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Abstract

Despite the existence of approximately 7000
languages, research in Natural Language Pro-
cessing has predominantly focused on a select
few high-resource languages, which does not
serve the global linguistic diversity adequately.
Multilingual Information Extraction aims to
improve information access and communica-
tion across various languages, has therefore
emerged as a vital research area. This field
entails several key tasks, namely Event Trigger
Detection, Event Argument Extraction, Entity
Mention Recognition, and Relation Extraction,
each contributing to the extraction of struc-
tured information from unstructured text. This
work explores three primary research directions
in Multilingual IE: (1) enhancing Multilingual
IE upstream models, (2) developing language-
agnostic downstream models, and (3) advanc-
ing cross-lingual transfer learning methods for
situations with scarce training data. These di-
rections are examined in detail, highlighting the
recent advancements, enduring challenges, and
future prospects, contributing to the overarch-
ing goal of democratizing communication and
information access in the linguistic landscape
of our world.

1 Introduction

In our increasingly interconnected world, the de-
mand for efficient communication and understand-
ing across languages has never been greater. An
essential cornerstone of this global dialogue lies in
the capacity to parse, process, and interpret infor-
mation in its myriad forms and linguistic structures.
It is here that the field of Multilingual Information
Extraction (Multilingual IE) rises to prominence.
Nestled within the broader ambit of Natural Lan-
guage Processing (NLP), Multilingual IE is charged
with the critical task of distilling structured infor-
mation from unstructured text in a diverse array of
languages (Pouran Ben Veyseh et al., 2022b,a; Lai
et al., 2022a,b).

Figure 1: An example with annotations of the four IE
tasks (Nguyen et al., 2021a).

Approximately 7000 languages punctuate our
global linguistic landscape, each rich with its
unique syntax, semantic nuances, and linguistic id-
iosyncrasies. Despite this diversity, the lion’s share
of NLP research has primarily been focused on a
select few high-resource languages, with English
often at the forefront (Adelani et al., 2021). This
disproportionate focus is increasingly being recog-
nized as a bottleneck that curtails the comprehen-
sive service of global linguistic diversity. Bridging
this gap, Multilingual NLP, and more specifically,
Multilingual IE, has emerged as a vital area of
research, striving to democratize information ac-
cess and catalyze communication for individuals
spanning the gamut of linguistic diversity (Pouran
Ben Veyseh et al., 2022b,a; Lai et al., 2022a,b).

At the heart of Multilingual IE lie several in-
terconnected sub-tasks, namely Event Trigger De-
tection (ETD), Event Argument Extraction (EAE),
Entity Mention Recognition (EMR), and Relation
Extraction (RE) (see Figure 1). Each of these tasks
carves out its unique niche within the overarching
task of information extraction (Nguyen and Grish-
man, 2016; Nguyen et al., 2016; Nguyen and Grish-
man, 2018). For example, EMR is focused on the
identification of entities within a text, while RE is
involved in identifying relationships between these
recognized entities. ETD and EAE, on the other
hand, concentrate on detecting events and their
related arguments embedded within the textual dis-
course. The heterogeneity of these tasks highlights



the intricate labyrinth of language processing, re-
vealing the multi-pronged challenges faced in con-
verting raw, unstructured text into structured, us-
able information.

Notwithstanding the inherent challenges, the
field of Multilingual IE has witnessed significant
advancements. To elaborate on these strides, this
paper will dissect three primary research trajecto-
ries within Multilingual IE:

• Multilingual IE Upstream Models: These
aim to refine the quality of upstream linguistic
features to bolster the performance of down-
stream IE models.

• Language-agnostic Downstream Models for
IE: These seek to design IE models with
language-agnostic architectures, thereby en-
abling their deployment across a multitude
of languages without necessitating model-
specific tweaks.

• Cross-lingual Transfer Learning for IE:
This direction tackles scenarios where training
data for IE tasks in a target language is scarce
or nonexistent. It seeks to develop learning
methods such that a model trained on a source
language can be seamlessly ported to a target
language.

Each of these research directions will be exam-
ined through the lens of a myriad of seminal and
contemporary studies, elucidating their method-
ologies, outcomes, and implications. This rigor-
ous dissection will not only spotlight the strides
achieved in the field but will also bring into sharp
relief the challenges that endure and the prospects
that lie ahead.

The examination of multilingual IE upstream
models will delve into the enhancement of funda-
mental linguistic features such as sentence bound-
aries, word tags, and dependency trees, that form
the backbone of downstream IE models (Pouran
Ben Veyseh et al., 2019, 2020). The limitations of
current NLP toolkits, such as speed, performance,
and limited language support, are being addressed
by leveraging transformer-based language models
and adapter methods (Pfeiffer et al., 2020; Nguyen
et al., 2021b). Despite these advancements, the
issue of model size and consequent memory use
remains a challenge, inspiring research into model
compression techniques (Mysore Sathyendra et al.,
2020; Park et al., 2021).

In exploring the language-agnostic downstream
models for IE, we shift the focus from the foun-
dational linguistic features to the architecture of
the IE models themselves. Historically, pipelined
approaches were used, where models for one task
consumed the output of models performing other
tasks (Zhou et al., 2005; Nguyen and Grishman,
2015; Lai et al., 2020). However, error propaga-
tion from one task to another posed a significant
challenge. A paradigm shift towards joint models,
known as Joint Information Extraction (JointIE),
has since emerged, where ETD, EMR, EAE, and
RE are all performed in a single model to miti-
gate error propagation (Luan et al., 2019; Lin et al.,
2020; Nguyen et al., 2021a, 2022a,b) and leverage
the interdependencies between the tasks. Nonethe-
less, further research is required to fully leverage
the language differences and similarities for im-
proved multilingual training and model generaliza-
tion.

The final research direction, cross-lingual trans-
fer learning for IE, considers scenarios with limited
or nonexistent training data in a target language.
Strategies such as multilingual word embeddings
(Chen and Cardie, 2018; Heyman et al., 2019) or
multilingual pre-trained language models (Devlin
et al., 2019; Conneau et al., 2019) have been used
to learn crosslingual representation vectors for IE.
Yet, these approaches have suffered the issue of
monolingual bias, stemming from models trained
solely on source language data, leading to sub-
optimal crosslingual performance. More recent
strategies like language adversarial training (Chen
et al., 2019; Huang et al., 2019; Lange et al., 2020)
have aimed to address this issue, but further re-
search is necessary for more robust crosslingual
performance in IE.

In essence, the breadth and depth of Multilingual
IE, while presenting significant challenges, also
beckon exciting opportunities for research. The re-
lentless quest for enhanced performance, reduced
error propagation, improved model efficiency, and
superior crosslingual capabilities drive the field for-
ward. As we peel back the layers of each research
direction, we shine a light on the potential for sig-
nificant advancements in how we extract, process,
and interpret multilingual information, transform-
ing the way we communicate and access informa-
tion in our increasingly interconnected world.



Figure 2: Overview of Stanford CoreNLP’s architecture
(Manning et al., 2014).

2 Multilingual IE Upstream Models

2.1 The Stanford CoreNLP Natural Language
Processing Toolkit

Stanford CoreNLP (Manning et al., 2014) was orig-
inally developed for internal purposes. The task
at hand involved unifying a variety of natural lan-
guage analysis components, each having distinct ad
hoc APIs, with specific glue code. The first itera-
tion of the annotation pipeline was created in 2006
to enhance this amalgamation. A unified interface
was established for an Annotator to integrate an-
alytical data into the text. This was accomplished
by the Annotator adding additional details to an
Annotation object, which was stored as a typesafe
heterogeneous map, inspired by Bloch’s data type
concepts (Bloch, 2008). This simple architecture
has demonstrated considerable success and contin-
ues to be the system’s foundation, as depicted in
figure 2. The motivations included:

• Acquiring linguistic annotations for a text
quickly and without difficulty.

• Concealing differences between components
behind a shared API.

• Maintaining a minimal conceptual footprint
for ease of understanding.

• Offering a lightweight framework utilizing
plain Java objects, rather than complex el-
ements such as XML or UIMA’s Common
Analysis System (CAS) objects.

In 2009, the system was expanded for accessibil-
ity by a wider user base as part of a multi-site grant
project. This included providing a command-line
interface and outputting an Annotation in various

formats, like XML. Continued improvements led to
the public release of the system as free open source
software in 2010.

