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Abstract

Normalizing Flows are a powerful type of generative
model that transforms an intractable distribution of data
into a more desirable one through the use of bijective func-
tions. Their concept is simple to understand and create
powerful models that allow one to work with much simpler
distributions than that of the underlying data. In essence,
our motivation in studying Normalizing Flows is to pre-
serve relationships between data. Normalizing Flows have
a wide variety of uses and applications, providing impor-
tant statistical information about data as well as enabling
more interpretable control over latent structures. They can
be used for mathematical applications, such as: variational
inference, density estimation, anomoly detection, manifold
analysis; as well as more application focused works, such
as: pose estimation, speach generation, image generation,
and more. An important aspect of Normalizing Flows is
that they preserve the latent structure of the data that they
are trained upon, which makes gives them to the power to
perform the aforementioned tasks. In this review we pro-
vide an introduction to Normalizing Flows, clarifying how
they differ from other popular generative models, provide
an updated overview of the current literature, discuss their
applications, as well as the future of these models and how
they can play a critical role in AI research. We also aim to
clarify the distinction between different generative models
in a more clear and precise way than many other works. We
aim to make this work a sufficient introduction to Normaliz-
ing Flows and be self-contained with little to no background
required.

1. Introduction

Defining probability distributions and having structured
data is a common goal for many domains in science and ap-
plication development. Unfortunately, many distributions
are intractable in nature; distributions that are difficult to
compute or express mathematically. This intractability is
common across modern datasets and makes analyzing, in-
terpreting, and controlling the data difficult. Most methods
accept losses in interpretability and structure so that the data

can be worked with, with many machine learning models
being referred to as “black boxes.” Normalizing Flows pro-
vide a framework to work with these distributions without
loss of algebraic structure or dimensionality, making them
important tools for many domains.

While many other models are substantially more pop-
ular, we believe that Normalizing Flows play an impor-
tant role in the future of Artificial Intelligence and Machine
Learning. Normalizing Flows are often considered to have
a higher barrier to entry than other types of machine learn-
ing models due to the mathematics required for them. In
this review we hope to demystify this, provide a complete
overview of the literature, and motivate more research into
the field.

There are three important prior surveys that complement
this work. The thesis from Papamakarios [131] provides a
detailed introduction and has a focus on density estimation
and likelihood free inference. Kobyzev et al. [98] provides
a more compact and up to date review that is valuable to
those first being introduced to the topic as well as provid-
ing a curated quantitative comparison of works. The review
from Papamakarios et al. [132] provides a more detailed re-
view and is more tutorial in nature. In this work we aim
to provide a sufficient introduction to the work, demystify
the mathematical concepts, and bring the reader to an un-
derstanding of the current literature and motivation.

This work is intended to be read from start to finish,
building upon prior sections, but readers may find it helpful
to skip certain sections depending on their motivation and
experience. We will begin with a description of Normaliz-
ing Flows Section 2 – providing simple definitions for many
of the mathematical terms that are commonly used Sec-
tion 2.2, a concise definition of of Normalizing Flows Sec-
tion 2.3, and a brief overview of generative models and how
they differ Section 2.4. We will then give an overview of
the current methods Section 3 – providing a detailed de-
scription and how the works have built upon one another,
giving the necessary background to understand the motiva-
tions and limitations. After that we will discuss some of the
many applications of Normalizing Flows Section 4 – pro-
viding motivation and how the nature of flows have many
advantages to certain applications. Finally, in Section 5



we will discuss the current state of Normalizing Flows and
some future directions in research and their importance to
the Machine Learning, Data Science, and Artificial Intelli-
gence.

It is important to remember that mathematics, and as a
consequence machine learning, is not the study of data or
objects, but rather the relationships between the data [142].
With this in mind, our primary motivation in studying
Normalizing Flows is to preserve all relationships that
are inherent to the data. This distinguishes them from
other architectures and it is important to keep this goal in
mind. In essence, a Normalizing Flow provides a record
of transformations wherein the original relationships be-
tween data can be (approximately) recovered without loss.
In this respect, it also becomes important to remember that
research can highly valuable even if results may seem worse
or there are increases in computational costs, as the preser-
vation of the relationships within the data remains the pri-
mary motivation.

2. Normalizing Flows

In this section we will provide our notation Section 2.1,
a brief description of mathematical definitions useful to the
discussion Section 2.2, we will then define Normalizing
Flows in Section 2.3, and finally give a brief overview of
generative models and how other methods compare Sec-
tion 2.4.

2.1. Notation

We will use a fairly standard notation: where variables
are in bold, such as x, xi, x⃗i (when we know explicitly a
vector), or M where a capital explicitly denotes a matrix
(tensor >rank 2); and constants are written as lowercase
non-bold characters. Usually constants will take on letters
from the early alphabet (abc...) or greek letters, indices from
the middle starting with i (i jk · · · ), and variables take on the
best letter to represent what it itself represents.Constant val-
ues will be not bold and take the form as a, a ∈ R, ai ∈ R,
or ai ∈ R2. Generally, constants will be written with Greek
letters to reduce ambiguity. Otherwise, we will use capital
letters to represent tensors and arrays of arbitrary ranks: M.
Probabilities will be specified with Pr(·) and Pr(·|·) repre-
senting conditional probabilities. p(·) or q(·) will represent
a probability density, and we will use a subscript when it
is helpful to refer to the variable they are being taken with
respect to px(⃗x). We will also use lower case letters to rep-
resent random variables and capital letters to represent dis-
tributions or sets from which they will be drawn from. In
some cases we will still have ambiguous notation but we
will make this as clear as possible. ∇ f will represent the
gradient, such as ∇θ f =

[
∂ f
∂θ0

, · · · , ∂ f
∂θn

]
. In the case of the

Jacobian we will say J f (x) for the Jacobian of function f

with respect to x. Finally, we will be borrowing notation
from Einsteinian Notation and remove summations where

they are implicit. Therefore we have
N
∑

i=0
x⃗i⃗yi ≡ x⃗i⃗yi. We be-

lieve this will make the equations more compact and more
readable, especially as packages like einsum are becoming
more popular and is more natural to programming. Other
notations will be introduced later.

2.2. Math Definitions

In this section we will include important math definitions
that will be necessary for understanding the subsequent sec-
tions. Specifically, when we introduce our definition and
classification for generative models (Section 2.4) this sec-
tion will become useful. This section may be skipped and it
is okay if the novice reader does not understand every defi-
nition from the first reading. We will mix both more formal
mathematical descriptions and simpler ones to help readers
parse works, as it is common for more rigorous notation to
be used. The importance of this section is so that we may
have a common language and demystify seemingly com-
plex concepts. Unfortunately, this mathematical language
creates a barrier for many wishing to understand Normal-
izing Flows but we believe that the concepts can be easily
understood by anyone with a basic understanding of Linear
Algebra and Calculus.

Some of this confusion comes from the fact that re-
searchers come from different backgrounds and may use
different terminology that may be functionally identical.
Additionally, some terminology is used in both studies but
may contain slightly different terminology. In this respect
this section will at least unify the terminology used within
this document. It also means that there may be disagree-
ment. In this regard we welcome others to help us create
more precise terminology, as we will see its importance and
the goals at hand later in Section 2.3 and Section 2.4.

We will begin with definitions from set theory, then cat-
egory (and topology), and include some definitions from
measure theory, doing our best to place these terms in the
proper category. For a more in depth and detailed descrip-
tion of set theory, topology, and category theory we recom-
mend nLab [127] while for measure theory and probability
theory we recommend Shao [162], but note that both may
not be the best resources for novices [27, 103, 117]. Such a
complete understanding will not be necessary for this work
and in general is not necessary for research in Normalizing
Flows. Most of these definitions are deceptively simple, and
we believe when put in simpler terms most readers will feel
comfortable with them.

First we must understand three important terms from set
theory: injection, surjection, and bijection. The definitions
are below and a visual depiction is given in Figure 1.



(a) Injection: one-to-one (b) Surjection: onto (c) Bijection: one-to-one and onto

Figure 1. Visual representation of injections(Definition 1), surjections (Definition 2), and bijections (Definition 3). Source: Wolfram
Mathworld

Definition 1. Injection (One-To-One): An injective func-
tion is who’s Domain has a unique representation within the
Range.

∀xi ∈ A ∃ yi ∈ B s.t. f (xi) = f (x j) iff i = j

An injective function is one where every point from set A
has a unique representation in set B, but not every point in
set B needs to have a corresponding point in A.

Definition 2. Surjection (Onto): A surjective function
who’s Domain covers the Codomain.

∀xi ∈ A ∃ y j ∈ B ∀y j

A surjective function is one where each point in set B has a
corresponding point from set A but we do not need a unique
representation.

Definition 3. Bijection (One-To-One & Onto): A bijec-
tive function both injective and surjective.

∀xi ∈ A , ∀yi ∈ ∃ f (xi) = yi s.t. f (xi) ̸= f (x j)

Simply put, a bijection is a function where every point in
set A has a unique representation in set B, and all points in
B have a unique representation in A.

This gives us the following corollary, which is essential
to the understanding of Normalizing Flows.

Corollary 1. All bijective functions are invertible.

In other words, if f is a bijector (a bijective function)
then f has an inverse such that f −1

( f (x)) = f ( f −1
(x)) = x.

Since we always have a unique map between the two sets we
are always able to travel back and forth between A and B.
This means that we can recover the original orientation of
the data.

Theorem 1. Cantor-Schröder–Bernstein Theorem: Let
f : A 7→ B be an injection between sets A and B, and let
g : B 7→ A be an injection between B and A. Then there
must exist a bijection h : A 7→ B.

