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Abstract

Pre-trained Language Models (PLMs) have
been one of the fundamental components of
natural language processing techniques over
the past few years, and have proven their effi-
cacy across a wide range of applications. In the
clinical field, researchers have created domain-
specific PLMs for improved performance on
NLP tasks in the domain. In this report, we
present a comprehensive examination of the
clinical PLMs. More specifically, we start
with a brief overview of foundational concepts
of language modeling, including architectures,
data sources, training methods, and more. We
then introduce a list of current clinical PLMs
and discuss all the models and downstream
tasks in the domain. In the end, we also high-
light limitations and potential future directions
in the field.

1 Introduction

Text representation is a crucial task in natural
language processing (NLP), forming the basis of
nearly all text-related applications (Geigle et al.,
2018; Liu et al., 2021b). Traditionally, to transform
the input text into a vector of numerical data, one
can represent the words using bag-of-words or tf-
idf (term frequency-inverse document frequency)
scores (Salton and Buckley, 1988; Salton, 1991)
with one-hot encoding. Such methods can suf-
fer from the curse of dimensionality problem as
the length of vectors usually equals the size of
the vocabulary, and decreased efficiency with in-
creasing data size. Moreover, these representations
fail to capture the syntactic or semantic informa-
tion of the text as they only provide a statistical
measure of word importance in a corpus. To over-
come these issues, researchers propose word em-
bedding techniques, e.g., Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014) and Fast-
Text (Bojanowski et al., 2017), to represent each
word in the vocabulary with a fixed embedding

vector. With the development of deep learning (Le-
Cun et al., 2015), researchers use convolutional
neural networks (CNNs) and recurrent neural net-
works (RNNs) to process the text (Kim, 2014; Lai
et al., 2015), with the initialization of word vec-
tors from the aforementioned embedding meth-
ods (Mikolov et al., 2013; Pennington et al., 2014;
Bojanowski et al., 2017; Lu et al., 2020). This
paradigm achieves significant success over a vari-
ety of downstream tasks, e.g., named-entity recog-
nition (Sienčnik, 2015; Chiu and Nichols, 2016),
text classification (Wang et al., 2016), relation clas-
sification (Zhou et al., 2016) and question answer-
ing (Xiong et al., 2017), etc. However, despite their
success, word embeddings are limited in captur-
ing polysemous words, syntactic structures, and
semantic roles, hindering their full potential for
use in NLP tasks (Qiu et al., 2020). For instance,
the word apple has two different meanings in “eat
an apple” and “apple computer”, but it is only as-
signed a fixed vector according to the pre-trained
word embeddings as they do not consider the con-
textual information during vectorization, i.e., they
are non-contextualized or static embeddings.

To address the limitations of non-contextualized
word embeddings, researchers have turned to
the development of contextualized representations.
With the development and emergence of the trans-
former architecture (Vaswani et al., 2017), con-
siderable efforts have been put into developing
transformer-based pre-trained language models
(Radford et al., 2018, 2019; Devlin et al., 2019;
Liu et al., 2019; Lan et al., 2019; Yang et al., 2019;
Raffel et al., 2020; Lewis et al., 2020a; Brown et al.,
2020; Clark et al., 2020). Essentially, the attention
mechanism within the transformer allows for more
GPU-based parallel computation than Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997), one of the most popular and successful
recurrent neural networks for text encoding, and it
further facilitates large-scale pre-training and leads



to the success of the aforementioned language mod-
els. The “pre-train and fine-tune” paradigm has
also been a standard approach in modern NLP for
a long time. Mascio et al. present a comparative
analysis on the impact of different text representa-
tion methods, i.e., BOW, traditional methods, and
BERT (Devlin et al., 2019), on selected classifi-
cation tasks of clinical significance (Mascio et al.,
2020).

There have been plenty of pre-trained language
models over the last few years, e.g., BERT (Devlin
et al., 2019), GPT-1&2&3 (Radford et al., 2018,
2019; Brown et al., 2020), RoBERTa (Liu et al.,
2019), ALBERT (Lan et al., 2019), T5 (Raffel et al.,
2020), BART (Lewis et al., 2020a), etc. These
models roughly fall into three categories based on
their different pre-training frameworks: decoder,
encoder, and encoder-decoder. BERT (Bidirec-
tional Encoder Representations from Transformers)
drives large-scale self-supervised pre-training on
extensive text corpora through the use of Masked
Language Modeling (MLM). This involves mask-
ing a random subset of tokens in pre-training text
and asking the model to predict the original value
of the masked tokens. The self-supervised pre-
training approach allows the model to learn con-
textualized text representations from large unanno-
tated text corpora, such as the web, without human
supervision (Wang et al., 2022). BERT also in-
troduces Next Sentence Prediction (NSP) which
aims to predict whether a given sentence follows
the previous sentence or not (i.e., by [CLS]). Al-
though NSP is intended to help the model under-
stand longer-term dependencies and relationships
across sentences, it is often considered unnecessary
and dropped in follow-up works (Liu et al., 2019;
Joshi et al., 2020; Gu et al., 2021). Unlike BERT,
GPT (Generative Pre-trained Transformer) utilizes
a decoder-only transformer architecture and per-
forms an autoregressive pre-training task where
they seek to predict the next token given existing
ones (Radford et al., 2018). Moreover, BART (Bidi-
rectional and Autoregressive Transformers) uses an
encoder-decoder architecture and employs a denois-
ing sequence-to-sequence pre-training task where
the decoder reconstructs the original sentence from
a corrupted input, and the model essentially com-
bines bidirectional and autoregressive transformers
(Lewis et al., 2020a). Generally, these models dif-
fer in their architectures, pre-training objectives,
and the data they use. We will delve deeper into

these differences in Section 2."

In spite of the success of these pre-trained lan-
guage models on general-domain text, they strug-
gle with domain-specific text due to the problem
of domain shift (Ma et al., 2019). As the modern
“pre-train and fine-tune” paradigm is a natural fit
to domains where large-scaled unannotated textual
data is available (Liu et al., 2021b), domain-specific
pre-trained language models are been proposed to
bridge the gap. In the biomedical and clinical do-
main, a variety of domain-specific PLMs have been
explored and released, including BioBERT (Lee
et al., 2020), SciBERT (Beltagy et al., 2019), Blue-
BERT (Peng et al., 2019), ClinicalBERT (Huang
et al., 2019), BioClinicalBERT (Alsentzer et al.,
2019), ClinicalXLNet (Huang et al., 2020), umls-
BERT (Michalopoulos et al., 2020), diseaseBERT
(He et al., 2020a), ouBioBERT (Wada et al., 2020),
PubMedBERT (Gu et al., 2021), SciFive (Phan
et al., 2021), BioBART (Yuan et al., 2022a), Clini-
calT5 (Lu et al., 2022a), etc.

Besides obtaining domain knowledge via pre-
training, another line of research is knowledge in-
fusion where domain knowledge is deliberately
injected into language models to enhance their rep-
resentation capability (Yao et al., 2019; Zhang et al.,
2019; Kim et al., 2020; Levine et al., 2020; Wang
et al., 2021b; Sun et al., 2020; He et al., 2020b;
Lu et al., 2021a). One approach is to incorporate
additional knowledge during pre-training. This
can be achieved through an auxiliary knowledge-
driven training objective. For example, KG-BERT
(Yao et al., 2019) integrates factual knowledge
from Wikipedia into its model through a knowl-
edge graph completion task, while KEPLER (Wang
et al., 2021b) combines a language modeling ob-
jective with a Knowledge Embedding objective for
joint optimization. In the clinical domain, there
is also some exploration of this direction. For
instance, DiseaseBERT seeks to enhance BERT
and ALBERT by incorporating disease information
through additional pre-training (He et al., 2020b).
DAKI (Diverse Adapters for Knowledge Integra-
tion) incorporates adapters to infuse domain knowl-
edge of multiple sources and formats into PLMs,
facilitating the integration of this knowledge in an
efficient manner (Lu et al., 2021a).