Stanford CoreNLP, from an architectural stand-
point, does not aim for exhaustive functionality.
It primarily offers a straightforward pipeline ar-
chitecture with a Java API. It does not endeavor
to support multi-machine scaling but does allow
for multi-threaded processing on a single device.
While the system meets the needs of a significant
user base, its simplicity eases the learning curve.
In comparison to larger frameworks like UIMA
(Ferrucci and Lally, 2004) or GATE (Cunning-
ham et al., 2002), users can start using Stanford
CoreNLP with a basic understanding of Java. More
complex scenarios like multi-machine scale-out
can typically be handled by running the analysis
pipeline within a distributed workflow system like
Hadoop or Spark. Other systems aim to provide
more features, like the UIUC Curator (Clarke et al.,
2012), which includes inter-machine client-server
communication and caching for natural language
analyses. However, this added functionality com-
plicates installation and understanding of the sys-
tem. Furthermore, an organization might already
be committed to a different scale-out solution not
provided by the natural language analysis toolkit,
for instance, Kryo or Google’s protobuf for binary
serialization as opposed to Apache Thrift used by
the Curator. Users are better suited by a compact
and self-contained natural language analysis system
without unnecessary complexities.

On the contrary, users greatly benefit from a
collection of stable, high-quality linguistic analy-
sis components that are easily accessible for com-
mon scenarios. Developers designing larger sys-
tems may have made broad design choices like
scale-out handling, but they might not be NLP ex-
perts, therefore requiring NLP components that
are straightforward. This advantage sets Stanford
CoreNLP and GATE apart from the bare-bones
package of an Apache UIMA download. Solu-
tions provided by well-integrated component pack-
ages for UIMA, such as ClearTK (Bethard et al.,
2014), DKPro Core (Gurevych et al., 2007), and
JCoRe (Hahn et al., 2016), continue to be more
complex and heavier for users compared to the
pipeline discussed. The success factors of Hiber-
nate, as outlined by Patricio (2009), are echoed
in these characteristics. These include: doing one
thing exceptionally, avoiding over-design, and en-



suring that the system is operational in ten minutes
or less. Other factors that Patricio emphasizes, such
as shunning standardism, good documentation, and
developer responsiveness, are also mirrored in the
design and success of Stanford CoreNLP. While
there are numerous factors that influence the adop-
tion of a project, it’s believed that some of these
characteristics explain why Stanford CoreNLP is
one of the more popular NLP toolkits. Despite
not being perfect, Stanford CoreNLP has gained
popularity due to clear open source licensing, suf-
ficient documentation, and efforts to answer user
queries, setting it apart from much of the academic
software.

2.2 UDPipe: Trainable Pipeline for Processing
CoNLL-U Files Performing Tokenization,
Morphological Analysis, POS Tagging and
Parsing

UDPipe (Straka et al., 2016) is a comprehensive
tool developed under the Universal Dependencies
project (de Marneffe et al., 2014), aimed at facil-
itating cross-linguistic consistent treebank anno-
tation for a multitude of languages. The scheme
for annotation is founded on the universal Stanford
dependencies (Manning et al., 2014), Google’s uni-
versal part-of-speech tags (Nivre et al., 2016), and
the Interset interlingua for morphosyntactic fea-
tures (Zeman, 2008).

The design and creation of UDPipe is driven by
a desire to produce an easy-to-use tool that would
enable the processing of raw text into CoNLL-U-
formatted tagged and/or parsed dependency trees.
The tool’s design goals include creating state-of-
the-art tools for tokenization, morphological analy-
sis, part-of-speech tagging and dependency pars-
ing. Furthermore, the tool is aimed to be easy to
train with custom data, provided in CoNLL-U for-
mat. The tool is built on efficient programming
design, optimizing both RAM and disk usage.

UDPipe is a C++ tool available under the
Mozilla Public License (MPL) 2.0 license (code)
and CC BY-NC-SA 4.0 license (models). The
single-model tool (per language) is designed for
simplicity, eschewing feature engineering, external
morphological dictionaries, and language-specific
knowledge. The project seeks to provide trained
models for as many UD treebanks as possible.

Tokenization is a critical process and is often
considered a simple task for many languages, es-
pecially those that use separators between words.

However, specific rules are often applied to parti-
tion unseparated words or replace contractions in
many languages. To this end, UDPipe includes a
trainable tokenizer based on artificial neural net-
works.

While parsing the morphological fields in the
CoNLL-U format, UDPipe is capable of filling in
universal part-of-speech tags, lists of morphologi-
cal features, language-specific part-of-speech tags,
and lemma or stems, depending on the availabil-
ity of these in the training data. It employs Mor-
phoDiTa (Straková et al., 2014) for POS tagging
and lemmatization, which utilizes a supervised,
rich feature averaged perceptron, employing dy-
namic programming at runtime (Viterbi decoder).

To bypass the need for a language-specific code
or additional language resources, UDPipe develops
a morphological “guesser.” For every suffix of
fixed length, the tool identifies the most frequent
analyses according to the training data, creating a
morphological dictionary from the UD data.

UDPipe internally uses two models, one for dis-
ambiguating all available morphological fields (a
POS tagger), and the other one for lemmatization
(a lemmatizer). This combination of two taggers
improves overall accuracy. The POS tagger disam-
biguates all available morphological fields and can
jointly disambiguate a lemma as well, enhancing
tagging accuracy.

UDPipe employs the Parsito parser, a transition-
based, non-projective dependency parser that uses a
neural network classifier for prediction and requires
no feature engineering. It’s capable of parsing both
projective and non-projective sentences. The parser
has an exceptional parsing speed, compact models,
and delivers high accuracy.

The tool can be obtained from the UDPipe home-
page or directly using the permanent ID. The train-
ing code is included in the release, and the entire
pipeline is easily trainable using training data in
CoNLL-U format. All the trained models of the
whole pipeline are stored in a single file, with op-
tions to train only a selected part of the complete
pipeline. The tool offers high throughput, with
model sizes on the order of megabytes.

Moreover, UDPipe is available as a library with
many language bindings – Java, Python, Perl, and
C# are currently offered. Furthermore, UDPipe
is available as a web service with a REST API,
enabling users to access its functionalities from
anywhere via the internet.



In the web service, a simple HTTP POST request
is sent to the UDPipe server with raw text data and
the chosen model for the language of the text. The
server then processes the text and returns the output
in the CoNLL-U format, which can be conveniently
processed further in any text-processing pipeline.

As for further developments, UDPipe continu-
ally aims to improve its functionality. The team
regularly trains models with each new release of
the Universal Dependencies treebanks. In addition,
they continually work on refining the parsing algo-
rithm, improving speed and accuracy, and adding
support for new languages as Universal Dependen-
cies expands.

It’s also worth noting that UDPipe has exten-
sive documentation that covers every aspect of the
tool, from installation to usage and training custom
models. This makes it easy for new users to get
started and for experienced users to customize and
optimize the tool for their specific needs.

In terms of applicability, UDPipe is a robust
tool for NLP professionals and researchers who
work with multiple languages. It can be used in
a wide array of tasks like sentiment analysis, ma-
chine translation, information extraction, and more.
Given its design to handle different languages con-
sistently, it’s a particularly useful tool for projects
that involve cross-linguistic studies or applications.

Overall, UDPipe is a comprehensive tool that
provides end-to-end NLP processing, designed
with the vision of promoting Universal Dependen-
cies as a standard for cross-linguistic consistent
treebank annotation. By providing an accessible,
efficient, and powerful tool, it aims to facilitate and
enhance NLP work across a multitude of languages.

2.3 Stanza: A Python Natural Language
Processing Toolkit for Many Human
Languages

Stanza (Qi et al., 2020) is comprised of two distinct
components: a neural multilingual natural language
processing (NLP) pipeline and a Python client in-
terface to the Java Stanford CoreNLP software. An
illustration of Stanza pipeline is provided in Figure
3.

Stanza’s neural pipeline contains models that
span from tokenizing raw text to performing syn-
tactic analysis on entire sentences. These compo-
nents are built with the aim of processing a variety
of human languages. High-level design choices
encapsulate common phenomena across multiple

Figure 3: Stanza’s system design (Qi et al., 2020).

languages, and data-driven models learn the dis-
tinctions among these languages from the gathered
data. The implementation of Stanza components is
notably modular, and it tends to reuse basic model
architectures for efficiency and compactness.

When presented with raw text, Stanza tokenizes
it and groups tokens into sentences. It integrates
both tokenization and sentence segmentation from
raw text into a single module, treated as a tagging
problem over character sequences. This module
predicts if a given character signals the end of a to-
ken, sentence, or multi-word token (MWT). MWTs
are predicted alongside tokenization because this
task is context-sensitive in certain languages.

