
Traffic Monitoring Using Programmable Switch
Hardware for In-Network Aggregation

Chris Misa
Area Exam

Advisors: Ramakrishnan Durairajan, Reza Rejaie
ABSTRACT
The ability to observe and make sense of network traffic is
a persistent and well-established requirement for effective
administration of performant and secure networks. Over the
last ten years, the capabilities as well as the needs and re-
quirements of monitoring network traffic have undergone
considerable evolution sparking numerous research efforts.
Three historically distinct background areas fundamentally
shape this evolution: network monitoring system design, ap-
plications of programmable switch hardware, and in-network
aggregation methods. An emergent body of research lever-
ages aspects from all three of these background areas to
develop systems that collect more detailed, precise traffic
insights while simultaneously realizing order of magnitude
improvements in traffic processing efficiency.

Given the increasing activity and potential for high impact,
we focus on this emergent direction of research in trafficmon-
itoring using programmable switch hardware for in-network
aggregation. The three background areas whose intersection
defines this research direction provide natural and intuitive
dimensions along which each new work can be classified.
We leverage these dimensions to construct a hierarchical tax-
onomy which groups efforts by types of network monitoring
tasks considered, specifications and shapes of aggregation
computations involved, and types of processing platforms
targeted. For each sub-group implied by our taxonomy, we
discuss common approaches, key contributions, and open
problems apparent across works in that sub-group. Finally
we reflect on open problems more generally across all groups
proposing three concrete directions for future research.

1 INTRODUCTION
Effective management of modern computer networks re-
quires observing and gaining insights into the traffic flowing
through these networks. For example, network administra-
tors need to know how much and what types of traffic their
networks forward for design and planning purposes. Traffic
experiencing reduced performance (e.g., high latency, packet
loss) could be indicative of faulty network equipment or
targeted denial of service attacks. These along with many
other tasks motivate careful design and implementation of
network traffic monitoring systems.

The last ten years have seen significant evolution in both
the needs of network monitoring tasks as well as the capabili-
ties and techniques available to address these needs. In partic-
ular, three background areas of research have a fundamental
impact on recent network traffic monitoring proposals: (i)
the types and definitions of traffic monitoring tasks consid-
ered; (ii) the techniques and design patterns for in-network
aggregation; and (iii) the availability of programmable switch
hardware as a processing platform for network monitoring.

First, the requirements of network monitoring tasks have
evolved into complex computations over packet streams re-
quiring filtering, aggregation, correlation, and other order-
dependent operations. Instead of simply counting the num-
ber of packets transmitted on various links in the network
(e.g., SNMP [43, 113]), modern network administrators need
tailored solutions that provide fine-grained insights into their
traffic to combat challenges like performance degradation
caused by link contention [131, 140] or malicious attack traf-
fic [39, 92]. These new requirements for traffic monitoring
pose critical challenges in how to execute complex aggrega-
tion computations over the massive volume of data flowing
through modern networks.

Second, programmable switch hardware [6, 28] emerged as
a revolutionary tool for handling a wide variety of high data
rate network processing problems. Programmable switch
hardware exposes a fixed set of hardware primitive operators
in comparatively high-level languages (e.g., P4 [27], NPL [9])
which can perform a wide variety of per-packet processing at
extremely high throughputs (e.g., Tbps). However, leveraging
programmable switch hardware for network monitoring is
nontrivial due to the limited types of computations and state
available, thus motivating research in adapting and inventing
traffic monitoring algorithms to fit these constraints.
Finally, the process of using programmable switch hard-

ware for network traffic monitoring is most effective when
considered as in-network aggregation. The key idea is that
since programmable switch hardware has the capability to
update persistent state on a per-packet basis, its most ef-
fective use is as an in-network aggregator—this way, only
aggregate results need to be exported to network administra-
tors significantly increasing the efficiency of traffic monitor-
ing systems. To realize this goal, works in this area grapple

1

with questions of what types of aggregation operations can
be offloaded in this way and how to realize this offloading
efficiently in end-to-end systems.
Viewing recent research efforts as an intersection of the

three background areas described above clearly exposes the
exciting promises driving research in this area of traffic mon-
itoring using programmable switch hardware for in-network
aggregation—when leveraged effectively, work in this par-
ticular area has the potential to revolutionize how network
traffic is monitored and more generally how networks are
run. Considering these three background areas also trans-
lates to three high-level dimensions along which each work
in this area can be understood: the fundamental impetus of
traffic monitoring translates to a dimension of different types
of traffic monitoring tasks and different end consumers (e.g.,
traffic profiling vs. network automation); the in-network ag-
gregation approach translates to a dimension of different
forms of aggregation computation (e.g., different aggrega-
tion granularities, different summarizing functions per aggre-
gate); the use of programmable switch hardware translates
to a dimension of different choices of processing platforms
surrounding the switch hardware ASIC (e.g., ASIC-only vs.
ASIC and CPU-based post-processing).

Through careful observation of how works in the research
literature populate and cluster in this three-dimensional
space, we develop a detailed hierarchical taxonomy. The
ordering, particular unbalanced structure, and temporal evo-
lution of this taxonomy exposes several key insights into
work in this area: we connect particular instances of unbal-
ance to particular trends, assumptions, and constraints faced.
We also connect the historical trends observed to particular
developments in hardware technology (e.g., availability of
Tofino-based [6] switch ASICs) and observe in particular that
applications of traffic monitoring in network automation sys-
tems is the most recently initiated region of this space. We
take this as an indication of the potential for network au-
tomation tasks to foster impactful future research efforts in
this area.

After detailing the three background research areas whose
three-way intersection we focus on in particular (§ 2) and
presenting our taxonomy and related observations (§ 3), we
perform a detailed analysis of each particular research di-
rection implied by the leaves of our taxonomy tree (§ 4-6).
For each direction, we present a list of papers constituting
progress in that direction over the past ten years, summarise
common design patterns and challenges considered, key con-
tributions, and open problems. Finally we summarise key
open problems across all directions and describe three con-
crete possible approaches for future research (§ 7).

2 DEFINITION OF THE AREA
As shown in Figure 1, this survey defines traffic monitor-
ing using programmable switch hardware for in-network
aggregation as the intersection of network traffic monitoring
(Area A), in-network aggregation (Area B), and application
of programmable switch hardware to networking problems
(Area C). We next describe and give examples of each region
in the figure to solidify connection to the larger research
landscape implied by these background works.

A: Network Traffic
Monitoring

C: Applications of
Prog. Switch Hardware

B: In-network
Aggregation

[Bro/Zeek]
[Retina]

[NetFlow]

[ATP]
[NetCache]

[OpenFlow]
[Frenetic]

[P�] [NetLock]

[TiNA]

[NetAgg]

[Sonata]
[DREAM]

[OpenSketch]

[sFlow]

Programmable
Networks

[e.g., CDNs]

In-network
Computing

This
Work

[Trumpet]
[Simon]

Datacenter
Monitoring

Figure 1: Diagram of how the target area fits into sur-
rounding research areas.

Area A: Network Traffic Monitoring. Ideally, networks
should be able to forward data with perfect accuracy and
low, deterministic latency. However, in reality, this is not
the case due to human inconsistencies in how the network
is setup (e.g., misconfigurations), the possibility of compo-
nent malfunctions (e.g., a packet is lost due to corruption
during transmission), and unpredictable variation in commu-
nication patterns (e.g., natural variations in traffic, malicious
attack traffic). Given these realities, nearly all networks must
monitor that traffic they are forwarding using systems simi-
lar to the one shown in Figure 2 to determine when network
performance may be impacted by any of the above causes.
Due to large volumes of data continuously passing through
the network, the primary challenge is in determining which
particular aspects of traffic need to be monitored and how
to efficiently execute this monitoring given a limited compu-
tation budget.
Traditional network monitoring systems like Bro [111]

(now called Zeek [13]) receive a mirrored stream of individ-
ual network packets in software and perform monitoring
computations using clusters of general-purpose CPU-based
systems to perform the required computations. The key ad-
vantage of such systems is the flexibility to execute many
types of analysis. Several domain-specific languages have
been proposed to simplify specification of monitoring tasks
(e.g., Chimera [26], Gigascope [38], NetQRE [149]) whereas
other works push the limits of CPU-based processing (e.g.,
007 [20], dShark [50], Confluo [80], Retina [137]). However,

2

Network
Hardware

Traffic Monitoring
System

Traffic Traffic

Figure 2: Network monitoring systems collect and re-
port data about traffic flowing through networks.

the network bandwidth overheads of forwarding copies of all
packets to a central server cluster, as well as the computing
throughput required to process large volumes of traffic make
this approach challenging and resource-intensive.
Area B: In-network Aggregation A second related cate-
gory of work looks at leveraging processors (e.g., general-
purpose CPUs) distributed around the network to perform
intermediate data aggregation thus reducing the total vol-
ume of network traffic generated by an application. Example
applications where this has been applied are wireless sensor
networks (e.g., TiNA [122]), batch processing jobs in data
centers (e.g., Camdoop [37], NetAgg [97]), and distributed
machine learning (e.g., Parameter Hub [94]).

H� H�

H� -> H�:
H� -> H�:

time

f()

Aggregate Results
g()

Network Device

Figure 3: Example of two aggregation granularities:
𝑓 () computes per-source, destination pair whereas 𝑔()
computes over all traffic.

In the case of network traffic monitoring, aggregation
typically refers to grouping packets based on common at-
tributes (e.g., header fields) and computing summary metrics
per-group (e.g., the total number of packets from the same
source). Figure 3 shows a simplified example of this kind
of aggregation. In this example, two hosts H1 and H2 send
packets through a network device over time as shown in
the box above the device. Two possible aggregation compu-
tations are shown: 𝑓 () will produce a summary metric for
each distinct source, destination pair (e.g., H1→ H2) whereas
𝑔() produces a single summary over a period of time for all
traffic. Real in-network aggregation computations may be far

more complex involving several different aggregation gran-
ularities, pipelining of aggregation stages, and/or reporting
aggregate results per fixed time window or epoch.

Since in-network aggregation is inherently a summarising
computation, some information about packets observed is
unavoidably lost. However, there are two critical reasons
why in-network aggregation is still a critical tool for modern
network traffic monitoring systems. First, given packet rates
in modern enterprise, ISP, and data-center networks, it is
infeasible to mirror all packets to a centralized collector. As
a result, many packet-level network monitoring systems are
also forced to loose information due to low sample rates
(e.g., one in a thousand [87]). Second, many network mon-
itoring tasks inherently require aggregate metrics and the
overheads of computing such metrics in CPU-based systems
over mirrored traffic can be significant leading to high capi-
tal and operational overheads (see for example the detailed
economic analysis in Jaqen [92]).
Area C: applications of programmable switch hard-
ware. Networked systems research has a long trajectory of
increasing control and flexibility over basic network opera-
tions which can be understood at a high level as program-
ming the network. Software-defined networking (SDN) (e.g.,
OpenFlow [98], Frenetic [53]) begin the process of increas-
ing network programmability by carefully splitting network
operations between software and hardware components. In
particular, software components make decisions about how
to forward traffic while hardware executes simple forward-
ing rules which are dynamically controlled by software.

Parser DeparserStage � Stage � Stage N

TCAM
SRAM

M A
ALUs

Metadata bus

Queues

...

In
pu

t p
or

ts

O
ut

pu
t p

or
ts

Ingress
pipeline

Egress
pipeline

Programmable Switch

Figure 4: Simplified diagram of common pro-
grammable switch hardware processing model (e.g.,
RMT [28], Tofino [6]).

More recently, innovation in hardware design (e.g., RMT [28],
Tofino [6]) opened up the possibility to perform far more

3

complex processing directly in the switch hardware ASIC. As
shown in Figure 4, these switches typically forward packets
between input and output ports using pipelines separated by
a queuing stage. Each pipeline is constructed by a series of
stages where each stage performs a single match-action op-
eration using ternary content-addressable memory (TCAM)
to match against packet metadata (e.g., headers) and a set
of configurable arithmetic logic units (ALUs) which read
and write from limited per-stage SRAM as well as the per-
packet metadata bus. Switch programs typically consist of
two parts: (i) a statically-compiled specification of which
metadata fields are matched in each stage and of how ALUs
perform actions and (ii) a dynamically installed list of match-
action rules that select which pre-compiled action to execute
when a packet matches in TCAM. Note that the action defi-
nitions can only use each ALU once and a hence limited to
a constant number of primitive operations. Note also that
stages (typically) do not share SRAM and hence information
(e.g., intermediate results) must be passed in one direction
between stages via the metadata bus.
Beyond research in hardware design and the design of

appropriate hardware programming interfaces (e.g., P4 [27],
Domino [124]), a significant body of work has looked at
the question of how these new hardware capabilities can be
leveraged for a wide range of tasks. For example, functions
like NAT (e.g., Gallium [150], TEA [82]), load-balancing (e.g.,
Cheetah [21]), caches (e.g., IncBricks [89], NetCache [72]),
distributed consistency (e.g., NetLock [147], NetChain [72],
Paxos [41]) can be implemented entirely or partially in the
switch ASIC leading to extreme gains in processing through-
put and efficiency.
Area A ∩ Area B. In order to reduce the volume of traffic
mirrored to software, several approachs perform initial aggre-
gation of packets in processors closer to network forwarding
such as routers and switch control CPUs. For example, the
widely adopted NetFlow [35] standard first mirrors packets
to a router CPU, then aggregates packets into flows (defined
by common packet header field values) and exports statistics
(e.g., packet counts) for each flow to a software collector.
Although this reduces the volume of traffic exported, it still
poses a significant computational bottleneck on the router
or switch CPU. In most actual deployments network hard-
ware only mirrors a sample of packets to the router CPU
for aggregation again impacting accuracy of the resulting
flow-level statistics.
Area A ∩ Area C. Another approach to reducing volume of
mirrored traffic is to leverage switch hardware to only mirror
a random sample of packets, and/or to only mirror important
parts of packets like the headers (e.g., SFLOW [11]). Although
this approach reduces the volume of traffic mirrored, it also
degrades the accuracy of monitoring in ways that may render
some monitoring tasks useless [96].