Understanding this simple idea is critical, and may not
always be obvious. Such a

We will also introduce some commonly used definitions
from topology and category theory that are frequently seen.
The definitions are simple but if one is unfamiliar they
may seem incomprehensible. Many of them are similar but
there are some distinct differences. Note that some authors
may confuse terms between set theory and category theory,
which is a major motivation for providing these definitions.
Note that set theory describes relationships between ele-
ments (objects) in a set while category theory describes the
relationship between the objects.

Definition 4. Morphism: A map between two categorical
objects.

A morphism is simply any mapping function. This can
be between sets, like we have used above, manifolds, or
any other object. Sometimes this is simply defined as an
arrow between two objects, as in f : A 7→ B. We can also
refer to a category as a collection of arrows or morphism.
Sometimes Category Theory is even referred to the study of
“dots and arrows.” A morphism is the more abstract version
of a homomorphism and in general will be considered the
same.

Definition 5. Homomorphism: A morphism between two
structured sets that preserve the algebraic structure.

f (a+b) = f (a)+ f (b)

f (ab) = f (a) f (b)
(1)

This term is often used synonymously with morphism
but we need to note that it implies that there is an underlying
structure [19, 28]. Mathematical structure is also vaguely
defined but refers to any extra properties or intrinsic rela-
tionships for the data. The term is general as mathematics
is the study of relationships between objects [142], and thus
we must simply think of these as algebras. Here we are
more specifically discussing the algebra or operators relat-
ing set elements. We note that a functor is a homomorphism



of categories, and we can think of these as functions. We
may call a functor “forgetful” if some structure is lost.

Definition 6. Isomorphism: An invertible morphism

An isomorphism can generally be thought of as a bijec-
tion but note that an isomorphism is the relationship be-
tween categories. We may similarly say that an epimor-
phism (epic) is a generalization of surjection and monomor-
phism (monic) is a generalization of injection. An iso-
morphism is epic and monic. Specifically, an isomorphism
specifies that two sets are equal to one another. While this is
generally thought to be structure preserving, this is noth al-
ways true, though it may be recovered. A quick example is
a function f that maps set A = {0,1,2} to set B = {1,0,2},
in which we see that order is not preserved, and thus the
distance between two elements is not equal: dA(a0,a1) ̸=
dB(b0,b1). But we can see that applying f onto the distance
preserves the relationships: f (dB(b0,b1)) = dA(a1,a0). A
simple example of a homomorphism that is not an isomor-
phism is the map f : Z 7→ 2Z, where we can see that all the
mathematical operators are preserved and exist but not all
elements or their relationships are.1

Definition 7. Homeomorphism: An isomorphism of topo-
logical spaces.

A homeomorphism, not to be confused with homomor-
phism, specifically refers to the topological category. We
can say that a homeomorphism f : X 7→ Y is a continuous
topological map and its inverse f : Y 7→ X is also a continu-
ous topological map. To clarify this, we note that a topolog-
ical space is continuous collection of points, such as a line
or the surface of a plane. That is, they have an infinite col-
lection of points. This is distinguished from a set which may
be finite. Specifically, an isomorphism is between algebraic
structures while a homeomorphism is between topological
spaces.

Definition 8. Diffeomorphism: A map between two k-
times differential manifolds that has a differentiable inverse.

In simpler terms, this means that we have a topological
space, such as a surface, that we can differentiate over a lo-
cal (small) region. This is quite similar to homeomorphism,
but we need to be careful to note that not all homeomor-
phisms are diffeomorphisms. For example, if we have the
function f (x) = x3, where f : R 7→ R, we will note that the
inverse is not differentiable at the origin. This point This
function is homeomorphic but not diffeomorphic. The dis-
tinction here is important as many works refer to Normaliz-
ing Flows as specifically diffeomorphic.

1A careful reader will notice that the ring Z2 is isomorphic to the factor
ring Z/2Z [6].

Definition 9. Hausdorff Space: A topological space
where any two distinct points within that space have a dis-
joint open neighborhoods.

xi ∈U ⊂ X , x j ∈V ⊂ X s.t. xi ̸= x j , U ∩V = { /0}

A Hausdorff space is deceptively trivial and in the simplest
of terms means that we are able to distinguish points within
this space. We can think of the local neighborhoods, U and
V , around the points as small regions, and in a continuous
space these converge to infinitesimal points. Most topolog-
ical spaces that the reader is familiar with are Hausdorff.

We also have important definitions from measure the-
ory that are commonly used. Notably, probability theory
is a subset of measure theory which specifically studies the
probability measure. The verbiage here can be easily con-
fused, so special attention is needed. A measure is a mathe-
matical extension of size, such as the length, area, or volume
of a subset. We will use the notation of Shao [162], and first
define a sample space (outcome space), Ω, as the set of all
possible outcomes. Ω is in general what will be of interest.

Definition 10. σ -algebra: A collection of subsets, F , in
sample space Ω is a σ -algebra (or σ -field) if (i)the empty
set is in F , (ii) the complement of any element in F is also
in F , and (iii) the union of any element in F is also in F .

(i) /0 ∈ F
(ii) A ∈ F =⇒ Ac ∈ F s.t. A∩Ac = /0
(iii) Ai ∈ F ∀i =⇒ ∪Ai ∈ F

A σ -algebra (also called σ -field) is a complex way of say-
ing that things work as we’d expect them to. This is more
easily understood through an example. If we trained a neu-
ral network classifier then Ω represents all possible valid
outputs/outcomes of our network. An example of F could
be all the animals that our network can classify, A can be
all the cats, and Ai can be a specific cat breed. Then we
read (ii) as saying all classifiable cats and all classifiable
non-cat mammals are are classifiable, and that no classifi-
able cat is also a classifiable non-cat mammal (e.g. a cat is
not a dog). (i) is then bookkeeping, and is necessary since
cats aren’t dogs. Then (iii) means that if we group every
possible classifiable cat then the group is also classifiable.
Note that order isn’t specified. This should all sound obvi-
ous since we’re only working with classifiable classes, but
math can be tedious and such tediousness is unfortunately
necessary. The example is a simplification, but should help
readers trivialize this notation which is common.

We also say that a pair (Ω,F) is a measurable space, not
to be confused with measure space. The definition here is
now apparent as from our understanding of a σ -algebra we
can measure everything, since we have an outcome.



Definition 11. Measure: If (Ω,F) is a measurable space,
then a measure ν is defined on F iff (i) the measure is non-
negative, (ii) the measure of the empty set is 0, and (iii) the
measure of the union of disjoint subsets Ai is equal to the
sum of the measures of the disjoint sets.

(i) 0≤ ν(A)≤∞ ∀A ∈ F
(ii) ν( /0) = 0
(iii) ν(∪Ai) = ν(Ai) ∀Ai s.t. Ai∩A j = /0∀i ̸= j

We can think of a measure as a distance, and so (i) says
that distances are never negative (they don’t have direction),
(ii) says that if we don’t measure anything that the mea-
sure is 0, and (iii) says that if we measure the group of
collection of all items in A that it is the same as the sum
(implicit) of measuring each individual item. Again, notice
that order is not specified in (iii), as other definitions may
discuss symmetry. That says essentially that ν(A) is well
defined.With this, we then call a measure space (Ω,F ,ν).
More abstractly a measure can be thought of as a function
that assigns numbers.

If we then let the measure of all possible outcomes sum
to 1 (ν(Ω)= 1), then we call the measure a probability mea-
sure and the space a probability space. Similarly, we could
say that a probability space is

(
[0,1],B[0,1]

)
, where B is the

Borel measure. A Borel σ -algebra is the collection of all fi-
nite open intervals on the real numbers (R), a Borel measure
is a measure defined on all open sets, and B[0,1] is defined
for all open sets on the closed set [0,1]. You can now see
how our probability rules all rise out of this simple defini-
tion.

Definition 12. Pushforward Measure: Let (Ω,F) and
(Λ,G) be measurable spaces, ν be a measure on (Ω,F),
and f be a measurable function f : (Ω,F) 7→ (Λ,G), then
the pushforward, f∗ν , of measure ν defines the subset of
(Λ,G) that is in the preimage under f .

( f∗ν)(B) = ν( f ∗(B)) where B⊆ (Λ,G)
ν ◦ f ∗(B) = ν( f ∗B) where B⊆ (Λ,G)

The definitions are equivalent with ( f∗ν)(·) and ν ◦ f ∗(·)
both being called the pushforward. Essentially, the push-
forward a subset of the map where the measure is valid
in both measurable spaces. The preimage, f ∗, is some-
times called the inverse and written as f −1, and is simply
all the elements from the domain into the codomain. If we
say that B ⊆ (Λ,G) then we would define the preimage as
f ∗(B) = {a ∈ (Ω,F)| f (a) ∈ B}. This does not imply bi-
jection though! So here we can see that our pushforward
measure can more accurately described as the a function
that maps elements form one measurable space to another.

With this understanding we may find some authors refer
to the preimage, f∗(·) as the pullback. In the context of dif-
ferential geometry these can be clarified. If our function f

is diffeomorphic then it is a pushforward and the pullback is
identical to the inverse, viewing this as simply a change of
coordinates. Similarly, for morphisms we can say that f∗ is
in the covariant direction (→) while f ∗ is in the contrivari-
ant direction (←).

We should now have a common enough language to ac-
curately describe our networks. This is an unfortunate ne-
cessity but will be extremely valuable and let us understand
our networks at a far deeper level.

