
Neighborhood Attention: dynamic restriction of self attention

Ali Hassani
Department of Computer Science

University of Oregon
alih@uoregon.edu

Linear Proj = NA (1 ×1) NA (3 ×3) NA (5 ×5) NA (7 ×7) NA (9 ×9) NA (11 ×11) NA (13 ×13) = Self Attn

Figure 1. Illustration of neighborhood attention with different kernel sizes. Neighborhood attention localizes self attention to each
token’s nearest neighbors, which eases the quadratic complexity, introduces inductive biases such as locality, and allows flexibility in
choosing the degree to which self attention is localized or restricted.

Abstract

Transformers, and more generally attention-based mod-
els, are omnipresent in modern deep learning frameworks,
dominating a wide range of applications from language to
vision and speech. Self attention, one of the primary opera-
tors in these models, is often cited for its quadratic complex-
ity with respect to input size. Avoiding this complexity has
often been done through local and sparse patterns, which
can be effective, but usually either eliminate useful proper-
ties and inductive biases, or are often difficult to implement
and scale. We propose neighborhood attention, a restriction
of self attention to nearest neighbors, which results in linear
time complexity, and can maintain many of the properties
present in self attention. This pattern can be thought of as a
flexible sliding window pattern, aimed at capturing consis-
tent local context throughout the input. Previous attempts
at sliding window patterns in attention were roadblocked
by the relative difficulty in implementing such patterns for
parallel hardware, which dominate training deep learning
models. To that end, we propose and implement a range
of different algorithms for neighborhood attention, starting
with naive implementations. We then formulate neighbor-
hood attention as an implicit general matrix-matrix mul-
tiplication (GEMM) problem, and implement its kernels in
CUTLASS. This implementation provides up to 6× improve-
ment in latency in 1D problems, and 4× improvement in
2D problems compared to naive GPU kernels. We package

and release all of our implementations as a Python pack-
age,NATTEN , which would allow researchers to quickly
set up and use neighborhood attention. We finally show
some of many possible applications of neighborhood atten-
tion, by introducing a set of hierarchical vision transform-
ers, Neighborhood Attention Transformer, and present their
performance on image classification, object detection, and
image segmentation.

1. Introduction

Transformers [48] have made a significant contribution
to AI research, starting with machine translation [48] and
more generally natural language processing [14, 38], and
later applied to other modalities such as speech [17] and
vision [15, 34]. Their omnipresence in AI today can be at-
tributed to their universal architecture built upon attention.
In computer vision, the original Transformer architecture
has been applied directly to image classification [15] as
well as dense tasks [19, 27]. Computer vision research in
transformer-like [30, 31, 50], transformer-inspired [32], and
attention-based [24,31,39,47,49] architectures has arguably
overtaken the former de facto standard, Convolutional Neu-
ral Networks (CNNs) [21, 25, 26]. Applications vary, from
simple vision backbone networks [39, 47], to more specific
tasks such as image generation and density modeling [8,34],
object detection [5], image segmentation [24,49], and more
recently, denoising diffusion models [22, 36, 41].

1

alih@uoregon.edu


The attention operator, a key component in the Trans-
former, bears with it many highly desirable properties, in-
cluding, but not limited to, global inter-dependency mod-
eling, a global receptive field, permutation invariance, and
therefore translational equivariance, and relatively easy im-
plementation and parallelization. Attention is typically used
in two different settings: weighting a single set of inputs
(projected into a key-value pair) with respect to themselves
(query) (self attention), or weighting the single set of inputs
with respect to a different set of inputs (cross attention). In
the original Transformer architecture, encoder layers were
comprised of a self attention and multi-layer perceptron
(MLP) block, while in the decoder, a cross attention block
between the input sequence, and a masked embedding of
the output sequence is placed between the two. Self atten-
tion is known for its quadratic time complexity with respect
to the number of inputs (memory depends on implemen-
tation [12, 37]), which, to some extent, has limited its ap-
plications to longer documents in language processing, and
larger resolutions in vision. In addition, certain inductive
biases that were found useful particularly in vision, such
as locality, a property that convolution bears inherently, are
typically only achievable in self attention through learning,
which tends to require more training data [15, 18]. As a re-
sult, researchers started experimenting with the idea of lo-
calizing self attention, producing a sliding window pattern
similar to that in discrete finite convolution [1, 39]. Such
an approach would maintain many of the useful properties
in self attention, such as translational equivariance, inter-
dependency modeling and dynamic weighting, and intro-
duce inductive biases such as locality, while reducing the
quadratic time complexity to a linear time complexity with
respect to the number of inputs (tokens in language, feature
map size in vision). Such an approach would however elim-
inate the global receptive field and global inter-dependency
modeling. Despite this, the primary limitation of these
methods was scaling, both in terms of speed [31, 39, 47]
and performance [31, 54].

Sliding window attention, meaning an attention operator
where every input token has a different key-value pair (the
window around it instead of every other token as in self at-
tention), is difficult to implement for a number of reasons.
Firstly, such an operation requires lower-level implementa-
tion, meaning implementing it through Python interfaces of
deep learning libraries that researchers typically utilize is
not nearly optimal [39]. Secondly, lower-level implemen-
tations of operations that compare with this approach fa-
vorably (i.e. convolution, and the like), have been highly
optimized as a result of years of continued development of
computational packages, as well as research into more effi-
cient linear algebra and deep learning routines. This means
that naive low-level implementations of such an approach is
not likely to run as efficiently as most similar components

used in deep neural networks, such as convolutions. Finally,
this operation cannot be modeled simply after convolutions,
despite the seemingly similar pattern. This is due to multi-
ple reasons, including the fact that the kernel is different for
every point, and said kernel requires to be computed in the
first place, and softmaxed. As for performance, we find that
a major issue is in how this operation was originally defined,
which is modeled after zero-padded convolution primarily
used in deep learning. The padding, which ensures queries
are centered and not avoided, reduces the receptive field and
therefore the context captured along corner cases, which
limits the ability to scale this operation to larger window
sizes. This is specifically a concern when the upper bound
is self attention (maximum window size). In other words,
localizing self attention by using sliding windows will not
approach self attention itself as the window size grows. As a
result of these issues, the community seemingly lost interest
in studying these methods further. Follow up works by the
same researchers abandoned the idea for alternatives with
relaxed and less-frequent sliding windows [47], and other
works building hierarchical vision transformers for higher-
resolution downstream tasks, such as object detection, and
image segmentation, also opted for non-sliding window al-
ternatives [31], or other localized attention variants.

In this work, we aim to re-introduce explicit sliding win-
dow attention by addressing the two issues in depth. We first
introduce Neighborhood Attention, a new pattern which
avoids zero padding by simply removing a built-in con-
straint. It does so by restricting attention to an input to-
ken’s nearest neighbors, and not those within the window
around it, relaxing the requirement for queries to be cen-
tered within the local window. It is proven that by mak-
ing this change, Neighborhood Attention becomes a flexible
and direct approach towards restricting self attention, while
maintaining all the properties present in the former sliding
window attention. We introduce dilations, which can al-
low for sparse global receptive fields, and potentially re-
introduce the global receptive field and global context from
self attention. We then introduce our efforts towards im-
plementing the concept, starting from the most naive ap-
proach, which is implementation using Python interfaces.
We then move on to naive GPU kernels written in CUDA,
and improve upon them by utilizing higher bandwidth mem-
ory. We then introduce our formulation of neighborhood at-
tention as an implicit General Matrix-Matrix Multiplication
(implicit GEMM), which means it can run on specialized
matrix multiply and accumulate (MMA) cores in hardware
accelerators (i.e. NVIDIA’s Tensor Cores). Through these,
we find that models based on neighborhood attention can be
trained as efficiently as state of the art architectures, scale to
competitive performance levels in image classification, ob-
ject detection, and image segmentation, while allowing for
a flexible pruning of the self attention graph.

2



In summary, the contributions of this paper are:

1. We introduce Neighborhood Attention; A flexible ex-
plicit sliding window attention pattern that bridges the
line between linear projection and self attention. We
investigate its properties, such as complexity, receptive
field size, translational equivariance, and its relation-
ship with self attention. We additionally introduce di-
lation into this pattern, and show that it provides many
advantages such as a faster growing receptive field, and
capturing global context, and it does so without impos-
ing any additional computational cost.

2. We thoroughly examine ways to implement neighbor-
hood attention, starting with the most naive of ap-
proaches, going all the way to formulating it, and more
generally sliding window attention, as a GEMM prob-
lem, which allows it to utilize hardware accelerators
more efficiently. We package these implementations
as a Python package to ease the process of using this
pattern in existing deep learning platforms.

3. We experiment with different vision architectures, and
introduce one of our own, all equipped with Neighbor-
hood Attention, and apply them to vision tasks such as
classification, detection, and segmentation.

2. Background
In this section, we briefly review dot product self at-

tention (DPSA), the Transformer [48], and Vision Trans-
former [15]. We then revisit previous attempts at restrict-
ing self attention through localized and sparse approaches,
and discuss the shortcomings of each. More specifically,
we revisit sliding window attention [1, 39], blocked atten-
tion [31, 47], sparse attention [1, 8], and blocked and sparse
attention [23, 46].

2.1. Self Attention and the Transformer

In the original paper proposing the Transformer architec-
ture, Vaswani et al. [48] defined dot product attention as an
operation between a query, and a set of key-value pairs. The
dot product of the query and keys is scaled and softmaxed,
which produce the final attention weights. Said attention
weights are then applied to the values:

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V, (1)

where
√
d is the scaling parameter, and d is the number of

dimension for which the dot product is computed (the em-
bedding dimension of Q and K). Dot product self attention
is simply a case of this operation where the queries, keys,
and values are all linear projections of the same input. This
operation bears a number of advantages, including, but not

limited to, the ability to model global inter-dependencies,
and therefore a global receptive field, as well as invariance
to permutations to the order of the input sequence, therefore
making it invariant to translations.

Vision Transformer (ViT) [15], one of the earliest works
applying a pure transformer encoder to vision, showed the
power of large-scale self attention based models in com-
puter vision. Follow up works extended the study with
minimal changes to training techniques [44], architectural
changes [45], and applications to small data regimes [18].

Self attention’s most cited bottleneck is its quadratic
complexity with respect to the number of input tokens. Its
memory footprint can be reduced to linear [12, 37] thanks
to kernel fusion, but more importantly, online computation
of softmax statistics [33]. However, its time complexity can
still limit scaling to longer input sequences, such as long
documents or context in language processing, and larger
resolutions in vision. In addition, it can be argued that mod-
eling global interactions can in some cases be unnecessary,
especially in the presence of redundant tokens [2, 3, 28, 40].
As a result of these, especially the quadratic cost, restricting
interactions in self attention is a problem that continues to
be of interest to the research community.

2.2. Local Attention

2.2.1 Sliding window attention

Stand Alone Self Attention [39] is one of the earliest local
attention patterns that was specifically geared towards vi-
sion. It defines a different key-value pair for every query
token with respect to the token’s spatial location. For ev-
ery query, its key-value pair is reduced from the entire in-
put sequence into only those that fall within a local window
around the query token. In other words, the same raster scan
pattern which is seen in convolution is used to extract the
tokens to which a query will attend. This operation, often
referred to as sliding window attention, maintains transla-
tional equivariance, and introduces inductive biases such as
locality. The original paper showed that this operation could
replace convolution in existing CNNs, such as ResNets, and
even reduce computational complexity. Despite the promise
it showed, the authors found that the resulting model suffers
from higher latency compared to the baseline, due to the
inefficient implementation of this module. Works succeed-
ing it therefore switched to alternative methods that could
run more efficiently. An example is HaloNet [47], which
proposed relaxing the sliding window stride for the sake of
efficiency.