Area B ∩ Area C. Beyond network traffic monitoring, sev-
eral works look at leveraging programmable switch hard-
ware to perform in-network aggregation (e.g., SHArP [61],
DAIET [118]), most recently for distributed ML training (e.g.,
SwitchML [119], ATP [84], Panama [56]).
Area A ∩ Area B ∩ Area C: traffic monitoring using
programmable switch hardware for in-network aggre-
gation. This work focuses on approaches at the three-way
intersection of all three of these areas: using programmable
switch hardware to perform some computation/aggregation
directly in the network before exporting monitoring results.
As demonstrated by several pivotal work in this are (e.g.,
Sonata [63]), this approach has the potential to both reduce
computation overheads (since processing is performed di-
rectly in the packet-forwarding hardware) as well as the
volume of exported traffic (since only aggregated or filtered
monitoring results have to leave the network hardware data
plane). The key challenges faced are how tomap the computa-
tions required for trafficmonitoring in to a limited set of hard-
ware processing primitives (e.g., match-action tables) and
how to allocate limited computational and memory budgets
available in hardware to the wide range of monitoring tasks
that must be executed (e.g., as dealt with in DREAM [103]
or OpenSketch [146]).

2.1 Prior Surveys
Recent surveys [25, 75, 100] focus on programmable data
planes and applications of the P4 programming language [59,
65, 78] summarizing current applied research areas where
increased programmatic control over network processing
has had notable impact. However, due to the wide variety
of programming targets, interfaces, and applications consid-
ered, these surveys fail to provide precise characterization
of challenges, solutions, and openings in the particular inter-
section considered in this work. In particular, their treatment
of network monitoring problems mix programmable switch
hardware systems with other programmable data plane tar-
gets (e.g., CPU-based virtual switches), hence obfuscating
the particular challenges and complex relationships between
hardware and software.
Another set of recent surveys summarises use of pro-

grammable data plane technologies in network security ap-
plications [17, 40, 55]. Again, these works freely mix the
fundamentally different challenges of different data plane
targets obscuring the particular challenges of programmable
switch hardware. For example, only 38.6% of the works con-
sidered in [55] actually feature switch hardware methods.
Several security-focused surveys also focus on the general
security implications of systems built on programmable data
planes [17, 42] which is an orthogonal and separate concern

4

to applications of programmable switch hardware to traffic
monitoring.
To the best of our knowledge, ours is the first study to

focus specifically on applications of programmable switch
hardware as a specific subset of data plane programmability.
By further limiting our study to aggregation-based network
traffic monitoring tasks, we are able to perform deeper anal-
ysis of the key challenges and open problems faced by this
particular research field.

3 OUR APPROACH
3.1 Taxonomy
We identify a set of 50 works from top-tier venues (e.g.,
USENIX NSDI [10], ACM SIGCOMM [12]) that represent
the progression of research activity in traffic monitoring
using programmable switch hardware for in-network aggre-
gation. In order to clarify the structure of these works and
to organize our discussion, we consider three orthogonal
dimensions derived from the three surrounding areas: (i)
the reason for why network traffic needs to be monitored
(roughly corresponding to Area A); (ii) the type of aggre-
gation computation performed (roughly corresponding to
Area B); and (iii) the type of processors used (roughly cor-
responding to Area C). Figure 5 shows these dimensions as
shaded columns and describes the points in each dimension
as rows, additionally imposing a hierarchical classification
structure described as a tree rooted on the left of the figure.
The branches of this tree correspond to discrete groups of
works which are discussed in the sections referenced and
represented by the canonical examples on the far right.

The particular structure of Figure 5 is motivated by (i) an
ordering of the dimensions from high-level decisions about
what aspects of traffic should be monitored to low-level
decisions about the particular processors to employ and (ii)
observations of natural grouping of the considered works in
each dimension.
WhyMonitor Traffic?We identify three high-level reasons
for monitoring network traffic—traffic profiling, network
performance, and network automation—and further refine
each reason based on common concrete applications.

First, traffic profiling (§ 4) seeks to collect particularmetrics
or features of traffic such as the total number of connections
in a given timewindow or a list of connections sending above
a certain rate (i.e., heavy hitters). These metrics are used in
traffic profiling to understand normal network behaviors, to
drive network architecture and planning decisions, and to
detect anomalous traffic patterns associated with network-
based attacks. Some traffic profiling works collect a single
metric (§ 4.1) where as others are able to collect a large
number of metrics (§ 4.2) in a single unified system.

Second, network performance (§ 5) seeks to monitor and
report when network events such as congestion, device fail-
ures, or routing imbalance impact forwarding performance
in well-defined network settings. These systems are typically
deployed in data center networks where their outputs are
used to quickly identify and respond to networking prob-
lems such as configuration bugs or device failures as well
as to localize performance issues. Some systems in this cate-
gory focus only on detection of performance events (§ 5.1)
whereas others additionally seek to provide auxiliary debug-
ging information (§ 5.2).

Finally, network automation systems (§ 6) monitor network
traffic in order to react to particular traffic events by automat-
ically changing the network’s processing behavior. In these
systems, traffic monitoring is closely motivated by and tied
to the particular goals which the automation system seeks
to ensure and the particular types of actions available to the
automation system. We consider two examples of such sys-
tems: DDoS defense (§ 6.1)—which monitors traffic to detect,
isolate, and mitigate DDoS attack traffic—and flow offloading
(§ 6.2)—which selects traffic subsets to offload to processors
with different performance characteristics.
Type of Aggregation? All in-network aggregation works
define particular specification of the aggregation computa-
tion including specification of how aggregates are defined,
how packets in each aggregate are summarised, and when
per-aggregate results are collected.
In the simplest case of single-metric traffic profiling, the

per-aggregate computation is already defined by the particu-
lar metric of interest, hence the primary distinction at this
level is whether the system assumes a single, fixed aggre-
gation granularity, e.g., five-tuple (§ 4.1.1) or if the system
supports multiple, simultaneous aggregation granularities,
e.g., different prefix lengths for different subsets of traffic
(§ 4.1.2).

In the more complex case of multi-metric systems, we
identify four high-level patterns. Some works leverage inher-
ent commonalities between different metrics (e.g., entropy
and cardinality) to compute multiple metrics from a sin-
gle common summary data structure via post-processing
(§ 4.2.1). Another type of work offers a pre-defined menu
of fixed aggregation computations (including both aggrega-
tion granularity as well as other parameters like aggregation
function/metric, duration between result reports, etc.) from
which network administrators may choose a subset for de-
ployment (§ 4.2.2). Other works allow network administra-
tors to specify more complex queries in a domain-specific
language (DSL) and compile language primitives into switch
hardware and other processing platforms, e.g., CPUs for
post-processing (§ 4.2.3). Finally, a recent set of works en-
able queries (either chosen from a fixed menu or specified

5

Traffic
Profiling

Network
Performance

Network
Automation

Single-Metric

Multi-Metric

A
∩

 B
 ∩

 C

[FlowRadar]Switch + Post Proc.

Single-Agg. [ElasticSketch]Switch + Post Proc.

Multi-Agg. [Beacoup]"

Fixed Menu [OpenSketch]"

DSL [Sonata]"

Runtime Queries [Newton]"

[OmniMon]Switch + Host
[SwitchPointer]Switch + Host

[Jaqen]Switch + Controller

[Euclid]Switch Only

Post Proc. [StarFlow]"

Detection Five-tuple

Explanation Five-tuple

Flow offloading [Elixir]Switch + HostFive-tuple

DDoS Defense Variable

Why monitor traffic? Type of
aggregation?

Type of
processors?

Canonical
example

Section

4.1.1

4.1.2

4.2.1

4.2.2

4.2.3

4.2.4

5.1.1

5.1.2

5.2

6.1.1

6.1.2

6.2

(Area A) (Area B) (Area C)

Figure 5: Hierarchic taxonomy proposed to group works dealing with the use of programmable switch hardware
to perform in-network aggregation for traffic monitoring at the intersection of areas A, B, anc C.

in a DSL) to be dynamically added and removed during run-
time by installing more flexible “interpreters” into switch
hardware (§ 4.2.4).
Type of Processors? Although all works considered in this
paper use programmable switch hardware, most works also
incorporate additional processing capabilities which further
shapes the particular problems considered in each particular
work.

Which additional processors are used is often directly de-
termined by the particular reasons for monitoring. In traffic
profiling works (§ 4) the switch performs initial aggregation
stage(s), but additional processing is often required before
the exact profiling results can be obtained. Network perfor-
mance monitoring systems typically target datacenter and/or
cloud networks where both network infrastructure as well
as end-host infrastructure are controlled by the same admin-
istrative domain, hence these works can either perform all
monitoring and aggregation in switch hardware with addi-
tional post processing as for profiling works (§ 5.1.1) or they
can choose to offload certain parts of monitoring and ag-
gregation to the end-host network stack (§ 5.1.2). Finally, in
network automation works, the tight binding between traffic
monitoring and updates to network forwarding policy neces-
sitate particular placement of traffic processing. Since DDoS
attacks break network connectivity by flooding in-network
processing elements, traffic monitoring must be performed
entirely in switch hardware. In some works, a CPU-based
centralized controller periodically updates switch hardware
processing to respond to attack scenarios (§ 6.1.1) whereas

in others switch hardware enacts mitigation independently
(§ 6.1.2). Flow offloading on the other hand processes some
flows in hardware and others in software and hence must
monitor network traffic both at the hardware and software
vantage points to intelligently identify an optimal set of flows
to process in switch hardware (§ 6.2).
Observations. The unbalanced nature of the tree structure
shown in Figure 5 exposes several key trends in recent re-
search at the intersection considered. First, in order to com-
pute a wider variety of diverse metrics, traffic profiling works
tend to rely on a common approach of collecting concise
traffic summaries in switch hardware and leveraging more
flexible CPU-based post-processing. This trend is reflected
by the relative density under the traffic profiling branch in
the “type of aggregation” dimension combined with the rel-
ative uniformity of this branch in the “type of processors”
dimension. Second, network performance and network au-
tomation tasks tend to imply fixed notions of aggregation,
but lend themselves to more creative exploration in terms
of which types of processors are leveraged. This trend is re-
flected in the uniformity of these two branches in the “type of
aggregation” dimension and relative density in the “type of
processors” dimension. Finally, we note that flow offloading
is a relatively recent addition to the switch hardware net-
work monitoring literature and hence has not yet developed
as rich of a structure in the three dimensions considered here
compared to other directions.

6

Year: 2013 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21 ’22
Key
events:

RMT [28],
Tofino [6]

P4 [27]

§ 4.1.1 [125] [32, 64] [71, 83] [23, 121, 133]
§ 4.1.2 [33] [152]
§ 4.2.1 [91] [67, 126, 127, 145] [128] [68]
§ 4.2.2 [146] [14, 106]
§ 4.2.3 [108] [63, 112] [86] [24]
§ 4.2.4 [103] [104] [157] [102, 154]
§ 5.1.1 [87, 88] [74] [134, 155, 156]
§ 5.1.2 [69] [153] [54]
§ 5.2 [130] [131] [132] [140]
§ 6.1.1 [151] [92, 144]
§ 6.1.2 [39] [16]
§ 6.2 [110] [141]

Table 1: Publication years of the 50 works considered in the intersection described by Figure 1 partitioned according
to the taxonomy describe by Figure 5.

3.2 Historical Timeline
Although research in using SDN-based systems (e.g., Open-
Flow [98]) has a long history stretching back till at least the
2000s (see [19] or [49] for in-depth treatments of the origins
of SDN), the ability of switch ASICs to perform a custom
set of in-network aggregations is a relatively recent devel-
opment. Starting in 2013, several critical developments led
to a flourish of innovation in this area including (i) seminal
work on reconfigurable match action tables [28], a hardware
model that combines the flexibility of FPGAs [8, 107] with
the forwarding efficiency of Ethernet switch ASICs, (ii) novel
programming interfaces like P4 [27], and (iii) a startup com-
pany with a strong commitment to supporting the research
community (Barefoot Networks [1]1). Table 1 traces the time-
line of research during this period in traffic monitoring using
programmable switch hardware for in-network aggregation,
also showing the division of works considered among the
leaves of Figure 5. Figure 6 summarises this data by showing
the total number of publications per year.
Observations. Several high-level trends are apparent from
this table.

