, it requires one to solve a system of algebraic
equations at each time step which becomes costly. The exact
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point at which the methods shows diminishing returns will
vary between problems but it is common to use a 3-stage
formulation [52].

To properly construct the q−stage GLRK method, we need the
roots of Pq(x) along with the derivative P ′

q(x). Though the
roots can be found using a root finding method like the Netwon
method, there has been a recent development that provides
explicit asymptotic forms of the GL nodes and weights which
are accurate up to double-precision machine ϵ for q ≥ 21 [53],
[16], [17]. If {xi}qi=1 are the roots of the Legendre polynomial
(with Pq(x) normalized to so that Pq(1) = 1), then the Gauss-
Legendre quadrature weights are given by

wi =
2

(1− x2
i )[P

′
q(xi)]2

. (A.4)

Earlier this year, it was shown that by considering a transfor-
mation of the integration domain from [−1, 1] → [tn, tn+1] by
ξ = ∆t

2 (t − t̄m) for step size ∆t ≡ tn+1 − tn and mid-point
t̄n ≡ 1

2 (tn+1 + tn) we may use the the node points {ξi}q−1
i=0

(roots of the transformed Legendre polynomial) to compute

Aij =
wj

2

(
1 +

q−1∑
s=0

Ps(ξj)
Ps+1(ξi)− Ps−1(ξi)

2

)
, (A.5a)

bi ≡
wi

2
, (A.5b)

demonstrating how the Gauss-Legendre Runge-Kutta method
can be constructed to arbitrarily high order without much
difficulty [18]. In Equation A.5 we use P−1(ξ) ≡ 1. With
the RK parameters properly defined, all that is left is to
solve the implicit method given by using said parameters in
Equation A.3.

The choice of an implicit method means Equation A.3 will
be solved using an iterative root-finding method like the New-
ton–Raphson method. To do this, it helps to create stacks of
vectors and represent the problem as a matrix-vector problem.
We then define the vector stacks

Uη :=

q⊕
i=1

uη, (A.6a)

Uη+c :=

q⊕
i=1

uη+ci, (A.6b)

F (Uη+c) :=

q⊕
i=1

∆tf
(
tη + ci∆t, uη+ci

)
, (A.6c)

allowing Equation A.3a to be represented as D
(
Uη+c

)
= 0

with

D
(
Uη+c

)
= Uη − Uη+c +∆t

(
A⊗ I

)
F (Uη+c). (A.7)

Then, the kth step of the Newton method applied to Equa-
tion A.3 involves the following matrix problem and iteration
update

D′(Uη+c
k

)
∆Uη+c

k = D
(
Uη+c
k

)
, (A.8)

Uη+c
k+1 = Uη+c

k +∆Uη+c
k , (A.9)

where the derivative D′ is given by

D′(Uη+c
)
= ∆t

(
A⊗ I

)
F ′(Uη+c)− I, (A.10)

and the derivative of F is the block-diagonal matrix

F ′(Uη+c
)
:=

q⊕
i=1

Jf (u
η+ci) (A.11)

consisting the the Jacobian of f evaluated at different stages.
With f : Rd+1 → Rd and the choice of q stages in the
RK method, the resulting system of algebraic equations from
Equation A.8 is qd × qd. Thus, a solution (probably via LU
factorization) will need O

(
(qd)3

)
operations. Luckily it is

possible to re-use the LU factorization across the Newton iter-
ations but the system will need a new factorization computed
for each time step [54], [55].

APPENDIX B
SPECIAL CONSIDERATIONS

There are some network limitations that arise when approxi-
mating solutions for differential equations. A popular activa-
tion function choice becomes unviable in this problem domain.
The Rectified Linear Unit (ReLU) can be used in bounded-
width networks to create universal approximators [8], [10] (a
fact that is generalized in [3] but requires a deeper network
for arbitrary activation functions) and approximation error for
such network can be bounded in terms of the network width
and depth [56]. Now, considering a simple neural network
N (x;W, b) = ϕ.(Wx+ b) we can see that its first two input
derivatives are

∂

∂x
N (x; ,W, b) = ϕ′.(Wx+ b) ∗ .W, (B.1a)

∂2

∂x2
N (x; ,W, b) = ϕ′′.(Wx+ b) ∗ .W ∗ .W. (B.1b)

That is derivatives of the network require derivatives of the
activation function. This generalizes to derivatives of order k
requiring the order k derivatives for the activation function
[11]. Because physics-based neural net methods utilize net-
work derivatives in construction of the loss function, ReLU
activation function is not generally usable. To approximate a
PDE involving derivatives of order k, the activation function
must be differentiable of order k + 1 to account for the
additional derivative taken during backpropogation.