2.3. Normalizing Flow Definition

Unfortunately, Normalizing Flows have been described
several different ways. For the most part, the definitions
are quite similar and there is an understanding that authors
are referring to the same thing. The first usage of the phrase
that we are aware of that by Tabak et al. [169] and then more
formally described in Agnelli et al. [2], noting that there are
shared authors. [169] proposes performing density estima-
tion of an intractable probability function by mapping data
x ∼ X to variables y ∼ Y with a known probability dis-
tribution q(y): p(x) = Jy(x)q(y(x)). Here they describe
their map as “an infinite composition of infinitesimal trans-
formations”, dubbing the term “flow”. They note that their
process is similar to the Gaussanization process of Chen and
Gopinath [26]. It is notable here that they set up the problem
such that the estimated distribution is exactly the original
distribution, p̃(x) = p(x), and restrict their maps to ensure
this. Papamakarious et al. [132] notes the relationship of
Flows, Gaussanization, and Whitening Transforms [44] but
we believe is categorically different and closer to diffusion
models [66].Agnelli et al. [2] changes the definition slightly,
focusing on classification through density estimation. They
say that a parametric family of distributions pk(x;θ) of k
classes characterized by a map Jk(x) with a common tar-
get distribution q(y). Specifically, pk(x) = Jk(x)q(yk(x)),
where again Jk(x) is the Jacobian and Jk : x 7→ yk. Dinh et
al. [33] produced what is commonly considered the first
Normalizing Flow, but did not use this name. They de-
scribed their framework as the composition of invertible
functions, f , through change of variables.

p(x) = q( f (x))|detJ f (x)| (2)

|detJx | is the absolute value of the Jacobian determinant of
x. We will also frequently write this in terms of the “log
density”, as this is often easier to compute:

log p(x) = log(qi( fi(x)))+ log
∣∣det J j(x)

∣∣ (3)

Where f (x) = ( fi(x))i≤N . We can see here that the com-
position of flows is entirely dependent on the log absolute
Jacobian determinant, and that the log density q(·) is seper-
able from the Jacobian.

We note here that this looks similar to the change of vari-
ables for Riemann integrals:



Theorem 2. Change of Variables (Calculus):
Let f : Rn 7→ Rn be y = f (x) where f is 1-differentiable,
then ∫

Y
g(y)dy =

∫
X

g( f (x)) f ′(x)dx (4)

∫
g(y)dy =

∫
g( f (x)) f ′(x)dx where y = f (x) and f ′(x)

is the derivative of f (the Jacobian). Theorem 1.16 of
Shao [162] defines a change of variables on a measurable
space as:

Theorem 3. Change of Variables (metric): 2

Let f be a measurable from (Ω,F ,ν) to (Λ,G) and g be
Borel on (Λ,G), then∫

Ω

g◦ f dν =
∫

Λ

gd (ν ◦ f ∗ ) (5)

This also means that if either integral exists then the
other does, and the two are the same. Dinh et al. is the first
to explicitly discuss change of variables and the use of in-
vertible functions. Following, Rezende and Mohamad [152]
follows, explicitly saing “A Normalizing Flow describes the
transformation of a probability density through a sequence
of invertible mappings.”

Kobyzev et al. [98] better formalizes the definiton
through the language of measure theory.

Theorem 4. Let Y be a tractable distribution with known
distribution q : Rn 7→R, let g be in invertable function such
that X = g(Y), and f = g−1. Then

p(x) = q( f (x))
∣∣detJ f (x)

∣∣
= q( f (x))

∣∣detJg(x)
∣∣−1 (6)

p(x) is the pushforward of q specified as g∗q. g was
selected to note that this is the generative direction, push-
ing our tractable distribution towards the target intractable
one. This makes f the normalizing direction. With a less
restrictive function g :Y 7→X they say that using a pushfor-
ward measure defines a generative model within the context
of transportation theory [182]. They specifically restrict all
σ -algebras to be Borel and all measures to be continuous
with respect to the Lebesgue measure.3 This gives us the
following definition

Definition 13. Normalizing Flow (Kobyzev et al.):
Given a function between two standard Boreal spaces g :
(Ω,B0) 7→ (Λ,B1) such that g,g−1 are differentiable almost
everywhere with respect to the Lebesgue measure, then the

2ν ◦ f −1 is called an induced measure by f . Shao uses the notation
f −1, which we have changed, as he defines f −1

(B) = { f ∈ B}= {ω ∈ Ω :
f (ω) ∈ B) which we identify as the definition of a Pushforward Measure
from Definition 12. He carefully notes “The inverse function f −1 need not
exist for f −1

(B) to be defined.” See Section 1.1.2 for more.
3

composition of pushforward functions describes a Normal-
izing Flow.

p(x) = (q◦g0(Y))◦ · · · ◦ (q◦gn(Y)))

= g0
∗q(y)◦ · · · ◦gn

∗q(y)
(7)

We commend Kobyzev et al. for this extension as this
definition makes the understanding of Normalizing Flows
more general for the study of non-Euclidean spaces, as they
pointed out.

We would like to abstract this definition even further. We
will do so in the context of category theory, and we believe
this generalizes the concept of Normalizing Flows and even
makes the concept easier to understand. In Section 2.4 we
will also discuss other generative models under a similar
fomulation.

Definition 14. Normalizing Flow: The composition of
isomorphisms constitutes a Normalizing Flow

This should feel rather straight forward, but the distinc-
tion is critical. The goal of Normalizing Flows has been
to transform distributions into ones that are more meaning-
ful. But abstracting this, we need not think of just distri-
butions, but objects in general. Kobyzev et al. made the
extension as not to restrict the models to Euclidean spaces.
This should remind us of our goal in preserving the rela-
tionships between data. While data transformer through an
isomorphism my not itself preserve all such relationships,
they provide a record through which all such relationships
may be recovered. This is our main motivation with re-
spect to Normalizing Flows, and through this lens we can
see how these models provide a more interpretable frame-
work within the context of machine learning.

We believe that this framing can help our understanding
of different machine learning frameworks and help unify
the field and language around it. With the language of Iso-
morphic Flows we better clarify that there not be a need
to work strictly withing the probability metric, manifolds,
not even topological spaces in general. This framing can
help us understand the usage in networks such as Graph
Neural Networks [106], Implicit Models [37, 109], and dis-
crete networks [13, 65, 68, 175], which all do not require a
topological space.4 Most importantly, we believe that this
framing will help in the understanding of multi-modality.
Similarly, we believe that this framing will help for those
wishing to understand these models within the context of
frameworks like Symbolic Reasoning [177], Implicit Mod-
eling [37, 109], and Neural ODEs (Section 3.7).

Additionally, we believe that this framing will be ben-
eficial in the advancement towards Artificial General In-
telligence. We observe in human and animal intelligences

4Note the difference between “a topology” and “topological space.”
But we may also be interested in learning relationships between sets who’s
intersection is not empty.



that they can form relationships between more general ob-
jects and concepts. More specifically, humans are able to
learn deep abstractions, thus necessitating the exploration
of learning through these abstractions. With this in mind,
it is still useful to understand the representations between
objects in a manner that is able to preserve and maintain
inherit structures.

For the purpose of this work, we will be focusing on
Homeomorphic Flows, and more specifically Diffeomor-
phic Flows. With this respect, the definition of Kobyzev et
al. [98] will be appropriate for the work described herein.

2.4. Generative Modeling

The definition of a generative model has often been quite
vague and not distinctive. Classically we have used a frame-
work wherein we have discriminative models, generative
models, and reinforcement models. Definitions along the
lines of a function that specifies how to generate data is
commonly used [51, 123, 172], specifically from the proba-
bilistic perspective. More specifically, this is generally con-
sidered learning a probability density function p(x). Tom-
czak [172] specifically defines them as having the joint form
p(x,y) = p(y|x)p(x), which can be reworked for the mari-
nal p(x). Murphy [123], agrees but specifies that a gener-
ative model can specifically run backwards: inferring the
input data from p(x|y).

Additionally, many models that are called generative do
not explicitly write a density function. GANs [52, 118, 122,
156,183] do not directly model a probability distribution but
rather develop a stochastic procedure to generate samples,
such as images. Energy Based Models (EBMs) [37, 101]
do not directly learn a distribution but free-energy, which is
often called an “unnormalized distribution.” Often these are
learned through the gradient of the density function, which
ignores the normalizing constant, called Stein Score Match-
ing [76, 93].5 This training procedure is even the backbone
for many modern state of the work designs [66, 166, 167].
Furthermore, [55] showed that the logits of a classifier net-
work can be reformulated as an EBM.

Goodfellow [51] suggested a taxonomy of Generative
models, which we show a slight variation of in Figure 2.
Originally it was described as maximum likelihood estima-
tors, branching into explicit and implicit densities, follow-
ing our explanation above which may more accurately be
called Synthesis Learning [58]. 6 The approximate densi-
ties are models that do not have consistent estimators for the
density or perform some reduction technique. 7

5It should be noted that score matching is not a consistent estimator
6 [58] breaks learning problems down into Synthesis –simulating pat-

terns form the source – Restoration – recovering the original source pattern
– Recognition – determining the pattern class – Extrapolation – inferring
data that could not be observed – and Understanding – intrinsic and extrin-
sic understanding of the data knowledge.