First, traffic profilingworks, in particular OpenSketch [146]
and DREAM [103], had already developed initial approaches
to in-network aggregation for trafficmonitoring using previous-
generation technology (FPGAs and TCAM-based counters on
SDN switches respectively). These works mark the tail-end

1Barefoot Networks was acquired by Intel in 2019 which recently (as of
winter 2023) halted development of Tofino programmable switch ASICs [5,
7].

0

5

10

' 13 ' 14 ' 15 ' 16 ' 17 ' 18 ' 19 ' 20 ' 21 ' 22
Year

pa

pe
rs

Figure 6: Summary of data from Table 1 showing the
number of papers published each year.

of classic SDN work which was typically limited to counter-
based methods (e.g., [48, 73, 79, 148]) or required custom-
designed hardware as in OpenSketch.
Next, we note that the P4 programming interface [27]

seems to have been a key enabler of the development of
switch hardware applications research in the years after
introduction of RMT/Tofino. In particular, starting in 2016
nearly all works use P4 as the interface for specifying switch
hardware programs.We note that several works from 2016 on
(e.g., UnivMon [91], FlowRadar [87]) are limited to evaluation
on the P4 behavioral simulator [2] and are in some sense
“pre”-switch hardware methods.

Finally, we note that specific applications of programmable
switch hardware in the two network automation applica-
tions considered here (§ 6.1 DDoS defense and § 6.2) only
recently gained traction in the research community (since
2020). We associate this with a trend from more general pro-
posals with less specific network settings (e.g., UnivMon [91],
Sonata [63]) towards more specialized proposals targeteding
specific network settings (e.g., BufScope [54], Elixir [141]).

7

Overall, from Figure 6 we note that the rate of publication
in this particular are appears qualitatively to be increasing
over the time period considered.

3.3 Per-Group Methodology
In the following sections (§ 4, § 5, § 6), we discuss each leaf
of the tree shown in Figure 5. Our discussion in each section
is organized at a high-level by the following method. We first
describe the group by detailing its particular placement in
the taxonomy and its overall features with respect to the area
defined in § 2. We then describe common design patterns
observed across the set of works constituting the group. Next,
we describe key challenges and contributions made towards
solving these challenges in individual or groups of works. In
most cases we describe contributions in chronological order
following the logical progress of research, however, in some
cases we deviate from strict chronological order in order to
illustrate commonalities between works. Finally, we discuss
limitations of the group’s works in terms of a concrete set of
one ore more open problems.

4 TRAFFIC PROFILING
Although network behavior is driven by the individual pack-
ets traversing network devices and links, due to extremely
high packet rates (e.g., tens of millions per second) it is often
infeasible and uninstructive to derive insights about network
traffic directly from a listing of packets traversing the net-
work. As a result, traffic profiling works develop methods
to efficiently aggregate and summarise groups of packets to
produce high-level metrics reflective of the network’s cur-
rent behaviors. Such metrics are critical for a wide range of
network administration tasks such as capacity planning, per-
formance tuning, and security event detection. We consider
here the recent subset of research addressing this network
profiling question that leverages programmable switch hard-
ware to perform at least some part of the required aggrega-
tion and summarizing computations directly in the network
itself.

4.1 Single-Metric Systems
The simplest type of traffic profiling systems focus on com-
puting a single well-defined metric. Typically such systems
seek to maximize the accuracy achievable for a given switch
hardware computational capability, or conversely, to mini-
mize the switch hardware resources required to achieve a
particular accuracy goal.

4.1.1 Single (Fixed) Aggregation Granularity. Single-
metric, single-aggregation granularity traffic profiling sys-
tems focus on how to adapt the computations required for
a particular type of traffic profiling computation into the

limited processing model and processing resources of pro-
grammable switch hardware.
Common design patterns. In order to perform aggregation
using a fixed number of operations per packet and a fixed
amount of high-speed memory accessible from packet pro-
cessing logic, these works all implement different versions
of lossy hash tables known colloquially as “sketches” [31, 36,
101]. Rather than dealing with hash collisions using linked-
list buckets, probing, or other methods like Cuckoo hash-
ing [109] which all require non-constant operations per up-
date, these designs embrace hash collisions and find creative
ways to deal with the consequences. As a result of this de-
sign pattern, these works all have some high-speed update
method which is compiled into switch hardware to produce
tables of counters for a fixed granularity and a fixed metric.
These counters are periodically pulled to a CPU-based col-
lector which performs additional statistical procedures on
counter values to produce the final estimated traffic profile
metrics.

A key challenge in this design space is the fact that sketch
algorithms don’t store the observed flow keys by default.
In particular, the classic solution of maintaining a heap or
other tree-like set data structure used in other applications
of sketch algorithms (e.g., in databases [58, 66]) requires non-
constant operations per update and is hence not possible in
switch hardware. The works in this section develop novel so-
lutions to this problem when addressing metrics that require
flow keys such as heavy hitters, or define metrics overall all
flow keys such as entropy.
Key contributions. Perhaps the first solution to compute a
traffic profiling metric entirely in switch hardware, in partic-
ular heavy-hitters, is HashPipe [125]. HashPipe starts with a
well-known algorithm to approximately computes the top-𝑛
elements in a data stream [99], then makes several modifica-
tions and relaxations of the original algorithm—in particular,
sampling to estimate the minimum value and pipelining to
fit the minimum estimation into a fixed number of switch
hardware stages. Several subsequent works further improve
heavy hitter detection on switch hardware to coordinate
detection of network-wide heavy hitters by dynamically ad-
justing thresholds at each switch [64] and to use limited
recirculation of packets [23] to fix the critical inefficiency in
HashPipe of always evicting an entry (even for flows with a
single packet).

Whereas HashPipe and the works mentioned above focus
on packet or byte count heavy hitters, SpreadSketch [133]
focuses on heaviness in terms of distinct entities associated
with each flow (e.g., distinct sources contacted by each desti-
nation), adopting a similar approach of maintaining candi-
date flow keys associated with sketch counters. Snappy [32]
also extends the notion of packet or byte count heavy hitters

8

to include subtraction in order to identify which flows make
the largest contribution to long queues. However, Snappy
does not maintain flow keys in switch memory, but acts di-
rectly on packets given the current estimate of the packet’s
flow’s rate from the sketch counters (an approach also dis-
cussed in § 6.1.2).
Beyond variants of heavy-hitters, several other metrics

have been computed in switch hardware. Following a similar
methodology as HashPipe, QPipe [71] uses a near-optimal
existing algorithm called SweepKLL [70] for computing quan-
tiles. However, instead of modifying or relaxing SweepKLL,
QPipe instead develops a novel technique of using unsampled
packets as “workers” to facilitate the required arg-min com-
putation between stages. A similar methodology is followed
in [83] to implement a near-optimal entropy-estimation al-
gorithm using a look-up approximation to the required max-
imally skewed alpha-stable distribution. Dart [121], on the
other hand, develops a new approach using heuristics and
lazy cache eviction to decide which SEQ packets in one di-
rection of a TCP flow are most likely to produce valuable
RTT estimates when paired with their corresponding ACK
packets from the opposite direction.
Open problems. The first clear open problem is that of cov-
erage: there are many more traffic profiling metrics (e.g.,
bandwidth estimation [34, 45, 52]) that could be useful even
when computed in the limited single-aggregation form as-
sumed in this section.

The second open problem is a less obvious consequence of
the prevalent use of sketch-based techniques in these works.
While sketch-based techniques do have rigorously-defined
statistical error guarantees [31, 36], closer examination of
these guarantees indicates that the accuracy of most sketches
is a function of the total number of distinct keys tracked. In
order to both decide on an appropriate memory allocation
for particular sketches as well as to interpret the accuracy
of retrieved sketch counters, network administrators first
need to know the ground truth number of keys collected in
the sketch. This leads to critical problems in real network
settings where the number of distinct keys (e.g., the number
of currently active flows) changes rapidly and is hard to
measure directly. Sketch-based approaches must be made
more robust against changes in the number of keys, or that
other approximation methods must be considered.

4.1.2 Multiple Aggregation Granularities. In several
cases, network administrators need to compute the samemet-
rics over different sets of traffic and/or at different granulari-
ties. For example traffic could be aggregated both by source
addresses and (independently) by destination addresses in
the same system whereas single aggregation granularity
systems would require one instance for aggregating source

addresses and a separate, independent instance for aggre-
gating destination addresses. Here we consider works that
address this need head on by computing single, fixed traffic
profiling metrics, but exposing interfaces to allow collecting
these metrics over different traffic slices and aggregations.
Common design patterns. The works in this section define a
limited universe of possibilities which can be understood as
a global key space. Individual monitoring tasks or queries
all compute the same metrics, but can be parameterized by
different subsets as well as different aggregation granulari-
ties within this global key space. The key challenge faced in
these works is how to design, implement, and analyze data
structures that can collect profiling data for multiple aggre-
gation granularities simultaneously with greater efficiency
that simply capturing each granularity independently (e.g.,
with methods from § 4.1.1).
Key contributions. Beaucoup [33] makes perhaps the first
contribution in this space by developing an approach to an-
swer multiple threshold-based heavy-distinct-count queries
where each query has a different aggregation granularity. For
example, Beaucoup can simultaneously monitor for source
addresses that contact more than a given number of desti-
nations as well as destination addresses that contact more
than a given number of sources. The key enabling idea is
to interpret the heavy-distinct-count metric computation
as a coupon-collector problem where each packet is associ-
ated with a hash-based “coupon” and each query, key pair
is a coupon-collector. Given a fixed number of coupons and
query, key pairs, Beaucoup then describes a simple mapping
of the coupon collector problem into programmable switch
hardware.

CocoSketch [152], on the other hand, addresses the prob-
lem of computing per-flow packet and byte counts for a
flexible range of flow definitions (e.g., five-tuple-based flows,
source-based flows, etc.). The key idea is to map the per-flow
counting problem into the subset-sum estimation problem
and apply the Unbiased SpaceSaving algorithm [135]. As
with HashPipe [125], CocoSketch also applies modifications
and relaxations to remove circular dependencies in the Unbi-
ased SpaceSaving algorithms making it computable in switch
hardware.
Open problems. Similar to fixed-granularity approaches dis-
cussed in § 4.1.1, a fundamental open problem in these works
is how to apply variable granularity approaches to more
types of metrics. The relative sparsity of this section is a
testament to the fact that this is a significantly harder chal-
lenge compared to computing traffic profilingmetrics at fixed
granularity.

Also similar to the fixed-granularity approaches, theworks
in this section compile fixed-sized data structures (e.g., for a
given fixed number of coupon-collectors in Beaucoup) into

9

programmable switch hardware while the underlying num-
ber of monitored keys inherently varies leading to resource
allocation and accuracy estimation challenges. For works
supporting multiple aggregation granularities, this problem
is even more challenging to address because each monitored
aggregation granularity may have different numbers of dis-
tinct aggregate groups (e.g., a different number of sources
and destinations) so allocation must be made per aggregation
granularity.

4.2 Multiple-Metric Systems
Given the fact that in many network scenarios, network ad-
ministrators need to observe multiple traffic profile metrics,
several works explore how multiple different metrics can
be computed simultaneously in a unified system using one
or more programmable switches. Following our taxonomy’s
leafs (Figure 5) we discuss these works according to different
types of aggregation.

4.2.1 SelectMetrics FromPost-Processesing of Fixed
Dataplane Results. Several works leverage the observation
that in addition to per-flow packet and/or byte count esti-
mates, sketch counters collected from switch hardware can
also be used to estimate several higher-level metrics through
CPU-based post processing. These works enable network
administrators to compute a fixed set of a few traffic profiling
metrics simultaneously through the same switch hardware
computations.
Common design patterns. The works in this section develop
single sketch-based data structures that are updated directly
in switch hardware, then post process the resulting sketch
counters on CPU-based systems to estimate a fixed set of
metrics typically including heavy hitters, flow-size distribu-
tion summaries, entropy estimates, and cardinality estimates
(e.g., the number of distinct flows). Note that all of these esti-
mates are limited to the aggregation granularity at which the
data plane sketch is compiled. For example, if the sketch is
compiled per-destination address, then post processing can
extract heavy destination addresses, entropy of estimations,
or the number of distinct destinations, but cannot extract
metrics w.r.t. other aggregations (e.g., w.r.t. source addresses).
Key contributions. UnivMon [91] heralded the idea of being
able to produce multiple metrics through post-processing a
single simple data structure through the idea of “universal
sketching”. Universal sketching builds on streaming algo-
rithms research [29, 30] and essentially allows estimating a
class of metrics that can be expressed as sums of a function
of the frequencies of individual elements in the data stream
(with the additional requirement that these functions must
be upper-bounded by the second frequency moment). In
practice, the set of metrics computable through this method
corresponds to heavy-hitter-type metrics as well as global

metrics like cardinality and entropy. Note that several fur-
ther optimizations of the switch hardware implementation
of UnivMon are discussed in [92, 93, 143].
Despite the novel theoretic underpinning, UnivMon has

several limitations which were picked up in subsequent
works. SketchLearn [67] develops a method to automati-
cally extract flow keys from a multi-level sketch using sta-
tistical modeling techniques. ElasticSketch [145] explicitly
deals with changes in the number of keys and distribution
of traffic across keys commonly observed in network traffic
by splitting the sketch data structure into heavy and light
parts with different update policies. Most recently FCMS-
ketch [128] and [68] develop methods for further improving
the accuracy of similar sketch-based approaches using a hi-
erarchical tree-like organization of sketch counters and a
correspondence with compressive sensing respectively.