While both of these are susceptible to the vanishing gradient
problem, tanh tends to be more stable due to a larger gradient
range. While we want an activation function with sufficient
regularity we would also like a network that can be trained
efficiently. Rather than using a fixed activation function we
can modify the network to learn activation functions for us.
One approach to this is to learn coefficients that approximate
an optimal activation function with respect to a chosen basis
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[57]. While such an approach does learn the activation function
it does require you to choose a basis for the approximate
activation. Instead we will focus on a method that works by
learning slopes of the activation functions and which have been
applied to PINN [58], [59], [60].

A. Adaptive Activation Functions

Begin by modify an activation function ϕ with trainable slope
a ∈ R and scaling parameter n ≥ 1 to get a new activation
function,

ϕ̃(x) = ϕ(nax), (B.2)

where a is now included in the set of trainable parameters.
This approach can improve the efficiency of DNN [58] along
with improving the robustness, and accuracy of neural net ap-
proximations for PDE [59]. Furthermore, adaptive coefficients
can be included at the global, layer, and neuron levels allowing
for finer tuning of the network during training. Equation B.2
shows a globally-adaptive activation as it uses a single shared
value of a for each layer in the network.
1) Layer-Wise Locally Adaptive Activation: You could also
define a scalar for each hidden layer {ai}L−1

i=1 where ai ∈ R
for each i and specify activation function for layer k as

ϕ̃k(x) = ϕ(nak x) for k = {1, 2, . . . , L− 1}. (B.3)

Since the set of training parameters is now θ ∪ {ai}L−1
i=1 the

number of parameters needing optimization is |θ|+ L− 1.
2) Neuron-Wise Locally Adaptive Activation: This time each
neuron is given a trainable weight. So let {ai}L−1

i=1 where ai ∈
Rm and specify activation function for layer k by

ϕ̃k(x) = ϕ(nak ∗ . x) for k = {1, 2, . . . , L− 1}. (B.4)

Since each layer comes with m hidden neurons we get |θ|+
m(L− 1) trainable network parameters.

While these adaptive activation functions do improve training
efficiency, [60] includes an extra term in the loss function
which can contribute to the loss gradient without vanishing.
The slope recovery term S is defined as

S(a) :=


L−1∑L−1

i=1 exp (ai)
if ai ∈ R,

L−1∑L−1
i=1 exp

(∑m
k=1

(ai)k
m

) if ai ∈ Rm,
(B.5)

and the appended term for the loss function is

SRT = WaS(a) (B.6)

with trainable weight Wa. It was observed that networks utiliz-
ing adaptive activation functions exhibited more rapid decay of
the loss function over networks using fixed activation functions
[58]. Moreover, locally-adaptive networks outperformed both
fixed-activation and global-adaptive networks[60]
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[43] D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei, “Deep neu-
ral network approximation theory,” IEEE Transactions on Information
Theory, vol. 67, no. 5, pp. 2581–2623, 2021.

[44] Y. Shin, Z. Zhang, and G. E. Karniadakis, “Error estimates of residual
minimization using neural networks for linear pdes,” arXiv preprint
arXiv:2010.08019, 2020.

[45] T. De Ryck, S. Lanthaler, and S. Mishra, “On the approximation of
functions by tanh neural networks,” Neural Networks, vol. 143, pp. 732–
750, 2021.

[46] L. Lu, Y. Su, and G. E. Karniadakis, “Collapse of deep and narrow
neural nets,” arXiv preprint arXiv:1808.04947, 2018.

[47] Y. Shin, J. Darbon, and G. E. Karniadakis, “On the convergence of
physics informed neural networks for linear second-order elliptic and
parabolic type pdes,” arXiv preprint arXiv:2004.01806, 2020.

[48] T. De Ryck, A. D. Jagtap, and S. Mishra, “Error estimates for physics
informed neural networks approximating the navier-stokes equations,”
arXiv preprint arXiv:2203.09346, 2022.

[49] S. Mishra and R. Molinaro, “Estimates on the generalization error of
physics-informed neural networks for approximating pdes,” IMA Journal
of Numerical Analysis, 2022.

[50] ——, “Estimates on the generalization error of physics-informed neural
networks for approximating a class of inverse problems for pdes,” IMA
Journal of Numerical Analysis, vol. 42, no. 2, pp. 981–1022, 2022.

[51] A. Hinrichs, E. Novak, M. Ullrich, and H. Woźniakowski, “The curse
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