7If both the data distribution generating hypothesis and the manifold

Similar to our formulation for Normalizing Flows, we
will formulate a different hierarchy. The concept of “data
generating” is a weak distinction, since realistically all
models can be seen as performing this task. Similarly,
we do not want to restrict ourselves to assuming data is
generated from a distribution as this may not always be
true and obfuscates our understanding of such things as
Symbolic Reasoning [177] Physics Informed Neural Net-
works [22, 147] since neural networks are often Universal
Function Apprximators [70, 160] and can solve a wide va-
riety of problems. We can more generally say that ma-
chine learning studies the relationship between data, just
as in Category Theory we define dots and arrows. In gen-
eral, we can think of all networks as Homomorphisms, as
they can be abstracted to a function map. Homeomorphic
models can be broken down into the class of Isomorphic
(bijective), Epimorphic (surjective), and Monomorphic (in-
jective) as defined by the relationship between the function
map being described (in general we suggest the final repre-
sentation). Isomorphic models are invertable, such as that
of Normalizing Flows. We can further down classify our
Isomorphic models into Homeomorphic models and Diffeo-
morphic models depending if they are operating on topolog-
ical spaces (assuming the manifold hypothesis) or differen-
tiable, respectively.

With this formulation we can more clearly distinguish
certain models, such as between that of Diffusion Models
and Normalizing Flows. For example, we would say that
Diffusion Models are bi-Epic, since they formulate maps
f : Rn 7→Rn and g : Rn 7→Rn through the use of surjections,
and since the Gaussian Distribution doesn’t have an inverse.
Similarly, we can call Normalizing Flows Isomorphic, as
they form maps f :Rn 7→Rn and f −1 :Rn 7→Rn. Our typical
classification network will be Monic, f : Rn 7→ Rm where
m < n. We can also see that works like GANs as inclusion
maps, since they typically generate from a smaller latent
representation.

We are not the first to introduce the concept of categories
into machine learning and we note that we are far from the
first to think of machine learning in the perspective of cat-
egories [23, 43, 47, 163], but we hope to have put a more
simplistic and approachable view on this. In so, this for-
mulation is not meant to be complete but rather a first step
and will require further development and collaboration. We
also believe that this formulation will help remind us of
how relationships between data is preserved or lost through
our transformations. This notion will help us to remember
aspects of interpretability and our main motivation in re-
searching Normalizing Flows. The rest of this work will fo-
cus specifically on Normalizing Flows and the their current
status in Machine Learning. We will see concepts from cat-

hypothesis are true, then it is possible for a reduction technique to accu-
rately calculate the density.
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Figure 2. Slight variation on Goodfellow’s Taxonomy of Generative Models [51]

egories, metric theory, and other domains and we help this
work will help make these concepts clearer and the reader
will be better suited to see the larger picture. From a more
philosophical perspective, it is important to remember that
many scientific advancements can be seen as recognizing
the similarities between things that were thought to be dif-
ferent and we believe this abstraction will help encourage
researchers to make these types of connections. We will see
many examples of this throughout this work.

Unless otherwise stated, we will make the following as-
sumptions:

• Data Distribution Assumption: Data is generated
through the process of a data distribution.

• Manifold Assumption: Data lies on a topological man-
ifold that is differentiable almost everywhere.

• i.i.d. Sample Assumption: Samples are independent
and identically distributed.

3. Types of Flows
In this section we will discuss several types of flows and

their benefits and limitations. Before we begin, we may
wish to clarify some basic properties.

• To calculate the likelihood of a sample from the target
distribution only the normalizing direction needs to be
tractable.

• To generate samples from the base distribution, ap-
proximating the target distribution, the inverse needs
to be tractable.

These points are important as we may have different compu-
tational constraints in the normalizing direction compared

to the generating direction. Even though an inverse may ex-
ist, it is not always easy to calculate. Thus if we’re only
trying to calculate the likelihood of samples we may be
able to develop a more expressive flow by using diffeo-
morphisms who’s inverses are much more computationally
cumbersome. The restricted nature of flows also means that
we are imparting structural information onto the learning al-
gorithms, or specific inductive biases. Flows are often dif-
ficult to construct as there needs to be a balance between
computational complexity as well as expresstivity. In gen-
eral, flows that are simple to compute are also not that ex-
pressive. In this section we will discuss these trade-offs and
what structural information is being pushed onto the learn-
ing algorithm.

This section will start with the most basic flows and work
its way to more complex formulations. This will not be a
complete coverage of every work, but we believe that these
works tell the necessary stories for the progression within
these subclassifications. The intent is to build from the start
so the motivation of the recent works can be accurately un-
derstood. This should, intentionally, make works feel in-
cremental, but note that what seems obvious post hoc is
not a priori. We intend our writing to complement these
works, helping readers parse the complex topics and explain
these concepts in simpler language. Section 3.1 introduces
Element-wise Flows, which expand or contract the volume
of the manifold, then Section 3.2 introduces Permutation,
where permutations can be thought of as automorphisms,
Section 3.3 introduces linear flows, a more expressive ver-
sion of the elementwise ones, Section 3.4 flows have tri-
angular Jacobian determinants, Section 3.5 introduces the
concepts of Radial and Sylvester flows, which formulate
structures as hyperplanes and hyperspheres, Section 3.6 in-
troduces the use of splines residual networks which allow
for free form Jacobian model, Section 3.7 introduces the



other free form networks who are parameterized by differ-
ential equations.

3.1. Element-wise Flows

Performing operations element-wise is the simplest type
of flow that one could generate. We often see this expressed
in one of 3 equivalent ways:

T (x) = (h(x0),h(x1), · · · ,h(xn))
T

= DxT

= hxT

T −1
(x) = DxT (8)

In the first line we see that h (h ∈ Rn) is operating on each
element in the x tensor. The second like D is a diagonal ma-
trix (D ∈ Rn×n), and the third line is vector multiplication.
In each of these cases the operation can be either learned
or static. These simple types of flows have some desirable
qualities because they both trivial to invert as well as cal-
culate the Jacobian determinant. This is most obviously
seen in the diagonal case as the determinant is the prod-
uct of the diagonal elements det D = ∏di,i. We can also
see that the exprestivity is fairly low in these types of flows
as they are only performing scalar operations and there is
no correlations between dimensions. This lack of correla-
tion means that we should not expect this type of flow to
be able to solve complex problems on their own unless the
features are already linearly independent. For a geometric
interpretation it is best to conclude that these flows squeeze
or expand elements. Due to this, the flow will fail to model
sufficiently complex distributions without any form of mix-
ing. Another way that we can think about this formulation
is through the use of activation functions, as long as they
are bijective. Works such as [3, 62, 116], which use learned
activation functions, can be thought of as flows (in whole or
part). Motivation in these papers included learning param-
eterized Leaky ReLUs (LReLU) to avoid the zero gradient
(dead neuron) problems.

3.2. Permutation

Another extremely simple type of flow is one that simply
permutes or rearranges elements. While these again aren’t
very expressive they are highly useful parts of more com-
plicated networks as these permutations can make it easier
to learn differing correlation between variables. For exam-
ple, if a model has some inductive bias that assumes local-
ized structure (often called “local inductive bias”), such as
is seen in convolutions (CNNs) and is often assumed about
images, then these permutations may help reduce the bias
imposed on the model and allow for longer range communi-
cation between data points. Another useful feature of these
types of flows is that they are volume preserving. Since
we are just reordering elements, the absolute value of the

Jacobian determinant will always be 1. Additionally, the
inverses are almost always trivial to calculate. There are
several common versions of these which we will discuss.

3.2.1 Simple Permutations

The random permutation is a fairly common type of permu-
tation where we simply randomly permute the elements of
the data. To invert this all we need to do is remember the
ordering. Even simpler is simply inverting the data or re-
versing the order. Another common permutation is to swap
dimensions, such as channels (we will see the usefulness of
this later). One can think of various ways to perform simi-
lar types of operations but it is important to note that these
types of operations are useful for adding additional com-
plexity into other types of flows and will help us reduce the
issues with our architectural constraints.

3.2.2 Squeeze Flows

Another common static permutation is the Squeeze, which
shrinks one or more dimension into another. RealNVP [34]
uses this operation to squeeze half the pixel dimensions,
height and width, into channel dimensions. That is T :
Rc×h×w 7→ R4c× h

2×
w
2 . This of course can be done with any

factorization and does not require that it be 2. Mixing pixel
space with channel space can give a few advantages, includ-
ing: reducing reliance on local structure within pixel space
and allow us to learn more complex channel-wise opera-
tions (more on this later).

3.2.3 Invertible 1×1 Convolutions

Glow [94] introduced a learnable permutation through the
use of 1×1 convolutions.

T (x) =WxT +b

T−1
(x) =W−1

(xT −b) (9)

This convolution has the same number of input and output
channels thus the filter is shaped W ∈ Rc×c. Note that if
W is not properly characterized then it may become a non-
invertible matrix during the learning process. This type of
convolution ends up being a generalization of a permuta-
tion matrix for channel permutations. The reasoning for
this is that this matrix can be decomposed into a permu-
tation matrix, lower, and upper triangular matrices. That is
W = PL(U + diag(s)), where P is a permutation matrix (a
binary orthogonal matrix), and L and U are triangular ma-
trices. Typical LU factorizations will resolve with either L
or U having ones on the diagonals, unitriangular. Thus the
triangular matrix, say U , can be further decomposed into
U = U ′ + diag(s), where U ′ is unitriangular. Differenti-
ating W can be quite costly, O(n3), although this is typi-
cally not that expensive as in practice this is operating on



channels (e.g. for a 3 channel image O(e3) = O(9)). The
LU decomposition makes this even easier the determinant
of permutation matricies and unitriangular matrices are 1,
and thus we just need the sum of s. If W is parameterized
directly in terms of s then our computation drops to constant
time, O(1).