Another approach taken in StarFlow [127] and TurboFlow [126]
takes the late-binding principle farther, using switch hard-
ware only to group packet-level data into aggregates (e.g.,
flows), then exporting succinct summaries of all packets in
each aggregate (e.g., StarFlow’s “grouped packet vectors”).
Although this approach enables a wider variety of metrics
compared to sketch-based works, it also imposes higher load
on the CPU-based post processing system and makes limited
use of switch hardware’s aggregation capabilities.
Open problems. As with the single, fixed aggregation solu-
tions described in § 4.1.1, the works in this section all stati-
cally fix a particular aggregation granularity in the switch
hardware program. In many ways this limits the universality
of proposals like UnivMon [91] since separate independent
instances must be maintained for all aggregation groups net-
work administrators wish to profile. In a similar way, the
use of sketches in may of these works is still plagued by
the fundamental connection between sketch accuracy and
the variable and unpredictable number of flows observed in
network traffic. Importantly, although ElasticSketch [145]
appears to address this issue head-on, their solution is still
somewhat brittle (using a strict two-tier hierarchy) and fo-
cuses more on adapting to changes in traffic rate in software
versions of the same algorithms.

4.2.2 Select Metrics From Fixed Menu. The works in
this section allow network administrators to construct cus-
tom traffic monitoring switch hardware programs by select-
ing different types of metrics (e.g., heavy hitters, cardinality)
from a fixed menu and parameterizing each selection to look
at particular slices of traffic and at particular aggregation
granularities.
Common design patterns. These works start by defining a set
of metrics typically implemented through sketch-based al-
gorithms then define methods for combining multiple al-
gorithms in a single switch hardware program. The key

10

challenge faced in these approaches is how to minimize the
switch hardware resources required to implement a given
set of metrics or sketches. Although sketches on the surface
seem to perform essentially the same types of computations
and should be trivial to merge, when differing traffic slices,
keys, and sketch algorithms are involved, creative combina-
tion strategies are required.
Key contributions. OpenSketch [146] demonstrated the first
such system defining a flexible FPGA-based data plan that
performs hashing, TCAM-based classification, and counting
primitives and a library-based control plane containing pre-
set formula for how to configure the data plan primitives for
a variety of traffic profiling metrics. OpenSketch also pro-
posed an active “sketch manager” which performs additional
traffic profiling to tune memory allocations of the currently
running profiling queries. For example, the sketch manager
might run distinct-count profiling to automatically adjust
the number of counters assigned to a heavy hitters query as
the underlying number of keys changes.
Several recent works including HeteroSketch [14] and

SketchLib [106] propose similar methods for coordinating
execution of multiple sketch-based traffic profiling queries
in a common system and for managing their resource allo-
cations. In addition to targeting the modern generation of
P4-programmable switches (instead of requiring an FPGA)
and incorporating support for sketch algorithms adopted af-
ter OpenSketch (e.g., UnivMon [91]), these works also make
several targeted resource usage improvements [106] and pro-
pose a unified framework for understanding the processing
performance of sketch algorithms on diverse hardware and
software targets [14].
Open problems. As with other traffic profiling works, there
is a continuous open problem of incorporating support for
more diverse metrics into the the “fixed menus” of works
in this category. Also, although OpenSketch [146] included
provisions for dynamically adjusting sketch counter alloca-
tion in response to changing numbers of flows, more recent
works [14, 106] do not provide adequate solutions to the
general challenges with provisions sketch counters and esti-
mating accuracy of sketch-based results.

4.2.3 Define Metrics in Domain Specific Language.
Another approach to developing traffic profiling systems that
collect multiple metrics is to allow network administrators to
specify the metrics they seek to collect by combining a fixed
set of primitive operations and combinators in a domain
specific language. Expressions in this languages are called
“queries” and a list of queries can be compiled for and installed
into switch hardware to collect exactly the metrics required
by network administrators.
Common design patterns.Rather than providing a fixedmenu
of metrics, the works in this section develop more flexible

primitive operations, often specified in a stream-processing-
like language, and allow network administrators to combine
primitive operations to precisely specify the computations
required for their metrics of interest.

The key challenges are in (i) how to define these languages
to be expressive enough to allow useful metric computations
but limited enough to still be compilable to the limited switch
hardware processing model and (ii) given such a language
and compiling method, how to optimize hardware resource
usage in the face of unknown and unpredictable traffic loads.
Key contributions.Marple [108] initiated the DSL-based ap-
proach considered in this group by proposing “language-
directed hardware design”. In particular, Marple defines a
stream-processing language with functional “map”, “filter”,
“group-by”, and “zip” primitives and describes how each of
these primitives can be mapped into switch hardware pro-
grams (or in the case of “group-by” a combined hardware,
software construct). Sonata [63] extends Marple by partition-
ing the language primitives of given queries between the
switch hardware program and a CPU-based post-processor,
thus breaking the strict limits on query complexity imposed
by switch hardware limits in Marple. Concerto [86] and Dy-
namiQ [24] further build on Sonata adding support for de-
ploying queries across distributed programmable switches
and enhanced supported for automatically adjusting resource
allocations in response to changes in traffic composition re-
spectively. EQuery [112] also proposes an expressive event-
based language which can be compiled to efficient NFA, but
does not appear to poses a concrete switch hardware imple-
mentation.
Open problems. Although the works in the section follow a
programming-language-based approach to network traffic
profiling, they connect only superficially to the rich literature
on programming language theory. In particular, providing
formal semantics as well as investigating other compiler-
level optimization techniques remain open problems. Given
the recent interest in formalizing low-level switch program-
ming interfaces [18, 44, 81, 116], this may be a promising
direction for future work.
Additionally, since aggregation operators are still imple-

mented with sketch-based primitives (e.g., Sonata’s [63] “re-
duce” operator), these works also face issues with provision-
ing and error estimation. While works like DynamiQ [24]
make some progress in this direction, they still focus on opti-
mizing processing performance (e.g., reducing the volume of
tuples exported to the CPU-based collector) and leave result
accuracy as a secondary concern. The flexibility provided by
these language-based approaches further complicates sketch
error estimation since reduction operations can be performed
on arbitrarily filtered substreams and/or pipelined for multi-
ple levels of aggregation.

11

4.2.4 Support Runtime Changes. Whereas works in
the previous categories focus on statically configuring switch
hardware to collect particular sets of metrics, another type of
work seeks to enable network adminstrators to dynamically
add and remove metrics or queries during runtime.
Common design patterns. In this approach, switch hardware
acts more as an interpreter which is dynamically configured
by a control plan to execute different aggregation computa-
tions over time. In particular, the programs compiled into
switch hardware employ an extra level of indirection to al-
low switching between different computations based on the
values of different ASIC “control” registers. A software con-
troller can then control the per-packet computation without
reinstalling the hardware program by simply writing differ-
ent values to the control registers.
These works face similar challenges in balancing expres-

siveness of their query interfaces with feasibility of imple-
mentation through register-controlled computations. Addi-
tionally, whereas in previous approaches switch resources
are statically allocated at compile time, works in this sec-
tion face a dynamic resource allocation and/or scheduling
challenge.
Key contributions. Initial efforts inDREAM [103] and SCREAM [104]
leveraged fixed sets of TCAM-based counters in the previous
generation of SDN-programmed switches to allow runtime
control of multiple parallel instances of three types of queries
(heavy hitters, hierarchical heavy hitters, and change detec-
tion) parameterized by traffic slice and aggregation granular-
ity. In addition to supporting addition and removal of queries,
these works actively adjust resource allocation among all
running queries based on accuracy signals derived for the
three particular query types.

More recently, works like Newton [157] and Flymon [154]
developed methods for dynamically adding and removing ar-
bitrary queries written in Sonata-like [63] stream processing
languages from switch hardware during runtime. The key
contribution of these works is the design of switch hardware
programs that bake enough flexibility into the hardware
pipeline so as to allow a network administrator to execute
arbitrary stream processing queries simply by runtime con-
figuration. DynATOS [102] further extends these works by
developing a novel approximation and resource schedul-
ing approach to execute the first aggregation stage in such
runtime-controlled query systems while adapting to changes
in query work load as well as changes in the underlying
network traffic.
Open problems. A key open problem in this research direc-
tion is how to implement more generic approximation and
resource management techniques that can adapt to complex
query definitions with multiple levels of aggregation (note
that the methods described in DynATOS [102] only apply

to the first level of aggregation regardless of the complexity
of the target query). This challenge also relates to the previ-
ously mentioned challenges with sketches: either methods
to dynamically adjust sketch counter allocations must be
developed, or entirely new approximation approaches must
be explored (e.g., based on sampling theory as proposed in
DynATOS [102]).

5 NETWORK PERFORMANCE
Proliferation of complex cloud-based distributed system ar-
chitectures such as themicro-servicemodel aswell as performance-
sensitive network applications such as video conferencing
continue to raise the stakes for network performance. Cloud
and other large-scale data center networks in particular face
significant challenges in detecting and debugging perfor-
mance events due to large numbers of end hosts, links, and
switches. Detailed and accurate performance monitoring is
critical in these settings in order to localize the cause of
application-level performance issues (e.g., video freezes) to
software performance or network performance.

We note that following the definitions set forth in § 2, sev-
eral widely known approaches to network performance mon-
itoring such as active approaches (e.g., PingMesh [62]), end-
host-only approaches (e.g., Trumpet [105] and Simon [57]),
and packet-mirroring approaches (e.g., EverFlow [158]) are
considered out of scope in this paper and not considered in
the following.

5.1 Detecting performance events
A large body of work develops systems to detect when per-
formance events such as packet loss or increased latency
occur and to identify the particular subsets of traffic (e.g., a
particular set of flows) impacted. The results of this monitor-
ing often take the form of alert-producing systems that log
performance events for network administrators to use when
debugging reported application-level performance issues. For
example, if a client is experiencing issues with freezing video
conferencing, the network administrator might check the
logs of the network performance monitoring system to de-
termine if lost packets of increased forwarding latency were
the cause of the freeze or if a software-level issue is at fault.
This section focuses in particular on the recent subset of per-
formance monitoring systems that leverage programmable
switch hardware for in-network aggregation.

5.1.1 Switch Only. The first group of performance mon-
itoring systems relies entirely on switch hardware to observe
network traffic and to perform initial aggregation computa-
tions, typically grouping packets into flows and reporting
flow-level performance information to a collector for post-
processing and event reporting.

12

Common design patterns. The systems in this section filter
and aggregate particular performance-related events in switch
hardware, then use CPU-based software (running on the
switch’s CPU and/or on a centralized collector) to correct
for possible errors made by the lossy hardware approxima-
tions (e.g., hash collisions). The network-wide perspective
along with inherent redundancy in the targeted data center
networks allows disentangling such errors in way which are
not possible in the single-switch scenarios considered in § 4.
Key contributions. FlowRadar [87] and LossRadar [88] make
the primary contributions in this group leveraging Invert-
ible Bloom filter Lookup Tables [60] and Invertible Bloom
filters [47] respectively. These works capture per-fivetuple
counters over very short time scales (e.g., 10 ms) using en-
coded flowsets collected in switch hardware and network-
wide decoding. The fine aggregation as well as temporal
granularity enables detecting a wide range of performance
events (in the CPU-based post processing layer) including
transient block holes, forwarding errors, ECMP load imbal-
ance.
Rather than exporting flow-level metrics and perform-

ing event detection in post-processing, several more recent
works seek to execute event detection logic directly in the
data plane and only export records describing particular
detected events to a central collector. BurstRadar [74] ini-
tiates this trend by detecting microbursts at port-level in
the egress pipeline and emitting grouped burst snapshots
summarizing all packets responsible for the burst. Hyper-
Sight [155] and NetSeer [156] extend this idea to several
other performance events (including excessive forwarding
delay, degraded throughput, long queues, out-of-order pack-
ets, and packet loss) by using a novel Bloom filter queue al-
gorithms and circular-buffer aggregation respectively. Pack-
etScope [134] offers even deeper visibility into performance
events on a single switch by extending Sonata’s [63] stream
processing language with primitives connected to different
pipelines and queuing stages within the switch ASIC.
Open problems. A key open problem with works in this cate-
gory is how to connect performance events detected at the
network level to higher-level performance metrics (e.g., at
the application level). A somewhat related open problem is
that although the works in this section target data center
networks in particular, they do not provide comprehensive
support for integrating with and interpreting the complex
layered logical structure of data center traffic, for example
virtual private clouds as discussed in [110].