However, implementation wasn’t the only roadblock in
studying such methods. This operation also eliminates the
global receptive field, and the ability to model global inter-
dependencies, which would hold true for any localized at-
tention pattern. In addition, the same raster scan pattern in-
troduces another issue: reduced interactions when windows

3



Sliding Window AttentionSelf Attention Blocked Attention Neighborhood Attention

Figure 2. Illustration of different attention patterns compared to our neighborhood attention. Each image represents a 14 × 14
feature map, and the highlighted windows represent the receptive field from their corresponding query pixels. Self attention allows global
interactions between every pair of tokens / pixels. Sliding window attention restricts interactions for every token to a local window around
it, which bears local inductive biases present in convolutional models. Blocked attention partitions tokens, and restricts global interactions
to each partition, which is easier to implement and parallelize compared to sliding window, but eliminates the dynamically shifting receptive
field among other properties present in the former two. Neighborhood attention restricts interactions for every token to its nearest neighbors,
capturing more context than sliding window attention, while preserving its useful properties, and allowing for more flexibility.

go out of bounds. This issue can become more serious as
window sizes grow, or when patterns such as dilation are
introduced, since the reduced interactions are a direct re-
sult of the “zero padding” handling of corner cases, and the
number of those cases grows linearly with window size and
dilation.

2.2.2 Blocked attention

Blocked attention is simply a pattern in which input tokens
are partitioned, followed by a self attention operation on
each partition. Also referred to as partitioned self attention
and window self attention, this pattern can be implemented
trivially, unlike sliding window attention. The partitioning
operation has a relatively small overhead, similar to the re-
verse, making this pattern’s implementation independent of
the attention operator. This further eases implementation
across different applications and platforms. This pattern
also introduces a few issues of its own. The first issue is
that it is no longer translationally equivariant, which simply
means it lacks a useful property present in not only CNNs,
but also attention-based models using self attention or slid-
ing window attention. Another issue with this approach is
that implementation can get more complicated if partitions
are either not of the same size (i.e. partitions that contain
more than half of the tokens.) Finally, among the most im-
portant issues is the fact that without any change in the parti-
tion size or the sequence order, tokens in different partitions
would never interact. This means that the receptive field
will be bound by window size and not grow. As a result,
some additional operation following this pattern that allows
for those interactions is necessary.

Liu et al. [31] proposed shifting pixels and masking in-
valid interactions, which is relatively trivial to implement,
bears limited overhead, and works relatively well across
a variety of applications. The same paper proposed Swin
Transformer, a hierarchical vision transformer that followed
ViT [15], but instead focused on applications to downstream
vision tasks. It was also pointed out in this paper that slid-
ing window attention was among their choices for a local-
ized self attention pattern, but eventually not pursued due to
issues in implementation as well as inferior performance.

2.3. Sparse Attention

Some works in language processing, such as Long-
former [1], explored the idea of not only using a sliding
window attention, but introducing dilation as well, which
leads to a sparse and global pattern depending on the di-
lation value. Child et al. [8] proposed Sparse Transform-
ers, which included different sparse and local patterns, used
across different attention heads. There have been other
works in sparse attention, including, but not limited to,
Routing Transformers [42], and CCNet [24], all of which
share a common feature: reducing the cost of self attention
in cases where longer sequences are inevitable, but a global
context is still necessary. In addition to those, more recently
Tu et al. [46] proposed MaxViT, a hybrid architecture com-
prised of convolution, blocked attention, and sparse blocked
attention with interlaced partitioning [23], which would re-
sult in a sparse global attention pattern. These patterns, and
their hybrid architecture, led to state-of-the-art image clas-
sification performance.

In summary, local and sparse patterns in attention have

4



dilation = 1 dilation = 2 dilation = 3 dilation = 4

Figure 3. Illustration of our proposed neighborhood attention pattern with different dilation values.

been sought-after for long, but mostly limited to the blocked
attention pattern. In this work, we aim to revisit sliding win-
dow attention, and to some extent address the shortcomings
that prevented researchers from fully utilizing such methods
at scale.

3. Methodology
Herein, we formally define Neighborhood Attention, and

describe its properties and its extensions. We then move on
to describe the difficulty in implementing neighborhood at-
tention, and more generally, in implementing sliding win-
dow attention. We present multiple implementation ap-
proaches, describe their advantages and limitations, before
moving on to formulating neighborhood attention as a set
of smaller matrix multiplications. Through our final formu-
lation, we introduce our GEMM-based implementation in
NVIDIA’s open-source CUTLASS library [43], which al-
lows neighborhood attention to run on Tensor Cores. Fi-
nally, we introduce a hierarchical vision transformer based
on our pattern, which we dub Neighborhood Attention
Transformer (NAT).

3.1. Neighborhood Attention

As described previously, restricting self attention is a
topic of interest not only due to its quadratic complex-
ity with respect to input length, but also due to potential
emergence of redundant tokens [2, 3, 28, 40], or lack of
enough training data to model inductive biases such as lo-
cality [15, 18]. While blocked attention patterns are among
the most commonly used, in part thanks to their ease of im-
plementation, they eliminate properties such as translational
equivariance, and dynamic per-token receptive fields.

Setting aside implementation, we revisit sliding window
attention [39] and discuss a key issue the original formula-
tion bears in theory, and then propose neighborhood atten-
tion which is aimed at resolving said issue. We then study
neighborhood attention’s properties, and compare it to ex-
isting methods. We finally move on to challenges in imple-

mentation, and present a wide range of possible implemen-
tations, ranging from naive implementations using Python
interfaces, to naive CUDA kernels, and finally, a GEMM-
based implementation in CUTLASS.

3.1.1 Definition

For simplicity, we use 1-D notations with only a single at-
tention head.

Neighborhood attention. Given an input sequence in the
form of a matrix,X ∈ Rn×d, whose rows are d-dimensional
token vectors, we first projectX into queries, and key-value
pairs, similar to the original dot product attention formula-
tion in Eq. (1), which we denote with matricesQ,K, and V ,
which are of the same shape asX . We then define neighbor-
hood attention weights for the i-th token, Ak

i , with neigh-
borhood size k as the following vector-matrix multiplica-
tion:

Ak
i =




QiK
T
ρ1(i)

QiK
T
ρ2(i)

...
QiK

T
ρk(i)


 , (2)

where ρj(i) denotes token i’s j-th nearest neighbor. We
similarly define neighboring values, Vk

i , to which attention
weights would be applied, as a matrix whose rows are the
i-th token’s k nearest neighboring value projections:

Vk
i =

[
V Tρ1(i) V Tρ2(i) . . . V Tρk(i)

]T
. (3)

The final output from neighborhood attention for the i-th
token with neighborhood size k is :

NAk(i) = softmax

(
Ak
i√
d

)
Vk
i , (4)

where similar to Eq. (1),
√
d is the scaling parameter, and d

is the embedding dimension.

5



x T (x) BA(T (x)) T (BA(x))) NA2(T (x)) T (NA2(x)))

Rotation

Shift

Figure 4. Visualization of translations applied to blocked and neighborhood attention. T denotes the translation function (top row
is rotation, bottom row is shift). “BA” denotes blocked attention with shifts applied to the input per Swin Transformer, with a residual
connection in between. This pattern breaks translational equivariance. “NA2” denotes two consecutive neighborhood attention operations
applied to the input, again with a residual connection in between. NA preserves translational equivariance.

Dilated neighborhood attention. Given a dilation value
δ, we define ρδj(i) as the i-th token’s j-th nearest neighbor
that also satisfies: j mod δ = i mod δ. We can then define
δ-dilated neighborhood attention weights for the i-th token
with neighborhood size k, A(k,δ)

i , as follows:

A
(k,δ)
i =




QiK
T
ρδ1(i)

QiK
T
ρδ2(i)

...
QiK

T
ρδk(i)



. (5)

We similarly define δ-dilated neighboring values for the i-th
token with neighborhood size k, V(k,δ)

i :

V
(k,δ)
i =

[
V T
ρδ1(i)

V T
ρδ2(i)

. . . V T
ρδk(i)

]T
. (6)

Finally, dilated neighborhood attention for the i-th token
with neighborhood size k is defined as:

DiNAδk(i) = softmax

(
A

(k,δ)
i√
dk

)
V

(k,δ)
i . (7)

3.1.2 Properties

Relation to self attention and linear projection. Neigh-
borhood attention can exhibit certain properties under dif-
ferent kernel sizes. Given a kernel size of 1 (or 1 × 1 in two
dimensions), each token can only attend to itself, resulting
in only a single attention weight. Since attention weights
are mapped to a probability distribution through softmax,
the final attention weight for every token will be 1.0, and
therefore the every output token would be 1.0 times its cor-
responding value token. In other words, with a kernel size

of 1, the attention operator becomes the identity function,
and as a result, an attention layer would only perform a lin-
ear projection.

On the other hand, given the maximum kernel size,
which is the same as input size, each token will attend to
every other token, therefore effectively computing self at-
tention. This can be easily seen by increasing kernel size k
in Eq. (4). This property is useful because any self attention
operation can be restricted step by step by simply reducing
the number of interactions through reducing kernel size.

Translational equivariance. One of the properties
present in both self attention, and convolution is transla-
tional equivariance [16]. To study whether this property
exists in neighborhood attention, and other restricted atten-
tion patterns, we begin with the definition of translational
equivariance in the context of vision, where translation typ-
ically refers to a shift or rotation function. Any function
f is equivariant to a translation function T if T (f(x)) =
f(T (x)). Linear projection is invariant to permutations in
order of pixels, simply because pixels would serve as rows
in the underlying matrix multiplication, and is therefore
translationally equivariant. The same holds for self atten-
tion [39] simply because deriving attention weights is a sim-
ple matrix multiplication, and applying attention weights
is a weighted sum of rows, therefore maintaining permu-
tation invariance. As a result, both linear projection and
self attention are invariant to permutations in the order of
tokens, and therefore equivariant to translations. Convolu-
tions are translationally equivariant [16], since every output
pixel is the product of its corresponding input pixel cen-
tred in a window and multiplied by a static kernel. Note
that convolutions are not invariant to permutations. Sliding
window attention [39], and by extension neighborhood at-

6



Self Attn Self Attn Self Attn Self Attn

Self Attention

Complexity:O
(
n2d

)

RF= n

Convolution Convolution Convolution Convolution

Convolution

Complexity:O
(
nd2k

)

RF= ℓ(k − 1) + 1

Blocked Attn Blocked Attn + shift Blocked Attn Blocked Attn + shift

Blocked Attention + shift
Complexity:O

(
ndk

)

RF= ℓk

NA NA NA NA

Neighborhood Attention

Complexity:O
(
ndk

)

RF= ℓ(k − 1) + 1

NA (dilation=1) NA (dilation=3) NA (dilation=1) NA (dilation=9)

Neighborhood Attention + dilation

Complexity:O
(
ndk

)

RF∈ [ℓ(k − 1) + 1, kℓ]

Figure 5. Receptive fields from self attention (per ViT), convolution, blocked attention with shifts (per Swin), and neighborhood
attention both with and without dilation. n denotes the number of tokens, d denotes the embedding dimension, and k denotes ker-
nel/window size. All receptive fields are bounded by input size, n. Self attention’s global receptive field yields the maximum receptive
field per every layer. Convolution, blocked attention, and neighborhood attention grow their receptive fields linearly with more layers.
With dilation, neighborhood attention’s receptive field growth can range from linear, `(k − 1) + 1, to exponential, k`.

tention, break permutation invariance, as permutations will
affect each pixel’s neighborhood. However, translational
equivariance is still maintained, because of the raster scan
pattern, which is similar to that in convolutional layers. As
for blocked attention, the partitioning breaks translational
equivariance across the entire feature map, while permuta-
tion invariance within partitions is maintained. To better
illustrate these, we visualize applying blocked attention (as
proposed in Liu et al. [31]) and neighborhood attention with
translations in Fig. 4.