It is worth noting that, though the two domains
(i.e., biomedical and clinical) are relatively close
and the two types of text are similar in many ways,
they have some important differences. Clinical



Figure 1: The Transformer model architecture (Vaswani et al., 2017).

text refers to text that is related to the practice of
medicine and healthcare service, such as EHRs,
physician notes, and other types of text that are
commonly used in clinical settings. In contrast,
biomedical text refers to text that is related to the
field of biomedicine, which includes research arti-
cles, textbooks, scientific reports, and other types
of text that are used in the study and advance-
ment of biomedicine. In addition, clinical text has
unique specific linguistic characteristics, such as
the prevalent use of technical jargon, abbreviations,
acronyms, passive verbs, and omitted subjects and
verbs, which make it distinct from standard lan-
guage (Smith et al., 2014). In this report, we focus
on clinical PLMs and will discuss them in Sec-
tion 3.

We also summarize the downstream NLP tasks
in the clinical domain, as demonstrated in Section 4.
For intrinsic tasks, we cover Information Extrac-
tion, Text Classification, Semantic Textual Simi-
larity, Question Answering, Question Answering,
Text Summarization, Natural Language Inference,
etc. For extrinsic tasks, we discuss a bit about

patients’ outcomes prediction, e.g., readmission,
mortality, etc, and clinical predictive tasks, e.g.,
diagnosis prediction. In the end, we discuss the
limitations and potential future directions in Sec-
tion 5.

2 Pre-trained Language Models

In this section, we first introduce the key compo-
nent of modern pre-trained language models, i.e.,
the transformer architecture (Vaswani et al., 2017),
and then discuss the most well-known general-
domain PLMs in detail, e.g., BERT (Devlin et al.,
2019), GPT-1&2&3 (Radford et al., 2018, 2019;
Brown et al., 2020), RoBERTa (Liu et al., 2019),
ALBERT (Lan et al., 2019), T5 (Raffel et al., 2020),
BART (Lewis et al., 2020a), etc.

2.1 Transformer

Recurrent neural networks (RNNs), e.g., long short-
term memory networks (LSTM) (Hochreiter and
Schmidhuber, 1997) and gated recurrent neural net-
works (GRUs), are widely adopted for sequence
modeling problems such as language modeling



Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers
running in parallel (Vaswani et al., 2017).

(Bengio et al., 2000; Mikolov et al., 2010). How-
ever, the sequential nature of recurrent models of-
ten impedes parallelization within training exam-
ples, particularly with longer sequences (Vaswani
et al., 2017). To overcome this limitation, Vaswani
et al. introduce the Transformer, a novel trans-
duction model architecture based solely on the at-
tention mechanism, eliminating the need for re-
currence (Vaswani et al., 2017). The transformer
architecture allows for significantly more parallel
computation and has been one of the key compo-
nents of large-scale pre-trained language models.

2.1.1 Encoder and Decoder Stacks
The architecture of the transformer model is shown
in Figure 1. Generally, it consists of an encoder and
a decoder, both of which are stacks of transformer
modules.

Encoder The encoder consists of Nx identical
modules and each module has two sublayers, i.e.,
a multi-head self-attention layer and a position-
wise fully connected feed-forward network. Within
each sublayer, there is also a residual connection
(He et al., 2016) and a layer normalization oper-
ation (Ba et al., 2016) that are leveraged to im-
prove the performance and training efficiency (i.e.,
Add&Norm).

Decoder The decoder has a similar architecture
to the encoder, except for an additional multi-head
attention sublayer over the output of the encoder.
The self-attention sublayer in the decoder is a bit
different from that in the encoder, where future
values are masked out to avoid information leakage

and preserve the autoregressive property.

2.1.2 Attention
The attention mechanism is a core component in
many deep learning models, especially in the field
of natural language processing. It allows a model to
focus its attention on specific parts of an input, such
as words or phrases in a sentence when making pre-
dictions. The attention mechanism works by com-
puting a weight for each element of the input and
then using these weights to calculate a weighted
sum of the elements as the output. The weights are
determined by a compatibility function that mea-
sures the similarity between a query vector and
key vectors associated with each element. In the
Transformer architecture, attention is implemented
using a combination of linear transformations and
softmax activation functions. Unlike recurrent neu-
ral networks (RNNs), which use sequential com-
putations, the linear transformations used in the
Transformer’s attention mechanism are relatively
simple, allowing for efficient parallel computation.

Scaled Dot-Product Attention Self-attention is
a mechanism used in deep learning models to cap-
ture dependencies between elements in a sequence
of inputs. Essentially, it represents each input token
as a weighted sum of all the token vectors in the
input where the weights are computed based on the
relationships between them.

In the transformer, the self-attention is im-
plemented as “Scaled Dot-Product Attention” as
shown in Figure 2. Generally, they compute the
dot products of the query Q with all keys K and
divide each by

√
dk, and apply a softmax function



Figure 3: An illustration of existing prevalent pre-training frameworks (Wang et al., 2022).

to obtain the weights on the values V :

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Multi-Head Attention Multi-head attention is a
mechanism that allows a model to attend to multi-
ple, different parts of the input sequence at once,
instead of focusing on just one part as in single-
head attention where the meaning of a word may
largely depend on itself (Kalyan et al., 2021). In
multi-head attention, the input sequence is trans-
formed into multiple separate, parallel representa-
tions, each of which is passed through a separate
attention mechanism, i.e., attention is applied mul-
tiple times in parallel. Consequently, this mecha-
nism allows the model to capture multiple types of
relationships between elements in the sequence.

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)W
O

where headi = Attention(QWQ
i ,KWK

i , V W V
i )

(2)
Where the projections are parameter matrices
WQ

i ∈ Rdmodel×dk ,WK
i ∈ Rdmodel×dk ,W V

i ∈
Rdmodel×dv and WO ∈ Rhdv×dmodel .

Usage of Attention The Transformer uses multi-
head attention in three different ways. The first
type is the self-attention layer in the encoder where
each position attends to all the words in the input se-
quence. The second type is the self-attention layer
in the decoder. Similarly, each position attends to
all positions up to that position where the future val-
ues are masked out (set to −∞), i.e., masked self-
attention. The third type is cross-attention within

the encoder-decoder architecture where each po-
sition in the decoder attends to all positions in the
input sequence.

2.1.3 Position-wise Feed-Forward Networks
In addition to the multi-head attention mechanism,
each encoder and decoder in the Transformer archi-
tecture also includes a feed-forward neural network,
as depicted in Figure 1. The feed-forward network
operates in a position-independent manner, apply-
ing the same linear transformation to each element
in the sequence using identical parameters. The
parameters are not shared across different layers.

FFN(x) = max(0, xW1 + b1)W2 + b2 (3)

2.1.4 Positional Encoding
As there are no recurrent neural networks (RNNs)
that are supposed to preserve the positional infor-
mation of the input sequence in the transformer,
the architecture incorporates the technique Posi-
tional Encoding (Gehring et al., 2017) that injects
a position embedding vector into individual input
embeddings. This is achieved by adding a position-
specific embedding vector to the embedded repre-
sentation of each word. These position embedding
vectors follow a learned periodic function that al-
lows the model to determine the relative position
of each word in the sequence.