5.1.2 Switch Plus End Host. The second group of per-
formance monitoring systems observes network traffic both
in switch hardware programs as well as in the network stacks
of end hosts. This allows the system to augment the packet
processing and aggregation capabilities of switch hardware

(which have strict limits on memory and number of opera-
tions) with more flexible CPU and memory resources on end
hosts.
Common design patterns.Works in this group coordinate per-
flow, per-switch monitoring by using in-band methods ini-
tiated from and collected at end host network stacks. Pack-
ets leaving end hosts may be tagged with instructions for
what performance metrics are required encoded in custom-
designed header fields. In addition to in-network aggregation
computations, switches parse and exchange information via
these header fields. Ultimately packets returning to end hosts
carry the desired performance data up to the CPU-based net-
work stack where further aggregation and post processing
can occur. In addition to expanding the processing flexibility
and memory capacity via computation at distributed end-
host CPUs, this approach also enables integrating network-
stack and application-layer information into the performance
monitoring results.
Key contributions.The first work in this categoryOmniMon [69]
develops a careful method of splitting per-flow, per-switch
packet count monitoring across switches and end hosts with
a focus on maintaining per-epoch consistency across differ-
ent observation points. In particular, they propose a hybrid
consistency model (where each packet belongs to the same
epoch) as a practical yet useful relaxation of strict consis-
tency. This enables detailed detection and localization of per-
formance events such as packet loss. LightGuardian [153],
on the other hand focuses on reducing communication over-
heads between switches and end hosts by transmitting ag-
gregate per-flow, per-switch performance metrics collected
on switches to hosts in a novel “sketchlet” format. End hosts
can incrementally aggregate received sketchlets to construct
a detailed view of packet loss, latency, and jitter metrics in
the network.

BufScope [54] further leverages end-host participation to
attach application-layer metrics (in particular, request ids) to
per-flow, per-switch metrics aggregated on switch hardware.
They integrate these methods in a comprehensive system
that ultimately provides queuing latency measurements for
every buffer along the path of an application request.
Open problems. Although works in this section demonstrate
that leveraging end-host participation in network perfor-
mance monitoring has some significant advantages, it also
potentially introduces new issues. In particular, the increased
system complexity leads to an increased number of potential
problems that could impact network performance monitor-
ing such as end host hardware and/or software failures.

13

5.2 Explaining performance events
In addition to detecting the occurrence of and connections
impacted by network performance anomalies, a complemen-
tary group of efforts seek to provide a basis for identifying
the root-cause of such anomalies. Such root causes typi-
cally go beyond the detailed performance metrics of other
works by attempting to find larger-scale correlations be-
tween performance-related events.
Common design patterns.Works in this sections trigger col-
lection and/or reporting of telemetry data only when a per-
formance event occurs via automatic or manual trigger con-
ditions. Though these systems may compute metrics con-
tinuously in switches, computations and communications
specific to debugging the root cause are only executed when
debugging is activated. The key challenge is to strike a bal-
ance such that a minimal amount of computation overhead is
required in the non-debugging state, but a maximal amount
of information can be gathered and correlated when the
debugging state is entered.
Key contributions.The first work in this area, SwitchPointer [132],
builds on previous state-less tracing approaches [130, 131]
to combine aggregation in switch hardware with path-based
debugging. In particular, SwitchPointer uses switches as a
“directory service”: when a performance event occurs and the
system enters debugging mode, the pointers stored in each
switch along the problematic path are used to lookup per-
flow counters maintained in relevant end hosts. Combined
with a novel hierarchical division of time, this enables quick
answers to questions such as which other flows were sharing
a link with flow 𝑋 at time 𝑡 (e.g., when flow 𝑋 experienced
unusual queuing delay).

SpiderMon [140], on the other hand, automatically detects
when flows experience high cumulative queuing latency
by summing the time spent by individual packets in each
queue along their network paths. When a path experiences
abnormally high latency, SpiderMon triggers export of flow-
level metrics along all paths intersecting the impacted path
by using novel “spider” control packets exchanged between
switches. A central controller receives reports generated
from switches that process spider packets and (re)constructs
debugging results for the impacted path.
Open problems. A key open problem in this group of works
is justifying the need for extra complexity to answer ques-
tions that are theoretically already covered by simpler perfor-
mance monitoring systems like FlowRadar [87]. Intuitively
as networks increase in scale and complexity (e.g., total num-
ber of nodes), the overheads of always-on systems increase
at a much faster rate compared to the on-demand systems
considered in this section. However, it’s unclear where the
advantages tip from always-on to on-demand and what other

aspects of the network setting may impact this tradeoff (e.g.,
presence of virtual routing [110], software gateways [141]).

6 NETWORK AUTOMATION
Given the large scale and complexity of modern computer
networks and the need to respond to network-based perfor-
mance and security events on very short timescales, a grow-
ing body of works seeks to develop data-driven solutions
to automate common network operations. In this section
we consider two example cases of network automation that
makes direct use of programmable switch hardware to per-
form in-network aggregation in service of a larger network
automation goal. We leave full analysis of other network au-
tomation usecases (e.g., load balancing [77, 90, 123], ML-base
security classification [15, 22]) for future studies.

6.1 Volumetric DDoS Defence
Volumetric distributed denial of service (DDoS) attacks sever
or degrade network connections by flooding particular net-
work links or end hosts with large volumes of traffic sent
from a large number of distributed sources [114, 115, 136,
138, 139, 142]. A variety of closed-loop systems have been
proposed to defend against volumetric DDoS attacks by mon-
itoring traffic to detect particular subsets of traffic associated
with DDoS techniques and actively rate-limiting or blocking
this traffic directly in programmable switch hardware.

6.1.1 Fine-Grained, CPU-Controlled Languages. The
first group of works seeking to develop in-network DDoS de-
fense using programmable switch hardware leverages hard-
ware to aggregate and detect attack traffic, but also relies on
a logically centralized controller (running in a CPU-based
system) to coordinate deployment of attack mitigation oper-
ations in switch hardware.
Common design patterns. The works in this section propose
policy languages or APIs with several primitive operations
(e.g., SYN cookies, block-lists) which network administrators
can use to construct DDoS mitigation mechanisms tailored
to particular attack behaviors. The switch hardware imple-
mentations of these mechanisms typically use similar sketch-
based approximate algorithms to deal with constrained re-
sources.
Key contributions. Poseidon [151] introduced the first policy-
language for switch hardware-based DDoS defense which
includes flexible predicates to identify common attack pack-
ets (e.g., SYN packets, UDP response packets), counters to
group and aggregatematching packets, and a set of threshold-
based actions including dropping and rate-limiting detected
attack traffic. Similar to Sonata [63], defense policies are
implemented by partitioning primitive operations across pro-
grammable switch hardware andCPU-based servers. Jaqen [92]

14

extends the approach put forth in Poseidon by adding resource-
efficient approximate switch hardware primitives tailored for
particular attack vectors such as “UnmatchAndAction” for
reflection-based attacks and two custom SYN-proxy designs.
Ripple [144] also implements a stream-processing style miti-
gation policy language on programmable switch hardware,
but leverages the concept of a global panoramic view of traf-
fic (maintained by a distributed synchronization protocol
between switches) to realize distributed defense against a
particular class of dynamic link-flooding attacks (in particu-
lar attacks like Coremelt [129] and Crossfire [76]).
Open problems.Although Poseidon [151] and Jaqen [92] both
discuss the need to dynamically reconfigure attack mitiga-
tion in the face of modern dynamic DDoS attacks, neither
provides adequate mechanisms for doing so. Jaqen does in-
clude attack detection through a refined version of Univ-
Mon [91], but it’s unclear how this detection capability pairs
with the proposed mitigation mechanisms. Both methods re-
quire compiling and installing defense mechanisms in switch
hardware which induces several seconds of downtime during
which no traffic can be processed on the switch requiring
re-routing during downtime.

These methods also propose developing finely-tuned miti-
gation mechanisms for specific attack types, leaving open
the more fundamental issue of how to defeat the inherent
imbalance the underlies DDoS’s effectiveness—it’s very easy
for the attacker to come up with a new attack vector (or
modify a known vector) whereas it’s very hard for a net-
work administrator using one of the systems discussed in
this section to anticipate and deploy mitigation methods for
all possible attack vectors.

6.1.2 Coarser-Grained, Switch-Only Policies. The sec-
ond group of works seeking to develop in-network DDoS
defense implements all stages of attack traffic aggregation,
detection, and mitigation entirely in the switch hardware
pipeline. The key advantage of these approaches is the ability
to quickly react to attack occurrences and changes in attack
traffic without control plane involvement and/or needing to
re-compile and reload new mitigation mechanisms.
Common design patterns.Theseworks propose comparatively
generic methods to both detect attack occurrences and to
separate attack and benign traffic (that can still be imple-
mented entirely in switch hardware). Due to the possibility
of false positives, they propose rate-limiting the detected
attack traffic rather than outright blocking or allowing as
considered in the previous subsection.
Key contributions. Euclid [39] describes the first DDoS de-
tection and mitigation method that operates entirely in a
single switch hardware program. The proposed method uses
sketches to estimate source and destination address entropy

(following a similar design as [83]). Relative changes in en-
tropy trigger attack detection after which Euclid applies
rate limiting to the set of source, destination pairs identified
as being most responsible for the change in entropy. ACC-
Turbo [16] describes an alternative approach to attack miti-
gation entirely within switch hardware by adapting the idea
of aggregate-based congestion control [95]. In particular, AC-
CTurbo performs simple clustering in switch hardware and
leverages a CPU-based control plane to install rate-limiting
rules on large aggregates that may be associated with attack
traffic.
Open problems. Although the works considered in this sec-
tion effectively develop DDoS mitigation approaches that
can function at runtime without interrupting packet for-
warding, they do not offer the same level of precision as
Poseidon [151] or Jaqen [92] or a path towards distributed
mitiagtion as in Ripple [144]. A key open question then is
how to improve the precision of these methods while still
working in the confines of switch hardware.

Additionally, the design pattern of maintaining all attack
mitigation related state entirely in the data plane has a side
effect of preventing network administrators from observ-
ing the mitigation system’s actions (e.g., to ensure mission-
critical traffic is not accidentally blocked bymitigation). Since
Euclid acts on a packet-by-packet level and does not store
particular source and destination addresses, it is literally
impossible to assess what traffic it will rate-limit or block.
ACCTurbo improves on this situation somewhat by exposing
aggregate-level information to the control plane, but does
not offer motivation for why particular aggregates should
be considered attack traffic—in particular, the aggregates
reported by ACCTurbo may contain a mix of both attack
and benign traffic since switch resource limitations require
relatively coarse-grained aggregates compared to the source,
destination level considered in Euclid. Overall, these observa-
tions motivate an additional open problem of how to balance
interpretability of decisions made by these types of defense
systems with sufficient precision of mitigation actions.

6.2 Flow Offloading
Certain types of network processing platforms (e.g., cloud
gateways [110]) divide traffic processing between hardware
and software platforms in order to leverage both the larger
memory available in software as well as the higher through-
put available in hardware [120]. These systems monitor traf-
fic to automatically select a subset of network flows which
are most advantageous to offload to a limited-capacity, high-
throughput hardware platform. The traffic monitoring task
driving such systems aggregates packets into flows (e.g.,
based on fivetuple) and reports the top-𝑛 flows with the
highest packet rates.

15

Common design patterns. These works place programmable
switch hardware in front of the CPU-based routing system.
Over time, certain heavy and stable flows or table entries
(e.g., routing policies) are identified in the CPU system and
added to switch hardware to process traffic for these flows
or entries before their packets reach the CPU. Hardware
also keeps track of utilization (via simple counters) of each
offloaded entry and reports these counters to the CPU to
help prioritize which hardware entries to move back to the
CPU when they terminate or become less heavy.
Key contributions. Sailfish [110] motivates the need for hy-
brid hardware, software design of cloud gateways and presents
several mechanisms (e.g., mapping large tables across mul-
tiple switch pipelines) to maximize the number of flows
which can be processed in switch hardware. Elixir [141] ex-
tends this hybrid design by developing novel algorithms
targeted specifically at efficiently detecting and offloading
bursty flows, which have a disproportionately negative im-
pact on CPU performance.
Open problems. Works so far in this area inherit the “scale
via adding more CPU cores” idea which made the CPU-based
cloud gateway idea originally feasible. However, there’s still
a question of how the monitoring capabilities in switch hard-
ware could be used to further reduce CPU resource require-
ments. For example, hardware could help with the top-𝑛
and bottom-𝑛 detection problems required to make decisions
about which flows / entries should be moved between hard-
ware and software.

7 SUMMARY & FUTURE OUTLOOK
The research efforts discussed in this work trace the ramifi-
cations of programmable switch hardware on how network
administrators extract critical insights about the traffic flow-
ing through their networks over the last 10 years. We dis-
cussed how a wide range of metrics have been proposed and
implemented for various traffic profiling purposes (§ 4), how
detailed traffic monitoring enables fast detection and expla-
nation of performance degradations in data center networks
(§ 5), and how specific monitoring data has been incorpo-
rated in two particular end-to-end network automation tasks
(§ 6). In each of these application areas, we observed the dif-
ferent types of aggregation computations considered as well
as the particular classes of algorithms (e.g., sketches [36])
and techniques for realizing implementation of these algo-
rithms in systems centered around programmable switch
hardware.
We also observed that several open research problems

remain in each of the distinct categories of works considered.
Looking across all of these categories, we distill these open
problems into three high-level ideas for future research.