Receptive field. Receptive field growth rate is considered
as one of the contributing factors to a model’s theoretical
performance. As a result, we present an analysis of not
only neighborhood attention’s receptive field, but the effect
dilation has on its growth rate. For simplicity, we will con-
tinue to use 1-dimensional notation. We denote the number
of layers with `, kernel size with k, and number of tokens
with n. Self attention is known for its global receptive field,
meaning every token can contribute to the outcome of every
other token, therefore receptive field size in self attention
is always the upper bound, n. On the other hand, convo-
lutional layers and neighborhood attention start out with a
receptive field of size k, since k tokens at a maximum can
contribute to the outcome of any given token. They also ex-
pand by k − 1 tokens per layer. As a result, both will end
up with a receptive field growth of k + (k − 1) ∗ (` − 1),
which can be simplified into `(k−1)+1. Blocked attention
on its own maintains a constant receptive field of the same
k tokens per layer. This can be problematic if used through-
out the model without any operation introducing interac-

tions between tokens in different partitions, meaning the
receptive field will not grow. To introduce cross-partition
interactions, Liu et al. [31] proposed shifting inputs in or-
der to create a shifted partitioning effect with minimal over-
head, which they dubbed cyclic shift. Alternating between
blocked attention with and without cyclic shift resolves this
issue, and expands receptive fields by exactly one window
per layer, which is an expansion of k per layer. This results
in a growth rate of `k, which is slightly larger than that of
convolutions and neighborhood attention by `− 1.

As for neighborhood attention’s receptive field growth
with dilation, it can range anywhere from the original
`(k− 1) + 1, to an exponentially growing receptive field of
k`. The lower bound is simply the growth rate from neigh-
borhood attention with no dilation, meaning every layer’s
dilation value is set to 1. The upper bound is derived as fol-
lows: Regardless of dilation, the first layer always yields a
receptive field of size k. Each one of the k tokens in the
first layer can target a maximum of k new tokens in the fol-
lowing layer, given a dilation value that minimizes overlap.
Because of this, the upper bound for growth in the second
layer is k2. This can be easily extended to ` layers, into a
growth rate of k`. As a result, by introducing dilation into
neighborhood attention, one can achieve an exponentially
growing receptive field, which is a step in the right direc-
tion in terms of capturing global context. It is important to
note that convolution can be dilated as well, but dilation val-
ues are much more constrained compared to neighborhood
attention. This will be further discussed in Sec. 3.2. An il-
lustration of the receptive field growth in different operators
is also presented in Fig. 5.

7



Complexity. As stated, self attention has a quadratic com-
plexity with respect to the number of tokens, which can be
easily derived from Eq. (1). Computing attention weights is
a matrix multiplication of an n× d matrix by the transpose
of a matrix of the same size, which is O(n2d). The soft-
max operation requires computing element-wise exponen-
tial values followed by n summations of d elements, and an
element-wise division, which is simply O(nd). Applying
attention weights is similar in complexity to computing the
weights, but is an element-wise multiplication of n weights
by and n × d matrix (O(nd)) for every one of n tokens,
which is O(n2d). Neighborhood attention, blocked atten-
tion, and sliding window attention, share the same com-
putational complexity given the same window size, despite
their differences. For these methods, per token interactions,
therefore weights, drop from n tokens to k tokens, reducing
the original complexity to a linear O(ndk). Convolutions
on the other hand apply static kernels of size k to the input,
which is effectively applying a linear projection, k×d→ d,
to n activations of size k × d (assuming no padding). This
is simply a matrix multiplication of an n × kd matrix by
a kd × d matrix, which is of O(nd2k). It is worth noting
that depth-wise convolutions are of O(ndk), and that atten-
tion also requires three linear projections, which would add
O(nd2) to the complexity. Fig. 5 includes computational
complexity in addition to receptive field growth across the
methods discussed.

3.2. Why not convolutions?

Neighborhood attention’s seemingly similar pattern to
convolutional layers may raise the question: what would
be the advantage in using neighborhood attention instead of
convolutions? This question is best addressed by pointing
out both the differences between windowed attention and
convolution in general, and by looking at properties spe-
cific to neighborhood attention that cannot be transferred to
convolutions.

Windowed attention versus convolution. While at first
glance, the pattern used to extract key-value pairs for to-
kens in sliding window and neighborhood attention seems
similar to that in convolutions, the operation being per-
formed is very different. In convolutions, activations from
the raster scan are linearly projected into an output, which
captures local context within the window. The same does
not hold true for attention, where there’s two sets of activa-
tions, one from each of the key-value projections, and the
first is used to compute attention weights between a single
token, and the tokens within its corresponding activation.
This operation not only captures local context, it models
local inter-dependencies between the query token, and its
corresponding key tokens. Once attention weights are com-
puted, and softmaxed, they are applied element-wise to the

corresponding value activations. This is the primary differ-
ence between convolution and attention; the former applies
a static linear projection on local regions, while the latter is
using local interactions to compute outputs.

Properties specific to neighborhood attention. As
stated, neighborhood attention’s key difference compared
to sliding window attention is the sliding window pattern
itself. Neighborhood attention restricts attention to near-
est neighbors, which is not necessarily a window centered
around each token. This difference is very important, be-
cause explicitly centering attention window around every
token results in reduced receptive field for tokens that can-
not be centered, which potentially degrades performance at
scale. This is because the ratio of such tokens increases lin-
early with window size and dilation, which would limit the
ability to capture meaningful interactions at scale. Defining
neighborhood attention completely resolves this issue with-
out imposing any additional computation, but it may intro-
duce additional challenges in implementation, which will
be discussed in Sec. 3.3. Note that this difference is the sole
reason why neighborhood attention windows can be dilated
to greater extents compared to sliding window attention and
convolution; given n tokens, kernel size can range from 1 to
n, and dilation can range from bn/kc. This property cannot
be extended to static convolution, simply because the neigh-
borhood attention pattern results in repeated pixels in corner
cases, due to the static kernel. As a result, static convolution
is limited in terms of choices for kernel size and dilation, as
larger kernel sizes or dilation values lead to linearly increas-
ing padding in order to maintain the spatial size.

3.3. Implementation

Many existing works pointed out that implementing a
sliding window attention is difficult, primarily citing the dy-
namic kernel as the reason why. Within this subsection, we
aim to first provide more evidence to support claims regard-
ing difficulty, before moving on to describing our imple-
mentations, each of which aim to improve upon the previous
by creating more optimal implementations for hardware ac-
celerators, which in the case is limited to general-purpose
GPUs. Deep learning frameworks such as PyTorch [35]
are generally interfaces to many underlying computational
packages, as well other frameworks providing the infras-
tructure, all of which are to some extent abstracted away
from users. In other words, such frameworks rarely im-
plement deep learning primitives and operations, such as
convolution, or even matrix multiplication. Such opera-
tions are typically implemented by computational packages
(i.e. LAPACK, cuDNN). In rare cases, state of the art algo-
rithms [12] are also interfaced to provide enhanced perfor-
mance prior to being fully adopted into standard computa-
tional packages.

8



As a result, primitives such as attention, convolution, lin-
ear projection, recurrent layers, and the like tend to provide
close-to-optimal performance in terms of throughput, par-
ticularly those that are comprised of matrix multiplications.
Among the reasons why matrix multiplications in particu-
lar are well-optimized are high parallelizability, and the fact
that many hardware accelerators geared towards deep learn-
ing are equipped with dedicated matrix multiply and accu-
mulate (MMA) cores (i.e. Tensor Cores in NVIDIA GPUs.)
In many platforms, different forms of matrix multiplication
are computed through the General Matrix-Matrix Multipli-
cation (GEMM) routine. In addition, (discrete) convolution
can be modeled as an implicit GEMM problem with lim-
ited overhead, and as a result is typically implemented us-
ing GEMM routines in many platforms. Implicit GEMM
is simply a GEMM routine designed to multiply the con-
volution activation (extracted sliding windows) matrix by
the weight matrix (reshaped kernels). The reason why this
can be done efficiently is that the sliding windows are not
explicitly extracted and stored in global memory, and are in-
stead loaded into registers or high-bandwidth memory only
prior to each block of computation. This also means con-
volution operations also enjoy increased throughput by run-
ning on dedicated MMA cores, such as Tensor Cores.

Implementing neighborhood attention faces a few chal-
lenges, the first being its requirement of lower level imple-
mentations. Because of the nuances of the method, par-
ticularly that in corner cases, implementing it through the
typical Python interface is not going to scale. Extracting
sliding windows alone will consume exponentially larger
amounts of global memory, leading to very limited scala-
bility in terms of training. In addition, this implementation
leads to orders of magnitude higher latency compared to al-
ternatives with identical FLOPs. As a result, we carefully
implemented GPU kernels to avoid both the excessive mem-
ory footprint and latency. We also implemented trivial CPU
procedures in C++.

3.3.1 Operations

In order to allow for automatic differentiation for backprop-
agation in packages such as PyTorch, we implement both
forward pass and backward pass kernels in every scenario.
There are two forward pass kernels, one for computing at-
tention weights per Eq. (2), and one for computing the out-
put per Eq. (4). As a result there would be four backward
pass kernels, one for each ofQ, K, V , and A. This makes a
total of 6 kernels, which we found can be reduced to 3 ker-
nels. Herein, we describe the 3 operations, and specify their
respective kernels. For ease of implementation and portabil-
ity, we exclude the softmax operation, as it is challenging to
fuse into kernels, and if not fused, the routine can simply be
imported from existing libraries.

Pointwise-Neighborhood (PN). Computing neighbor-
hood attention weights (Eq. (2)) is a per-token general
matrix-vector multiplication (GEMV) between a token’s
neighboring keys, and its query vector. Given kernel size
k, every token’s query is a d dimensional vector, and has k
neighboring keys, each of which are also d dimensional vec-
tors, which are packed into a k×dmatrix. This is essentially
a 1×k×d shaped GEMM. Computing the gradient of atten-
tion weights is also a per-token GEMV between an output
token’s gradient, and its neighboring values, with the same
shapes. This means that any routine computing neighbor-
hood attention weights can be used to compute the gradient
for those weights as well, simply by plugging in the relevant
inputs. We label this operation Pointwise-Neighborhood
(NN) to illustrate the vector-matrix multiplication between
a token (point) and its neighborhood.