In GLOW the authors initialized their matrix by first
sampling a random rotation matrix, performed PLU decom-
position, and allowed L, U , and s to be optimized. Note
that P here is fixed and that this limits flexibility.8 [67] rec-
ognized this limitation and instead decided to perform QR
factorization, where Q is orthogonal and R is strictly trian-
gular. They also imposed that R be unitriangular using a
diagonal matrix like above: R = R′+ diag (s). The Jaco-
bian determinant calculation is identical in this case since
the determinant of orthogonal matricies is 1. QR decompo-
sition has an advantage in that it is possible to perform for
any real square matrix. They then exploit the fact that any
n×n orthogonal matrix, Q, can be constructed from at most
n Householder reflections: Q = Q0,Q1, · · · ,Qn−1 where

Qi = I−2
vivT

i

vT
i vi

(10)

They then allow v to be optimized. This also gives an ad-
ditional advantage in that they can trade off computational
complexity with flexibility by allowing for a variable num-
ber of Householder reflections. In practice this only led to
slightly increased flexibility.

3.3. Linear Flows

Linear flows are an important class of transformations as
they are actually able to perform cross-correlations between
different elements, and thus are much more expressive than
the aforementioned Element-wise Flows. These transfor-
mations are expressed in the form

T (x) = Ax +b

T−1
(x) = A−1

(x−b) (11)

where A ∈ Rn×n and b ∈ Rn. We may note that this is
quite similar to the formulation of a densely connected layer
but we have a restriction that A must be invertible. While
this flow has more expressivity, it is still limited. [98] gives
a useful example by imagining this transform on a Gaus-
sian distribution. We see that T (N (x,µ,Σ)) =N (x,Aµ+
b,AΣA−1

). In a 1D setting this would correspond to shift-
ing the distribution, via the mean µ , and either flattening
or squeezing it, via the variance σ . In this case we’re just
transforming one Gaussian to another. Calculating the Jaco-
bian determinant and inverse both can be quite cumbersome

8Many implementations ignore this and simply update the matrix W .
The authors of GLOW used both implementations.

as calculating them requires O(n3) complexity. Though this
can be reduced by applying certain restrictions to A; such as
requiring it to be diagonal, as is the case in an Element-
wise Flow. Similarly, the Permutation Flows above can be
described as Linear Flows, where W is defined as a ma-
trix with a single 1 per row and column and 0 elsewhere,
which again trivializes both calculations. These variations
may also have other useful properties and we note that the
Linear Flow is the backbone of many other types of flows.

3.3.1 Normalization

The commonly used Batch Normalization [80] can be
viewed directly as a linear transform. This transformation
performs a scale and shift operation based on the batch
statistics, making them element-wise flows.

T (x) = γ x̂ +β

= γ
x−E[x]√
Var(x)+ ε

+β

(12)

In this case the Jacobian determinant is simply the inverse
square root of the product of the variances (plus epsilon):

detJ =
(
∏σ2

i + ε
)− 1

2 Similarly, this can be used in any type
of normalization format, such as weight normalization [8],
layer normalization [7], or any other. RealNVP used this
batch normalization and weight normalization as a means
to stabilize training, and used moving averages across mini-
batches. Alternatively, Glow used a data dependent weight
normalization [157] for the scale and bias terms (s and t, re-
spectively), calling this “ActNorm”. These terms were ini-
tialized such that the the scale and bias terms had zero mean
and unit-variance across each channel using the initial mini-
batch. After this initialization the scale and bias terms were
treated as normal learnable parameters.

3.3.2 Factorization and Decomposition

A simple way to reduce the computational overhead is to
simply decompose A into something simpler. This reduc-
tion in computational costs does come with reduced expres-
sive though, as we are not able to correlate all the features
of the data. Fortunately we can use methods such as per-
mutation to resolve some of these issues. [174] presented
a volume preserving version of this by using Householder
transform [71] as a substitute by using eigenvalue decompo-
sition: A =UDUT . Remembering that we can use a House-
holder transform to estimate the covariance matrix, Σ, for a
variational autoencoder (VAE) [96].

T (x) =
(

I−2
v(x)v(x)T

||v(x)||

)
x (13)



A similar idea was also explored in [173] where a unitrian-
gular matrix was learned instead of an orthogonal.

T (x) =
(
∑y(x)L(x)

)
x (14)

Here y is softmaxed, creating a weight, and L is a lower
unitriangular matrix. Both of these were conditioned on the
encoder of the VAE, but the formulation holds for arbitrary
networks.

3.4. Autoregressive and Coupling Flows

Coupling and autoregressive flows are the most familiar
works and offer a balance between ease of understanding
and expressivity. Both these formulations have triangular
jacobians, making them often easy to invert as the determi-
nant of a triangular matrix can be read from the diagonal.
They work through the use of a conditioner, which need
not be bijective, which can make them exceptionally ex-
pressive. In addition, they provide a good balance between
computational complexity and representative power.

3.4.1 Coupling Flows

Coupling Flows, presented in NICE [33], introduced the
concept where an input is split into two parts. The first part
is scaled independently to the data and the second part was
scaled, with a neural network, conditioned on the first part.
This means that coupling flows are actually a special case of
autoregressive models where the Jacobian is even simpler.

J =

[
I 0
A D

]
(15)

Here I ∈Rn×n is an identity matrix and D∈R(N−n)×(N−n) is
a diagonal matrix. Coupling flows are typically formulated
in one of two ways: that their data is split into two equal
part and operated upon independently, or a mask is applied
for one operation and the inverse of the mask is applied to
the other.

There have been several variants upon this methodology
and we will briefly discuss a few. NICE introduced addi-
tive coupling layers where we see T (x) = [x0,x1 + f (x0)],
where f is an arbitrary transformation. This has a unit
Jacobian determinant and is thus volume preserving. Re-
alNVP introduced an affine coupling layer, which itself
is a linear transform, which introduced more exprestivity:
T (x) =

[
x0,es(x0)x1 + t(x0)

]
. While NICE used channel-

wise masks, RealNVP used both channel-wise and checker-
board masks, which have become increasingly common.
Flow++ [65] extended this further, noting that the scaling
term could be considered a cumulative distribution function

for a mixture of logits:

T (x) = x0,

σ
−1
(MixLogCDF (x1;

π(x0),µ(x0),

s(x0))ea(x0)+ t(x0))]

(16)

, where MixLogCDF(x1;π,µ,s) = πiσ(x1 − µi)e(−si)).
Here π , µ , s represent the probabilities, means, and log
scales, respectively, which are all learned parameters based
on x0. Additionally, the scale and translation parameters, a
and t, are also learned on x0. σ

−1 is also the inverse sigmoid
function, which is used to ensure that the inverse always
exists. The inverse of the CDF is not simple to directly cal-
culate, but since it is monotonically increasing the inverse
always exists, and can be found by using root finding meth-
ods such as the bisection method.

3.4.2 Autoregressive Flows

Autoregressive models are a special type of flows where the
Jacobian is a triangular matrix. An autoregressive model is
typically defined as

T (x) = ∑Aixt−i + εt (17)

We can note where that we can treat A and xi as equally
sized but with zeroed terms where i < n. Masked Autoen-
coder for Density Estimation (MADE) [48] makes this clear
by masking an autoencoder, to allow for density estimation.
9 The mask is what provides the autoregressive property,
that each output xn depends only on the previous points x<n
and not on any other parts. The key here is that an au-
toregressive model is being represented as a sequence of
time, and viewed this way we say that our model’s pre-
dictions of a point t only depends on the history and not
the future. This same type of modeling is commonly used
in Natural Language Processing (NLP) for sequence pre-
diction, where words in a sequence are masked such that
the predicted word depends solely on the previously typed
words. Masked Transformers [181], such as BERT [31] or
GPT [21, 145, 146], used these masked types of sequences
and have shown incredible performance in sequence mod-
eling. It is important to note that the masks applied here are
strictly lower triangular.

For problems where there is not a clearly defined se-
quence, the order is agnostic [178] and thus permutations
of the masks could be used and actually an ensemble of
models can be trained simultaneously. This agnostic or-
dering and ensembling is valuable because order matters

9Note that autoregressive models often find that a direct connection
between the input and output layers and can often make significant differ-
ences in results [12]



when calculating density but this order may not be known
a priori. A similar approach can be seen in masked con-
volutions [130, 180] and causal convolutions [129], which
enforce similar structuring. Inverse Autoregressive Flow
(IAF) [95] noticed that the Jacobian of the inverse of an
autoregressive model is lower triangular – where the diag-
onals are the derivatives of the transformation of each el-
ement – and thus constitutes a flow. Masked Autoregres-
sive Flow (MAF) [133] then extended the idea, with con-
cerns about the sequence ordering, noting that these flows
can be stacked one upon another with different, or random,
sequence ordering. This work generalized IAF and Real-
NVP (MAF and IAF use MADE as backbones). This was
an important step as autoregressive models are universal ap-
proximators.

3.5. Radial and Sylvester Flows

Radial and Planar Flows [152] were some of the first
flows used for variational inference and have a deeper con-
nection to many other types of flows as well. These can
sometimes be viewed as Linear Flows but we will have our
own section for added clarity. The inverses of these flows
are not easily computed and so they were not used for some
time, with the original work focusing on variational infer-
ence rather than generation. More recent works revisited
the ideas and generalized of these forms into substantially
more powerful networks.