Once MWTs are identified, they are expanded
into the underlying syntactic words to set the
groundwork for downstream processing. This ex-
pansion is accomplished with a combination of
a frequency lexicon and a neural sequence-to-
sequence model (Edunov et al., 2018). This ensures
that commonly observed expansions in the train-
ing set are robustly expanded while maintaining
flexibility to model unseen words statistically.

For each word in a sentence, Stanza assigns it
a part-of-speech (POS), and analyzes its universal
morphological features. This prediction of POS
and universal morphological features is carried out
by adopting a bidirectional long short-term mem-
ory network. To ensure consistency among uni-
versal POS, treebank-specific POS, and universal
morphological features, the biaffine scoring mech-
anism is utilized.

In addition to these functionalities, Stanza lem-
matizes each word in a sentence to retrieve its
canonical form. Like the multi-word token ex-
pander, Stanza’s lemmatizer is implemented as an
ensemble of a dictionary-based lemmatizer and a



Figure 4: Trankit’s system design (Nguyen et al.,
2021b).

neural sequence-to-sequence lemmatizer. An extra
classifier is constructed on the encoder output of
the sequence-to-sequence model, to predict short-
cuts such as lowercasing and identity copy for ro-
bustness on lengthy input sequences such as URLs.

Stanza parses each sentence for its syntactic
structure, with each word in the sentence being as-
signed a syntactic head that is either another word
in the sentence, or in the case of the root word, an
artificial root symbol. This parsing is conducted
through a Bi-LSTM-based deep biaffine neural de-
pendency parser (Dozat and Manning, 2017), with
the addition of two linguistically motivated fea-
tures: one predicting the linearization order of two
words in a given language, and the other predicting
the typical distance in linear order between them.

Stanza also recognizes named entities in each
input sentence, like person names and organi-
zations. For this task, the contextualized string
representation-based sequence tagger is employed.
This process involves training a forward and a back-
ward character-level LSTM language model, and
at tagging time, the representations at the end of
each word position from both language models with
word embeddings are concatenated, and fed into a
standard one-layer Bi-LSTM sequence tagger with
a conditional random field-based decoder (Wal-
lach, 2004).

2.4 Trankit: A Light-Weight
Transformer-based Toolkit for
Multilingual Natural Language Processing

Trankit (Nguyen et al., 2021b) represents a solution
to various challenges associated with multilingual

Figure 5: Adapter networks used in Trankit (Nguyen
et al., 2021b).

Natural Language Processing (NLP) systems. Var-
ious efforts have been made to establish these sys-
tems in an attempt to break down language barriers.
Much of this work has concentrated on downstream
NLP tasks that heavily rely on upstream linguis-
tic features. This extends from basic information
like token and sentence boundaries in raw text to
more complex structures such as part-of-speech
tags, morphological features, and dependency trees
of sentences, which are referred to as fundamental
NLP tasks.

By constructing efficient multilingual systems
or pipelines for these fundamental upstream NLP
tasks, a transformation of multilingual downstream
systems is possible. Several NLP toolkits address-
ing multilingualism for fundamental NLP tasks
have been created, including notable examples such
as spaCy1, UDify(Kondratyuk and Straka, 2019),
Flair(Akbik et al., 2019), CoreNLP (Manning et al.,
2014), UDPipe (Straka, 2018), and Stanza (Qi
et al., 2020). These toolkits, however, come with
their own set of limitations. For example, while
spaCy is built for speed, it compromises on perfor-
mance. UDify and Flair are unable to process raw
text as they rely on external tokenizers. CoreNLP
does process raw text but does not deliver state-
of-the-art performance. UDPipe and Stanza, more
recent toolkits, utilize word embeddings to offer ex-
cellent performance for many languages, but their
pipelines for different languages are trained sepa-
rately, leading to high memory usage when mul-
tiple languages are needed. Moreover, none of
these toolkits have explored the use of contextu-
alized embeddings from pretrained transformer-
based language models, which have shown promise
in enhancing the performance of NLP tasks.

1https://spacy.io/



Figure 6: The annotation technique for entity mentions utilizes BIO notation. In this notation, the “B-X” label
signifies the commencement of an entity mention of type “X”, while “I-X” is designated for tokens that fall within
(but do not initiate) the scope of an entity mention of type “X”. Tokens that are not part of any entity mentions
are marked with the “O” label. In the presented diagram, “PER” and “VEH” are used to represent PERSON
and VEHICLE respectively. Furthermore, the universal dependency relations method is employed to construct a
dependency parse tree for the example sentence (Nguyen and Grishman, 2018).

This is where Trankit comes in as a multilin-
gual Transformer-based NLP Toolkit designed to
surmount these limitations. Capable of processing
raw text for fundamental NLP tasks, it supports
56 languages with 90 pre-trained pipelines based
on the Universal Dependency v2.5 treebanks (Ze-
man et al., 2019). By leveraging the advanced
multilingual pretrained transformer XLM-Roberta
(Conneau et al., 2019), Trankit enhances the perfor-
mance for sentence segmentation, part-of-speech
tagging, morphological feature tagging, and depen-
dency parsing while competing or even surpassing
performance for tokenization, multi-word token
expansion, and lemmatization across the 90 tree-
banks. It also matches or exceeds performance
for named entity recognition on 11 public datasets
(Mohit et al., 2012; Tjong Kim Sang, 2002; Tjong
Kim Sang and De Meulder, 2003; Benikova et al.,
2014; Weischedel et al., 2013; Nothman et al.,
2013).

Uniquely, the token and sentence splitter in
Trankit is based on wordpieces rather than charac-
ters to better exploit contextual information. This
approach proves beneficial across many languages
and is believed to be the first successful attempt
to construct a wordpiece-based token and sentence
splitter (Kudo and Richardson, 2018) that effec-
tively functions for 56 languages.

The architecture of the Trankit pipeline features
three innovative transformer-based components for
token and sentence splitting, a joint model for
POS tagging, morphological tagging, dependency
parsing, and a named entity recognizer (see Fig-
ure 4). However, using a large pretrained trans-
former model like XLM-Roberta could pose mem-
ory issues as different transformer-based compo-
nents need to be loaded into the memory for one

or multiple languages to serve multilingual tasks.
To tackle this, a novel plug-and-play mechanism
with Adapters (Pfeiffer et al., 2020) is introduced.
Adapters are small networks injected inside all lay-
ers of the pretrained transformer model. They are
seen as an effective, lightweight alternative for the
traditional fine-tuning of pretrained transformers
(see Figure 5).

Within Trankit, a set of adapters and task-
specific weights are created for each transformer-
based component for each language, with only a
single large multilingual pretrained transformer be-
ing shared across components and languages. This
mechanism not only solves the memory problem
but also significantly reduces the training time.

3 Language-agnostic Downstream Models
for IE

3.1 Graph Convolutional Networks with
Argument-Aware Pooling for Event
Detection

Event Detection (ED) is a crucial aspect of natural
language processing that recognizes specific in-
stances of events, or event mentions, in text. These
mentions typically exist within a single sentence,
where an event trigger, usually a verb or nominal-
ization, is associated with the event. The goal of
ED is to identify these triggers and classify them
into distinct categories. For instance, in a sentence
like “The police officer who fired into a car full of
teenagers was fired Tuesday”, an ED system should
discern that the first instance of “fired” is an Attack
event while the second instance is an End-Position
event. This task poses a challenge, as the same
expression can signify different events based on
context, and an event can be expressed in a variety
of ways.



The most advanced method for ED involves deep
learning models utilizing convolutional neural net-
works (CNNs) (Nguyen and Grishman, 2015). In
basic implementation, CNNs execute temporal con-
volution operation on consecutive k-grams in sen-
tences, producing latent structures valuable for ED.
However, this consecutive convolution struggles
to detect non-consecutive k-grams that might be
crucial for identifying certain event triggers. For
instance, in the example above, the non-consecutive
3-grams “officer was fired” should be identified
to correctly assign the End-Position event to the
second “fired”. A non-consecutive CNN model
(NCNN) (Nguyen and Grishman, 2016) was de-
signed to counteract this by performing temporal
convolution on all non-consecutive k-grams in sen-
tences, becoming the state-of-the-art CNN model
for ED.

Yet, by considering all non-consecutive k-grams,
NCNNs might model unnecessary and noisy in-
formation that could potentially degrade the ED
prediction performance. For example, the non-
consecutive 3-gram “car was fired” in the given
example could be misleading, suggesting an Attack
event for the second “fired” instead of the accurate
End-Position event. One way to avoid such confu-
sion is by observing that “police officer” is directly
related to the second “fired” in the example, while
“a car” has no direct relation.