Neighborhood-Neighborhood (NN). Applying attention
weights (Eq. (4)) can also be expressed as a per-token
GEMV. The difference however is in the problem size,
which is a 1×d×k shaped GEMM. Each token’s k attention
weights are multiplied by k value vectors, all of which are d
dimensional, and then a summation over the k vectors. This
can be simplified into multiplying a k dimensional vector by
a k × d dimensional matrix, resulting in a single d dimen-
sional output vector. Computing the gradient of queries, Q,
is similarly a GEMV between the gradient of each token’s k
attention weights, and its k key vectors, resulting in a single
d dimensional query gradient vector. We label this opera-
tion Neighborhood-Neighborhood (NN), which highlights
the key difference with PN: k is the number of accumula-
tions (length of the inner-most loop).

Inverse-Neighborhood (IN). This operation computes
gradients for the key-value pair (K and V ), and differs from
the first two due to the fact that the neighbor relationship is
not commutative. Simply put, a token x being in another
token y’s neighborhood given a fixed neighborhood/kernel
size does not imply y is in x’s neighborhood with the same
neighborhood/kernel size. This is simply due to the very
definition of neighborhood attention, and the elimination of
the constraint on queries being centered in the neighbor-
hood. This operation is therefore defined as follows: for any
given token x, we find the set of inverse neighbors, which
is comprised of all tokens y where x falls in y’s neighbor-
hood. This is a superset of x’s neighbors, and in non-corner
cases would be equivalent to it. In corner cases, the superset
can contain up to 50% more tokens. We label this opera-
tion Inverse-Neighborhood (IN), as it is similar in concept
as well as the GEMM shape to NN, but requires additional
index mapping and additional tokens being loaded.

9



3.3.2 Challenges

There are a number of challenges that make implementing
neighborhood attention in the same manner as other deep
learning primitives and operations non-trivial. Those in-
clude the following:

1. GEMV cannot scale as well as problems that are for-
mulated as GEMMs (i.e. attention and convolution).
This is especially true in the presence of MMA cores
(i.e. Tensor Cores).

2. Inverse-Neighborhood requires a more complicated in-
dex mapping compared to the other two operations,
and the difference in the size of the set of inverse
neighbors for every token is difficult to predict at com-
pile time.

3. Extending the operations to two dimensions compli-
cates tiling-based approaches, because in that case
tiling would have to be done with respect to the two
dimensions, possibly creating additional overhead.

Because of these, we initially started with developing very
naive kernels without using caching or higher-bandwidth
memory, focusing only on correctness.

3.3.3 Naive kernels

Our naive kernels are simple CUDA kernels that implement
the three operations in single-instruction multiple-threads
(SIMT) style. PN threads compute the neighborhood range
(indices of their corresponding token’s neighbors), and per-
form one vector-vector multiply and accumulate (MAC) op-
eration, and therefore store a single neighborhood attention
weight. NN threads similarly compute the neighborhood
range, and perform a single vector-vector MAC between
neighborhood attention weights, and their corresponding
values in a single output dimension. IN threads compute
the inverse neighborhood range for the token corresponding
to their index, and compute a single vector-vector MAC be-
tween the weights from the inverse neighborhood and their
corresponding values in a single dimension, following NN
in that regard.

Tiling and shared memory. We experimented with re-
implementing our PN kernel to prefetch contiguous query
and key tokens and compute attention weights for multiple
tokens per thread, which is possible due to the assumption
that sets of neighbors corresponding to consecutive queries
largely intersect (queries close to each other share most
of their neighborhoods.) While this resulted in a signifi-
cant drop in latency, and was further optimized by mini-
mizing bank conflicts, the formulation simply cannot scale
to larger problem sets, and extension to different problems

sizes requires heavy use of templated arguments as well as
code duplication. These make this implementation difficult
to extend and maintain. Motivated by this, in addition to
the fact that naive kernels cannot reach peak throughput
due to frequent reads from lower-bandwidth memory, we
attempted to model neighborhood attention as an implicit
GEMM problem. Such an implementation would also al-
low utilization of MMA cores.

3.3.4 Implicit GEMM NA

As previously mentioned, convolutions can be formulated
as GEMMs by implicitly forming sliding window acti-
vations. This means the global data iterators within the
GEMM kernel, which load tiles of the operand matrices, are
modified to map activation indices to indices in the original
input, therefore forming only tiles of the activation matrix in
higher bandwidth memory prior to the main loop perform-
ing MMAs. This is preferable to pre-computing the rela-
tively large activation matrix from the input and storing it
in global memory. We attempt to formulate neighborhood
attention operations (PN, NN, and IN) as implicit GEMM
problems. While seemingly impossible, given that all three
operations are GEMV problems, we found that the very as-
sumption used in our previous tiling approach (neighbor-
hoods corresponding to consecutive tokens largely inter-
sect) can be transferred to implicit GEMM kernels. In ad-
dition, by customizing the epilogue, which is responsible
for copying MMA results from registers into global mem-
ory, we can mask out invalid attention weights, as long as
all valid attention weights1 are computed within the same
cooperative thread array (CTA). Our approach is to implic-
itly tile inputs as to prevent launching an excessive num-
ber of CTAs. This simply means we would launch fewer
CTAs compared to a self attention kernel. In our formu-
lation, each CTA effectively computes cross attention be-
tween the loaded query tokens, and the key tokens. We de-
sign global data iterators that load enough key tokens that
would cover all loaded queries, and repeat the CTA with the
same query tokens and new key tokens if necessary (useful
when not all corresponding keys fit into shared memory.)
The main loop is a standard GEMM main loop, perform-
ing MMA operations on loaded tiles. This allows for any
GEMM routine to replace our existing one without having
to re-implement the neighborhood attention logic. Finally,
the epilogue loops through computed attention weights be-
tween the loaded queries and keys, and only proceeds to
store valid ones into global memory (valid refers to those
that fall within the defined neighborhood/kernel size). An
illustration of this process in a 2-dimensional PN kernel is

1In practice we split attention weights into multiple CTAs if the prob-
lem size exceeds the bounds of GEMM tile shape. This will not result in
any race conditions in our formulation.

10



2D Query (Global memory)

Load non-overlapping 2D tiles.

2D Key (Global memory)

Load non-overlapping
2D tiles with haloing.

Ô

Query tile (CTA)

Ô

Key tile (CTA)

MMA

Ô

Attention weights (CTA)

Epilogue filters NA weights.

Ô

2D Attention (Global memory)

Store non-overlapping 2D tiles.

Figure 6. Visualization of tiling in implicit GEMM NA. This visualizes the pointwise-neighborhood (PN) operation. In this example,
the input is a 122 feature map with 4 channels, window size is 32. Each CTA will load one non-overlapping query tile and a haloed key tile,
computes attention weights, and the epilogue only stores valid weights, ignoring the rest.

presented in Fig. 6. This concept was implemented for both
1-dimensional (token sequence) and 2-dimensional (feature
map) neighborhood attention using NVIDIA’s CUTLASS
library. We followed the GEMM hierarchy in CUTLASS
2.9 (the latest release at the time of development), but hope
to extend the implementation to the new design language
introduced in CUTLASS 3.0, which would allow targeting
the latest architectures from NVIDIA (Ada Lovelace and
Hopper.)

3.3.5 Performance improvements from GEMM-based
kernels

To evaluate performance improvements from our implicit
GEMM kernels, we profiled them against our naive ker-
nels under different practical window sizes, dilation val-
ues, and input sizes. Latency values were divided to derive
relative improvement in forward pass (QKT and AV ) and
backward pass (∇Q, ∇K, ∇V , ∇A) functions, as well as
the total of one forward and backward pass. Those results
are presented in Tab. 1 grouped by kernel size, where we
can see the GEMM kernels reach approximately 500% to
1300% the throughput of naive kernels in 1-D, and 300% to
500% of their throughput in 2-D. We found that across dif-
ferent problem sizes, implicit GEMM kernels consistently
reach significantly higher throughput levels compared to
naive kernels, which is to no surprise. In addition, we found
that these kernels can also outperform our original tiled PN

kernel, which is excluded from the results here for con-
sistency. We’ve also verified the correctness of and used
both 1-dimensional and 2-dimensional neighborhood atten-
tion with up to kernel size 632.

Kernel Forward pass Backward pass Total
size QKT AV Total ∇A ∇Q ∇K ∇V Total

(PN) (NN) (PN) (NN) (IN) (IN)

1-dimensional neighborhood attention

9 1377 % 105 % 667 % 1401 % 105 % 243 % 243 % 456 % 527 %

25 3208 % 213 % 1573 % 3338 % 213 % 402 % 402 % 958 % 1156 %

49 3544 % 298 % 1796 % 3718 % 298 % 567 % 567 % 1119 % 1327 %

81 3338 % 398 % 1857 % 3584 % 398 % 648 % 648 % 1169 % 1373 %

121 3045 % 407 % 1706 % 3373 % 407 % 698 % 698 % 1141 % 1310 %

169 2157 % 402 % 1386 % 2333 % 402 % 715 % 715 % 1041 % 1150 %

Total 2002 % 155 % 985 % 2060 % 155 % 337 % 337 % 653 % 762 %

2-dimensional neighborhood attention

32 1009% 75% 430% 1026% 75% 153% 153% 257% 304%

52 2266% 106% 943% 2274% 106% 202% 202% 436% 558%

72 2317% 140% 952% 2332% 140% 235% 235% 442% 556%

92 1101% 196% 684% 1114% 196% 268% 268% 404% 473%

112 1128% 265% 726% 1150% 265% 286% 286% 424% 495%

132 1007% 286% 714% 1021% 286% 305% 305% 436% 504%

Total 1322% 188% 745% 1339% 188% 257% 257% 413% 493%

Table 1. Relative throughput comparison between naive and
implicit GEMM neighborhood attention kernels. Kernels were
profiled across different problem sizes and grouped by kernel size.

11



H ×W

In
iti
al

Do
wn

sa
m
pl
er

Tr
an

sfo
rm

er
en

co
de

rl
ay
er

Le
ve
l

Do
wn

sa
m
pl
er

H
4 × W

4

×N1

Ô

Tr
an

sfo
rm

er
en

co
de

rl
ay
er

Le
ve
l

Do
wn

sa
m
pl
er

H
8 × W

8

×N2

Ô

Tr
an

sfo
rm

er
en

co
de

rl
ay
er

Le
ve
l

Do
wn

sa
m
pl
er

H
16 × W

16

×N3

Ô

Tr
an

sfo
rm

er
en

co
de

rl
ay
er

H
32 × W

32

×N4

Ô

Fu
lly

Co
nn

ec
te
d

Fla
m
in
go

Layer Norm

NA

Layer Norm

MLP

⊕

⊕

Layer Norm

Dilated NA

Layer Norm

MLP

⊕

⊕

Transformer Encoder Layer(Dilated) Neighborhood Attention Transformer Architecture

Figure 7. An illustration of the hierarchical NAT/DiNAT architecture. Inputs are downsampled to a quarter of their original spatial
resolution, and go through 4 levels of Transformer encoders. Feature maps are downsampled to half their spatial size and doubled in
channels between levels. In NAT variants, self attention is replaced with neighborhood attention. In DiNAT variants, we alternate between
non-dilated neighborhood attention, and dilated neighborhood attention.

3.3.6 NATTEN

Our implementations are primarily C++ and CUDA kernels,
which require compilation and binding to Python in order to
support running as part of frameworks such as PyTorch. In
order to minimize the effort required to do so, we packaged
all of our implementations, along with Python bindings and
autograd support for PyTorch, as a Python package, which
can be installed via pip. The package, Neighborhood At-
tention Extension (NATTEN ), comes with pre-built bi-
naries for the latest PyTorch releases, allowing researchers
to plug neighborhood attention into their work within sec-
onds. NATTEN ’s latest public release only includes our
naive kernels, and our early tiled PN kernels, which is suf-
ficient for many scenarios, but certainly not always com-
petitive in terms of throughput. However, upon releasing
our implicit GEMM backend, users should observe a sig-
nificant improvement in latency, both in 1-dimensional, and
2-dimensional neighborhood attention, simply by upgrad-
ing NATTEN .