Idea 1: careful reconsideration of sketch-based approaches.
The simple per-packet update procedures, flexibility to es-
timate a wide range of different aggregation computations,
and existence of rigorous statistical analysis of error bounds
leads to sketch-based algorithms playing a significant roll in
traffic monitoring literature. However, from a practical ap-
plication perspective, sketches are fundamentally limited in
the dependence of their accuracy on underlying traffic prop-
erties (e.g., the number of observed flow keys). We anticipate
developing novel methods to the aggregation computations
required by network traffic monitoring applications that can
execute in constrained switch hardware while also adapt-
ing to differing traffic characteristics (e.g., changes in the
number of flow keys observed) will be a critical direction for
future research. These methods may be developed through
extension of current sketch-based techniques or may require
considering different forms of approximation (e.g., cluster
sampling as used in DynATOS [102]).
Idea 2: monitoring tasks should be driven by real-life
concerns like network automation problems. Although
works like Sonata [63], DynATOS [102], and SketchLib [106]
implement systems that can simultaneously compute a wide
range of traffic metrics, it is not always clear which met-
rics are most critical for network administrators and how to
design interfaces to actually support a wide range of moni-
toring tasks (e.g., multiple network automation systems). To
illustrate this disconnect, consider the 11 monitoring queries
proposed in Sonata and subsequently used to evaluate several
other works [69, 86, 102, 157]. Although these queries effec-
tively demonstrate the possibilities of the stream-processing
type of interface, it’s unclear how they relate to actual net-
work automation requirements (e.g., the types of metrics
used by DDoS defense systems from § 6.1). We argue that
the relatively recent burst of research activity in concrete
network automation applications (e.g., all works considered
in § 6 are published during or after 2020) represents the
leading edge of a much richer body of future research into
these kinds of concrete applications. Once a sufficient body
of such examples have been considered, perhaps the question
of how to design a generic interface and implementation for
network traffic monitoring can be revisited to much greater
effect.
Idea 3: improved data sets for evaluation.A key practical
challenge faced by traffic monitoring research in general is
the sparsity of publicly-available data sets to use in evaluat-
ing proposed methods and techniques. This issue is amplified
in switch hardware based systems due the fact that switches
ultimately are expected to process extremely high data rates
(e.g., 2 Tbps) and have a central position in network topolo-
gies (e.g., traffic might come from one of hundreds of ports).
Since switch processing operates at a per-packet level, evalu-
ation of switch-based systems requires packet-level traces or

16

traffic generation techniques. Moreover, these traces should
contain relevant types of traffic for the network settings
considered (e.g., ISPs, data centers). Additionally, works that
seek to detect certain traffic events require traces that con-
tain (ideally a large number of) relevant events combined
with normal background traffic.

Many of the traffic profiling works discussed in previous
sections use some combination of two publicly available
packet-level traffic datasets: the CAIDA Internet traces [3]
and MAWILab [51]. These data sets both come from single
links in large ISP networks and only provide between 15 min-
utes and one hour worth of data at limited data rates (around
5 Gbps) compared to switch throughput. While these traces
provide useful confirmation of a system’s ability to handle
certain types of traffic and can be sped up to closer approach
realistic workloads in multi-port switches (as in Sonata’s [63]
evaluation), in many cases it’s unclear if they actually con-
tain the types of events systems are seeking to detect (e.g.,
the security-related events considered in Sonata [63]) The
situation is even more challenging in network automation
works where precise types of traffic scenarios are considered
and decisions by the network automation system may di-
rectly impact observed traffic behavior. As a result, most of
the DDoS defense works described in § 6.1 use simplistic syn-
thetic traffic generation methods (e.g., using MoonGen [46])
or outdated public data sets [4, 117] whereas the flow of-
floading works described in § 6.2 primarily rely on private
traces from sponsoring organization’s data centers. Given the
vested interest of data owners (e.g., cloud service providers,
ISPs) in maintaining confidentiality of customer and inter-
nal information, solutions to this problem will likely require
significant creative effort from the research community (see
for example [85]).

REFERENCES
[1] [n. d.]. Barefoot Networks - Wikipedia. https://en.wikipedia.org/

wiki/Barefoot_Networks. ([n. d.]). Accessed: 2023-03-05.
[2] [n. d.]. Behavioral Model Repository. https://github.com/p4lang/

behavioral-model. ([n. d.]). Accessed: 2023-03-05.
[3] [n. d.]. The CAIDA UCSD Anonymized Internet Traces Dataset -

2019. https://www.caida.org/data/monitors/passive-equinix-nyc.xml.
([n. d.]).

[4] [n. d.]. The CAIDA UCSD "DDoS Attack 2007" Dataset. https://www.
caida.org/catalog/datasets/ddos-20070804_dataset. ([n. d.]). Accessed:
2023-03-08.

[5] [n. d.]. Intel Exits Another Non-Core Business. https://www.fool.com/
investing/2023/01/29/intel-exits-another-non-core-business/. ([n.
d.]). Accessed: 2023-03-05.

[6] [n. d.]. Intel Tofino Series. https://www.intel.com/content/www/
us/en/products/details/network-io/programmable-ethernet-switch/
tofino-series.html. ([n. d.]). Accessed: 2023-02-20.

[7] [n. d.]. Intel’s Datacenter Business Goes from Bad to Worse, With
Worst Still to Come. https://www.nextplatform.com/2023/01/27/
intels-datacenter-business-goes-from-bad-to-worse-with-worst-still-to-come/.
([n. d.]). Accessed: 2023-03-05.

[8] [n. d.]. NetFPGA. https://netfpga.org/. ([n. d.]). Accessed: 2023-03-05.
[9] [n. d.]. NPL-Open, High-level language for developing feature-rich

solutions for programmable networking platforms. https://nplang.
org/. ([n. d.]). Accessed: 2023-03-08.

[10] [n. d.]. NSDI ’22 | USENIX. https://www.usenix.org/conference/
nsdi22. ([n. d.]). Accessed: 2023-03-08.

[11] [n. d.]. Traffic monitoring using sFlow. https://sflow.org/
sFlowOverview.pdf. ([n. d.]). Accessed: 2023-02-20.

[12] [n. d.]. Welcome | acm sigcomm. https://sigcomm.org/events/
sigcomm-conference. ([n. d.]). Accessed: 2023-03-08.

[13] [n. d.]. The Zeek Network Security Monitor. https://zeek.org/. ([n.
d.]). Accessed December 2022.

[14] Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan. 2022. HeteroS-
ketch: Coordinating Network-wide Monitoring in Heterogeneous
and Dynamic Networks. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). 719–741.

[15] Aristide Tanyi-Jong Akem, Michele Gucciardo, Marco Fiore, et al.
2023. Flowrest: Practical Flow-Level Inference in Programmable
Switches with Random Forests. In IEEE International Conference on
Computer Communications.

[16] Albert Gran Alcoz, Martin Strohmeier, Vincent Lenders, and Laurent
Vanbever. 2022. Aggregate-based congestion control for pulse-wave
DDoS defense. In Proceedings of the ACM SIGCOMM 2022 Conference.
693–706.

[17] Ali AlSabeh, Joseph Khoury, Elie Kfoury, Jorge Crichigno, and Elias
Bou-Harb. 2022. A survey on security applications of p4 pro-
grammable switches and a stride-based vulnerability assessment.
Computer Networks 207 (2022), 108800.

[18] Anoud Alshnakat, Didrik Lundberg, Roberto Guanciale, Mads Dam,
and Karl Palmskog. 2022. HOL4P4: semantics for a verified data plane.
In Proceedings of the 5th International Workshop on P4 in Europe. 39–
45.

[19] Nikos Anerousis, Prosper Chemouil, Aurel A Lazar, Nelu Mihai, and
Stephen B Weinstein. 2021. The origin and evolution of open pro-
grammable networks and SDN. IEEE Communications Surveys &
Tutorials 23, 3 (2021), 1956–1971.

[20] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Boon Thau Loo, and Ge-
off Outhred. 2018. 007: Democratically finding the cause of packet
drops. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). 419–435.

[21] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostic, Gerald Q
Maguire Jr, Panagiotis Papadimitratos, and Marco Chiesa. 2020. A
High-Speed Load-Balancer Design with Guaranteed Per-Connection-
Consistency.. In NSDI. 667–683.

[22] Diogo Barradas, Nuno Santos, Luís Rodrigues, Salvatore Signorello,
Fernando MV Ramos, and André Madeira. 2021. FlowLens: Enabling
Efficient Flow Classification for ML-based Network Security Applica-
tions.. In NDSS.

[23] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich.
2020. Designing heavy-hitter detection algorithms for programmable
switches. IEEE/ACM Transactions on Networking 28, 3 (2020), 1172–
1185.

[24] Rohan Bhatia, Arpit Gupta, Rob Harrison, Daniel Lokshtanov, and
Walter Willinger. 2021. DynamiQ: Planning for dynamics in network
streaming analytics systems. arXiv preprint arXiv:2106.05420 (2021).

[25] Roberto Bifulco and Gábor Rétvári. 2018. A survey on the pro-
grammable data plane: Abstractions, architectures, and open prob-
lems. In 2018 IEEE 19th International Conference on High Performance
Switching and Routing (HPSR). IEEE, 1–7.

17

https://en.wikipedia.org/wiki/Barefoot_Networks
https://en.wikipedia.org/wiki/Barefoot_Networks
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://www.caida.org/data/monitors/passive-equinix-nyc.xml
https://www.caida.org/catalog/datasets/ddos-20070804_dataset
https://www.caida.org/catalog/datasets/ddos-20070804_dataset
https://www.fool.com/investing/2023/01/29/intel-exits-another-non-core-business/
https://www.fool.com/investing/2023/01/29/intel-exits-another-non-core-business/
https://www.intel.com/content/www/us/en/products/details/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/details/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/details/network-io/programmable-ethernet-switch/tofino-series.html
https://www.nextplatform.com/2023/01/27/intels-datacenter-business-goes-from-bad-to-worse-with-worst-still-to-come/
https://www.nextplatform.com/2023/01/27/intels-datacenter-business-goes-from-bad-to-worse-with-worst-still-to-come/
https://netfpga.org/
https://nplang.org/
https://nplang.org/
https://www.usenix.org/conference/nsdi22
https://www.usenix.org/conference/nsdi22
https://sflow.org/sFlowOverview.pdf
https://sflow.org/sFlowOverview.pdf
https://sigcomm.org/events/sigcomm-conference
https://sigcomm.org/events/sigcomm-conference
https://zeek.org/

[26] Kevin Borders, Jonathan Springer, and Matthew Burnside. 2012.
Chimera: A declarative language for streaming network traffic analy-
sis. In Proceedings of the USENIX Security Symposium. 365–379.

[27] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, NickMcKeown, Jen-
nifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87–95.

[28] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013.
Forwarding metamorphosis: Fast programmable match-action pro-
cessing in hardware for SDN. ACM SIGCOMM Computer Communi-
cation Review 43, 4 (2013), 99–110.

[29] Vladimir Braverman and Rafail Ostrovsky. 2010. Zero-one frequency
laws. In Proceedings of the forty-second ACM symposium on Theory of
computing. 281–290.

[30] Vladimir Braverman and Rafail Ostrovsky. 2013. Generalizing the
layering method of indyk and woodruff: Recursive sketches for
frequency-based vectors on streams. In Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques:
16th International Workshop, APPROX 2013, and 17th International
Workshop, RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013.
Proceedings. Springer, 58–70.

[31] Moses Charikar, Kevin Chen, andMartin Farach-Colton. 2002. Finding
frequent items in data streams. In Automata, Languages and Program-
ming: 29th International Colloquium, ICALP 2002 Málaga, Spain, July
8–13, 2002 Proceedings 29. Springer, 693–703.

[32] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and
Ori Rottenstreich. 2018. Catching the microburst culprits with snappy.
In Proceedings of the Afternoon Workshop on Self-Driving Networks.
22–28.

[33] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer
Rexford. 2020. BeauCoup: Answering Many Network Traffic Queries,
One Memory Update at a Time. In Proceedings of the conference of
the ACM Special Interest Group on Data Communication (SIGCOMM).
226–239.

[34] Francesco Ciaccia, Ivan Romero, Oriol Arcas-Abella, Diego Montero,
René Serral-Gracià, and Mario Nemirovsky. 2020. Sabes: Statistical
available bandwidth estimation from passive tcp measurements. In
2020 IFIP Networking Conference (Networking). IEEE, 743–748.

[35] Benoit Claise. 2004. Cisco systems netflow services export version 9.
Technical Report.

[36] Graham Cormode and Shan Muthukrishnan. 2005. An improved data
stream summary: the count-min sketch and its applications. Journal
of Algorithms 55, 1 (2005), 58–75.

[37] Paolo Costa, Austin Donnelly, Antony IT Rowstron, and Greg O’Shea.
2012. Camdoop: Exploiting In-network Aggregation for Big Data
Applications.. In NSDI, Vol. 12. 3–3.

[38] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav
Shkapenyuk. 2003. Gigascope: a stream database for network applica-
tions. In Proceedings of the 2003 ACM SIGMOD international conference
on Management of data. ACM, 647–651.

[39] Alexandre da Silveira Ilha, Ângelo Cardoso Lapolli, Jonatas Adilson
Marques, and Luciano Paschoal Gaspary. 2020. Euclid: A fully in-
network, p4-based approach for real-time ddos attack detection and
mitigation. IEEE Transactions on Network and Service Management
(2020).

[40] Bruno LDalmazo, Jonatas AMarques, Lucas R Costa, Michel S Bonfim,
Ranyelson N Carvalho, Anderson S da Silva, Stenio Fernandes, Jacir L
Bordim, Eduardo Alchieri, Alberto Schaeffer-Filho, et al. 2021. A
systematic review on distributed denial of service attack defense
mechanisms in programmable networks. International Journal of

Network Management 31, 6 (2021), e2163.
[41] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé.