2.2 Methods of PLMs

There has been a surge of interest in develop-
ing different pre-trained language models in the
past few years, e.g., BERT (Devlin et al., 2019),
GPT-1&2&3 (Radford et al., 2018, 2019; Brown



Model Framework Pre-training Method

BERT (Devlin et al., 2019) Encoder MLM, NSP
RoBERTa (Liu et al., 2019) Encoder MLM
ALBERT (Lan et al., 2019) Encoder MLM, SOP
XLM-R (Conneau et al., 2020) Encoder MLM
ELECTRA (Clark et al., 2020) Encoder RTD
XLNet (Yang et al., 2019) Decoder PLM
GPT (Radford et al., 2018) Decoder CLM
T5 (Raffel et al., 2020) Encoder-Decoder Seq2seq MLM

Table 1: Representative general-domain PLMs. Underexplored models in the clinical scenario are omitted for
simplicity.

et al., 2020), RoBERTa (Liu et al., 2019), AL-
BERT (Lan et al., 2019), T5 (Raffel et al., 2020),
BART (Lewis et al., 2020a), etc. These models
can be classified into three categories based on
their pre-training frameworks: decoder, encoder,
and encoder-decoder, as illustrated in Figure 3. In
this subsection, we introduce some of the prevalent
pre-training frameworks that lay the foundations
of clinical PLMs and discuss their corresponding
applications.

Decoder-only models (or autoregressive models)
refer to models pre-trained based on the language
modeling task, i.e., predicting the next token given
observed ones, which also corresponds to the de-
coder of the transformer model. As mentioned
above, GPT is a typical decoder-only pre-trained
language model (Radford et al., 2018). Essen-
tially, GPT computes the probability distribution
of the next token given previous tokens, with the
decoder module of the original transformer, for
pre-training. The model is pre-trained on the Book
Corpus dataset and demonstrates new SOTA results
on several NLP benchmarks (Radford et al., 2018).
GPT-2 (Radford et al., 2019) and GPT-3 (Brown
et al., 2020) are the 2nd and 3rd release of GPT,
which generally share the same architecture with
the original version, i.e., the transformer decoder,
and have 1.5 billion and 175 billion model parame-
ters, respectively. Both GPT-2 and GPT-3 can be
applied to downstream tasks without fine-tuning,
demonstrating the potential of large PLMs with
updated SOTA performance.

Encoder-only models (or autoencoding models)
refer to models pre-trained based on the reconstruc-
tion objective of corrupted input sentences, which
also corresponds to the encoder of the transformer
model. Besides BERT which depends on Masked

Language Modeling and Next Sentence Prediction
as mentioned above, RoBERTa is another typical
example of such type (Liu et al., 2019). Essen-
tially, RoBERTa tackles some of BERT’s issues and
proposes the dynamic masking technique where
they seek to randomly generate the mask at each
epoch, as opposed to BERT’s static masking strat-
egy. RoBERTa also drops the NSP pre-training
task due to its lack of impact and instead puts two
consecutive full sentences together as input with-
out asking the model to predict their consecutive-
ness. ALBERT (Lan et al., 2019) generally follows
BERT, and it also proposes some useful tricks. Es-
sentially, ALBERT is a light and efficient variant
of BERT that differs in three aspects: (i) factor-
ized embedding parameterization, (ii) cross-layer
parameter sharing, (iii) NSP replaced by sentence
ordering prediction. Empirically, the performance
is better than BERT on a variety of tasks in many
aspects. ELECTRA is another pre-training frame-
work for BERT whose key innovation is Replaced
Token Detection (RTD, as a replacement for MLM).
The task is to simultaneously optimize a generator-
discriminator architecture where the generator is
trained using the MLM objective given a randomly
masked sentence as input, and the discrimina-
tor (ELECTRA) aims to predict whether each to-
ken is original or generated (Clark et al., 2020).
ELECTRA demonstrates efficiency and better per-
formance than BERT/RoBERTa across multiple
benchmarks.

Encoder-decoder models refer to models pre-
trained based on a sequence-to-sequence objective,
which also corresponds to the encoder-decoder ar-
chitecture of the original transformer. As a typical
example, BART (Lewis et al., 2020a) takes as input
to the encoder a corrupted text with an arbitrary



noising function (Token Masking, Token Deletion,
Text Infilling, Sentence Permutation, Document
Rotation), and the decoder is enforced to recon-
struct the original text. The model can be viewed
as a combination of a bidirectional encoder (e.g.,
BERT) and an autoregressive decoder (e.g., GPT),
and this architecture makes it better at generative
tasks while keeping the bidirectional encoding ca-
pabilities. Another example is T5 (Raffel et al.,
2020) which casts different NLP tasks as a text-
to-text problem by assigning a specific prefix. T5
has self-supervised and supervised training. For
the self-supervised pre-training, T5 takes a cor-
rupted sentence as input and the self-supervised
pre-training task is to generate the dropped-out
tokens. The supervised pre-training tasks are trans-
formed downstream tasks from the GLUE and Su-
perGLUE benchmarks.

Generally, there have been numerous studies on
PLMs in the past few years. Some of them are
CTRL (Keskar et al., 2019), Transformer-XL (Dai
et al., 2019), Reformer (Kitaev et al., 2020), XL-
Net (Yang et al., 2019), DistilBERT (Sanh et al.,
2019), ConvBERT (Jiang et al., 2020), Funnel
Transformer (Dai et al., 2020), Longformer (Belt-
agy et al., 2020), ProphetNet (Qi et al., 2020),
Switch Transformer (Fedus et al., 2021), GLaM
(Du et al., 2022), Gropher (Rae et al., 2021), some
multi-lingual models like mT5 (Xue et al., 2021),
ERNIE (Sun et al., 2021), and so forth. As these
models are rarely adopted in the clinical domain,
they are not covered in this report.

3 Clinical PLMs

The rapid increase in Electronic Health Records
(EHRs) and the wealth of digitized longitudinal
clinical data they contain have sparked significant
interest in using machine learning techniques to
tackle medical challenges (Wen et al., 2019). In
response to this trend, various domain-specific pre-
trained language models have been developed for
the clinical domain, in addition to the already ex-
isting general-domain models. In this section, we
will provide a brief overview of the motivation
behind developing and utilizing domain-specific
pre-trained language models in the clinical field
and then delve into a more in-depth examination of
the different clinical PLMs available.

3.1 Motivation
In the clinical domain, the reasons for developing
and utilizing domain-specific pre-trained language
models are straightforward.

In general, the use of domain-specific PLMs in
the clinical field is motivated by the need for im-
proved accuracy and efficiency in language-based
tasks. Training on large amounts of textual data
specific to the clinical domain, such as electronic
health records (EHRs) and clinical documents, en-
ables these models to better understand and process
the technical and specialized language commonly
used in this field, including medical terminology
and abbreviations. This can be useful for tasks such
as the interpretation of EHRs, extraction of relevant
information from clinical documents, generation
of clinical summary reports, etc.

3.2 Data Resources
A variety of unannotated and free textual resources
are used in pre-training a clinical PLM, such as
clinical notes in EHRs, relevant social media posts,
scientific literature, external knowledge bases, etc.
We refer the readers to (Gonzalez-Hernandez et al.,
2017; Kalyan and Sangeetha, 2020) for a more de-
tailed treatment of biomedical and clinical textual
corpora.

Moreover, as most domain PLMs in the biomed-
ical and clinical domains are variants of BERT, the
biggest difference among them is their pre-training
data. As a result, we will cover these models, espe-
cially the less popular ones, in this subsection.