3.4. Architecture design

In order to evaluate neighborhood attention, we create
vision architectures based on it, which follow the trend
of hierarchical vision transformers, such as Swin [31].
While architecture design is not the focus of this paper, we
tweaked our architecture to further enhance performance by
re-introducing convolutional downsamplers (as opposed to
non-overlapping, a.k.a patched, downsampling), and reduc-

ing the additional complexity and memory footprint by re-
ducing the size of inverted bottlenecks. We label the new
architectural configuration Neighborhood Attention Trans-
former (NAT), and summarize its variants ranging from 20
million parameters to 200 million parameters in Tab. 2, with
an illustration of the design in Fig. 7. Variants using dilated
neighborhood attention are dubbed DiNAT.

Variant Layers Dim × MLP # of FLOPs
per level Heads ratio Params

• (Di)NAT-Mini 3, 4, 6, 5 32 × 2 3 20 M 2.7 G
• (Di)NAT-Tiny 3, 4, 18, 5 32 × 2 3 28 M 4.3 G
• (Di)NAT-Small 3, 4, 18, 5 32 × 3 2 51 M 7.8 G
• (Di)NAT-Base 3, 4, 18, 5 32 × 4 2 90 M 13.7 G
• (Di)NAT-Large 3, 4, 18, 5 32 × 6 2 200 M 30.6 G

Table 2. NAT/DiNAT variants. Channels (number of attention
heads and embedding dimension) double after every level except
the last. No dilation is used in NAT variants, whereas in DiNAT
variants we alternate between neighborhood attention with and
without dilation.

4. Experiments
Herein, we present experiments with multiple vision

architectures, including our proposed configuration from
Sec. 3.4, NAT and DiNAT. We trained these models on im-
age classification, region-based object detection and image
segmentation. Unless otherwise stated, we used neighbor-
hood attention with a kernel size 72.

12



4.1. Image classification

Following existing and related works, we train our image
classification models on ImageNet-1K [13] for 300 epochs,
the first 20 of which warm up to a learning rate of 1e-3. We
used a batch size of 1024, and an additional 10 cooldown
epochs in addition to the 300, again following the stan-
dard practice [51]. Our larger scale variants on the other
hand are pre-trained on the superset, ImageNet-22K, for 90
epochs, and fine-tuned on the original ImageNet-1K for an
additional 30 epochs. For this task, we experimented with
not only our proposed architecture, but also with the Swin
Transformer architecture [31], which is similar in concept
to our NAT/DiNAT architecture, but differs in downsam-
pling, as well as the number of layers and inverted bot-
tleneck sizes (see Sec. 3.4). We additionally experimented
with the MaxViT architecture [46], which is a state-of-the-
art hybrid architecture comprised of attention and convo-
lution. We also experimented with the original ViT archi-
tecture [15], in order to observe both performance changes
from restricting self attention, and to observe the impact of
dilation.

4.1.1 NAT and DiNAT

Tab. 3 summarizes our ImageNet-1K experiments with NAT
and DiNAT. Within these experiments, we see that dilation
has little effect on throughput, but performance levels vary.
In smaller scale variants, dilated variants either match or fall
short of non-dilated variants. However, we found these in-
stances to be the exception, as we will see variants with dila-
tion significantly outperform those without dilation, both in
image classification at scale, and downstream tasks. More-
over, we did not observe the same effect in other architec-
tures, such as Swin Transformer’s architecture.

Model # of FLOPs Thru. Memory Top-1
Params (imgs/sec) (GB) (%)

◦NAT-M 20 M 2.7 G 2297 2.4 81.8
•DiNAT-M 20 M 2.7 G 2245 2.4 81.8

◦NAT-T 28 M 4.3 G 1664 2.5 83.2
•DiNAT-T 28 M 4.3 G 1619 2.5 82.7

◦NAT-S 51 M 7.8 G 1130 3.7 83.7
•DiNAT-S 51 M 7.8 G 1142 3.7 83.8

◦NAT-B 90 M 13.7 G 856 5.0 84.3
•DiNAT-B 90 M 13.7 G 864 5.0 84.4

Table 3. ImageNet classification performance with
NAT/DiNAT architecture. Dilation almost always improves
accuracy, with very limited effect on latency, and no additional
computational cost. The exception here are the Mini and Tiny
variants, where dilation does not improve classification accuracy.
Despite this, we see the same variants outperform its non-dilated
counterpart in downstream tasks. Throughput and peak memory
usage are measured from forward passes with a batch size of 256
on a single A100 GPU.

4.1.2 With Swin Transformer

We replaced blocked attention in Swin Transformer variants
with neighborhood attention, and dub the resulting model
NATs. In addition, we created a dilated counterpart for
said model, where we replace layers with blocked attention
with neighborhood attention, but replace layers with shifted
blocked attention with dilated neighborhood attention, and
dub these models DiNATs. Results are presented in Tab. 4.
In every instance, variants powered by neighborhood atten-
tion can run noticeably faster, use less memory (from lack
of pixel shifts, and the like), and enjoy improved classifi-
cation accuracy. We also experimented with replacing only
the shifted blocked attention with sparse blocked attention
(per MaxViT [46].) We observed that while this change re-
duces memory usage and improves throughput compared to
shifted blocked attention, it simply does not catch up with
variants using dilated neighborhood attention in terms of
performance, as its performance at scale can be even worse
than the original Swin counterparts.

Model Attn # of FLOPs Thru. Memory Top-1
Params (imgs/sec) (GB) (%)

◦Swin-T BA / shifted BA 28 M 4.5 G 1988 4.8 81.2
• BA / sparse BA 28 M 4.5 G 2091 4.5 81.1
◦NATs-T NA / NA 28 M 4.5 G 2146 4.0 81.8
•DiNATs-T NA / DiNA 28 M 4.5 G 2100 4.0 81.8

◦Swin-S BA / shifted BA 50 M 8.7 G 1225 5.0 83.0
• BA / sparse BA 50 M 8.7 G 1292 4.7 82.9
◦NATs-S NA / NA 50 M 8.7 G 1323 4.1 83.2
•DiNATs-S NA / DiNA 50 M 8.7 G 1293 4.1 83.5

◦Swin-B BA / shifted BA 88 M 15.4 G 892 6.7 83.5
• BA / sparse BA 88 M 15.4 G 934 6.3 83.1
◦NATs-B NA / NA 88 M 15.4 G 979 5.5 83.5
•DiNATs-B NA / DiNA 88 M 15.4 G 957 5.5 83.8

Table 4. ImageNet classification performance with Swin archi-
tecture. In addition to Swin’s blocked attention with shifts (local),
and our neighborhood attention with dilation (local and sparse
global) patterns, we include MaxViT’s local and sparse blocked at-
tention pattern (also local and sparse global). Throughput and peak
memory usage are measured from forward passes with a batch size
of 256 on a single A100 GPU.

4.1.3 Large-scale pre-training.

We scaled the aforementioned variants to 200M parameters
and pre-trained them on ImageNet-22K for 90 epochs. We
then fine-tuned each model on ImageNet-1K for 30 epochs,
with a batch size of 512, and a linear learning rate sched-
ule with no warmup, and a base learning rate of 5e-5, and
weight decay rate of 1e-4, following standard practice. Fi-
nal ImageNet-1K validation set accuracy levels, along with
number of parameters, FLOPs, throughput, and memory us-
age are provided in Tab. 5. We observe that models based on
neighborhood attention continue to outperform Swin with
competitive throughput.

13



Model Res. # of FLOPs Thru. Memory Top-1
Params (imgs/sec) (GB) (%)

◦Swin-L 2242 197 M 34.5 G 540 10.4 86.3
•DiNATs-L 2242 197 M 34.5 G 585 8.6 86.5
•DiNAT-L 2242 200 M 30.6 G 545 7.8 86.6

◦Swin-L† 3842 197 M 104.0 G 189 32.7 87.3
•DiNATs-L 3842 197 M 101.5 G 185 22.6 87.4
•DiNAT-L 3842 200 M 89.7 G 172 20.1 87.4
•DiNAT-L† 3842 200 M 92.4 G 135 26.9 87.5

Table 5. ImageNet classification performance with ImageNet-
22K pre-training. †indicates increased window size from 72 to
112 (DiNAT) and 122 (Swin). Throughput and peak memory usage
are measured from forward passes with a batch size of 256 on a
single A100 GPU.

4.1.4 With MaxViT

As discussed in Sec. 2, MaxViT [46] is a state-of-the-art
hybrid architecture comprised of convolutions and atten-
tion. Similar to Swin, MaxViT includes blocked attention,
but unlike Swin follows it with a sparse blocked attention
pattern. Replacing blocked attention with neighborhood at-
tention, and sparse blocked attention with dilated neighbor-
hood attention is therefore a natural fit, which is what we
present in Tab. 6. We still observe a slight throughput im-
provement in speed and at times memory, which can be at-
tributed to blocked attention implementations still requiring
frequent pixel permutations, while neighborhood attention
based on NATTEN does not. That said, both approaches
have identical computational cost, similar to experiments in
Tab. 4, and the throughput difference is simply related to
implementation. Note that performance gaps here are dif-
ferent from those in Tab. 4, because this is a hybrid archi-
tecture, and attention is not the primary operator throughout
the model.

Model Attn # of FLOPs Thru. Memory Top-1
Params (imgs/sec) (GB) (%)

•MaxViT-T BA / sparse BA 31 M 5.6 G 912 10.7 83.9
• NA / DiNA 31 M 5.6 G 990 10.7 84.0

•MaxViT-S BA / sparse BA 69 M 11.7 G 603 15.6 84.7
• NA / DiNA 69 M 11.7 G 655 15.6 84.8

•MaxViT-B BA / sparse BA 120 M 24.1 G 331 16.0 84.8
• NA / DiNA 120 M 24.1 G 361 15.8 84.9

Table 6. ImageNet classification performance with MaxViT
architecture. Models based on neighborhood attention can enjoy
slightly improved accuracy. Performance gap difference between
this table and Tab. 4 highlights the role that the hybrid architecture
plays. Throughput and peak memory usage are measured from
forward passes with a batch size of 256 on a single A100 GPU.

4.1.5 With ViT

We also experimented with restricting self attention in the
original ViT architecture. We present those experiments in
Tab. 7, where we simply replace self attention (with relative
positional biases) once with neighborhood attention alone,
and once with our non-dilated and dilated combination. We
used a 72 kernel size, similar to previous architectures, and
feature map sizes in this setting are 142. We observe that
without dilation, neighborhood attention alone results in a
more significant drop in accuracy compared to the combina-
tion of dilated and non-dilated patterns. This further high-
lights the importance of local and sparse global attention
patterns being used in conjunction, because together they
can capture more global context, and reach a larger recep-
tive field with the same number of layers.