2016. Paxos made switch-y. ACM SIGCOMM Computer Communica-
tion Review 46, 2 (2016), 18–24.

[42] Tooska Dargahi, Alberto Caponi, Moreno Ambrosin, Giuseppe
Bianchi, and Mauro Conti. 2017. A survey on the security of stateful
SDN data planes. IEEE Communications Surveys & Tutorials 19, 3
(2017), 1701–1725.

[43] J Davin, JD Case, M Fedor, and ML Schoffstall. 1990. Simple network
management protocol (SNMP). RFC 1157.

[44] Ryan Doenges, Mina Tahmasbi Arashloo, Santiago Bautista, Alexan-
der Chang, Newton Ni, Samwise Parkinson, Rudy Peterson, Alaia
Solko-Breslin, Amanda Xu, and Nate Foster. 2021. Petr4: formal foun-
dations for p4 data planes. Proceedings of the ACM on Programming
Languages 5, POPL (2021).

[45] Svante Ekelin, Martin Nilsson, Erik Hartikainen, Andreas Johnsson,
J-E Mangs, Bob Melander, and Mats Bjorkman. 2006. Real-time mea-
surement of end-to-end available bandwidth using kalman filtering.
In 2006 ieee/ifip network operations and management symposium noms
2006. IEEE, 73–84.

[46] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, FlorianWohl-
fart, and Georg Carle. 2015. MoonGen: A Scriptable High-Speed
Packet Generator. In Internet Measurement Conference 2015 (IMC’15).
Tokyo, Japan.

[47] David Eppstein, Michael T Goodrich, Frank Uyeda, and George Vargh-
ese. 2011. What’s the difference? Efficient set reconciliation without
prior context. ACM SIGCOMM Computer Communication Review 41,
4 (2011), 218–229.

[48] Cristian Estan, Stefan Savage, and George Varghese. 2003. Automati-
cally inferring patterns of resource consumption in network traffic.
In Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications. 137–148.

[49] Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2014. The road
to SDN: an intellectual history of programmable networks. ACM
SIGCOMM Computer Communication Review 44, 2 (2014), 87–98.

[50] Rodrigo Fonseca, Tianrong Zhang, Karl Deng, and Lihua Yuan. 2019.
dShark: A general, easy to program and scalable framework for ana-
lyzing in-network packet traces. (2019).

[51] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda.
2010. MAWILab: Combining Diverse Anomaly Detectors for Auto-
mated Anomaly Labeling and Performance Benchmarking. In Pro-
ceedings of the ACM Conference on emerging Networking EXperiments
and Technologies (CoNEXT). 12.

[52] Martino Fornasa andMassimoMaresca. 2011. Passive Access Capacity
Estimation through the Analysis of Packet Bursts. In Access Networks:
5th International ICST Conference on Access Networks, AccessNets 2010
and First ICST International Workshop on Autonomic Networking and
Self-Management in Access Networks, SELFMAGICNETS 2010, Budapest,
Hungary, November 3-5, 2010, Revised Selected Papers 5. Springer, 83–
99.

[53] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. 2011. Frenetic:
A network programming language. ACM Sigplan Notices 46, 9 (2011),
279–291.

[54] Kaihui Gao, Chen Sun, Shuai Wang, Dan Li, Yu Zhou,
Hongqiang Harry Liu, Lingjun Zhu, and Ming Zhang. 2022.
Buffer-based End-to-end Request Event Monitoring in the Cloud.
In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). 829–843.

[55] Ya Gao and Zhenling Wang. 2021. A review of P4 programmable data
planes for network security. Mobile Information Systems 2021 (2021),
1–24.

18

[56] Nadeen Gebara, Manya Ghobadi, and Paolo Costa. 2021. In-network
aggregation for shared machine learning clusters. Proceedings of
Machine Learning and Systems 3 (2021), 829–844.

[57] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel
Rosenblum, and Amin Vahdat. 2019. SIMON: A simple and scalable
method for sensing, inference and measurement in data center net-
works. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19). 549–564.

[58] Phillip B Gibbons. 2001. Distinct sampling for highly-accurate an-
swers to distinct values queries and event reports. In VLDB, Vol. 1.
541–550.

[59] Jose Gomez, Elie F Kfoury, Jorge Crichigno, and Gautam Srivastava.
2022. A survey on TCP enhancements using P4-programmable de-
vices. Computer Networks 212 (2022), 109030.

[60] Michael T Goodrich and Michael Mitzenmacher. 2011. Invertible
bloom lookup tables. In 2011 49th Annual Allerton Conference on
Communication, Control, and Computing (Allerton). IEEE, 792–799.

[61] Richard L Graham, Devendar Bureddy, Pak Lui, Hal Rosenstock, Gilad
Shainer, Gil Bloch, Dror Goldenerg, Mike Dubman, Sasha Kotchu-
bievsky, Vladimir Koushnir, et al. 2016. Scalable hierarchical aggre-
gation protocol (SHArP): a hardware architecture for efficient data
reduction. In 2016 First International Workshop on Communication
Optimizations in HPC (COMHPC). IEEE, 1–10.

[62] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al.
2015. Pingmesh: A large-scale system for data center network latency
measurement and analysis. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication. 139–152.

[63] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. 2018. Sonata: Query-driven streaming
network telemetry. In Proceedings of the conference of the ACM Special
Interest Group on Data Communication (SIGCOMM). 357–371.

[64] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. 2018.
Network-wide heavy hitter detection with commodity switches. In
Proceedings of the Symposium on SDN Research. 1–7.

[65] Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner,
Vladimir Gurevich, Florian Zeiger, Reinhard Frank, and Michael
Menth. 2022. A survey on data plane programming with p4: Fun-
damentals, advances, and applied research. Journal of Network and
Computer Applications (2022), 103561.

[66] StefanHeule, Marc Nunkesser, and Alexander Hall. 2013. Hyperloglog
in practice: Algorithmic engineering of a state of the art cardinality es-
timation algorithm. In Proceedings of the 16th International Conference
on Extending Database Technology. 683–692.

[67] Qun Huang, Patrick PC Lee, and Yungang Bao. 2018. Sketchlearn:
Relieving user burdens in approximate measurement with automated
statistical inference. In Proceedings of the conference of the ACM Special
Interest Group on Data Communication (SIGCOMM). 576–590.

[68] Qun Huang, Siyuan Sheng, Xiang Chen, Yungang Bao, Rui Zhang,
Yanwei Xu, and Gong Zhang. 2021. Toward Nearly-Zero-Error Sketch-
ing via Compressive Sensing.. In NSDI. 1027–1044.

[69] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng Zhu, and
Yungang Bao. 2020. Omnimon: Re-architecting network telemetry
with resource efficiency and full accuracy. In Proceedings of the con-
ference of the ACM Special Interest Group on Data Communication
(SIGCOMM). 404–421.

[70] Nikita Ivkin, Edo Liberty, Kevin Lang, Zohar Karnin, and Vladimir
Braverman. 2022. Streaming quantiles algorithms with small space
and update time. Sensors 22, 24 (2022), 9612.

[71] Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. 2019.
Qpipe: Quantiles sketch fully in the data plane. In Proceedings of the
15th International Conference on Emerging Networking Experiments

And Technologies. 285–291.
[72] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,

Nate Foster, Changhoon Kim, and Ion Stoica. 2017. Netcache: Balanc-
ing key-value stores with fast in-network caching. In Proceedings of
the 26th Symposium on Operating Systems Principles. 121–136.

[73] Lavanya Jose and Minlan Yu. 2011. Online measurement of large
traffic aggregates on commodity switches. In Workshop on Hot Topics
in Management of Internet, Cloud, and Enterprise Networks and Services
(Hot-ICE 11).

[74] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau
Loo. 2018. BurstRadar: Practical real-time microburst monitoring for
datacenter networks. In Proceedings of the 9th Asia-Pacific Workshop
on Systems. 1–8.

[75] Enio Kaljic, Almir Maric, Pamela Njemcevic, and Mesud Hadzialic.
2019. A survey on data plane flexibility and programmability in
software-defined networking. IEEE Access 7 (2019), 47804–47840.

[76] Min Suk Kang, Soo Bum Lee, and Virgil D Gligor. 2013. The crossfire
attack. In 2013 IEEE symposium on security and privacy. IEEE, 127–
141.

[77] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. 2016. Hula: Scalable load balancing using pro-
grammable data planes. In Proceedings of the Symposium on SDN
Research. 1–12.

[78] Elie F Kfoury, Jorge Crichigno, and Elias Bou-Harb. 2021. An ex-
haustive survey on p4 programmable data plane switches: Taxonomy,
applications, challenges, and future trends. IEEE Access 9 (2021),
87094–87155.

[79] Faisal Khan, Nicholas Hosein, Soheil Ghiasi, Chen-Nee Chuah, and
Puneet Sharma. 2013. Streaming solutions for fine-grained network
traffic measurements and analysis. IEEE/ACM Transactions On Net-
working 22, 2 (2013), 377–390.

[80] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. 2019. Con-
fluo: Distributed Monitoring and Diagnosis Stack for High-speed
Networks.. In NSDI. 421–436.

[81] Ali Kheradmand and Grigore Rosu. 2018. P4K: A formal semantics of
P4 and applications. arXiv preprint arXiv:1804.01468 (2018).

[82] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun
Lee, Vyas Sekar, and Srinivasan Seshan. 2020. Tea: Enabling state-
intensive network functions on programmable switches. In Proceed-
ings of the Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies, architectures,
and protocols for computer communication. 90–106.

[83] Yu-Kuen Lai, Ku-Yeh Shih, Po-Yu Huang, Ho-Ping Lee, Yu-Jau Lin, Te-
Lung Liu, and Jim Hao Chen. 2019. Sketch-based entropy estimation
for network traffic analysis using programmable data plane ASICs.
In 2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). IEEE, 1–2.

[84] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei
Wu, Aditya Akella, and Michael M Swift. 2021. ATP: In-network
Aggregation for Multi-tenant Learning.. In NSDI, Vol. 21. 741–761.

[85] Yukhe Lavinia, Ramakrishnan Durairajan, Reza Rejaie, and Walter
Willinger. 2020. Challenges in using ML for networking research:
How to label if you must. In Proceedings of the Workshop on Network
Meets AI & ML. 21–27.

[86] Yiran Li, Kevin Gao, Xin Jin, and Wei Xu. 2020. Concerto: cooperative
network-wide telemetry with controllable error rate. In Proceedings
of the 11th ACM SIGOPS Asia-Pacific Workshop on Systems. 114–121.

[87] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016.
FlowRadar: a better NetFlow for data centers. In 13th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 16).
311–324.

19

[88] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. Loss-
radar: Fast detection of lost packets in data center networks. In Pro-
ceedings of the 12th International on Conference on emerging Network-
ing EXperiments and Technologies. 481–495.

[89] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy,
and Kishore Atreya. 2017. Incbricks: Toward in-network computa-
tion with an in-network cache. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems. 795–809.

[90] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon
Kim, Vladimir Braverman, Xin Jin, and Ion Stoica. 2019. DistCache:
Provable Load Balancing for Large-Scale Storage Systems with Dis-
tributed Caching.. In FAST, Vol. 19. 143–157.

[91] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. 2016. One sketch to rule them all: Rethinking
network flow monitoring with univmon. In Proceedings of the 2016
ACM SIGCOMM Conference. ACM, 101–114.

[92] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee,
Changhoon Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas
Sekar. 2021. Jaqen: A High-Performance Switch-Native Approach
for Detecting and Mitigating Volumetric DDoS Attacks with Pro-
grammable Switches. In 30th USENIX Security Symposium (USENIX
Security 21).

[93] Zaoxing Liu, Samson Zhou, Ori Rottenstreich, Vladimir Braverman,
and Jennifer Rexford. 2020. Memory-efficient performance monitor-
ing on programmable switches with lean algorithms. In Symposium
on Algorithmic Principles of Computer Systems. SIAM, 31–44.

[94] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, and Arvind
Krishnamurthy. 2018. Parameter hub: a rack-scale parameter server
for distributed deep neural network training. In Proceedings of the
ACM Symposium on Cloud Computing. 41–54.

[95] Ratul Mahajan, Steven M Bellovin, Sally Floyd, John Ioannidis, Vern
Paxson, and Scott Shenker. 2002. Controlling high bandwidth ag-
gregates in the network. ACM SIGCOMM Computer Communication
Review 32, 3 (2002), 62–73.

[96] Jianning Mai, Chen-Nee Chuah, Ashwin Sridharan, Tao Ye, and Hui
Zang. 2006. Is sampled data sufficient for anomaly detection?. In Pro-
ceedings of the 6th ACM SIGCOMM conference on Internet measurement.
165–176.

[97] Luo Mai, Lukas Rupprecht, Abdul Alim, Paolo Costa, Matteo Migli-
avacca, Peter Pietzuch, and Alexander L Wolf. 2014. Netagg: Using
middleboxes for application-specific on-path aggregation in data cen-
tres. In Proceedings of the 10th ACM International on Conference on
emerging Networking Experiments and Technologies. 249–262.

[98] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
2008. OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM computer communication review 38, 2 (2008), 69–74.

[99] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Effi-
cient computation of frequent and top-k elements in data streams. In
Database Theory-ICDT 2005: 10th International Conference, Edinburgh,
UK, January 5-7, 2005. Proceedings 10. Springer, 398–412.