Electronic Health Records Electronic Health
Records have been widely adopted by healthcare
providers to electronically record patients’ visits
and health information in the last few years (Henry
et al., 2016). There are several reasons why clinical
pre-trained language models are often trained on
electronic health records (EHRs). First, EHRs con-
tain a wealth of information about patient’s health
histories and treatment plans, which can be valu-
able for language models to learn from. This in-
formation can include demographics, diagnoses,
medications, laboratory test results, radiology im-
ages, and more. Second, EHRs are widely used in
the healthcare industry, so clinical language mod-
els trained on EHRs may be more applicable and
useful in real-world settings. Finally, since many
healthcare providers use EHR systems, it is often
possible to access large amounts of data from these
systems for research purposes, although certain



Model Type Initialization EHR

BEHRT (Li et al., 2020) patient visits (code) scratch CPRD
Med-BERT (Rasmy et al., 2021) patient visits (code) scratch Cerner, Truven
BRLTM (Meng et al., 2021) patient visits (code) scratch private
G-BERT (Shang et al., 2019) patient visits (code) scratch MIMIC-III

Table 2: Summary of EHR-based clinical PLMs.

privacy and ethical issues must be considered.
The MIMIC-III Critical Care (Medical Infor-

mation Mart for Intensive Care III) Database is
a large, freely-available database composed of de-
identified EHR data (Johnson et al., 2016) and has
been widely used for clinical NLP research (Rajko-
mar et al., 2018; Shorten et al., 2021; Feng et al.,
2022; Lu et al., 2021c). It is also one of the most
popular EHR datasets that are used to train clinical
language models, which consists of the EHRs of
patients in the intensive care unit (ICU) of the Beth
Israel Deaconess Medical Center between 2001 and
2012.

ClinicalBERT1 is one of the most popular do-
main variants which initializes from BioBERT (Lee
et al., 2020) and is further pre-trained on MIMIC-
III clinical notes (Alsentzer et al., 2019). An-
other ClinicalBERT has similar settings (Huang
et al., 2019), where the authors also propose Clin-
icalXLNet (Huang et al., 2020), an XLNet (Yang
et al., 2019) variant that is further pre-trained
on MIMIC-III clinical notes. Similarly, Yang et
al. propose BERT-MIMIC, ELECTRA-MIMIC,
XLNET-MIMIC, RoBERTa-MIMIC, DeBERTa-
MIMIC, Longformer-MIMIC based on further pre-
training on MIMIC text (Yang et al., 2020). Clini-
calT5 further pre-trains SciFive (Phan et al., 2021)
on MIMIC notes and produces a clinical variant
of T5 (Lu et al., 2022a). In general, such mod-
els mostly depend on further pre-training on un-
structured clinical notes in MIMIC-III. In fact, the
MIMIC database consists not only of unstructured
textual data but also structured information, includ-
ing different kinds of numerical features of patients,
disease and procedure codes, demographics, etc.

BEHRT (Li et al., 2020) is a language model
trained from scratch using EHRs, with MLM as
the pre-training task. The authors use code, po-
sition, age, and segment embeddings to improve
the model’s performance. Med-BERT (Rasmy
et al., 2021) is another language model trained from

1Also known as BioClinicalBERT.

scratch with MLM and LOS (Length of Stay) as
pre-training tasks. The authors use code, serializa-
tion, and visit embeddings to further improve the
model’s ability to handle medical data. BRLTM
(Meng et al., 2021) is trained from scratch using
multi-modal data with MLM. MedGPT (Kralje-
vic et al., 2021) is a GPT-like language model
trained on patients’ medical histories in the for-
mat of EHRs. Given a sequence of past medical
events, MedGPT aims to predict future events.

Scientific literature Some clinical pre-trained
language models are trained on scientific publica-
tions, such as research articles and medical journals
because these texts can provide valuable informa-
tion about current medical knowledge and prac-
tices. Scientific publications often contain detailed
descriptions of medical conditions, treatments, and
research findings, which can be useful for language
models to learn from. Training a language model
on scientific publications can also help the model to
understand medical terminology and concepts more
accurately and in greater depth. This can be par-
ticularly useful for tasks that involve analyzing or
summarizing medical information. Finally, scien-
tific publications may be easier to obtain than other
types of clinical data, such as electronic health
records (EHRs). Many scientific publications are
freely available online, making it possible to create
large datasets for training language models.

PubMed is a free online database that provides
access to millions of scientific articles and abstracts
related to medicine, biology, and life sciences.
PubMed Central (PMC) is an open-access digital
archive of scientific articles that contains full-text
articles in the biomedical and life sciences, making
it a valuable resource for researchers. PubMed ab-
stracts (PubMed) and PubMed Central (PMC) are
widely adopted for training language models in the
biomedical field. (Wang et al., 2021a).

BioBERT is the first biomedical pre-trained lan-
guage model which is obtained by further pre-
training general BERT on biomedical literature



(Lee et al., 2020). Similarly, BioMedBERT is
obtained by further pretraining BERT-large on
the BREATHE dataset (Chakraborty et al., 2020).
BlueBERT further pre-trains on the PubMed text
and de-identified clinical notes from MIMIC-III
(Peng et al., 2019), so as BioALBERT (Naseem
et al., 2022). BioMed-RoBERTa (Gururangan et al.,
2020) is obtained by further pre-training on 2.68
million full-text papers from S2ORC (Lo et al.,
2020), a large corpus of academic papers spanning
many academic disciplines including the biomedi-
cal domain. Unlike these models, SciBERT builds
its own vocabulary and pre-trains from scratch on
scientific papers from Semantic Scholar, in which
82% are from the biomedical domain and 18%
are from the computer science domain (Beltagy
et al., 2019). PubMedBERT is obtained by domain-
specific pre-training from scratch on PubMed text
(Gu et al., 2021).

Social media Clinical pre-trained language mod-
els may also be trained on social media posts,
such as those from Reddit, Twitter, AskAPatient,
WebMD, in order to learn about common language
usage and slang in the context of healthcare. These
platforms can provide a large amount of real-world
data that can be used to train language models to
understand how people discuss healthcare-related
topics in everyday language. Training on social me-
dia posts can also provide the model with a better
understanding of the context which could benefit
sentiment or opinion-related tasks. However, it
is important to ensure the representativeness and
suitability of the data before using it for model
training.

Reddit and Twitter are commonly used social
media sources for training language models. Red-
dit is a social media platform that allows users to
share news, images, and links, as well as partici-
pate in forums and discussions on a wide range of
topics. Reddit is considered a valuable resource for
language model training because it provides a large
and diverse dataset of written content, ranging from
informal conversations to in-depth discussions on
a wide range of topics. Twitter is a microblogging
platform that allows users to post short messages,
images, and videos. Similar to Reddit, Twitter
also provides a vast amount of textual data, which
can help models learn to understand conversational
text.

For example, BERTweet (Nguyen et al., 2020) is
obtained by training on Twitter posts. COVID-

twitter-BERT (Müller et al., 2020) is a natural
language model to analyze COVID-19 content on
Twitter. The COVID-twitter-BERT model is initial-
ized from BERTweet and trained on tweets about
COVID-19. BioRedditBERT (Basaldella et al.,
2020) is initialized from BioBERT and further pre-
trained on health-related Reddit posts.

External knowledge bases External medical
knowledge bases can be complementary to clin-
ical pre-trained language models, as they are often
not fully exposed to structured domain knowledge,
which may not be sufficiently encoded in the pre-
training text. The external knowledge bases of-
ten serve more as an auxiliary training objective
that works along with typical self-supervised pre-
training on large amounts of textual data.