Model Attn # of FLOPs Thru. Memory Top-1
Params (imgs/sec) (GB) (%)

◦ NA/NA 22 M 4.3 G 3348 1.3 80.0
• NA/DiNA 22 M 4.3 G 3255 1.3 80.8
•ViT-S SA/SA 22 M 4.6 G 3070 1.9 81.2

◦ NA/NA 86 M 16.9 G 1413 2.7 81.6
• NA/DiNA 86 M 16.9 G 1386 2.7 82.1
•ViT-B SA/SA 86 M 17.5 G 1288 3.7 82.5

Table 7. ImageNet classification performance with ViT archi-
tecture. NA and DiNA restrict SA, therefore performance drops
are expected. However, NA/DiNA do not bear the quadratic com-
plexity and memory footprint. Throughput and peak memory us-
age are measured from forward passes with a batch size of 256 on
a single A100 GPU.

4.1.6 Comparison to ConvNeXt

ConvNeXt [32] is a relatively modern baseline for convo-
lutional neural networks. Its adoption of the transformer
design language, and more specifically that of hierarchical
transformers such as Swin [31], make it a good candidate
for comparison to attention-based models. The key differ-
ence in ConvNeXt is that instead of a windowed attention
operator and its linear projections (Q, K, V ), a depthwise
convolution is used, which is followed by a linear projec-
tion, similar to attention, making it a depthwise separable
convolution (linear projection is equivalent to a 1 × 1 con-
volution.) However, this design contains far fewer parame-
ters and FLOPs per layer compared to attention-based mod-
els, which is why ConvNeXt variants are noticeably deeper
models. Because of this difference, it is impractical to com-
pare to ConvNeXt by solely replacing the convolution oper-
ator with neighborhood attention. As a result, we simply
compare some of the models already presented, DiNATs
and DiNAT, to ConvNeXt directly. ConvNeXt’s primary
attention-based baseline was Swin Transformer [31], and
DiNATs has the same architecture and configuration as

14



Swin, with the exception of the attention pattern. In addi-
tion, DiNAT also closely follows Swin’s design. This com-
parison is presented in Tab. 8, where we see DiNATs reach
competitive performance with ConvNeXt, and DiNAT out-
performing ConvNeXt without large-scale pre-training. In
larger scale models which were pre-trained on ImageNet-
22K, we see DiNAT matching ConvNeXt’s performance.

Model Res. # of FLOPs Thru. Memory Top-1
Params (imgs/sec) (GB) (%)

ImageNet-1K trained models

•DiNAT-M 2242 20 M 2.7 G 2245 2.4 81.8

◦Swin-T 2242 28 M 4.5 G 1988 4.8 81.3
•DiNATs-T 2242 28 M 4.5 G 2100 4.0 81.9
•ConvNeXt-T 2242 28 M 4.5 G 1976 3.4 82.1
•DiNAT-T 2242 28 M 4.3 G 1619 2.5 82.7

◦Swin-S 2242 50 M 8.7 G 1225 5.0 83.0
•DiNATs-S 2242 50 M 8.7 G 1293 4.1 83.5
•ConvNeXt-S 2242 50 M 8.7 G 1229 3.5 83.1
•DiNAT-S 2242 51 M 7.8 G 1142 3.7 83.8

◦Swin-B 2242 88 M 15.4 G 892 6.7 83.5
•DiNATs-B 2242 88 M 15.4 G 957 5.5 83.8
•ConvNeXt-B 2242 89 M 15.4 G 887 4.8 83.8
•DiNAT-B 2242 90 M 13.7 G 864 5.0 84.4

ImageNet-22K pre-trained models

◦Swin-L 2242 197 M 34.5 G 540 10.4 86.3
•DiNATs-L 2242 197 M 34.5 G 585 8.6 86.5
•ConvNeXt-L 2242 198 M 34.4 G 531 7.5 86.6
•DiNAT-L 2242 200 M 30.6 G 545 7.8 86.6

◦Swin-L† 3842 197 M 104.0 G 189 32.7 87.3
•DiNATs-L 3842 197 M 101.5 G 185 22.6 87.4
•ConvNeXt-L 3842 198 M 101.1 G 179 19.2 87.5
•DiNAT-L 3842 200 M 89.7 G 172 20.1 87.4
•DiNAT-L† 3842 200 M 92.4 G 135 26.9 87.5

Table 8. ImageNet-1K image classification performance.
†indicates increased window size from 72 to 112 (DiNAT) and 122

(Swin). Throughput and peak memory usage are measured from
forward passes with a batch size of 256 on a single A100 GPU.

4.2. Object detection and instance segmentation

We extend variants based on Swin and our NAT/DiNAT
architecture to region-based object detection and instance
segmentation, which we present in Tab. 9. We observe
that DiNAT shows noticeable improvement over NAT, with
little-to-no drop in throughput. There are even instances
where DiNAT even surpasses NAT’s throughput, but within
the margin of error. We also find that similar to classi-
fication, neighborhood attention in the Swin architecture
(DiNATs) enjoys higher throughput and improved perfor-
mance compared to the original Swin variants based on
blocked attention. Additionally, we observe that DiNAT
stays ahead of ConvNeXt [32], including in large scale vari-
ants, which was not the case in classification.

Backbone # of FLOPs Thru. APb APb
50 APb

75 APm APm
50 APm

75
Params (FPS)

Mask R-CNN - 3x schedule

◦NAT-M 40 M 225 G 55.4 46.5 68.1 51.3 41.7 65.2 44.7
•DiNAT-M 40 M 225 G 54.2 47.2 69.1 51.9 42.5 66.0 45.9

◦Swin-T 48 M 267 G 48.9 46.0 68.1 50.3 41.6 65.1 44.9
•DiNATs-T 48 M 263 G 55.0 46.6 68.8 51.3 42.1 65.7 45.4
•ConvNeXt-T 48 M 262 G 53.1 46.2 67.0 50.8 41.7 65.0 44.9
◦NAT-T 48 M 258 G 44.7 47.7 69.0 52.6 42.6 66.1 45.9
•DiNAT-T 48 M 258 G 44.8 48.6 70.2 53.4 43.5 67.3 46.8

◦Swin-S 69 M 359 G 34.2 48.5 70.2 53.5 43.3 67.3 46.6
•DiNATs-S 69 M 350 G 40.7 48.6 70.4 53.2 43.5 67.6 46.9
◦NAT-S 70 M 330 G 35.7 48.4 69.8 53.2 43.2 66.9 46.5
•DiNAT-S 70 M 330 G 35.7 49.3 70.8 54.2 44.0 68.0 47.4

Cascade Mask R-CNN - 3x schedule

◦NAT-M 77 M 704 G 28.4 50.3 68.9 54.9 43.6 66.4 47.2
•DiNAT-M 77 M 704 G 28.2 51.2 69.8 55.7 44.4 67.3 47.8

◦Swin-T 86 M 745 G 26.6 50.4 69.2 54.7 43.7 66.6 47.3
•DiNATs-T 86 M 742 G 28.0 51.0 69.9 55.4 44.1 67.3 47.6
•ConvNeXt-T 86 M 741 G 27.7 50.4 69.1 54.8 43.7 66.5 47.3
◦NAT-T 85 M 737 G 24.8 51.4 70.0 55.9 44.5 67.6 47.9
•DiNAT-T 85 M 737 G 25.3 52.2 71.0 56.8 45.1 68.3 48.8

◦Swin-S 107 M 838 G 21.6 51.8 70.4 56.3 44.7 67.9 48.5
•DiNATs-S 107 M 829 G 24.0 52.3 71.2 56.7 45.2 68.6 49.1
•ConvNeXt-S 108 M 827 G 23.5 51.9 70.8 56.5 45.0 68.4 49.1
◦NAT-S 108 M 809 G 22.2 52.0 70.4 56.3 44.9 68.1 48.6
•DiNAT-S 108 M 809 G 22.1 52.9 71.8 57.6 45.8 69.3 49.9

◦Swin-B 145 M 982 G 18.6 51.9 70.9 56.5 45.0 68.4 48.7
•DiNATs-B 145 M 966 G 20.7 52.6 71.5 57.2 45.3 68.8 49.1
•ConvNeXt-B 146 M 964 G 19.7 52.7 71.3 57.2 45.6 68.9 49.5
◦NAT-B 147 M 931 G 19.1 52.3 70.9 56.9 45.1 68.3 49.1
•DiNAT-B 147 M 931 G 18.7 53.4 72.1 58.2 46.2 69.7 50.2

◦Swin-L?‡ 253 M 1393 G 14.1 53.7 72.2 58.7 46.4 69.9 50.7
•DiNATs-L‡ 253 M 1357 G 15.8 54.8 74.2 59.8 47.2 71.3 51.2
•ConvNeXt-L‡ 253 M 1354 G 15.1 54.8 73.8 59.8 47.6 71.3 51.7
•DiNAT-L‡ 258 M 1276 G 14.1 55.3 74.3 60.2 47.8 71.8 52.0

Table 9. COCO object detection and instance segmentation
performance using Cascade Mask R-CNN [4]. ‡indicates that
the model was pre-trained on ImageNet-22K. ?Swin-L was not
reported with Cascade Mask R-CNN, therefore we trained it with
the checkpoint released in their official repository. Throughput
was measured from single-batch forward passes on a single A100
GPU.

4.3. Semantic segmentation

Tab. 10 presents results in training a semantic segmen-
tation framework, UPerNET [52], with the aforementioned
architectures. We observe again that DiNAT always outper-
forms NAT with very little drop in throughput, and DiNATs
improves Swin in both throughput and performance. In ad-
dition, we observe DiNAT maintains its place ahead of both
models, as well as ConvNeXt, at scale with ImageNet-22K
pre-training.

4.4. Image segmentation with Mask2Former

To analyze image segmentation performance further, we
conducted experiments with Mask2Former [7], which is a
Transformer-based segmentation framework capable of tar-
geting instance, semantic, and panoptic segmentation. In
this set of experiments, we specifically focus on large scale
image segmentation, following the original paper in us-

15



Backbone Res. # of FLOPs Thru. mIoU
Params (FPS) single scale multi scale

◦NAT-M 2048 × 512 50 M 900 G 24.9 45.1 46.4
•DiNAT-M 2048 × 512 50 M 900 G 24.7 45.8 47.2

◦Swin-T 2048 × 512 60 M 946 G 23.0 44.5 45.8
•DiNATs-T 2048 × 512 60 M 941 G 24.6 46.0 47.4
•ConvNeXt-T 2048 × 512 60 M 939 G 23.9 46.0 46.7
◦NAT-T 2048 × 512 58 M 934 G 22.3 47.1 48.4
•DiNAT-T 2048 × 512 58 M 934 G 22.0 47.8 48.8

◦Swin-S 2048 × 512 81 M 1040 G 18.6 47.6 49.5
•DiNATs-S 2048 × 512 81 M 1030 G 20.6 48.6 49.9
•ConvNeXt-S 2048 × 512 82 M 1027 G 19.6 48.7 49.6
◦NAT-S 2048 × 512 82 M 1010 G 18.6 48.0 49.5
•DiNAT-S 2048 × 512 82 M 1010 G 18.6 48.9 49.9

◦Swin-B 2048 × 512 121 M 1188 G 16.0 48.1 49.7
•DiNATs-B 2048 × 512 121 M 1173 G 17.9 49.4 50.2
•ConvNeXt-B 2048 × 512 122 M 1170 G 16.9 49.1 49.9
◦NAT-B 2048 × 512 123 M 1137 G 16.1 48.5 49.7
•DiNAT-B 2048 × 512 123 M 1137 G 15.9 49.6 50.4

◦Swin-L†‡ 2560 × 640 234 M 2585 G 12.0 - 53.5
•DiNATs-L‡ 2560 × 640 234 M 2466 G 12.6 53.4 54.6
•ConvNeXt-L‡ 2560 × 640 235 M 2458 G 12.4 53.2 53.7
•DiNAT-L‡ 2560 × 640 238 M 2335 G 11.7 54.0 54.9

Table 10. ADE20K semantic segmentation performance us-
ing UPerNet [52]. ‡indicates that the model was pre-trained on
ImageNet-22K. †indicates increased window size from the default
72 to 122. Throughput was measured from single-batch forward
passes on a single A100 GPU.

ing a model with approximately 200 million parameters
pre-trained on ImageNet-22K. The original paper exper-
imented with Swin Transformer’s large variant, and we
in turn experiment with our large DiNAT variant. We
trained Mask2Former on MS-COCO [29], ADE20K [57],
and Cityscapes [10], on all segmentation objectives for
which the datasets provided annotations. We present in-
stance segmentation results in Tab. 11, semantic segmenta-
tion results in Tab. 12, and panoptic segmentation results in
Tab. 13. We note that DiNAT-L is using an 112 kernel size,
instead of Swin-L’s 122, since even-sized windows break
the symmetry in NA and are therefore not defined. DiNAT-
L outperforms Swin-L on all three tasks and datasets in the
primary metrics.