3.5.1 Planar Flows

A Planar Flow and named such because their operation ex-
pands and contracts the manifold with respect to a hyper-
plane.

T (x) = x +u f
(
wT x +b

)
(18)

where u,w ∈ Rn and b ∈ R are free parameters. The func-
tion f : R 7→ R is a smooth element-wise nonlinearity. The
Jacobian determinant can be computed easily in O(n)

det J = 1+uT f ′(wtx +b)w (19)

Where f ′(·) is the derivative of our nonlinearity. Thus or
flow direction expands and contracts the manifold with re-
spect to the hyperplane wtx + b = 0. Not all forms of f (·)
are invertible and this can limit the ability to perform a gen-
erative process. Additionally, IAF [95] pointed out that a
planar flow can be seen as a multi-layer perceptron (MLP)
with a single node bottleneck, meaning that all information
must pass through this singular node. Unfortunately, this
means that long chains are needed to express high dimen-
sional information. But the original authors did compare
their work to others (NICE) and found that it scaled better
and required fewer parameters.

3.5.2 Sylvester Flows

Sylvester flows have received a lot of attention recently, fo-
cusing on generalization and optimization. In this section
we will discuss both of these improvements but a good un-
derstanding of Linear Algebra is needed and an understand-
ing of optimization is highly beneficial.

Seeing this limitation [60] introduced Orthogonal Nor-
malizing Flows. If we slightly change Eq. (18) to

T (x) = x +U f (Wx +b) (20)

Where U ∈ Rn×m, W ∈ Rm×n, and b ∈ Rn (each dimen-
sion extended) and restrict m ≤ n. This equation actually
represents a single-layer MLP with m hidden units. We
can use Sylvester’s Determinant Identity (det(In + AB) =
det(Im +BA)) to find a more expressive Jacobian Determi-
nant with

detJ = det
(
Im +diag

(
f ′(Wx +b)

)
WU

)
(21)

This still isn’t always invertible so they let U =QD and W =
QD̃, where Q is orthonomral and D is diagonal. Using the
algorithm form [15] we find Qk+1 = Qk(I+ 1

2 (I−QT
k Qk)),

which allows for greater expression.
[14] improved this work, calling the above flow O-SNF

(Orthogonal Sylvester Normalizing Flow) and presented
two others: H-SNF (Householder) and T-SNF (Triangular).
In both of these cases they used QR decomposition instead,
similarly with Q being identical. H-SNF uses the same
Householder transformation for Q, and T-SNF reversed Q
(identical to letting R and R̃ swap between upper and lower
triangular).

[1] pointed out shortcomings of QR decomposition,
specifically in the context of SNFs, and used exponential
maps and Cayley maps (from Lie group theory) to address
some of these issues. They noticed that other factoriza-
tions introduced spurious local minima, numerical instabili-
ties, and that they resulted in poor gradient estimates.What’s
noted is that Q∈Rn×n is in the orthogonal group, O(n), and
that if the absolute value of the determinant was 1 then it be-
longed to the special orthogonal group, SO(n). When these
groups are represented as manifolds they have dimension
of n(n−1)/2, meaning that less than half, < n

2 , parameters
are needed to properly characterize Q, which would result
in significant size reductions. C-SNF (Cayley) used the fac-
torization Q = (I +D)(I −D)

−1 and E-SNF (exponential)
used Q = eD = Di

i! . 10

[69] generalize the Sylvester NF by developing new
transforms, called the convolution exponential and graph

10The Cayley factorization fails to be invertible when ||D|| tends to in-
finity, but is quick to compute. The exponential factorization is actually a
surjective function but is a diffeomorphism between a bounded and con-
nected subset of Skew(n) and all but a negligible part of SO(n) (When D
has measure 0 on Skew(n)). Authors note that the exponential factorization
tends to be better than the Cayley.



convolution exponential. The transform and associated Ja-
cobian determinant are

T (x) = x +W−1 fAR (Wx)
detJ = det

(
I+ J fAR(Wx)

)
(22)

Where W is any invertible matrix, fAR is a smooth autore-
gressive function ( fAR : Rn 7→Rn), and J fAR(Wx) represents
the Jacobian determinant of fAR(Wx). This represents a
generalized case of Eq. (20). To correctly parameterize W
they introduce an exponential convolution. Noting that for
a cross-correlation (referred to as a convolution) with ker-
nel m can be represented as a matrix multiplied with a vec-
tor, m ⋆ x = Mx, they defined the exponential convolution
m ⋆e x = eMx (as long as M can be expressed as an expo-
nential). This gives the final version of their Convolutional
Sylvester Flows (CSF) as

T (x) = x +QT ((−m)⋆e fAR(m⋆e Qx))
(det)J = det(I+ J fAR(m⋆e Qx)) (23)

noting that J fAR is lower triangular and that Q is a 1×1 con-
volution parameterized by Househoulder reflections. For
the matrix exponential they use a power-series expansion
for approximation, noting that a matrix exponential can be
used to construct a linear transform that is the solution to a
linear ODE, x(t) = eMtx0.

3.5.3 Radial Flows

[152] also proposed a family of transformations that would
radially expand and contract the manifold around a refer-
ence point, x0 in the base density, called Radial Flows.

T (x) = x +β f (α,r)(x−x0)

= x +
β

a+ ||x−x0||
(x−x0) (24)

detJ =

(
1+

β

α + ||x−x0||

)
I (25)

− β (x−x0)(x−x0)
T

(||x−x0||)(α + ||x−x0||)2)

where α ∈ R+ and β ∈ R. Again, not all forms of f (·)
are invertible, and thus we’re limited in our architectural
choices.

3.6. Monotonic Flows

In this section we introduce the class of monotonic flows,
who’s focus is on using a class of monotonic functions.
We’ll begin with flows that are actually coupling flows, but
the connection will be more apparent when we get to resid-
ual flows. A reminder of the following theorems will be
helpful to the reader.

Theorem 5. Strong Monotone Operator: A function f :
X 7→ Y is k-strongly monotone if for all x,y and k > 0

⟨ f (x)− f (y),x− y⟩ ≥ k||x− y||22
x < y =⇒ f (x)< f (y)

(26)

The two lines are equivalent and say that the operator is
strictly increasing. The actual theorem is even a bit stronger
as it includes Hilbert spaces, but for us this works. Note that
a k-strongly montonic function is always invertible. Note
that f not need be absolutely continuous.

Theorem 6. Lipschitz Continuity: A function f : X 7→ Y
that maps two metric spaces is k-Lipschitz continuous, for
a non-negative k, if

⟨ f (x)− f (y)⟩ ≤ k⟨x− y⟩
d( f (x), f (y))≤ kd(x,y)

(27)

The two lines are the same, but showing this works for
any distance metric. If k < 1 we call this contrastive, k = 1
nonexpansive, and k > 1 expansive. This can be derived
from the fundamental theorem of calculus and we can see
that if a function is differentiable =⇒ Lipschitz continuous
=⇒ continuous (but not the reverse).

Corollary 2. When f is a contrastive Lipschitz function, its
set of fixed points x| f (x) = x are convex

Theorem 7. Banach Fixed Point: If a function f is a con-
traction then the iteration xi+1 = f (xi) converges to a fixed
point on f

3.6.1 Spline Flows

A simple way to ensure that our transformations is to im-
pose that our transform is monotonic. A good choice for
this is to use a monotonicly spline.11 Splines are piecewise
functions with k segments (parameterized by k+ 1 points),
are simple to evaluate and invert (both can be done with
O(logk) via binary search), and can be arbitrarily complex
(determined by k). Because of these properties, splines are
an attractive choice for many types of problems but they
may have a higher barrier to entry when understanding with
respect to the math. We will do our best to explain these
concepts and the motivations here. Most of our notation
will be per-bin and we will drop the respective subscript, as
will be explained in the first example.

[124] propose the usage of piecewise linear and piece-
wise quadratic coupling transforms. For the linear version
the coupling function partitions the input into k segments
with equal width of k−1 and this gives a transform for each

11Monotonic functions are guaranteed to have an inverse



(a) Cubic Spline (b) Rational Quadratic Spline (c) Linear Rational Spline

Figure 3. Comparison of different splines and their respective flexibilities. Images from [35, 39, 40]

bin.

f (x;θ) = αθ0 +∑θk

detJ = ∏
θi

w
(28)

Here θ was a softmaxed matrix, σ(Q), and α = kx−⌊kx⌋.
12 denotes the same equation as fi(xB

i ;Q) = αQi,b +

∑
b−1
k=1 Qi,k. We drop the i which represents the ith dimen-

sion and B representing the split from the coupling function,
which they note as x = [xA,xB. If [xA,xB] = [x1:n−1,xn:N ]
then i represents each element in the set n : N. We take xB

to be a given since these are coupling flows. Additionally
we convert Q to θ to make the flexibility more apparent, as
this can often be an arbitrary network or matrix. Therefore
we see that the coupling function is per dimension, operat-
ing on the proper row of x and θ , using the initial points and
summing over the other bins (k) of the same dimension. We
believe that our notation is less cumbersome and allows for
the reader to focus on the transform and thus will be using
similar notation throughout this section.

Unfortunately, with fixed bin widths the network is not
as flexible. If the network could predict then bin widths then
this could generate more complex functions, where smooth
regions have large widths and complex regions have smaller
widths. The quadratic version addresses this issue but mod-
eling the (k + 1) vertices, storing vertical coordinates in a
matrix (V ) and the bin widths in another (W ). This gives us
the per-bin coupling function:

f (x;V,W ) =
α2

2
(Vb+1−Vb)W

+αVW +∑
Vk +Vk+1

2
Wk

(29)

12Note that [124]

Here b represents the associated bin and α = (x−∑Wk)/W .
Interestingly they use this to generalize one-hot encoding
into one-blob encoding, which discritizes it into bins using
a gaussian kernel (σ = 1

k ). One-blob encoding is lossless,
as opposed to the lossy nature of one-hot encoding.