One of the most important knowledge resources
is the Unified Medical Language System (UMLS)2,
which is a comprehensive and standardized termi-
nology repository that is widely used in the field
of biomedical research and healthcare (Bodenrei-
der, 2004). It includes a wide range of medical and
health-related vocabularies and terminologies, such
as NCBI, MeSH, SNOMED CT, ICD-10, Gene On-
tology, OMIM, and many others. The UMLS is
designed to help researchers, clinicians, and other
healthcare professionals communicate effectively
and accurately by providing a common language
and set of terms that can be used across different
systems and contexts. It is maintained and updated
by the National Library of Medicine (NLM) in the
United States, and all vocabularies are freely avail-
able for research purposes under a corresponding
license agreement.

For example, Hao et al. propose to enhance
clinical BERT embedding using a joint further pre-
training strategy, where they incorporate a joint
loss of masked language modeling, next sentence
prediction, and triplet classification on MIMIC-
III notes and UMLS relations to obtain Clinical
KB-BERT and Clinical KB-ALBERT (Hao et al.,
2020). UmlsBERT further pre-trains ClinicalBERT
(Alsentzer et al., 2019) on MIMIC-III notes with
a specifically designed multi-label loss that incor-
porates UMLS information (Michalopoulos et al.,
2020). SapBERT further pre-trains PubMedBERT
(Gu et al., 2021) on UMLS synonyms under a scal-
able metric learning framework (Liu et al., 2021a).
KeBioLM incorporates UMLS entity information
by linking PubMed abstracts to the knowledge base

2http://umlsks.nlm.nih.gov



and adopts an entity detection/linking objective
(Yuan et al., 2021). Coder injects medical knowl-
edge from UMLS into BioBERT (Lee et al., 2020)
through contrastive further training (Yuan et al.,
2022b). DiseaseBERT and DiseaseALBERT are
obtained by further pre-training on disease-related
articles from Wikipedia (He et al., 2020a).

3.3 Pre-training Strategies

According to a recent survey on biomedical pre-
trained language models, Kalyan et al. point out
that existing biomedical PLMs roughly fall into the
following two categories, i.e., mixed-domain pre-
training, and domain-specific pre-training (Kalyan
et al., 2021).

The situation in the clinical domain is quite
similar. In fact, most of the aforementioned clin-
ical/biomedical domain-specific pre-trained lan-
guage models are based on the mixed-domain pre-
training strategy (or continual pre-training), as
pre-training on large amounts of general-domain
text is proven beneficial. Essentially, the mixed-
domain pre-training strategy initializes with a pre-
trained model and continues the pre-training pro-
cess with domain-specific data and objectives. For
example, BioBERT (Lee et al., 2020) initializes
from BERT (Devlin et al., 2019), ClinicalBERT
(Alsentzer et al., 2019) initializes from BioBERT
(Lee et al., 2020), ClinicalT5 (Lu et al., 2022a)
initializes from SciFive (Phan et al., 2021), etc.
This strategy demonstrates the issue of inconsis-
tent vocabularies, which results in less represen-
tative capability of continual pre-trained models
in the target domain (Gu et al., 2021). However,
existing PLMs mostly use subword tokenization
algorithms which effectively alleviate the issue by
decomposing rare words into meaningful subwords,
such as Byte-Pair Encoding (BPE) (Sennrich et al.,
2016), WordPiece (Schuster and Nakajima, 2012),
Unigram (Kudo, 2018), SentencePiece (Kudo and
Richardson, 2018), etc.

It is important to point out that the mixed-domain
pre-training approach is particularly useful when
the target domain has a limited amount of text and
can benefit from being pre-trained using general-
domain text like Wikipedia and BookCorpus (De-
vlin et al., 2019) as well as related-domain text.
However, this is not the case for the biomedical
domain, as it has a large and growing corpus of
text, with over 30 million texts in PubMed and
this motivates PubMedBERT which is trained from

scratch (Gu et al., 2021). Conversely, the clinical
domain presents a different scenario. Due to the
sensitive nature of the clinical text, such as clini-
cal notes in EHRs, and the difficulties in obtain-
ing such data, most clinical pre-trained language
models rely on mixed-domain pre-training, such
as ClinicalBERT (Alsentzer et al., 2019), Clinical-
BERT (Huang et al., 2019), SciFive (Phan et al.,
2021), ClinicalT5 (Lu et al., 2022a), etc.

There are also variants that are trained from
scratch, such as PubMedBERT which is trained
from scratch on PubMed abstracts and PMC full-
text articles (Gu et al., 2021), and SciBERT which
is trained from scratch on scientific papers from
Semantic Scholar (Beltagy et al., 2019). Essen-
tially, the domain-specific pre-training (training
from scratch) method aims to fix the vocabulary
inconsistency issue between the general domain
and the biomedical domain (Kalyan et al., 2021). It
is also worth noting that EHR-based language mod-
els are generally pre-trained from scratch such as
BEHRT (Li et al., 2020), Med-BERT (Rasmy et al.,
2021), BRLTM (Meng et al., 2021), etc., as they
depend on code, demographics, visits, etc. instead
of clinical narratives.

In order to gain a deeper understanding and pro-
vide a comprehensive overview of the training ob-
jectives of clinical pre-trained language models,
this subsection will explore the various pre-training
strategies in detail. It is worth noting that most ex-
isting clinical PLMs rely on continual pre-training,
which means they would typically use similar pre-
training tasks as general-domain models such as
BERT (Devlin et al., 2019) but fine-tune on a large
corpus of clinical data. This is done to capture
the specific language and structure of the clinical
domain, and improve the models’ performance on
downstream tasks such as named entity recognition,
relation extraction, and de-identification.

In this subsection, we would cover some of the
most popular pre-training tasks as well as those
adopted in the aforementioned clinical PLMs.

Masked Language Modeling (MLM) This is
a task where a random subset of the tokens in a
sentence are replaced with a [MASK] token and
the model is trained to predict the original token
based on the context provided by the observed to-
kens in the sentence. Many models such as BERT
(Devlin et al., 2019), BioBERT (Lee et al., 2020)
and ClinicalBERT (Alsentzer et al., 2019) use this
pre-training task. As arguably one of the most pop-