4.5. Neighborhood size, dilation size, and order of
layers

In this subsection, we present experiments aimed at find-
ing the effects of dilation values, the NA-DiNA order, ker-
nel sizes, and changes in dilation during inference.

Dilation values. Tab. 14 summarizes effects of differ-
ent dilation values on classification, detection, instance seg-
mentation and semantic segmentation. Dilation can only
be extended only up to the bounds of the input and cannot
overflow, and as a result, increased dilation (16, 8, 4, 2) is
only applicable to downstream tasks. Therefore, “8, 4, 2,
1” is the maximum applicable dilation to ImageNet at 224
× 224 resolution. Larger dilation values are therefore possi-

Backbone Win. # of FLOPs AP AP50 APS APM APL

Size Params

MS-COCO

◦Swin-L 12 × 12 216 M 641 G 50.1 - 29.9 53.9 72.1
•DiNAT-L 11 × 11 220 M 522 G 50.8 75.0 30.9 54.7 72.1

ADE20K

◦Swin-L 12 × 12 216 M 654 G 34.9 - 16.3 40.0 54.7
•DiNAT-L 11 × 11 220 M 535 G 35.4 - 16.3 39.0 55.5

Cityscapes

◦Swin-L 12 × 12 216 M 641 G 43.7 71.4 - -
•DiNAT-L 11 × 11 220 M 522 G 45.1 72.6 - - -

Table 11. Instance segmentation performance with
Mask2Former. All backbones were pre-trained on ImageNet-
22K. FLOPs are reported with respect to resolution 8002.

Backbone Win. # of FLOPs mIoU
Size Params single scale multi scale

ADE20K

◦Swin-L 12 × 12 215 M 636 G 56.1 57.3
•DiNAT-L 11 × 11 220 M 518 G 57.3 58.1

Cityscapes

◦Swin-L 12 × 12 215 M 627 G 83.3 84.3
•DiNAT-L 11 × 11 220 M 509 G 83.9 84.5

Table 12. Semantic segmentation performance with
Mask2Former. All backbones were pre-trained on ImageNet-
22K. FLOPs are reported with respect to resolution 8002.

Backbone Win. # of FLOPs PQ PQTh PQSt APTh
pan mIoUpan

Size Params

MS-COCO

◦Swin-L 12 × 12 216 M 658 G 57.8 64.2 48.1 48.6 67.4
•DiNAT-L 11 × 11 220 M 540 G 58.5 64.9 48.8 49.2 68.3

ADE20K

◦Swin-L 12 × 12 216 M 660 G 48.1 - - 34.2 54.5
•DiNAT-L 11 × 11 220 M 542 G 49.4 - - 35.0 56.3

Cityscapes

◦Swin-L 12 × 12 216 M 643 G 66.6 - - 43.6 82.9
•DiNAT-L 11 × 11 220 M 525 G 67.2 - - 44.5 83.4

Table 13. Panoptic segmentation performance with
Mask2Former. All backbones were pre-trained on ImageNet-
22K. FLOPs are reported with respect to resolution 8002.

ble when dealing with larger resolutions, which is the case
for downstream tasks. We explored input-dependent dila-
tion values, where DiNA layers apply the maximum possi-
ble dilation, which is the floor of resolution divided by ker-
nel size (“Maximum” in Tab. 14). We finally chose settle on
“gradual” dilation, in which we gradually increase dilation
to the maximum level defined. More details are presented
in Sec. 4.6.

16



Model Dilation ImageNet MSCOCO ADE20K
per level Top-1 (%) APb APm mIoU

◦Swin-Tiny Not Applicable 81.3 46.0 41.6 45.8
◦NATs-Tiny 1, 1, 1, 1 81.8 46.1 41.5 46.2
•DiNATs-Tiny 8, 4, 2, 1 81.8 46.3 41.6 46.7
•DiNATs-Tiny 16, 8, 4, 2 - 46.4 41.8 47.1
•DiNATs-Tiny Maximum 81.8 46.4 41.9 47.0
•DiNATs-Tiny Gradual - 46.6 42.1 47.4

◦NAT-Tiny 1, 1, 1, 1 83.2 47.7 42.6 48.4
•DiNAT-Tiny 8, 4, 2, 1 82.7 48.0 42.9 48.5
•DiNAT-Tiny 16, 8, 4, 2 - 48.3 43.4 48.5
•DiNAT-Tiny Maximum 82.7 48.6 43.5 48.7
•DiNAT-Tiny Gradual - 48.6 43.5 48.8

Table 14. Dilation impact on performance. Dilation values be-
yond ”8, 4, 2, 1” are only applicable to downstream tasks, as their
larger resolution allows for it. Maximum dilation indicates it is set
to the maximum possible value based on input size. It would be
the same as ”8, 4, 2, 1” for ImageNet. Gradual dilation indicates
that dilation values in DiNA layers increase gradually.

NA-DiNA vs. DiNA-NA. We also experimented with
models with DiNA layers before NA layers, as opposed to
our final choice in which we begin with NA layers. While
the local-global order (NA-DiNA) was our initial choice,
we’ve also found it to be the more effective choice. We also
tried a model with only DiNA modules, and found that it
performs significantly worse than other combinations. This
highlights the importance of having a combination of both
local and sparse global attention patterns in the model. Re-
sults are summarized in Tab. 15.

Variant Layer ImageNet MSCOCO ADE20K
structure Top-1 (%) APb APm mIoU

◦ ◦Swin-Tiny WSA-SWSA 81.3 46.0 41.6 45.8
◦ ◦NATs-Tiny NA-NA 81.8 46.1 41.5 46.2
◦ •DiNATs-Tiny NA-DiNA 81.8 46.4 41.8 47.1
• ◦ DiNA-NA 81.5 46.5 41.8 46.9
• • DiNA-DiNA 79.7 39.8 36.8 40.7

◦ ◦NAT-Tiny NA-NA 83.2 47.7 42.6 48.4
◦ •DiNAT-Tiny NA-DiNA 82.7 48.3 43.4 48.5
• ◦ DiNA-NA 82.6 48.5 43.5 47.9
• • DiNA-DiNA 82.2 44.9 40.5 45.8

Table 15. Layer structure impact on performance. Our final
model has the local-global (NA-DiNA) order.

Kernel size. We summarize experiments with different
kernel sizes in Tab. 16. We observed that a DiNAT-Tiny sees
a significant decay in performance with a smaller kernel size
across all three tasks. However, we find increasing kernel
size beyond the default 7×7 does not result in a significant
increase in performance.

Test-time dilation changes. We present an analysis of
sensitivity to dilation values, in which we attempt different

Model Win. ImageNet MSCOCO ADE20K
size Top-1 Thru. APb APm Thru. mIoU Thru.

◦NAT-T 52 81.6 1828 imgs/sec 46.8 42.0 48.4 fps 46.3 23.4 fps

•DiNAT-T 52 81.3 1788 imgs/sec 47.6 42.7 48.1 fps 46.4 23.2 fps

◦NAT-T 72 83.2 1664 imgs/sec 47.7 42.6 44.7 fps 48.4 22.3 fps

•DiNAT-T 72 82.7 1619 imgs/sec 48.3 43.4 44.8 fps 48.5 22.0 fps

◦NAT-T 92 83.1 1263 imgs/sec 48.5 43.3 40.7 fps 48.1 20.6 fps

•DiNAT-T 92 83.1 1245 imgs/sec 48.8 43.5 40.2 fps 48.4 20.4 fps

Table 16. Kernel size impact on performance. Note that we set
dilation to the maximum values possible in each block based on
the default resolutions. Therefore, the variant with kernel size 5
has larger dilation values compared to the one with kernel size 7.

dilation values on already trained models, and evaluate their
performance. This can be particularly important to cases
with varying resolutions (i.e. multi-scale testing). The re-
sults are presented in Tab. 17.

Model Dilation ImageNet MSCOCO ADE20K
Train Test Top-1 (%) APb APm mIoU

◦NAT-T 1, 1, 1, 1 1, 1, 1, 1 83.2 47.7 42.6 48.4
1, 1, 1, 1 8, 4, 2, 1 81.0 42.6 39.5 46.3
1, 1, 1, 1 16, 8, 4, 2 - 36.0 34.4 40.2
1, 1, 1, 1 Maximum - 31.7 30.7 38.2

8, 4, 2, 1 1, 1, 1, 1 78.2 43.0 38.6 41.5
•DiNAT-T 8, 4, 2, 1 8, 4, 2, 1 82.7 48.0 42.9 48.5

8, 4, 2, 1 16, 8, 4, 2 - 45.6 41.3 47.1
8, 4, 2, 1 Maximum - 40.2 37.3 45.8

16, 8, 4, 2 1, 1, 1, 1 - 29.0 26.7 26.2
16, 8, 4, 2 8, 4, 2, 1 - 42.6 38.6 43.3

•DiNAT-T 16, 8, 4, 2 16, 8, 4, 2 - 48.3 43.4 48.5
16, 8, 4, 2 Maximum - 47.4 42.5 48.6

Table 17. Test time dilation change and its impact on perfor-
mance. Dilation values larger than 8, 4, 2, 1 are inapplicable to
ImageNet at 2242.

4.6. Training settings

Herein we summarize our experimental settings. We
followed Swin Transformer [31] and ConvNeXt [32] in
choosing the following hyperparameters and training set-
tings. All image classification models, with the exception of
“Large” variants, are trained on ImageNet-1K [13] using the
training procedure from timm [51] (Apache License v2).
All such training jobs follow the aforementioned papers in
training configurations, regularization techniques, augmen-
tations (CutMix [53], Mixup [55], RandAugment [11], Ran-
dom Erasing [56]) and other hyperparameters (300 epochs
with a batch size of 1024, iteration-wise cosine learning rate
schedule, 20 epoch warmup, 1e-3 learning rate, 5e-2 weight
decay, extra 10 cooldown epochs.)

As previously mentioned, most models, unless explicitly
stated, use a 7 × 7 kernel size neighborhood attention, and
dilation values are selected with respect to input resolution.

17



Resolution Dilation pattern
Level 1 Level 2 Level 3 Level 4

ImageNet classification.