In (Nguyen and Grishman, 2018), a new ap-
proach is proposed to address this issue by per-
forming convolution operation on syntactic depen-
dency graphs of sentences (see Figure 6). These
graphs represent sentences as directed trees with
dependency arcs between related words. Perform-
ing convolution on these graphs helps focus on the
most relevant words and avoid unrelated sequences.
Experiments show that these syntactic connections
provide efficient constraints for ED.

To achieve this, the paper utilizes Graph Con-
volutional Networks (GCNs) (Kipf and Welling,
2017) to form connections between layers of neural
networks using graph structures. In GCNs, each
node’s convolution vector is calculated from the
vectors of its immediate neighbors. This can be
particularly useful for ED as the convolution vec-
tor of the current word can be used for prediction.
However, the convolution vector may not encapsu-
late specific information about entity mentions that
are distributed at various positions in the sentences.
Such information is critical as it can provide mod-

els with more confidence to make predictions for
ED.

To overcome this issue, this paper suggests us-
ing a pooling method over the graph-based con-
volution vectors of the current word and the entity
mentions in the sentences. By aggregating the con-
volution vectors into a single vector representation
for event type prediction, this method allows for
explicit modeling of information from the entity
mentions to improve ED performance. This pro-
posed method is thoroughly evaluated with both
manually annotated and automatically predicted
entity mentions to demonstrate its effectiveness in
the experiments.

3.2 Multi-View Consistency for Relation
Extraction via Mutual Information and
Structure Prediction

Relation Extraction is a key component of Informa-
tion Extraction (IE), involving discerning semantic
connections between entities mentioned in a text.
This process is fundamental to numerous Natural
Language Processing applications, like knowledge
base population and question answering. As such,
it has garnered significant interest from the NLP
community, as evidenced by the wealth of research
conducted on this topic in recent years.

Initially, the methodologies for this extraction
were largely feature-based or kernel-based, relying
heavily on feature engineering to create efficient
models (Zelenko et al., 2002; Zhou et al., 2005).
However, more recently, the focus has shifted to-
wards deep learning models, which have improved
performance considerably on relational extraction
benchmark datasets. A pivotal technique intro-
duced by deep learning has been the use of syn-
tactic trees (like dependency trees and constituent
trees) to structure computational graph networks
(Zhang et al., 2018). The advantages of this ap-
proach include incorporating semantic/syntactic
hierarchies into sentence representations and the
ability to capture critical context words for relation
extraction via dependency paths.

However, this method has limitations, primarily
due to its reliance on high-quality external parsers
to generate effective parse trees. This reliance
presents three main issues: the availability of high-
quality parsers is often limited to certain domains
and languages, which restricts the usage of rela-
tion extraction models in specific situations. The
tree structures provided by these parsers are not



Figure 7: Proposed model for relation extraction by (Veyseh et al., 2020). The green vectors represent input word
representations while the circles indicate the element- wise product.

always ideal for relation extraction, necessitating
more task-specific structures. Lastly, the parsers’
performance might decrease when applied to unfa-
miliar domains, which could detrimentally impact
the relation extraction models that heavily rely on
the quality of the tree structures.

To reduce this reliance on external parsers, this
paper (Veyseh et al., 2020) proposes to learn im-
plicit sentence structures along with predicting re-
lationships between entities. This approach not
only eliminates the need for external parsers but
also enables the use of relation extraction models
across different languages and domains. It offers
task-specific sentence structures and has the poten-
tial to enhance the performance of relation extrac-
tion in new domains. The authors suggest learning
sentence structures by implementing two different
methods for generating dependencies/hierarchies
between words in sentences. A measure of con-
sistency between the structures and representa-
tions learned by these two methods is introduced
to encourage congruity. The consistency, once
enforced, is anticipated to expose effective task-
specific structures and representations for relation
extraction, an attribute unattainable with structures
pre-determined by external parsers.

The two methods suggested for inducing sen-
tence structures are Ordered Neurons Long-short
Term Memory (ON-LSTM) (Shen et al., 2019) and
self-attention (Vaswani et al., 2017), also known
as Transformers. ON-LSTM, an advanced version

of LSTM, assigns importance scores to each word
in a sentence. These scores determine the word’s
closeness to the root of the tree structure, thereby
implicitly forming a tree structure. In contrast,
self-attention estimates the connection scores be-
tween every pair of words, forming a fully con-
nected graph structure. The score for each pair
reflects the influence one word has on understand-
ing the semantics of the other word. To encourage
structure consistency, the pairwise scores from self-
attention are transformed into importance scores,
and similarity between the two importance score
sequences is promoted using the KL divergence in
the loss function.

Although the authors consider the importance
scores of every word in the input sentence for both
ON-LSTM and self-attention in the baseline simi-
larity promotion, only a subset of the words might
be necessary for accurately recognizing relation-
ships for entity mentions in relation extraction.
Therefore, a filtering technique is proposed that
predicts relevant context words and incorporates
this information into the similarity promotion pro-
cess to further enhance the structures for relation
extraction.

However, a possible issue arises with the word
representations produced by ON-LSTM and self-
attention. They might become excessively con-
strained to achieve score similarity for structure
consistency, potentially losing crucial semantic in-
formation for relation extraction. To mitigate this



issue, the authors propose constraints to preserve
important semantic information in the represen-
tation vectors produced by ON-LSTM and self-
attention. They first use a bidirectional LSTM
(BiLSTM) model to encode the semantic represen-
tations of words in its hidden vectors, then enrich
the semantic content of the hidden vectors from
ON-LSTM and self-attention via semantic consis-
tency. Two mechanisms are considered to achieve
this semantic consistency. One is inspired by the
control mechanism that retains semantic content in
the representation vectors of self-attention via the
control vector computed from the BiLSTM vectors
of the two entity mentions. The other mechanism,
proposed in this work, leverages the mutual infor-
mation between the high-dimension representation
vectors from ON-LSTM and BiLSTM to ensure
their semantic consistency.

3.3 Graph Transformer Networks with
Syntactic and Semantic Structures for
Event Argument Extraction

Event Extraction (EE) is a crucial facet of Informa-
tion Extraction, with the aim to recognize events
and their relevant arguments within a given text.
In prior studies, EE is generally broken down into
two primary tasks: Event Detection (ED) - the
identification of event-triggering words, and Event
Argument Extraction (EAE) - identifying event ar-
guments and their respective roles based on given
event triggers. Recently, significant attention has
been directed towards the study of ED, applying
deep learning techniques. Conversely, EAE has
seen less exploration, even though it’s vital for
completing EE and benefits numerous downstream
applications (Wang et al., 2019). The present study
centers its attention on EAE to address this gap.

Modern leading methods for EAE engage deep
learning models to compute an abstract representa-
tion vector for each word in input sentences. This
computation is based on information gleaned from
other context words. The representation vectors are
then combined to execute EAE (Chen et al., 2015;
Nguyen et al., 2016). The primary motivation be-
hind the current work is to exploit different struc-
tures within input sentences, thereby improving the
representation vectors for words in deep learning
models designed for EAE. Here, a sentence struc-
ture (or view) refers to an importance score matrix.
Each cell of this matrix quantifies the contribution
of a context word towards the computation of the

current word’s representation vector for EAE. In
particular, two types of sentence structures, syntac-
tic and semantic structures, are considered.

For instance, let’s consider the sentence:
“Iraqi Press constantly report interviews with

Hussain Molem, the Hanif Bashir’s son-in-law,
while US officials confirmed all Bashir’s family
members were killed last week.”

In this sentence, an EAE system should be able
to recognize the entity mention “Hussain Molem”
as the Victim of the Attack event triggered by
“killed”. As “Hussain Molem” and “killed” are sit-
uated far apart in the sentence and its dependency
tree, EAE models may find it challenging to predict
accurately. To overcome this, the models should
first rely on the direct connections between “killed”
and “all Bashir’s family members” in the depen-
dency tree, capturing the role of “all Bashir’s family
members” in the representation vectors for “killed”.
Following this, the models can exploit the close
semantic similarity between “all Bashir’s family
members” and “the Hanif Bashir’s son-in-law”, fur-
ther connecting “the Hanif Bashir’s son-in-law” to
“killed”. Ultimately, the direct apposition relation
between “the Hanif Bashir’s son-in-law” and “Hus-
sain Molem” can be used to link “Hussain Molem”
with “killed” to obtain the necessary representa-
tions to predict arguments for “Hussain Molem”.
This example suggests both syntactic and semantic
structures are required for EAE models and should
be explicitly combined to identify crucial context
words for effective representations for EAE.