Model Type Initialization Corpora Publicly Available

ClinicalBERT (Huang et al., 2019) clinical notes BERT MIMIC-III Y
ClinicalBERT (Alsentzer et al., 2019) clinical notes BioBERT MIMIC-III Y
UmlsBERT (Michalopoulos et al., 2020) clinical notes, KG ClinicalBERT MIMIC-III, UMLS Y
DiseaseBERT (He et al., 2020a) Wiki articles BERT Wikipedia Y
PubMedBERT (Gu et al., 2021) scientific literature scratch PubMed, PMC Y
BERT-MIMIC (Yang et al., 2020) clinical notes BERT MIMIC-III Y
ELECTRA-MIMIC (Yang et al., 2020) clinical notes ELECTRA MIMIC-III Y
XLNET-MIMIC (Yang et al., 2020) clinical notes XLNet MIMIC-III Y
RoBERTa-MIMIC (Yang et al., 2020) clinical notes RoBERTa MIMIC-III Y
DeBERTa-MIMIC (Yang et al., 2020) clinical notes DeBERTa MIMIC-III Y
Longformer-MIMIC (Yang et al., 2020) clinical notes Longformer MIMIC-III Y
ClinicalXLNet (Huang et al., 2020) clinical notes XLNet MIMIC-III Y
DiseaseALBERT (He et al., 2020a) Wiki articles ALBERT Wikipedia Y
BioMedBERT (Chakraborty et al., 2020) scientific literature BERT BREATHE N
BlueBERT (Peng et al., 2019) scientific literature, clinical notes BERT PubMed, MIMIC-III Y
SciBERT (Beltagy et al., 2019) scientific literature scratch Semantic Scholar Y
MedGPT (Kraljevic et al., 2021) clinical notes GPT KCH, MIMIC-III Y
BioMed-RoBERTa (Gururangan et al., 2020) scientific literature RoBERTa S2ORC Y
COVID-twitter-BERT (Müller et al., 2020) social media posts BERTweet Twitter Y
BioRedditBERT (Basaldella et al., 2020) social media posts BioBERT Reddit Y
SapBERT (Liu et al., 2021a) KG PubMedBERT UMLS synonyms Y
CODER (Yuan et al., 2022b) KG BioBERT UMLS Y
KeBioLM (Yuan et al., 2021) KG PubMedBERT UMLS Y
Clinical KB-BERT (Hao et al., 2020) KG BioBERT UMLS Y
Clinical KB-ALBERT (Hao et al., 2020) KG ALBERT UMLS Y
SciFive (Phan et al., 2021) scientific literature T5 PubMed, PMC Y
BioALBERT (Naseem et al., 2022) scientific literature ALBERT PubMed, PMC Y
EhrBERT (Li et al., 2019) clinical notes BioBERT private N
RoBERTa-PubMed-MIMIC (Lewis et al., 2020b) scientific literature, clinical notes RoBERTa PubMed, PMC, MIMIC-III Y
GatorTron (Yang et al., 2022) scientific literature, clinical notes, articles scratch UF Health, PubMed, Wikipedia Y
UCSF-BERT (Sushil et al., 2022) clinical notes scratch UCSF Health N
CLIN-X-en (Lange et al., 2022) clinical PubMed abstracts XLM-R PubMed Y
CLIN-X-es (Lange et al., 2022) clinical notes XLM-R Scielo archive, MeSpEn Y
MedGTX (Park et al., 2022) EHR BERT MIMIC-III Y
Clinical-Longformer (Li et al., 2022) clinical notes Longformer MIMIC-III Y
Clinical-BigBird (Li et al., 2022) clinical notes BigBird MIMIC-III Y
BioMedLM3 scientific literature GPT PubMed, PMC Y
DRAGON (Yasunaga et al., 2022a) scientific literature, KG BioLinkBERT PubMed, UMLS Y
Med-PaLM (Singhal et al., 2022) instructions and exemplars Flan-PaLM MultiMedQA, human input N

ClinicalT5 (Lu et al., 2022a) clinical notes SciFive MIMIC-III Y
DAKI-BERT (Lu et al., 2021a) Wiki articles, KG BERT Wikipedia, UMLS Y
DAKI-ALBERT (Lu et al., 2021a) Wiki articles, KG ALBERT Wikipedia, UMLS Y
DAKI-ClinicalBERT (Lu et al., 2021a) Wiki articles, KG ClinicalBERT Wikipedia, UMLS Y

KG = knowledge graph

Table 3: Summary of Clinical PLMs.

ular and well-explored pre-training techniques, re-
searchers have proposed several tricks to improve
its performance. For example, instead of token
masking, Cui et al. propose whole word masking
for Chinese BERT which demonstrates better per-
formance (Cui et al., 2021). Besides, RoBERTa
uses dynamic masking to replace BERT’s static
masking, where they randomly generate the mask
at each epoch (Liu et al., 2019) and this trick is
also applied in their domain variants, e.g., BioMed-
RoBERTa (Gururangan et al., 2020). ERNIE in-
corporates entity-level masking and phrase-level
masking which is beneficial to infuse entity knowl-
edge into the model (Zhang et al., 2019).

Next Sentence Prediction (NSP) This task in-
volves training the model to predict whether two
sentences are contiguous or not. The objective is to
learn the sentence-level context in the corpus and
it’s used by most of the pre-trained models derived

by BERT (Devlin et al., 2019). Although NSP is
intended to help the model understand longer-term
dependencies and relationships across sentences,
its real impact on the model has been questioned in
several studies (Liu et al., 2019; Joshi et al., 2020;
Gu et al., 2021), as mentioned above.

Replaced Token Detection (RTD) This is a pre-
training task that is leveraged to improve robustness
to word replacement and text-to-text transfer. In
this task, words in a sentence are replaced with
other words that have a similar meaning, and the
model is trained to detect which words have been
replaced. This task helps the model learn to under-
stand the meaning of words and their relationships
to other words in a sentence. One example of a
model that uses RTD for pre-training is ELEC-
TRA (Clark et al., 2020). The model uses RTD to
generate masked tokens and then trains a genera-
tor model to predict the original tokens based on



the context. The generator is then fine-tuned on a
downstream task and the encoder is used for the
final classification. The main idea behind ELEC-
TRA is to make the pre-training task more chal-
lenging and to reduce the risk of overfitting, by
replacing some of the tokens with fake ones. It
is worth noting that this task is not being widely
used in the clinical domain yet. Some biomedi-
cal domain variants of ELECTRA that depend on
continual pre-training naturally inherit this method,
such as Bio-ELECTRA (Ozyurt, 2020), BioELEC-
TRA (Kanakarajan et al., 2021), etc.

Sentence Order Prediction (SOP) This task
aims to make the model predict the correct order of
a set of sentences. Essentially, the key idea is to use
two consecutive sentences from the same document
as a positive sample, and to swap the two consec-
utive sentences to make a negative sample. This
task helps the model to understand the sequential
nature of language and the relationships between
sentences in a document. It is worth noting that
this task is motivated by the fact that NSP is often
dropped by researchers due to its ineffectiveness,
as mentioned above. As a replacement, ALBERT
proposes SOP based on their conjecture that NSP
is not very effective because it mixes both topic
prediction and coherence prediction, the former of
which is comparatively easy to handle which hin-
ders the optimization of the other task (Lan et al.,
2019). SOP is applied in domain variants of AL-
BERT, such as Clinical KB-ALBERT (Hao et al.,
2020), DiseaseALBERT (He et al., 2020a), etc.

Permutation Language Modeling (PLM) This
pre-training task aims to train the model to predict
the correct order of a sentence given the context
provided by the rest tokens of the sentence. Es-
sentially, the input sentence is randomly permuted
and the model has to reconstruct the original order
by maximizing the expected log-likelihood over all
possible permutations of the input. This task aims
to train the model to capture bidirectional context
to predict all the tokens instead of just one, which
makes it more challenging than MLM. This task is
applied in XLNet (Yang et al., 2019) and its domain
variants ClinicalXLNet (Huang et al., 2020).

Causal language modeling (CLM) This is an-
other name for the traditional autoregressive lan-
guage modeling task, i.e., the model is trained to
predict the next token given the previous tokens
of the sentence. This task is typically used in au-

toregressive language models, e.g., GPT (Radford
et al., 2018) and MedGPT (Kraljevic et al., 2021).

Sequence-to-sequence MLM This pre-training
task is similar to MLM but performed in a
sequence-to-sequence manner. Essentially, the in-
put of the encoder is the corrupted sentence where
random tokens are replaced by sentinel tokens,
and the target is to make the decoder generate the
masked tokens in an autoregressive fashion. This
task is adopted in MASS (Song et al., 2019) and T5
(Raffel et al., 2020), and inherited in their domain
variants SciFive (Phan et al., 2021) and ClinicalT5
(Lu et al., 2022a).

Denoising Autoencoder (DAE) This pre-
training task aims to reconstruct the original
sentence from a corrupted version of it, where
any type of document corruption functions can
be applied such as token masking, token deletion,
text infilling, sentence permutation, document
rotation, etc. (Lewis et al., 2020a). Essentially,
the decoder reconstructs the corrupted input
sentence from the output representations of the
encoder (i.e., a denoising autoencoder), and the
model essentially combines bidirectional and
autoregressive transformers. This task is similar
to some extent to seq2seq MLM in the sense that
they both involve masking out or distorting a
portion of the input text and then trying to predict
or reconstruct that portion. This task is used in
BART (Lewis et al., 2020a), BioBART (Yuan et al.,
2022a).