Both of the splines in [124], called “polynomial splines”,
restrict the coupling function’s domain to [0,1]. [39] gen-
eralizes the prior work by using monotonic piecewise cu-
bic splines [45] where each segment is a monotonically in-
creasing polynomial. They then use Steffen’s Method [168]
to parameterize the knots, enforcing the boundary knots to
be at (0,0) and (1,1), respectively. They use an arbitrary
function (neural net) that maps f (·) : Rn−2 7→ R2k+2 which
then is chunked into segments with dimensions Rk,Rk,R2,
representing the height and width coordinates of the knots
and the boundary derivatives. The height and width seg-
ments are constrained with a softmax (needs to be posi-
tive and sum to 1). Finally, a cumulative sum is applied
to the partitions, ensuring that the function is monotoni-
cally increasing. The inverse can be solved with a cubic
solver [16, 17, 139] and the Jacobian determinant can be
computed quickly as it is lower triangular (per i). With the
knot coordinates (xk,yk), the derivative of the cubic func-
tion is

Jk(ξ ) = αk1 +2αk2ξ +3αk3ξ
2

= dk +2
(

3sk−2dk−dk+1

wk

)
ξ

+3
(

dk +dk+1−2sk

w2
k

)
ξ

2

(30)

ξ =
x− xk

wk
, sk =

yk+1− yk
wk

, wk = xk+1− xk (31)



Here d represents the derivative of the kth knot, which is

dk =

{
2minsk−1,sk pk > 2minsk−1,sk

pk else
(32)

pk =
sk−1wk + skwk−w

wk−1 +wk

[40], the same authors, extended the work to rational
quadratic (RQ) splines. The general idea stayed the same
but some minor changes were made to increase the flexi-
bility which allowed coupling based models to match the
power of autoregressive ones. First, they allowed the inter-
val to be non-unitary and instead allowed for the knot co-
ordinates to lie within an arbitrary compact space [−B,B],
but can be projected to a unit interval via the method used
by [57]. This significantly increases the flexibility, as we
can interpret this as placing knots with higher precision. In
this version θ is projected into R3K−1 and is then partitioned
into RK ,RK ,RK−1, similar to before. The height and width
projections are then softmaxed, as before, and multiplied
by 2B, ensuring they span the compact manifold, and the
derivative projection is passed through a softplus activation.
We can then write the rational quadratic polynomial for the
kth bin and its derivative as

αk(ξ )

βk(ξ )
= yk +

(yk+1− yk)(skξ 2 +δkξ (1−ξ ))

sk +(δk+1 +δk−2sk)ξ (ξ −1)

d
dx

(
αk(ξ )

βk(ξ )

)
=

s2
k

(
δk+1ξ 2 +2skξ (1−ξ )+δk(1−ξ )2

)
sk +(δk+1 +δk−2sk)ξ (1−ξ )2

(33)

While this result did not produce state of the art generation
on Cifar-10 [99] or ImageNet [30], the work performed sim-
ilarly to Glow but with nearly a quarter of the parameters.5.

The above methods have quite a difficult problem
though, since they require solving n-degree polynomial fits.
[35] resolves this by creating a “linear rational spline.” Us-
ing a technique from [46], they show that each spline bin
can be split into two, allowing for greater flexibility as these,
as there are fewer constraints on the middle bin. Given the
homographic function 13

f (x) =
wkyk(1−φ)+wk+1yk+1φ

wk(1−φ)+wk+1φ
(34)

where φ = (x− xk)/(xk+1− xk) we can define our middle
bin through linear interpolation: xm = (1− λ )xk + λxk+1.
This gives the spline more flexibility, as it can be located at
any point between the two knots (0 ≤ λ ≤ 1). The advan-
tage of this is that one needs to now only worry about the
fit (between the bin) needs only be continuous and differen-

13The quotient of two first degree polynomial (affine) functions.

tiable. This gives the following update to Eq. (34)

f (φ) =

{wkyk(λk−φ)+wmymφ

wk(λk−φ)+wmφ
0≤ φ ≤ λk

wmym(1−φ)+wk+1yk+1(φ−λk
wm(1−φ)+wk+1(φ−λk)

λk ≤ φ ≤ 1
(35)

Where λ , the ws, and y are learnable parameters. Also use-
ful is that the inverse of this function does not require solv-
ing polynomial functions.

Splines are still an evolving research area and highly
studied in graphics and mathematics. These works show
that this research can also be leveraged to advance the state
of normalizing flows. Splines offer flexible representations
that require few parameters but do come at the cost of, usu-
ally, requiring a complex calculation when inverting is nec-
essary.

3.6.2 Residual Flows

Figure 4. Invertible ResNets (i-ResNet) compared to standard
ResNet. Standard residual connections create knots which pre-
vent the process from being bijective. Image from [10]

Residual Flows are a unique type of architecture com-
pared to what we’ve discussed previously. They can ac-
tually use any architecture type but are restricted in other
ways. While other types of flows have restricted Jacobian
determinants, Residual Flows are free-formed. This allows
them to be more expressive than other types of flows, but
they come with their own complications, namely computa-
tion.

ResNets [63] was one of the most influential papers in
machine learning, allowing the extremely deep networks
that we see today be possible. The advantage of these net-
works is that they have free-form Jacobians and thus can
be extremely expressive. Unfortunately, this simple but ef-
fective process isn’t invertible in an obvious manner. [10]
sought to solve this, noticing that residual networks share



a simiar form to Euler’s method to solve initial value prob-
lems of ODEs (forward and backward). If Fθ : Rn 7→ Rn

is a composable function that represents a ResNet, then
the tth composition can be written as F t

θ
= I + gθt . The

ResNet Fθ becomes invertible if the Lipschitz constant of
gθt < 1∀t. 14 The Lipschitz constraint can easily be ap-
plied by using a spectral norm [121, 176, 190] for each
of the convolutional layers and like [53] directly calculate
through a power series. This allows the jacobian deter-
minant to be calculated log |detJF(x)| = tr(logJF) , letting
F(x) = (I + g)(x). Thus, we get JF = I + Jg(x), which
can be computed using a power series using the Skilling-
Hutchinson estimator [75, 165]. The reverse direction can
also be solved through fixed-point iteration, noting that the
Lipschitz bound for the reverse direction is also < 1. Their
transform can be seen below in Eq. (36)

log(p(x)) = log(q(x;θ))+ tr
(

∑
−1i+1

k
Jg(x)k

)
(36)

Unfortunately [10]’s method requires approximation of
the density, due to the infinite series calculation, and thus
a bias. Worse, this bias grows with the data dimension-
ality and the Lipschitz constant of g. [25] argued that this
means i-ResNet can’t calculate MLE, instead optimizing
the bias, and thus sought to resolve this, creating an unbi-
ased estimator. Using the Russian Roulette Unbiased Esti-
mator [84,114], which is an unbiased estimator for the limit
of a sequence, the trace of matrices Jk

g (Equation (36)) can
be reformulated as

log(p(x)) = log(q( f (x)))

+En,v

[
∑
−1k+1

k
vT (Jg(x)kv
P(N ≥ k)

] (37)

Where n ∼ p(N), v ∼ (N)(0, I), and P represents poly-
nomials. Unfortunately this is computationally inefficient
for backpropagation as each gradient in the series has to
be tracked, making a O(nm), representing the computed
terms and residual blocks, respectively. To resolve this two
methods are used, Neumann gradient series and backward-
in-forward early computation, allowing for O(1) memory
usage. Even with this change we note that the computa-
tion is still quite expensive, with several days of training
even on a multi-GPU setup just for MNIST. i-ResNet also
found that smooth and non-monotonic activation functions
worked well and decided to use Swish [148], which is a
gated sigmoid-weighted linear unit [41]. To ensure that
Swish has a Lipschitz constant of less than 1 they divide by

14Lipschitz constant tells us the maximum rate of change a function can
have, thus relating to its derivative and relating to continuity. The Lipschitz
Constant, L is defined by | f (x0 − f (x1)| ≤ L|x0 − x1|. The authors use
contraction mapping via the Banarch Fixed-Point Theorem, which allows
us to perform the invertiblity calculation needed later.

a bound, which is found by the max of the absolute value of
the derivative.

LipSwish(x) = x
σ(βx)

1.1
(38)

Here β is learnable and strictly positive (enforced by Soft-
Plus).

[138] introduced invertible DenseNets (i-DenseNet).
Dense networks [73, 74] are have connections to every pre-
vious layer, allowing for more efficient training and better
performance than a traditional ResNet. While a traditional
DenseNet outputs only g(x), having concatenated residual
inputs, i-DenseNet outputs the input as well, x+g(x).

g(x) =Wn ◦hn−1 ◦ · · · ◦h0(x) (39)

Where Wn is a 1× 1 convolution that reshapes the output
back the the appropriate dimension. Each layer, hi, contains
both the input signal

h0(x) =
[

x
φ(T0(x))

]
,

hi(. . .h0(x)) =
[

hi−1(x)
φ(Ti(hi−1(x)))

] (40)

Where T is a transform, typically a convolutional layer, and
φ is an activation function. As the previous Residual Flows,
we require that Lip(φ) ≤ 1. Similar to [161] they use a
concatenated activation function, in this case LipSwish 38.