The question then arises: how can syntactic
and semantic structures be combined to aid in
learning effective representations for EAE? Pouran
Ben Veyseh et al. (2020) propose using Graph
Transformer Networks (GTN) (Yun et al., 2019) to
facilitate syntax-semantic merging for EAE. GTNs
allow for the combination of multiple input struc-
tures in two steps. The first step yields weighted
sums of the input structures that serve as interme-
diate structures capable of capturing information
from different input perspectives. In the second
step, these intermediate structures are multiplied
to produce the final structures. The aim here is
to leverage multi-hop paths/connections between
pairs of nodes/words to compute the importance
score for the final structures.

Lastly, to further enhance the performance for
EAE, a novel inductive bias is proposed for the
GTN model. This is done to improve the model’s



Figure 8: An illustration and summary of the MQAEE
framework (Li et al., 2020). In this context, the sen-
tence under consideration serves as the passage. Each
round consists of a question (represented as Qi) and a
response (denoted as Ai). If a question doesn’t have a
corresponding answer, it’s indicated by the term NULL.

generalization using the Information Bottleneck
concept. Specifically, the combination of rich
structures from syntax and semantics could en-
hance GTNs with a high capacity to encode de-
tailed information in the input sentences. Given
the generally small training datasets for EAE, GTN
models might learn to retain all context informa-
tion in the input sentences, including irrelevant
information for EAE. This could lead to overfit-
ting of GTNs on the training data. To tackle this,
this study proposes treating the GTN model as an
information bottleneck. In this way, the represen-
tations produced by GTNs are trained to not only
achieve high performance for EAE prediction but
also minimize the mutual information with the in-
put sentences. An additional term in the overall loss
function is introduced for this purpose: the mutual
information between the generated representations
of GTNs and the input sentences. This improves the
generalization of GTNs for EAE. Comprehensive
experiments on two benchmark datasets for EAE
demonstrate that the proposed model can achieve
leading performance for EAE.

3.4 Event Extraction as Multi-turn Question
Answering

Li et al. (2020) introduce a novel method to solve
event extraction via question answering. The sys-

tem should be capable of identifying event triggers,
their specific event types, and corresponding ar-
guments with their roles. Consider an instance
provided in Figure 8 where the Movement Trans-
port event is activated by the trigger word “left”,
associated with three arguments: “Saddam’s fam-
ily” as Artifact, “that city” as Origin, and “three
days ago” as Time-Within.

Typically, event extraction is bifurcated into two
sections: trigger extraction and argument extrac-
tion, based on the standard Automatic Content Ex-
traction (ACE) 2005 benchmark (Walker et al.,
2006). Current methods to event extraction are
majorly divided into two categories: (a) pipeline
methods that carry out trigger extraction and argu-
ment extraction in separate stages (Liao and Grish-
man, 2010; Hong et al., 2011; Lu and Roth, 2012);
(b) joint approaches that simultaneously perform
all subtasks in a unified learning manner (Li et al.,
2013; Nguyen et al., 2016; Liu et al., 2018).

These methods, regardless of being pipeline or
joint, usually frame event extraction as classifica-
tion tasks, by categorizing event triggers into prede-
fined event types and subsequent event arguments
into predetermined argument roles. However, this
approach has two primary limitations. Firstly, the
inability to explicitly model the semantics of these
golden labels and to capture their rich interactions,
which can be beneficial for event extraction. For
instance, the event type Movement Transport can
provide valuable supplements to the correspond-
ing argument roles like Origin and Time-Within.
Moreover, the identification of “Saddam’s family”
as an Artifact implies that “that city” might be an
argument of the role Origin.

The second limitation is the lack of generaliza-
tion ability. These classification-based methods
cannot be extended to new event types or argument
roles without additional annotations. A recent ap-
proach proposed by Huang et al. (2018) introduced
a transfer learning architecture for zero-shot event
extraction. Their methodology was to represent
event mentions and event types (or arguments and
argument roles) in a shared semantic space, and
consider trigger (or argument) classification as a
semantic matching problem. However, this ap-
proach struggles to capture full mention-type (or
argument-role) interactions with only the final co-
sine similarity matching and heavily depends on
structured features prone to error propagation.



Figure 9: A textual excerpt showcasing the interplay
among entities, relations, and coreference links. Certain
relation and coreference connections are intentionally
left out (Luan et al., 2019).

3.5 A General Framework for Information
Extraction using Dynamic Span Graphs

A variety of Information Extraction (IE) tasks ne-
cessitate the identification and categorization of
phrase spans, some of which may be nested. For
instance, the process of entity recognition entails
attributing an entity label to a phrase span. Mean-
while, Relation Extraction (RE) requires the assign-
ment of a relation type between pairs of spans, and
coreference resolution aims to consolidate spans
that refer to the same entity into a single cluster.
Consequently, one might anticipate that knowledge
gained from one task could prove beneficial to an-
other.

Historically, most IE research, such as that of
Nadeau and Sekine (2007) and Chan and Roth
(2011), utilized a pipeline approach, where entities
were detected initially and then the recognized en-
tity spans were employed for relation extraction and
coreference resolution. To circumvent the cascad-
ing errors inherent to pipeline-style systems, recent
studies have shifted their focus to the integration of
different IE tasks. This includes the joint modeling
of entities and relations (Miwa and Bansal, 2016),
entities and coreferences (Hajishirzi et al., 2013),
joint inference (Singh et al., 2013), or multi-task
learning of entity/relation/coreference (Luan et al.,
2018). Predominantly, these models depend on the
first layer LSTM for sharing span representations
between various tasks and are typically designed
for specific domains.

Luan et al. (2019) present the Dynamic Graph
IE (DYGIE) framework, a generalized structure
for consolidating multiple information extraction
tasks through shared span representations, which
are honed by incorporating contextualized informa-
tion from relations and coreferences. This frame-
work has shown effectiveness across several do-
mains, exhibiting the advantages of integrating a

wider context learned from relation and coreference
annotations.

An example illustrating the potential advan-
tages of entity, relation, and coreference contexts
is shown in Figure 1. Predicting the entity labels
for “This thing” and “it” is impossible based solely
on the within-sentence context. However, the an-
tecedent “car” strongly indicates that these two en-
tities fall under the VEH type. In a similar vein, the
knowledge that Tom is located at Starbucks, and
Mike is related to Tom, provides support for the
notion that Mike is also at Starbucks.

DYGIE utilizes multi-task learning to recog-
nize entities, relations, and coreferences by shar-
ing span representations and by using dynamically
constructed span graphs. The graph’s nodes are dy-
namically chosen from a beam of high-confidence
mentions, with edges weighted according to the
confidence scores of relation types or coreferences.
Unlike the multi-task methodology, which merely
shares span representations from the local context
(Luan et al., 2018), this framework leverages rich
contextual span representations by propagating in-
formation through coreference and relation links.
Distinct from previous BIO-based entity recogni-
tion systems (Lample et al., 2016) that assign a
text span to a maximum of one entity, this frame-
work enumerates and represents all possible spans
to recognize entities that may overlap arbitrarily.

3.6 A Joint Neural Model for Information
Extraction with Global Features

Traditional efforts in information extraction have
typically adopted a pipeline approach (Liao and
Grishman, 2010; Hong et al., 2011; Lu and Roth,
2012). Information Extraction (IE) is an intricate
task, with the objective of pulling structured data
from unstructured texts. This multifaceted pro-
cess involves a variety of subtasks such as named,
nominal, and pronominal mention extraction, en-
tity linking, entity coreference resolution, relation
extraction, event extraction, and event coreference
resolution.

However, the typical pipeline method for IE of-
ten encounters the issue of error propagation and
limits the interaction among the different compo-
nents within the pipeline. This spurred researchers
to look for solutions, and they proposed joint infer-
ence and joint modeling methods (Li et al., 2013;
Nguyen et al., 2016; Liu et al., 2018), in an attempt
to enhance local prediction. These methods offered



Figure 10: A depiction of the ONEIE framework (Lin et al., 2020), utilized for end-to-end joint information
extraction during the testing phase. For simplicity’s sake, not all pairwise connections are displayed.

Figure 11: A common mistake made by local classifiers
that lack global constraints. (Lin et al., 2020).

a better approach and saw significant development
in their implementation and effectiveness, particu-
larly with the rise of deep learning.

Due to the success of deep learning, neural mod-
els became a popular choice and were applied ex-
tensively across various IE subtasks. The increased
application of neural models marked a turning point
in the field of IE, changing how these tasks were ap-
proached and managed. More recently, efforts have
been made to revisit global inference approaches,
leading to the design of neural networks with em-
bedding features. These new methods aim to jointly
model multiple subtasks. However, these methods
also have their shortcomings, as they tend to use
separate local task-specific classifiers in their final
layer. Moreover, they do not explicitly model the
interdependencies among tasks and instances.