Document Relation Prediction (DRP) This is a
novel pre-training task introduced by a recent study
(Yasunaga et al., 2022b). Essentially, this task aims
to learn the relevance and existence of bridging
concepts between documents by classifying the text
segment pairs into contiguous, random, or linked.
This task can be considered a variation of NSP.

Other Tasks There are other pre-training tasks
that are used in specific clinical PLMs. For ex-
ample, MedGTX (Park et al., 2022) claims to be
the first work to propose graph-text multi-modal
pre-training on EHR data. Essentially, they use
a Graph Attention Networks (GAT) (Velickovic
et al., 2017) based encoder to encode the structured
information of an EHR, use a BERT-like model
to encode the unstructured information (clinical
notes), use a cross-model encoder to learn a joint
representation space. Moreover, recent studies try



to encode domain knowledge into PLMs. For exam-
ple, UmlsBERT (Michalopoulos et al., 2020) con-
tinually pre-trains ClinicalBERT (Alsentzer et al.,
2019) on MIMIC-III notes with a specifically de-
signed multi-label loss to inject UMLS knowledge
into the model.

4 Downstream Tasks

In this section, we introduce the downstream tasks
in the clinical domain, along with the correspond-
ing datasets, that have been widely used in re-
cent years. We first discuss the intrinsic tasks,
including information extraction, text classifica-
tion, word/sentence similarity, question answering,
text summarization, natural language inference, etc.
Then we introduce some popular extrinsic tasks,
such as patient readmission prediction, mortality
prediction, diagnosis prediction, and other clini-
cal predictive tasks. It is worth noting that the
distinction between intrinsic and extrinsic tasks is
not always black and white, as some tasks can be
considered as both intrinsic and extrinsic, e.g., text-
based readmission prediction (Lu et al., 2021c).

4.1 Intrinsic Tasks
Intrinsic tasks are tasks that are primarily focused
on understanding the meaning and structure of the
text. These tasks are not necessarily the ones that
are directly applicable to a specific domain. Exam-
ples of intrinsic tasks include, but are not limited to:
information extraction, text classification, semantic
textual similarity, question answering, text summa-
rization, natural language inference, and others.

4.1.1 Information Extraction (IE)
Named Entity Recognition Named Entity
Recognition (NER) is the most popular down-
stream NLP task in the clinical domain for the
last few years, according to a recent survey (Gao
et al., 2022). The task refers to identifying and
classifying named entities in text into pre-defined
categories such as person names, organizations,
locations, medical codes, etc, and it is particu-
larly useful for extracting structured information
from unstructured text. As a specific application
of NER in the clinical domain, Clinical Named En-
tity Recognition (CNER) aims to extract clinically
relevant information, such as diseases, symptoms,
treatments, medications, etc., from unstructured
medical texts, e.g., clinical notes in EHRs.

A typical solution to NER is to fine-tune the
PLMs to classify each token into one of the pre-

defined named entity classes with a linear layer (or
more advanced structures such as a LSTM layer)
on top of the PLMs. This approach is often referred
to as a sequence labeling task. This task has been
used for evaluation for a variety of clinical and
biomedical PLMs, including BioBERT (Lee et al.,
2020), SciBERT (Beltagy et al., 2019), PubMed-
BERT (Gu et al., 2021), etc.

Relation Extraction As is the case with NER,
Relation Extraction (RE) is one of the fundamental
IE tasks in the clinical scenario. Essentially, the
task refers to identifying and extracting semantic
relationships between two or more entities from
unstructured text. And in the clinical domain, as a
specific application of RE, Clinical Relation Extrac-
tion (CRE) aims to extract clinically relevant rela-
tionships between medical entities, such as causal
relationships (e.g., Patient’s high blood pressure
caused by obesity.), symptom-disease relationships,
medication-disease relationships, etc. depending
on the specific task and context.

Essentially, the task is often cast as a classifica-
tion problem. For example, a common approach
to CRE is to fine-tune the PLMs to predict the re-
lationships between two identified entities based
on the contextual representations of the [CLS]
token (Thillaisundaram and Togia, 2019; Su and
Vijay-Shanker, 2020).

Event Extraction Event Extraction (EE) is the
task that aims to identify and extract event infor-
mation from text. An event can be defined as
a situation or occurrence that happens at a cer-
tain point in time and has a specific set of ac-
tors, actions, and outcomes. In text, events are
often described using verbs or verb phrases, and
the entities involved in the event are typically de-
scribed using nouns or noun phrases. For exam-
ple, given a sentence “On Sunday, a protester
stabbed an officer with a paper cutter.”, a EE
system should be able to identify an Attack
event which consists of an event trigger stabbed
and event arguments Sunday, protester,
officer, paper cutter (Liu et al., 2020).

Similarly, Clinical Event Extraction (CEE) is
a specific application of EE in the clinical do-
main, which aims to extract medical events from
clinical text, e.g., EHRs. Medical events are oc-
currences or situations that happen in the medi-
cal domain, such as diagnoses, treatments, admis-
sions, etc. For example, a CEE system should



Figure 4: Human evaluations of ChatGPT generated answers. (Guo et al., 2023).

extract from the sentence “Patient diagnosed with
pneumonia.” an event with diagnosed as the
trigger and Patient, pneumonia as the argu-
ments. Event extraction is a challenging task, es-
pecially in the clinical domain, due to the complex
and private nature of this field. There have been
several biomedical event extracton studies in re-
cent years, including DeepEventMine (Trieu et al.,
2020), BEESL (Ramponi et al., 2020), etc.

Entity Linking Entity Linking (EL) is a task
that aims to link the entity mention in a text to
its corresponding entity in a knowledge base, e.g.,
Wikipedia (Lu and Du, 2017; Jiang et al., 2021; Lu
et al., 2022b). In the clinical domain, the task is
also referred to as Medical Concept Normalization,
which maps medical terms and concepts used in
clinical text to a standardized terminology, such as
SNOMED CT, ICD-10, or UMLS. There are some
tools for this task, e.g., MetaMap (Aronson and
Lang, 2010), SciSpacy (Neumann et al., 2019), etc.

Coreference Resolution Coreference Resolution
is the task of identifying mentions in a text that re-
fer to the same entity. This task is important for a
wide range of NLP applications, such as informa-
tion extraction, machine translation, and question
answering, as it helps to understand the structure
of the context and to capture the relationships be-
tween entities. In the clinical domain, coreference
resolution is utilized in analyzing clinical notes,

helping to support the decision-making of health-
care professionals by presenting a holistic picture
of the patient and the relationships among relevant
entities.

Temporal Information Extraction Temporal In-
formation Extraction (TIE) is a task that aims to
extract events or facts in the text and link them
to specific times. Essentially, this task involves
recognition of events and temporal expressions,
recognition of temporal relations among them, and
timeline construction (Leeuwenberg and Moens,
2018). TIE in the clinical domain (CTIE) aims to
extract temporal information from the clinical text
to understand detailed clinical observations.

De-identification : This task is to extract and
mask Personal Identifiable Information (PII) from
clinical notes, in order to protect patient privacy.
The extracted information includes details like pa-
tient name, address, Social Security number, etc.
This is a particularly important task in the clinical
domain as the clinical data must comply with the
Health Insurance Portability and Accountability
Act (HIPAA).