[100] Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid.
2021. The programmable data plane: Abstractions, architectures,
algorithms, and applications. ACM Computing Surveys (CSUR) 54, 4
(2021), 1–36.

[101] Gregory T Minton and Eric Price. 2014. Improved concentration
bounds for count-sketch. In Proceedings of the twenty-fifth annual
ACM-SIAM symposium on Discrete algorithms. SIAM, 669–686.

[102] Chris Misa, Walt O’Connor, Ramakrishnan Durairajan, Reza Rejaie,
and Walter Willinger. 2022. Dynamic Scheduling of Approximate
Telemetry Queries. In 19th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 22). 701–717.
[103] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat.

2014. DREAM: Dynamic resource allocation for software-defined
measurement. ACM SIGCOMM Computer Communication Review 44,
4 (2014), 419–430.

[104] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat.
2015. SCREAM: Sketch resource allocation for software-defined
measurement. In Proceedings of the ACM Conference on emerging
Networking EXperiments and Technologies (CoNEXT). 14.

[105] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat.
2016. Trumpet: Timely and precise triggers in data centers. In Pro-
ceedings of the conference of the ACM Special Interest Group on Data
Communication (SIGCOMM). 129–143.

[106] Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, and Peter
Steenkiste. 2022. SketchLib: Enabling Efficient Sketch-based Mon-
itoring on Programmable Switches. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22). 743–759.

[107] Jad Naous, Glen Gibb, Sara Bolouki, and Nick McKeown. 2008. NetF-
PGA: reusable router architecture for experimental research. In Pro-
ceedings of the ACM workshop on Programmable routers for extensible
services of tomorrow. 1–7.

[108] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,
and Changhoon Kim. 2017. Language-directed hardware design for
network performance monitoring. In Proceedings of the conference of
the ACM Special Interest Group on Data Communication (SIGCOMM).
85–98.

[109] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing.
Journal of Algorithms 51, 2 (2004), 122–144.

[110] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu, Yisong
Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan Lu, et al. 2021. Sailfish:
Accelerating cloud-scale multi-tenant multi-service gateways with
programmable switches. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference. 194–206.

[111] Vern Paxson. 1999. Bro: a system for detecting network intruders in
real-time. Computer networks 31, 23-24 (1999), 2435–2463.

[112] Yongyi Ran, Xiaoban Wu, Peilong Li, Chen Xu, Yan Luo, and Liang-
Min Wang. 2018. Equery: Enable event-driven declarative queries in
programmable network measurement. In NOMS 2018-2018 IEEE/IFIP
Network Operations and Management Symposium. IEEE, 1–7.

[113] Marshall T Rose and Keith McCloghrie. 1990. Structure and Identi-
fication of Management Information for TCP/IP-based internets. RFC
1155.

[114] Christian Rossow. 2014. Amplification Hell: Revisiting Network
Protocols for DDoS Abuse.. In NDSS. 1–15.

[115] Lauren Rudman and B Irwin. 2015. Characterization and analysis of
NTP amplification based DDoS attacks. In 2015 Information Security
for South Africa (ISSA). IEEE, 1–5.

[116] Fabian Ruffy, Tao Wang, and Anirudh Sivaraman. 2020. Gauntlet:
Finding bugs in compilers for programmable packet processing. In
Proceedings of the 14th USENIX Conference on Operating Systems De-
sign and Implementation. 683–699.

[117] José Jair Santanna, Roland van Rijswijk-Deij, Rick Hofstede, Anna
Sperotto, Mark Wierbosch, Lisandro Zambenedetti Granville, and
Aiko Pras. 2015. Booters—An analysis of DDoS-as-a-service attacks.
In 2015 IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM). IEEE, 243–251.

[118] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini,
and Panos Kalnis. 2017. In-network computation is a dumb idea
whose time has come. In Proceedings of the 16th ACM Workshop on
Hot Topics in Networks. 150–156.

20

[119] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos
Kalnis, Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref,
Dan RK Ports, and Peter Richtárik. 2019. Scaling distributed machine
learningwith in-network aggregation. arXiv preprint arXiv:1903.06701
(2019).

[120] Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sherwood, and Xin
Huang. 2012. Leveraging Zipf’s law for traffic offloading. ACM
SIGCOMM Computer Communication Review 42, 1 (2012), 16–22.

[121] Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. 2022. Contin-
uous in-network round-trip time monitoring. In Proceedings of the
ACM SIGCOMM 2022 Conference. 473–485.

[122] Mohamed A Sharaf, Jonathan Beaver, Alexandros Labrinidis, and
Panos K Chrysanthis. 2003. TiNA: A scheme for temporal coherency-
aware in-network aggregation. In Proceedings of the 3rd ACM inter-
national workshop on Data engineering for wireless and mobile access.
69–76.

[123] Naveen Kr Sharma, Antoine Kaufmann, Thomas E Anderson, Arvind
Krishnamurthy, Jacob Nelson, and Simon Peter. 2017. Evaluating the
Power of Flexible Packet Processing for Network Resource Allocation..
In NSDI. 67–82.

[124] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim,
Mohammad Alizadeh, Hari Balakrishnan, George Varghese, Nick
McKeown, and Steve Licking. 2016. Packet transactions: High-level
programming for line-rate switches. In Proceedings of the 2016 ACM
SIGCOMM Conference. 15–28.

[125] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich,
Shan Muthukrishnan, and Jennifer Rexford. 2017. Heavy-hitter de-
tection entirely in the data plane. In Proceedings of the Symposium on
SDN Research. 164–176.

[126] John Sonchack, Adam J Aviv, Eric Keller, and Jonathan M Smith. 2018.
Turboflow: Information rich flow record generation on commodity
switches. In Proceedings of the Thirteenth EuroSys Conference. 1–16.

[127] John Sonchack, Oliver Michel, Adam J Aviv, Eric Keller, and
Jonathan M Smith. 2018. Scaling hardware accelerated network
monitoring to concurrent and dynamic queries with *flow. In 2018
USENIX Annual Technical Conference (USENIXATC 18). 823–835.

[128] Cha Hwan Song, Pravein Govindan Kannan, Bryan Kian Hsiang
Low, and Mun Choon Chan. 2020. FCM-sketch: generic network
measurements with data plane support. In Proceedings of the 16th
International Conference on emerging Networking EXperiments and
Technologies. 78–92.

[129] Ahren Studer and Adrian Perrig. 2009. The coremelt attack. In Euro-
pean Symposium on Research in Computer Security. Springer, 37–52.

[130] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2015. Cher-
rypick: Tracing packet trajectory in software-defined datacenter net-
works. In Proceedings of the 1st ACM SIGCOMM Symposium on Soft-
ware Defined Networking Research. 1–7.

[131] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2016. Sim-
plifying Datacenter Network Debugging with PathDump. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). 233–248.

[132] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2018. Dis-
tributed network monitoring and debugging with SwitchPointer. In
Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 453–456.

[133] Lu Tang, QunHuang, and Patrick PC Lee. 2020. SpreadSketch: Toward
invertible and network-wide detection of superspreaders. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE,
1608–1617.

[134] Ross Teixeira, Rob Harrison, Arpit Gupta, and Jennifer Rexford. 2020.
PacketScope: Monitoring the packet lifecycle inside a switch. In Pro-
ceedings of the Symposium on SDN Research. 76–82.

[135] Daniel Ting. 2018. Data sketches for disaggregated subset sum and
frequent item estimation. In Proceedings of the 2018 International
Conference on Management of Data. 1129–1140.

[136] Alethea Toh, Anupam Vij, and Syed Pasha. [n. d.]. Azue DDoS
Protection—2021 Q3 and Q4 DDoS attack trends. https://tinyurl.
com/45uwpjem. ([n. d.]). Accessed: 2022.

[137] Gerry Wan, Fengchen Gong, Tom Barbette, and Zakir Durumeric.
2022. Retina: analyzing 100GbE traffic on commodity hardware. In
Proceedings of the ACM SIGCOMM 2022 Conference. 530–544.

[138] An Wang, Wentao Chang, Songqing Chen, and Aziz Mohaisen. 2018.
Delving into internet DDoS attacks by botnets: characterization and
analysis. IEEE/ACM Transactions on Networking 26, 6 (2018), 2843–
2855.

[139] An Wang, Aziz Mohaisen, and Songqing Chen. 2017. An adversary-
centric behavior modeling of DDoS attacks. In 2017 IEEE 37th Inter-
national Conference on Distributed Computing Systems (ICDCS). IEEE,
1126–1136.

[140] Weitao Wang, Xinyu Crystal Wu, Praveen Tammana, Ang Chen, and
TS Eugene Ng. 2022. Closed-loop Network Performance Monitor-
ing and Diagnosis with SpiderMon. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22). 267–285.

[141] Yanshu Wang, Dan Li, Yuanwei Lu, Jianping Wu, Hua Shao, and Yu-
tian Wang. 2022. Elixir: A High-performance and Low-cost Approach
to Managing Hardware/Software Hybrid Flow Tables Considering
Flow Burstiness. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22). 535–550.

[142] Arne Welzel, Christian Rossow, and Herbert Bos. 2014. On measuring
the impact of DDoS botnets. In Proceedings of the Seventh European
Workshop on System Security. 1–6.

[143] Qingjun Xiao, Zhiying Tang, and Shigang Chen. 2020. Universal
online sketch for tracking heavy hitters and estimating moments of
data streams. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications. IEEE, 974–983.

[144] Jiarong Xing, Wenqing Wu, and Ang Chen. 2021. Ripple: A Pro-
grammable, Decentralized Link-Flooding Defense Against Adaptive
Adversaries. In 30th USENIX Security Symposium (USENIX Security
21).

[145] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive
and fast network-wide measurements. In Proceedings of the conference
of the ACM Special Interest Group on Data Communication (SIGCOMM).
ACM, 561–575.

[146] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined
Traffic Measurement with OpenSketch. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
29–42.

[147] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowd-
hury, and Xin Jin. 2020. Netlock: Fast, centralized lock management
using programmable switches. In Proceedings of the Annual confer-
ence of the ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for computer
communication. 126–138.

[148] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. 2007. ProgME:
towards programmable network measurement. In Proceedings of the
2007 conference on Applications, technologies, architectures, and proto-
cols for computer communications. 97–108.

[149] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur,
and Boon Thau Loo. 2017. Quantitative network monitoring with
NetQRE. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. ACM, 99–112.

[150] Kaiyuan Zhang, Danyang Zhuo, and Arvind Krishnamurthy. 2020.
Gallium: Automated software middlebox offloading to programmable

21

https://tinyurl.com/45uwpjem
https://tinyurl.com/45uwpjem

switches. In Proceedings of the Annual conference of the ACM Special In-
terest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 283–295.

[151] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang Liu, Ang Chen,
Hongxin Hu, Guofei Gu, Qianqian Li, Mingwei Xu, and Jianping
Wu. 2020. Poseidon: Mitigating volumetric ddos attacks with pro-
grammable switches. In the 27th Network and Distributed System
Security Symposium (NDSS 2020).

[152] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie
Miao, Peng Liu, Ruwen Zhang, and Junchen Jiang. 2021. CocoSketch:
High-performance sketch-based measurement over arbitrary partial
key query. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
207–222.

[153] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi Liu,
Naiqian Zheng, Ruixin Wang, Hanbo Wu, Yi Wang, et al. 2021. Light-
Guardian: A Full-Visibility, Lightweight, In-band Telemetry System
Using Sketchlets.. In NSDI. 991–1010.

[154] Hao Zheng, Chen Tian, Tong Yang, Huiping Lin, Chang Liu, Zhaochen
Zhang, Wanchun Dou, and Guihai Chen. 2022. FlyMon: enabling on-
the-fly task reconfiguration for network measurement. In Proceedings

of the ACM SIGCOMM 2022 Conference. 486–502.
[155] Yu Zhou, Jun Bi, Tong Yang, Kai Gao, Jiamin Cao, Dai Zhang,

Yangyang Wang, and Cheng Zhang. 2020. Hypersight: Towards scal-
able, high-coverage, and dynamic network monitoring queries. IEEE
Journal on Selected Areas in Communications 38, 6 (2020), 1147–1160.

[156] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li,
Zhilong Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, et al. 2020.
Flow event telemetry on programmable data plane. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication. 76–89.

[157] Yu Zhou, Dai Zhang, Kai Gao, Chen Sun, Jiamin Cao, YangyangWang,
Mingwei Xu, and Jianping Wu. 2020. Newton: Intent-driven network
traffic monitoring. In Proceedings of the ACM Conference on emerging
Networking EXperiments and Technologies (CoNEXT). 295–308.

[158] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu,
Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao,
et al. 2015. Packet-level telemetry in large datacenter networks. In
Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication. 479–491.

22

	Abstract
	1 Introduction
	2 Definition of the Area
	2.1 Prior Surveys

	3 Our Approach
	3.1 Taxonomy
	3.2 Historical Timeline
	3.3 Per-Group Methodology

	4 Traffic Profiling
	4.1 Single-Metric Systems
	4.2 Multiple-Metric Systems

	5 Network Performance
	5.1 Detecting performance events
	5.2 Explaining performance events

	6 Network Automation
	6.1 Volumetric DDoS Defence
	6.2 Flow Offloading

	7 Summary & Future Outlook
	References