An example of this is seen in the case of a lo-
cal argument role classifier predicting a redundant
PERSON edge (see Figure 11. Ideally, models
should avoid such mistakes, and they could do this
if they had the ability to learn and leverage specific

aspects of data, like the unusual occurrence of an
ELECT event having two PERSON arguments.

To address this issue, a new joint neural frame-
work, known as ONEIE (Lin et al., 2020), has been
proposed to perform end-to-end IE with global con-
straints. Unlike traditional methods that use local
classifiers to predict separate knowledge elements,
ONEIE aims to extract a globally optimal informa-
tion network for the input text. This process in-
volves comparing candidate information networks
during the decoding process, where not only are
the individual label scores for each knowledge el-
ement considered, but also the cross-subtask and
cross-instance interactions in the network.

The process of information extraction with
ONEIE can be broken down into four primary
steps: encoding, identification, classification, and
decoding (see Figure 10). Initially, the input sen-
tence is encoded using a pre-trained BERT encoder.
Then, the entity mentions and event triggers within
the sentence are identified. This is followed by the
computation of the type label scores for all nodes
and pairwise edges among them. Finally, during
the decoding stage, possible information networks
for the input sentence are explored using a beam
search, and the information network with the high-
est global score is selected.

3.7 Cross-Task Instance Representation
Interactions and Label Dependencies for
Joint Information Extraction with Graph
Convolutional Networks

Previous works such as DyGIE and OneIE intro-
duce deep learning techniques to achieve state-of-
the-art performance (Wadden et al., 2019; Lin et al.,



Figure 12: Overview of the FourIE framework (Nguyen et al., 2021a).

2020) for joint information extraction (Joint IE).
However, two challenges remain, hindering further
advancements in these models.

First, at the instance level, an essential aspect
of deep learning models for joint IE involves the
representation vectors of instances. These vec-
tors are utilized to predict IE tasks within a given
sentence, commonly known as predictive instance
representations. In the case of joint four-task IE, we
contend that there exist inter-dependencies between
the predictive representation vectors of related in-
stances from the four tasks. Incorporating these
inter-dependencies into the model can enhance IE
performance. For example, the entity type infor-
mation encoded in the representation vector for an
entity mention can influence the argument role cap-
tured by the representation vector for a related EAE
instance (e.g., involving the same entity mention
and an event trigger in the same sentence), and vice
versa. However, previous studies on joint four-task
IE have only computed predictive representation
vectors for instances independently, using shared
hidden vectors from a deep learning layer (Wad-
den et al., 2019; Lin et al., 2020). Although this
shared mechanism partially captures the interac-
tion between predictive representation vectors, it
fails to explicitly model the connections between
related instances from different tasks and integrate
them into the representation learning process. To

address this issue, (Nguyen et al., 2021a) propose
a novel deep learning model called FourIE, which
incorporates a graph structure to explicitly capture
interactions between related instances from the four
IE tasks within a sentence. Subsequently, a graph
convolutional network (GCN) (Kipf and Welling,
2017; Nguyen and Grishman, 2018) is employed to
enrich the representation vector of an instance by
incorporating information from the related (neigh-
boring) instances for IE.

Second, at the task level, existing joint four-
task models for IE have only leveraged cross-task
type dependencies during the decoding step to con-
strain predictions for a given sentence. This is
achieved by manually converting the type depen-
dency graphs of the sentence into global feature
vectors for scoring predictions in the beam search-
based decoding process (Lin et al., 2020). How-
ever, this knowledge derived from cross-task type
dependencies does not contribute to the training
process of the IE models. It is unfortunate since we
anticipate that a deeper integration of this knowl-
edge into the training process could offer valuable
information to enhance representation learning for
IE tasks. To tackle this, we propose utilizing the
knowledge from cross-task type dependencies to
provide an additional training signal for each sen-
tence, directly supervising our joint four-task IE
model. Specifically, our approach involves orga-



Figure 13: Overview of the three stages in GraphIE model (Nguyen et al., 2022a): i) identifying task instances, ii)
inducing instance dependency, and iii) joint modeling and decoding of instance labels.

nizing the types expressed in a sentence for the
four IE tasks into a dependency graph, which rep-
resents global type dependencies for the sentence.
Therefore, for a joint model to perform well, the
type dependency graph generated by its predictions
should resemble the dependency graph obtained
from the ideal types (i.e., a global type constraint
on the predictions during the training step). To
enforce this constraint, we introduce a novel reg-
ularization term into the training loss of our joint
model. This term employs another GCN to learn
representation vectors for both the predicted and
ideal dependency graphs, promoting graph simi-
larity. FourIE is the first work that incorporates
global type dependencies as a regularization tech-
nique for joint IE models. An illustration of FourIE
is provided in Figure 12

3.8 Joint Extraction of Entities, Relations,
and Events via Modeling Inter-Instance
and Inter-Label Dependencies

Joint Information Extraction - JointIE is a method
that addresses the challenges of error propaga-
tion and dependency among prediction instances
in ETD, EMR, EAE, and RE tasks (Wadden et al.,
2019; Lin et al., 2020; Zhang and Ji, 2021; Nguyen
et al., 2021a). To exploit instance dependency, pre-
vious studies like Wadden et al. (2019) and Lin
et al. (2020) used a shared encoder to obtain rep-
resentation vectors for different IE tasks. Later
research attempted to capture dependency by con-
necting task instances with shared entity mentions
or aligning instances with text spans on a semantic
graph Zhang and Ji (2021); Nguyen et al. (2021a).
However, these manual designs may not be optimal
for representation learning in JointIE.

Apart from representation learning, prior work

tends to factorize the joint distribution of labels in
JointIE into individual distributions, limiting the
utilization of label interactions across tasks (Lin
et al., 2020; Zhang and Ji, 2021). Some approaches
mitigate this by decoding labels using global fea-
tures or encoding label interactions with consis-
tency regularization over global dependency graphs
(Nguyen et al., 2021a). However, these methods
still assume factorization of the joint label distri-
bution, failing to address the label dependency en-
coding issue. Recent attempts reformulated JointIE
as a text generation problem, directly modeling
the joint distribution of instance labels using pre-
trained seq2seq models like BART or T5 (Lewis
et al., 2020; Raffel et al., 2020). Unfortunately,
this approach relies on decoding task instances in
a specific order, preventing later instances from
correcting earlier predictions and leading to subop-
timal performance.

In our approach (called GraphIE) (Nguyen et al.,
2022a), we aim to overcome these challenges by in-
ducing dependency between task instances in Join-
tIE based on the data to enhance representation
learning and model the joint distribution of labels
(see Figure 13). We treat each task instance as a
node in a fully connected dependency graph and
learn the weights of the edges to capture the de-
pendency level between corresponding instances.
This approach differs from prior work that uses
sparser dependency graphs with disconnected task
instance pairs, thus limiting interaction exploration
(Nguyen et al., 2021a; Zhang and Ji, 2021). We uti-
lize Graph Convolutional Networks (GCNs) (Kipf
and Welling, 2017) to enhance the representation
of each instance node, incorporating information
from all other nodes based on their dependency
levels (Kipf and Welling, 2017; Nguyen and Gr-



Figure 14: Overview of the DepIE framework for Joint
IE (Nguyen et al., 2022b).

ishman, 2018). Subsequently, the improved in-
stance representations and the induced dependency
graph are used to estimate the joint distribution of
instance labels using Conditional Random Fields
(CRFs) (Lafferty et al., 2001). This formulation
allows us to approximate the intractable joint like-
lihood of the ground-truth instance labels through
Noise Contrastive Estimation (NCE) (Gutmann and
Hyvärinen, 2012), which transforms the maximiza-
tion problem into nonlinear logistic regression to
differentiate true labels from noise labels.

Finally, prior work in JointIE typically employed
greedy or beam search for decoding instance labels,
which is suboptimal due to its greedy nature. In
our approach, we propose a novel decoding algo-
rithm for JointIE using Simulated Annealing (SA)
(Kirkpatrick et al., 1983), known for approximating
global optima.