4.1.2 Text Classification
Text Classification is the second most popular
downstream task in the clinical domain in recent
years (Gao et al., 2022). Essentially, it aims to clas-
sify input text into pre-defined categories, such as



text-based readmission prediction where they pro-
pose to predict ICU patient readmission risk using
the clinical notes in EHRs (Lu et al., 2021c).

4.1.3 Semantic Textual Similarity

Semantic Textual Similarity (STS) refers to the
task of predicting the degree of semantic similarity
between words or sentences. The task is useful
for a wide range of applications in the clinical do-
main, as it helps to remove redundant information
that could decrease the cognitive load and enhance
the clinical decision-making process (Wang et al.,
2020). Typically, PLMs are used to encode the
word/sentence pairs and the cosine distance is used
to measure the similarity score.

4.1.4 Question Answering

Question Answering (QA) is a task that aims to
extract and generate a natural language answer to
a given question. Essentially, there are Extractive
QA which extracts the answer from the input text,
and Open/Closed Generative QA which directly
generates a free-text answer to the question based
on the input text. Clinical Question Answering
(CQA) is a specific application of QA in the clini-
cal domain, and it generates answers to questions
related to medical information, such as diagnosis,
treatment, medication, etc. CQA systems can be
useful in a variety of scenarios, such as hospitals,
clinics, and research institutions, to help physicians,
nurses, and other healthcare professionals quickly
access information and make informed decisions.
CQA (or medical QA) is a challenging task as it
demands comprehension of medical context, recall
of appropriate medical knowledge, and reasoning
with expert information (Singhal et al., 2022).

There has been a surge of interest in developing
PLMs that are capable of answering questions au-
tomatically. Recently, Med-PaLM (Singhal et al.,
2022) achieves state-of-the-art results on multiple
medical QA benchmarks, surpassing previous mod-
els including BioMedLM, DRAGON (Yasunaga
et al., 2022a), BioLinkBERT (Yasunaga et al.,
2022b), Galactica (Taylor et al., 2022), PubMed-
BERT (Gu et al., 2021), etc. Meanwhile, Chat-
GPT4 has attracted huge attention across the world
and has demonstrated superior performance over a
variety of tasks as shown in Figure 4, leading to a
new direction for NLP research.

4https://chat.openai.com/chat

4.1.5 Text Summarization

Text Summarization is the task of extracting the key
information of a document and generating a shorter
version of it. Similar to other tasks, Clinical Text
Summarization refers to the specific application
of text summarization in the clinical domain, e.g.,
clinical notes in EHRs, etc. There are various tech-
niques for text summarization, including extrac-
tive summarization and abstractive summarization.
Extractive summarization refers to selecting and
extracting the most important sentences or phrases
from the original text, while abstractive summariza-
tion refers to generating a new and shorter text that
summarizes the original text.

4.1.6 Natural Language Inference

Natural Language Inference (NLI) is a task that
aims to predict the relationship between two sen-
tences, i.e., a premise and a hypothesis. The goal
of NLI is to classify the relationship between them
as either “entailment”, “contradiction”, or “neu-
tral”. Clinical Natural Language Inference (CNLI)
is a specific application of NLI in the clinical do-
main, with the goal of classifying the relationship
between two pieces of clinical text. For example,
given the premise “Patient has a history of hyperten-
sion and diabetes” and the hypothesis “The patient
has a high risk of heart disease,” the CNLI system
should predict the relationship as “entailment” as
the hypothesis logically follows from the premise.
However, if the premise is “Patient has a history of
taking aspirin for pain relief” and the hypothesis
is “The patient is allergic to penicillin,” the rela-
tionship should be “neutral” as there is no logical
relationship between them. This task is usually cast
as a ternary classification problem.

4.2 Extrinsic Tasks

Extrinsic tasks are tasks that are primarily focused
on using the understanding of the text to make pre-
dictions or decisions in a specific domain. These
tasks are more focused on practical or real-world
problems or aspects in the specific domain. Ex-
amples of extrinsic tasks in the clinical domain
include, but are not limited to: readmission predic-
tion, mortality prediction, length of stay prediction,
diagnosis prediction, and others (Lu et al., 2019,
2021b).



5 Discussion

5.1 Limitations

Insufficient Domain Expertise There have been
tremendous efforts in producing stronger, faster,
and larger domain-specific pre-trained language
models in the clinical domain. However, most
of these models depend on self-supervised pre-
training over large amounts of textual data, e.g.,
ChatGPT uses 175 billion parameters and Med-
PaLM has 540 billion parameters (Singhal et al.,
2022). Recently, ChatGPT has attracted atten-
tion all over the world as the model shows re-
markable performance on different kinds of NLP-
related tasks across multiple domains, including
the biomedical and clinical fields. However, the
model is still considered “unhelpful” for medicine
as judged by human experts as against other do-
mains (e.g., as shown in Figure 4), revealing that
the seemingly almighty model lacks an in-depth
understanding of domain knowledge (Guo et al.,
2023). In fact, there has been a surge of inter-
est in proposing novel methods to inject domain
knowledge into existing PLMs (He et al., 2020a;
Lu et al., 2021a; Michalopoulos et al., 2020). Nev-
ertheless, these works mostly focus on empirical
improvement over different benchmarks without
providing an in-depth and clear explanation of how
the infused knowledge actually affects the model
inference, which could limit their impact.

Data Scarcity Another limitation of the clini-
cal PLMs is the limited availability of their pre-
training data. Essentially, most of the aforemen-
tioned clinical PLMs depend on clinical notes, e.g.,
the MIMIC database (Alsentzer et al., 2019; ?),
which is relatively small in size and does not sup-
port the training of larger models (Johnson et al.,
2016). This scarcity of data can negatively impact
the performance of the models and limit their abil-
ity to generalize to real-world scenarios.

Interpretability Despite the impressive perfor-
mance of clinical PLMs, their lack of interpretabil-
ity remains an issue, as it can limit the trust placed
in the models and their ability to be used in real-
world clinical settings.

Privacy, Security and Ethical considerations
Clinical PLMs often work with sensitive patient
information, making privacy and security a major
concern. There is a need to ensure that patient data
is protected and kept confidential, which can be

challenging in the context of Clinical NLP. The use
of clinical PLMs also raises important ethical con-
siderations, such as the potential for algorithmic
bias and discrimination, the responsibility for the
outputs of the models, and the potential impact on
patient care and outcomes.

5.2 Future Directions

One promising avenue of future research is to inves-
tigate novel pre-training methods that incorporate
large amounts of domain knowledge from knowl-
edge bases and limited amounts of clinical notes.
The “big knowledge, small data” approach may
provide a solution to the challenges of insufficient
domain expertise and data scarcity that are faced
by current clinical PLMs.

Another important direction is to delve deeper
into the interpretability issue of clinical PLMs and
their applications. Understanding the thought pro-
cess and reasoning behind physician diagnoses can
provide valuable insights into the use of clinical
PLMs. Furthermore, exploring the impact of di-
verse sources of domain knowledge on model in-
ference can help to better understand how to effec-
tively incorporate knowledge into clinical PLMs.
This can lead to improved model performance and
increased trust in applying machine learning tech-
niques in the clinical setting.

6 Conclusion

In this report, we provide a comprehensive
overview of pre-trained language models in the
clinical domain. We begin by introducing the key
concepts of pre-training methods, model architec-
tures, pre-training data, and other relevant informa-
tion. Next, we present an extensive list of current
clinical PLMs, highlighting their key features and
characteristics. Finally, we delve into the limita-
tions of current clinical PLMs, including issues
related to the lack of domain knowledge and data
scarcity. Finally, we conclude by exploring future
directions for Clinical NLP, including the develop-
ment of novel pre-training methods and a deeper
understanding of model interpretability and its ap-
plications in the clinical setting.
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