2242 1, 8 1, 4 1, 2 1, 1
3842 1, 13 1, 6 1, 3 1, 1

MS-COCO detection and instance segmentation.

8002 1, 28 1, 14 1, 3, 1, 5, 1, 7 1, 3
8002 1, 28 1, 14 1, 3, 1, 5, 1, 7 1, 3

ADE20K semantic segmentation.

5122 1, 16 1, 8 1, 2, 1, 3, 1, 4 1, 2
6402 1, 20 1, 10 1, 2, 1, 3, 1, 4, 1, 5 1, 2

Table 18. Dilation patterns used for different resolutions. Due
to ImageNet’s relatively small input resolution, level 4 layers can-
not go beyond a dilation value of 1. Also note that at ImageNet’s
224×224 resolution, level 4 inputs will be exactly 7×7, therefore
NA will be equivalent to self attention. This is not true in down-
stream tasks where resolutions are noticeably higher and levels
2 and 3 have gradually increasing dilation values, which are re-
peated in deeper models. This corresponds to the highlighted rows
in Tab. 14 labeled “Gradual”. These configurations apply to all
downstream experiments (excluding those in Sec. 4.5).

For example, ImageNet classification at 224×224 is down-
sampled to a quarter of the original size initially, therefore
Level 1 layers take feature maps of resolution 56×56 as in-
put. With a kernel size of 7×7, the maximum possible di-
lation value is b56/7c = 8. Level 2 will take feature maps
of resolution 28×28 as input, leading to a maximum possi-
ble dilation value of 4. Because of this, we change dilation
values depending on the task and resolution. We present the
final dilation values we used in classification, detection, and
segmentation in Tab. 18. Note that we only change dilation
values for DiNA layers, since we found that fine-tuning NA
layers to DiNA layers may result in a slight decrease in ini-
tial performance (see Sec. 4.5, Tab. 17).

We conducted our object detection and instance seg-
mentation experiments with Mask R-CNN [20] and Cas-
cade Mask R-CNN [4] on MS-COCO [29], again following
Swin [31] and ConvNeXt [32] and their training settings in
mmdetection [6] (Apache License v2), and trained with
the same accelerated 3× LR schedule. The same goes for
our semantic segmentation experiments with UPerNet [52]
on ADE20K [57] which follow said papers training config-
urations for mmsegmentation [9] (Apache License v2).

5. Future directions
Neighborhood attention provides a spectrum of possi-

ble attention patterns, ranging from linear projection to self
attention. Applying neighborhood attention to any prob-
lem where self attention has already been found useful can
be thought of as a primary research direction. In theory,
any self attention operation can be replaced with neighbor-

hood attention, without requiring re-training or fine-tuning.
While seemingly simple, because of the two key hyperpa-
rameters, window size and dilation, there’s a relatively large
set of combinations that are possible. This, however, is not
the only application of neighborhood attention; Another av-
enue is applying neighborhood attention with less aggres-
sive downsampling, in order to enhance performance, while
still maintaining a tractable computational cost.

Another exceedingly important area of work is in imple-
mentation. Despite the performance improvements gained
from neighborhood attention’s implicit GEMM kernels,
these kernels, and more generally NATTEN require con-
tinued development as to catch up with other computational
software, as well as new hardware architectures. Moreover,
the rise of more complicated kernel fusion, as well as ad-
vanced integer quantization methods, can also present chal-
lenges of their own when applied to neighborhood atten-
tion kernels. In addition, our existing implicit GEMM for-
mulation is not perfect; it has limited scalability to mixed-
precision and lower-precision calls, due to the fact that the
PN epilogue is required to store attention weights one by
one, making vectorized stores impossible. For a similar rea-
son, reading attention weights in NN and IN kernels is also
limited to one by one reads, which not only are slower com-
pared to vectorized reads, but also restrict the ability to use
caching and asynchronous copies. In spite of these issues,
the current set of kernels have significantly improved run-
time for sliding window attention patterns, raising them to
competitive levels with alternatives.

6. Conclusion

In this paper, we introduced neighborhood attention,
which restricts self attention to nearest neighboring tokens,
resulting in an explicit sliding window behavior. We dis-
cussed prior sliding window attention patterns, and dis-
cussed a key issue in their formulation (handling of cor-
ner tokens), and their implementation challenges. Neigh-
borhood attention’s definition resolves the aforementioned
issue in formulation, and results in a spectrum of possible
attention patterns between no attention (linear projection)
and self attention. We then introduced different levels of
implementations, ranging from high level implementations
using Python interfaces, and naive CUDA kernels, down to
a GEMM-based kernel following the implicit GEMM ap-
proach used in implementing convolutions. Through our
implementations, which we package as a Python extension,
NATTEN , models based on neighborhood attention can
scale up to 200 million parameters, and achieve competitive
performance compared to former and current state-of-the-
art architectures. We finally discuss possible future applica-
tions of neighborhood attention, and challenges ahead.

18



References
[1] Iz Beltagy, Matthew E Peters, and Arman Cohan. Long-

former: The long-document transformer. arXiv:2004.05150,
2020. 2, 3, 4

[2] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman. Token
merging: Your ViT but faster. In International Conference
on Learning Representations (ICLR), 2023. 3, 5

[3] Daniel Bolya and Judy Hoffman. Token merging for fast sta-
ble diffusion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Work-
shops, 2023. 3, 5

[4] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-
ing into high quality object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 15, 18

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European Confer-
ence on Computer Vision (ECCV), 2020. 1

[6] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao,
Yu Xiong, Xiaoxiao Li, Shuyang Sun, et al. Mmde-
tection: Open mmlab detection toolbox and benchmark.
arXiv:1906.07155, 2019. 18

[7] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022. 15

[8] Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. Generating long sequences with sparse transform-
ers. arXiv:1904.10509, 2019. 1, 3, 4

[9] MMSegmentation Contributors. MMSegmentation:
Openmmlab semantic segmentation toolbox and
benchmark. https : / / github . com / open -
mmlab/mmsegmentation, 2020. 18

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 16

[11] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmenta-
tion with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2020. 17

[12] Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. In Advances in Neural
Information Processing Systems (NeurIPS), 2022. 2, 3, 8

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2009. 13,
17

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
Conference of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL), 2019. 1

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. In International
Conference on Learning Representations (ICLR), 2020. 1, 2,
3, 4, 5, 13

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org. 6

[17] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Par-
mar, Yu Zhang, Jiahui Yu, Wei Han, et al. Conformer:
Convolution-augmented transformer for speech recognition.
Interspeech, 2020. 1

[18] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu
Abuduweili, Jiachen Li, and Humphrey Shi. Escap-
ing the big data paradigm with compact transformers.
arXiv:2104.05704, 2021. 2, 3, 5

[19] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.
1

[20] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 2017. 18

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 1

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2020. 1

[23] Lang Huang, Yuhui Yuan, Jianyuan Guo, Chao Zhang,
Xilin Chen, and Jingdong Wang. Interlaced sparse
self-attention for semantic segmentation. arXiv preprint
arXiv:1907.12273, 2019. 3, 4

[24] Zilong Huang, Xinggang Wang, Yunchao Wei, Lichao
Huang, Humphrey Shi, Wenyu Liu, and Thomas S. Huang.
Ccnet: Criss-cross attention for semantic segmentation. In
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 2020. 1, 4

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2012. 1

[26] Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural computation, 1989. 1

[27] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He.
Exploring plain vision transformer backbones for object
detection. In European Conference on Computer Vision
(ECCV), 2022. 1

19

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
http://www.deeplearningbook.org
http://www.deeplearningbook.org


[28] Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song,
Jue Wang, and Pengtao Xie. Not all patches are what you
need: Expediting vision transformers via token reorganiza-
tions. In International Conference on Learning Representa-
tions (ICLR), 2022. 3, 5

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In Eu-
ropean Conference on Computer Vision (ECCV), 2014. 16,
18

[30] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, et al.
Swin transformer v2: Scaling up capacity and resolution. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2022. 1

[31] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 1, 2, 3, 4, 7, 12, 13, 14, 17,
18

[32] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022. 1, 14,
15, 17, 18

[33] Maxim Milakov and Natalia Gimelshein. Online normalizer
calculation for softmax. arXiv:1805.02867, 2018. 3

[34] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer. In International Conference on Machine
Learning (ICML), 2018. 1

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, et al. Py-
torch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2019. 8

[36] William Peebles and Saining Xie. Scalable diffusion models
with transformers. arXiv:2212.09748, 2022. 1

[37] Markus N Rabe and Charles Staats. Self-attention does
not need O(n2) memory. arXiv preprint arXiv:2112.05682,
2021. 2, 3

[38] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by gen-
erative pre-training, 2018. 1

[39] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan
Bello, Anselm Levskaya, and Jon Shlens. Stand-alone self-
attention in vision models. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2019. 1, 2, 3, 5, 6

[40] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision
transformers with dynamic token sparsification. In Advances
in Neural Information Processing Systems (NeurIPS), 2021.
3, 5

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 1

[42] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David
Grangier. Efficient content-based sparse attention with rout-
ing transformers. Transactions of the Association for Com-
putational Linguistics (TACL), 9, 2021. 4

[43] Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam,
Honghao Lu, Ethan Yan, Jack Kosaian, Mark Hoemmen,
Haicheng Wu, Andrew Kerr, et al. Cutlass, 2023. 5

[44] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning
(ICML), 2020. 3

[45] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2021. 3

[46] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang,
Peyman Milanfar, Alan Bovik, and Yinxiao Li. Maxvit:
Multi-axis vision transformer. In European Conference on
Computer Vision (ECCV), 2022. 3, 4, 13, 14

[47] Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas,
Niki Parmar, Blake Hechtman, and Jonathon Shlens. Scaling
local self-attention for parameter efficient visual backbones.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021. 1, 2, 3

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems (NeurIPS), 2017. 1, 3

[49] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,
Alan Yuille, and Liang-Chieh Chen. Axial-deeplab: Stand-
alone axial-attention for panoptic segmentation. In European
Conference on Computer Vision (ECCV), 2020. 1

[50] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 2021. 1

[51] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 13, 17

[52] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In European Conference on Computer Vision (ECCV),
2018. 15, 16, 18

[53] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regular-
ization strategy to train strong classifiers with localizable fea-
tures. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2019. 17

[54] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip
Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird:
Transformers for longer sequences. In Advances in Neural
Information Processing Systems (NeurIPS), 2020. 2

20

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


[55] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In International Conference on Learning Representa-
tions (ICLR), 2018. 17

[56] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In AAAI Con-
ference on Artificial Intelligence (AAAI), 2020. 17

[57] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2017. 16, 18

21


	. Introduction
	. Background
	. Self Attention and the Transformer
	. Local Attention
	Sliding window attention
	Blocked attention

	. Sparse Attention

	. Methodology
	. Neighborhood Attention
	Definition
	Properties

	. Why not convolutions?
	. Implementation
	Operations
	Challenges
	Naive kernels
	Implicit GEMM NA
	Performance improvements from GEMM-based kernels
	NATTEN

	. Architecture design

	. Experiments
	. Image classification
	NAT and DiNAT
	With Swin Transformer
	Large-scale pre-training.
	With MaxViT
	With ViT
	Comparison to ConvNeXt

	. Object detection and instance segmentation
	. Semantic segmentation
	. Image segmentation with Mask2Former
	. Neighborhood size, dilation size, and order of layers
	. Training settings

	. Future directions
	. Conclusion