3.9 Learning Cross-Task Dependencies for
Joint Extraction of Entities, Events, Event
Arguments, and Relations

Capturing dependencies between the IE tasks is
a crucial challenge for JointIE, including cross-
instance and cross-type dependencies. Cross-
instance dependencies involve instances referring
to word spans for event triggers/entity mentions
and their classification based on predefined in-
formation types. Previous JointIE models have
enriched the representation of one instance by in-
corporating information from related instances in
different IE tasks to aid type prediction (Lin et al.,

2020; Nguyen et al., 2021a). Typically, creating de-
pendency graphs between instances has been used
to encode cross-instance dependencies and facili-
tate representation learning (Zhang and Ji, 2021;
Nguyen et al., 2021a). However, manually design-
ing these dependency graphs using heuristics, such
as connecting instances that share an entity men-
tion or event trigger, may not optimize performance
for a specific dataset.

To address this limitation and enhance repre-
sentation enrichment with information from re-
lated instances in JointIE, our approach (called
DepIE) (Nguyen et al., 2022b) suggests automati-
cally learning cross-instance dependency graphs
from data (see Figure 14). We explore a fully
connected graph connecting all task instances in a
sentence, assigning a dependency weight to each
edge to quantify their relatedness. Our method ar-
gues that dependency weights should be computed
from multiple sources of information to generate
optimal and comprehensive dependency graphs.
Inspired by the encoding of linguistic structures
in pre-trained language models (PLMs) like BERT
(Devlin et al., 2019), we leverage instance represen-
tations from different layers of PLMs to calculate
dependency weights. For each pair of instances in
JointIE, their representation vectors at each layer
of a PLM are utilized to produce layer-specific de-
pendency weights. These weights are combined
across layers to obtain an overall weight for the de-
pendency graph. Enriched representations for the
instances are then induced using Graph Convolu-
tional Networks (GCNs) (Kipf and Welling, 2017)
based on the computed cross-instance dependency
graph.

In addition to cross-instance dependencies,
cross-type dependencies highlight the co-
occurrences or correlations between information
types of different IE tasks within a sentence. For
example, in the ACE 2005 dataset (Walker et al.,
2006), a “Victim” argument for an “Attack” event
is likely to be the same for a “Die” event in the
same sentence. Previous JointIE models have
incorporated cross-type dependencies either during
decoding, by forming global type patterns/graphs
to constrain type predictions, or during training, by
forming type dependency graphs to aid consistency
regularization of golden and predicted types (Lin
et al., 2020; Nguyen et al., 2021a). However,
similar to cross-instance dependencies, previous
work manually designed dependency graphs



Figure 15: Multilingual common semantic space and cross-lingual structure transfer (Subburathinam et al., 2019).

between information types, often linking types
involved in the same instance for a specific IE
task (Nguyen et al., 2021a). This manual design
approach may overlook crucial cross-type patterns,
leading to suboptimal performance in JointIE.

To address this limitation and better support type
predictions in JointIE, our proposed method further
learns cross-type dependencies/patterns from data.
Each information type in the IE tasks is viewed
as a binary random variable that signifies its pres-
ence or absence in a sentence. This formulation
enables us to employ Bayesian structure learning
algorithms, such as the Chow-Liu algorithm (Chow
and Liu, 1968), which measures mutual informa-
tion between types in the training data to learn a
first-order dependency tree approximating the un-
derlying joint distribution of the information types
for JointIE. The resulting Chow-Liu tree captures
induced dependencies between information types
and is used to generate global cross-type patterns.

To incorporate the learned cross-type dependen-
cies into the JointIE model, our objective is to lever-
age these patterns as additional features to further
enhance the GCN-induced representations for type
prediction. We treat the induced cross-type patterns
as anchor knowledge that governs the information
types, representations, and dependencies of IE in-
stances in a sentence, ensuring consistency and
improving predictions for JointIE. For each learned

cross-type pattern, we compute a similarity score
between the computed cross-instance dependency
graph for an input sentence and the cross-type pat-
tern. This similarity score is then included in the
representations of the instances to predict types. To
achieve this, we propose leveraging random walk
graph kernels, which count common random walks
on the graphs, to facilitate similarity computation
between the cross-instance dependency graph and
the cross-type pattern. This enriches the represen-
tations for JointIE.

4 Cross-lingual Transfer Learning for IE

4.1 Cross-lingual Structure Transfer for
Relation and Event Extraction

Gold-standard annotations for relation and event
extraction are available for only a limited number
of languages (Walker et al., 2006; Getman et al.,
2018). Obtaining these annotations is more expen-
sive compared to other information extraction tasks
like name tagging because they involve structured
data and require a wide range of labels.

Recent research (Lin et al., 2017) has discov-
ered that relational facts in languages often follow
identifiable patterns. These patterns can be lever-
aged to enhance relation extraction by considering
language-universal features related to the identi-
fication and classification of relation and event
arguments. Examples of such features include



language-universal POS tagging, universal depen-
dency parsing, entity extraction, and multilingual
word embeddings.

By utilizing these language-universal represen-
tations, we can project entity mentions, event trig-
gers, and their contexts into a unified multilingual
space. Unlike previous methods that rely on linear
mappings or canonical correlation analysis, Subbu-
rathinam et al. (2019) introduce a novel approach
that converts text data into structured representa-
tions derived from universal dependency parses
and enriched with distributional information (see
Figure 15). This allows us to capture individual
entities, relations, and events across multiple lan-
guages and share structural representations.

Next, Subburathinam et al. (2019) develop a
novel framework for cross-lingual structure trans-
fer learning. This framework enables us to project
training data from a source language and test data
from a target language into a common semantic
space. By training a relation or event extractor us-
ing the source language annotations, we can apply
the resulting extractor to texts in the target lan-
guage. The authors employ graph convolutional
networks (GCN) (Kipf and Welling, 2017) to en-
code graph structures in the input data, generating
latent representations for entities and words. Unlike
other encoders, GCN captures more comprehensive
contextual information from dependency parses by
considering all parse tree neighbors of each word,
rather than just the child nodes. Using this shared
encoder, we consider relation extraction and event
argument role labeling as mappings from the la-
tent space to relation type and event type with their
respective argument roles.

4.2 Crosslingual Transfer Learning for
Relation and Event Extraction via Word
Category and Class Alignments

Previous works on crosslingual Relation and Event
Extraction (crosslingual REE) predominantly use
multilingual word embeddings such as MUSE
(Joulin et al., 2018; Subburathinam et al., 2019)
or multilingual pre-trained language models like
multilingual BERT (Devlin et al., 2019; M’hamdi
et al., 2019) to form crosslingual representation
vectors for REE.

Still, past efforts on crosslingual REE encounter
the issue of monolingual bias due to training mod-
els solely on source language data, resulting in sub-
optimal crosslingual performance. One potential

remedy for this issue might be language adversar-
ial training (Chen et al., 2019; Huang et al., 2019;
Lange et al., 2020) where unlabeled target language
data is utilized to assist crosslingual representations
through tricking a language discriminator. The
fundamental idea behind this method is to bring
closer the representation vectors for sentences in
the source and target languages. However, an in-
herent flaw of language adversarial training is its
inability to condition on classes/types of examples
during alignment, leading to potential mismatches
in class alignment and decreased model perfor-
mance.

To address this, Nguyen et al. (2021c) suggest
to employ crosslingual alignment techniques that
explicitly take into account class information of
REE tasks to improve representation alignment and
learning (see Figure 16). The principal intuition is
that the semantics of classes in REE tasks (such as
the event type of Attack in event extraction) are gen-
erally consistent across languages and can be used
as anchors to connect representation vectors for ex-
amples in various languages. In this approach, two
semantic representation vectors for each class in
an REE task are generated based on representation
vectors of examples in either source or target lan-
guage. Subsequently, the representation vectors of
the same class are adjusted to match each other, act-
ing as a class-aware crosslingual alignment mecha-
nism for source and target examples. Multilingual
BERT (mBERT) is used to attain same-space rep-
resentations for examples in both source and target
languages to facilitate this alignment process.

Along with class semantics, a proposal is also
made to leverage universal parts of speech and de-
pendency relations in parsing trees to improve the
cross-lingual alignment for representation vectors
in REE. Given that these universal word categories
have been consistently annotated for over 100 lan-
guages (Zeman et al., 2019) and can be produced
with high accuracy using existing toolkits, they are
expected to provide valuable anchor knowledge for
cross-lingual representation learning.

However, a potential issue arises when calcu-
lating word category representations via contex-
tualized representations of examples due to the
preservation of context word information in repre-
sentations for word categories that could introduce
noise and obstruct the representation alignment.
To mitigate this, an adversarial training model is
proposed that aims to filter out context informa-



Figure 16: Overall architecture of the proposed models for RE, EAE. For ED, example representations are the
contextualized embeddings (Nguyen et al., 2021c).

tion from word category representations. This is
accomplished by employing the Gradient Rever-
sal Layer (Ganin and Lempitsky, 2015) to prevent
word category representations from being able to
identify the context words in the original exam-
ples. It is anticipated that this filtering mechanism
can enhance the purity of the word category rep-
resentations, thereby providing suitable inputs for
the alignment process for enhanced representation
learning.

4.3 Cross-Lingual Event Detection via
Optimized Adversarial Training

Cross-Lingual Event Detection (CLED) suggests
the process of generating models that perform
Event Detection (ED) effectively across multilin-
gual data, introducing unique difficulties. One such
challenge is the variations in trigger words between
languages, for example, the inconsistencies in verb
tenses. Proper verb management is crucial in ED
as event triggers are often linked to sentence verbs.
A study by Majewska et al. (2021) attempted to
resolve this issue by infusing external verb knowl-
edge during model training. Another issue spe-
cific to CLED is the presence of triggers that have
diverging meanings in different languages. For
instance, in Spanish, the term “juicio” can mean
“judgement” or “trial” in English, depending on
the context.

A promising strategy for developing a crosslin-
gual model involves employing transfer learning,
which applies the performance of a model trained
in one language to a second, target language. The
overarching concept is to use high-quality anno-

tated data from a resource-rich language to train a
model, allowing it to grasp language-agnostic as-
pects of the task - in this case, ED - and therefore
perform effectively on a second language’s text.
Previous works using transfer learning for CLED
leveraged pre-trained Multilingual Language Mod-
els (MLMs), like multilingual BERT (mBERT)
(Devlin et al., 2019), benefiting from their inherent
language-agnostic attributes. However, these mod-
els could be improved further as they sometimes
have difficulty handling complex cases unique
to cross-lingual contexts. It is noted that previ-
ous CLED attempts do not make use of the co-
pious amounts of unlabeled data available, even
though MLMs are trained using vast quantities of
it. The belief is that incorporating unlabeled target-
language data into the training process should en-
hance language context understanding, helping to
address issues such as verb variations and multiple
meanings.

Consequently, Guzman-Nateras et al. (2022)
propose to use Adversarial Language Adaptation
(ALA) (Joty et al., 2017; Chen et al., 2018) to train
a CLED model. The core concept involves gen-
erating language-agnostic representations that do
not reflect the language but remain useful for the
ED task. Unlabeled data from both source and
target languages are used to train a Language Dis-
criminator (LD) network that discerns between the
two languages. The adversarial aspect arises from
the encoder and discriminator being trained with
conflicting goals. As the LD improves in distin-
guishing languages, the encoder strives to produce
more language-agnostic representations in an effort



to deceive the LD. To the best of anyone’s knowl-
edge, this is the first time ALA has been proposed
for the CLED task.

However, unlike previous ALA applications
where all unlabeled samples are treated equally,
it is acknowledged that this approach is not ideal.
Some samples are more informative for the dis-
criminator than others. Ideally, the LD should be
exposed to samples that allow it to understand the
nuanced differences between the source and target
languages, rather than relying solely on syntactic
differences. Furthermore, within the context of
ED, it would be beneficial for the LD to train with
event-containing examples rather than non-event
samples, allowing the presence of an event to be
integrated into the generated representations.

Therefore, it is suggested to refine the adversar-
ial training process by focusing on the most infor-
mative examples and disregarding the less helpful
ones. The rationale behind identifying samples as
more informative for CLED is twofold: Firstly, if
the LD is exposed to examples that are too differ-
ent, the discrimination task becomes too straight-
forward. The aim is for the LD to understand the
nuanced distinction between source and target lan-
guages, which, in turn, enhances the language-
invariance of the encoder’s representations. So,
presenting the LD with examples possessing sim-
ilar contextual semantics, i.e., similar contextual-
ized representations, is suggested. Secondly, sen-
tences that contain events should give an ED system
more task-related information compared to non-
event samples. It is therefore argued that sentences
containing events should have a higher probability
of being chosen for ALA training.

Keeping these insights in mind, Optimal Trans-
port (OT) (Villani et al., 2009) is proposed as a
practical solution to combine both the similarity be-
tween sample representations and the likelihood of
the samples containing an event within one frame-
work. Thus, the process of sample selection is
seen as an OT problem in which the best align-
ment between source and target language samples
is sought.

5 Conclusions and Future Work

This work provides a comprehensive examination
of the key research directions in Multilingual Infor-
mation Extraction (Multilingual IE), an essential
area of study within the broader landscape of Natu-
ral Language Processing. Our investigation demon-

strates the pivotal role of Multilingual IE in meeting
the escalating demand for efficient communication
and understanding across thousands of languages
worldwide. The study’s focus encompasses three
major research trajectories: enhancing Multilingual
IE upstream models, developing language-agnostic
downstream models, and advancing cross-lingual
transfer learning methods for situations with scarce
training data. Despite the remarkable advance-
ments made in these areas, the paper highlights
enduring challenges, such as the model size and
memory use, error propagation in pipeline-based
models, and monolingual bias in crosslingual trans-
fer learning. Addressing these challenges presents
an exciting frontier in the pursuit of democratiz-
ing communication and information access in our
linguistically diverse world.

The future of Multilingual IE research is brim-
ming with opportunities. One of the critical areas
requiring further attention is the development of ef-
ficient model compression techniques for upstream
models. Reducing model size without compro-
mising performance will make these models more
accessible and deployable across diverse computa-
tional environments. Secondly, further exploration
into JointIE models is necessary to fully harness
the language differences and similarities for im-
proved multilingual training and model generaliza-
tion. The mitigation of error propagation in these
models will significantly enhance the quality of
information extracted. Finally, the improvement of
cross-lingual transfer learning approaches warrants
more in-depth research, especially in scenarios with
limited training data. More robust techniques need
to be developed to combat the monolingual bias
and enable seamless portability of models across
languages. The successful addressal of these re-
search directions will contribute significantly to
the ongoing efforts of democratizing access to in-
formation and facilitating global communication,
irrespective of the language barriers. The essence
of future work in Multilingual IE is to continue the
pursuit of making the rich linguistic diversity of our
world a connecting bridge rather than a dividing
barrier.
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Aepli, Željko Agić, Lars Ahrenberg, Gabrielė Alek-
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Erina, Tomaž Erjavec, Aline Etienne, Wograine
Evelyn, Richárd Farkas, Hector Fernandez Al-
calde, Jennifer Foster, Cláudia Freitas, Kazunori

https://doi.org/10.3115/v1/P14-5003
https://doi.org/10.3115/v1/P14-5003
https://doi.org/10.3115/v1/P14-5003
https://doi.org/10.18653/v1/D19-1030
https://doi.org/10.18653/v1/D19-1030
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1609/aaai.v34i05.6445
https://doi.org/10.1609/aaai.v34i05.6445
https://doi.org/10.1609/aaai.v34i05.6445
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1584
https://doi.org/10.18653/v1/D19-1584
https://doi.org/10.3115/1118693.1118703
https://doi.org/10.3115/1118693.1118703
http://www.lrec-conf.org/proceedings/lrec2008/pdf/66_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/66_paper.pdf
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ders Johannsen, Fredrik Jørgensen, Markus Juutinen,
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Mária Šimková, Kiril Simov, Aaron Smith, Isabela
Soares-Bastos, Carolyn Spadine, Antonio Stella, Mi-
lan Straka, Jana Strnadová, Alane Suhr, Umut Su-
lubacak, Shingo Suzuki, Zsolt Szántó, Dima Taji,
Yuta Takahashi, Fabio Tamburini, Takaaki Tanaka,
Isabelle Tellier, Guillaume Thomas, Liisi Torga,
Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Fran-
cis Tyers, Sumire Uematsu, Zdeňka Urešová, Larraitz
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Žabokrtský, Amir Zeldes, Manying Zhang, and
Hanzhi Zhu. 2019. Universal dependencies 2.5.
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Fac-
ulty of Mathematics and Physics, Charles University.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2205–2215, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Zixuan Zhang and Heng Ji. 2021. Abstract Meaning
Representation guided graph encoding and decoding
for joint information extraction. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 39–49, On-
line. Association for Computational Linguistics.

GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang.
2005. Exploring various knowledge in relation ex-
traction. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL’05), pages 427–434, Ann Arbor, Michigan.
Association for Computational Linguistics.

http://hdl.handle.net/11234/1-3105
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.18653/v1/2021.naacl-main.4
https://doi.org/10.18653/v1/2021.naacl-main.4
https://doi.org/10.18653/v1/2021.naacl-main.4
https://doi.org/10.3115/1219840.1219893
https://doi.org/10.3115/1219840.1219893