If activation functions are though of as filters, concate-
nated activation functions can be though of as filtering from
both sides by applying it twice. Because it is applied twice
our channels double, and thus a smaller growth factor is ap-
plied.

CLipSwish(x) = φ(x)/Lip(φ)

φ(x) =
[

LipSwish(+x)
LipSwish(−x)

]
Lip(φ) = sup

x
||Jφ (x)||2

(41)

sup
x
||Jφ (x)||2 = sup

x
σmax(Jφ (x))

= sup
x

√(
∂ψ1

∂x

)2

+

(
∂ψ2

∂x

)2

≈ 1.004 ∀β

(42)

Where J is the jacobian determinant of the concatenated
LipSwish. The tighter lower bound (1.004) allows for better
gradient norm attenuation [104]. 15 gives a clear explana-
tion of this under ℓ2 and [192] for the ℓp norm case.

15A tighter Lipschitz bound is often desirable as it provides better ro-
bustness. [102]



Implicit Normalizing Flows [109] work to generalize
residual flows by using implicit neural networks (INNs) [5,
9]. INNs work differently compared to general methodolo-
gies. INNs are specified by the conditions that are desired
from the output rather than, for traditional networks, speci-
fying how to compute the output. Often this is done through
fixed point iteration, which is where the connection forms.
In this work we can simply define a function, with mapping
F : R2d 7→ Rd , with two variables, x,z ∈ Rd , that defines a
unique invertible map, F(z,x) = 0. We will also define z to
be dependent on x, z = f (x), where f : Rd 7→ Rd . This can
be then decomposed such that

F(z,x) = gx(x)−gz(z)+ x− z (43)

Where gi : Rd 7→ Rd and Lip(gi) < 1, for both z,x. This
formulation is essentially identical to ResFlow [25] but we
have both directions.

(gx + id)(x) = gx(x)+ x = gz(z)+ z = (gz + id)(z)

z = ((gz + id)−1
(gx + id))(x)

= (Inverse ResFlow)(ResFlow)

= (implicit)(explicit)

(44)

z can be solved simply by solving for the fixed point, which
can be done by quasi-Newton Methods such as Broyden’s.
The logdeterminants are similar to those as ResFlow’s as
well

log(p(x)) = log(p(z))

+ log(det(I + Jgx(x)))

− log(det(I + Jgz(z)))
(45)

This formulation increases the expressivity of ResFlows be-
cause the forward ResFlow handles small Lipschitz parts
of the target function and the Inverse ResFlow handles the
large Lipschitz parts. This work represents a significant im-
provement in generalizing ResFlows, but experiments were
limited due to computational constraints. The work shows
that implicit representations are a useful avenue for research
in normalizing flows and much remains to be explored here.

More recent work by [4] proposed a monotone formu-
lation as a means to escape the Lipschitz constraints. A
function is monotone if every output increases for every
increasing input: (F(x)− F(y))T (x− y) ≥ 0, ∀x,y ∈ Rn.
A strongly montone function, (F(x) − F(y))T (x − y) ≥
m||x− y||22 when m > 0, also has a clear Liptschitz con-
stant defined by m and is also invertible [64, 155]. [4] re-
alized that Equation (44) is a split operator and that it looks
quite like the Cayley operator, where (id +gz)

−1 looks like
a Resolvant, R, they decided to formalize this. This al-
lowed them to parameterize the Cayley operator, 2R− id =
2(λF + id)−1− id, which allows for a more flexible Lipts-

chitz constraint.

logdetJ f = tr [log(I− JG)− log(I + JG)] (46)

log pX (x) = log pZ(z)

+En,v

[
(−1)− (−1)k+1

k
vT Jk

Gv
P(N ≥ k)

] (47)

We let n∼ pN(n) and y∼N (0, I). [4] also noticed that the
LipSwish activation still suffered from a vanishing gradi-
ent problem since the first derivative is still close to 0 when
x = 0. Thus the authors introduced a new activation func-
tion, positive identity 1-Lipschitz activation (Pila) (Equa-
tion (48)). Pila is substantially smoother and has a velocity
near 1 at x = 0, making it a better choice.

Pila(x) =

{
x x≥ 0(

k2

2 x3− kx2 + x
)

ekx x < 0
(48)

CPila(x) = α1 [Pila(x−α2), Pila(−x−α2)]
T (49)

Where k > 0 is either learned or fixed, usually 5, α1 =
1/1.06 and α2 = 0.2.

Residual Flows are a promising research area, but do re-
quire significantly more mathematical analysis than other
forms. In addition to this, they are often quite difficult to
compute given that all the above methods use fixed-point
iterations. Despite that, they have free-form Jacobian De-
terminants and can thus be far more expressive when com-
pared to other forms. If new algorithms for faster fixed point
iterations, better ways to formulate the Lipschitz constraint,
or that other methods can be found then these algorthms
could be quite promising.

3.7. Continuous Flows and Neural ODEs

Another promising method for free-form Jacobian Deter-
minants is through the use of Ordinary Differential Equa-
tions (ODEs). In this section we will discuss the major
works in this area, but note that it is an active research area
and things are changing quite quickly. Many of these meth-
ods may not be referred to as Normalizing Flows, despite
explicit use of bijectors, but not all Neural ODEs (NODEs)
are Normalizing Flows (or even isomorphic) either. In gen-
eral these works can better be seen from the framework
of homeomorphic functions, and thus are included within
the isomorphic understanding of Normalizing Flows. For a
complete description of NODEs we recommend [88]’s the-
sis, which also includes their relationship to implicit neural
networks [9, 49]. These networks have a lot of similari-
ties to the previous section but we feel that it is helpful to
distinguish them, and this may help specifically in seeing
how Normalizing Flows can be used in non-distributional
settings.

The first major work was Neural Ordinary Differential
Equations [24] where the concept of a Continuous Normal-
izing Flow is introduced. Previous works [110] had shown



Figure 5. Expressive power of Normalizing Flows. Depiction of Jacobians for different Normalizing Flow methods. Sylvester flows have
identity Jacobian determinants while Residual Flows and ODEs have free-form Jacobian determinants. Image from [25]

that ResNets, and others, could be interpreted as discriti-
zations of differential equations, and thus sought to create
continuous versions. The idea is simple and just recog-
nizes that ht+1 = ht + f (ht ,θ) is the Euler discretization of
the continuous function h′(t) = f (h(t), t,θ), and one sim-
ply need to define the initial value problem (defining h(0)
and h(T )). Their formulation does not concern itself with
the ODE solver, treating as a black box, and uses the ad-
joint method [143] to compute the gradients. This solves
an augmented ODE in the reverse direction and we can see
this as reverse-mode automatic differentiation through the
computational graph. A scalar loss function L can then be
formulated as

L(z(t1)) = L
(

z(t0)+
∫ t1

t0
f (z(t), t,θ)dt

)
= L(ODESolver(z(t0), f , t0, t1,θ))

(50)

Where we can now solve the gradients by

∇θ L =−
∫ t0

t1
a(t)T

∇θ f (z(t), t,θ)dt (51)

∇ta =−a(t)T
∇z f (z(t), t,θ) (52)

Where a(t) = ∇z(t)L is the adjoint state (sometimes called
sensitivity). They then introduce the concept of continu-
ous Normalizing Flows (CNF), recognizing how the adjoint
state looks like our typical Jacobian. They give us the fol-
lowing theorm

Theorem 8. Instantaneous Change of Variables: Let
z(t) be a finite continuous time-dependent random variable
with probability p(z(t)). Let ∇tz = f (z(t), t) be continuous
in time function, where f is uniformly Lipschitz in z and
continuous in t. The change in log probability follows the
differential equation

∇t log p(z(t)) =−tr
(
∇z(t) f

)
(53)

This may be called “free form” as f does not need to
be bijective as uniqueness exists and the transformation is

whole is bijective (similar to the formulations we had in
coupling flows). We see that ∇z f is actually the Jacobian.
An additional benefit is that this formulation reduces com-
putation. Log density can be calculated as

log p(z(t1)) = log p(z(t0))−
∫ t1

t0
Tr

(
∇z(t) f

)
dt (54)

FFJORD (Free-form Jacobian of Reversible Dynam-
ics) [54] expanded this to reduce some of the constraints,
introducing an unbiased stochastic estiator that has linear
cost with respect to the dimension, O(D). They introduce
Hutchinson’s trace estimator to reduce computation, refor-
mulating as

log p(z(t1)) = log p(z(t0))

−Ep(ε)

[∫ t1

t0
ε

T Tr(∇z f )ε

]
dt

(55)

With a fixed ε. An important aspect of this formulation
is that it dramatically reduces the number of parameters
needed, they were able to get the same performance as
Glow [94] using less than 2% as many parameters. They
did this with a single flow step and with a fixed Gaussian
target distribution.

RNODE [42] recognized this as an optimal transport
problem [182](pg 114) and that the dual of maximizing
the likelihood of p(x) is the minimization of J(p(x) =
− 1

N log p(xi) (equivalent to the KL divergence). They ad-
ditionally recognized that the transport function was poorly
conditioned and that this could be regularized for signifi-
cantly faster and increase stability, reducing the number of
steps an ODE solver needs. They first use the Benamou-
Brenier formulation [11], adding the kinetic energy to
encourage particles to prefer straight lines with constant
speed.

Jλ ( f ) =
λ

N

∫ T

0
|| f (zi, t)||2dt

− 1
N

log p(xi)

(56)



Then they added the Frobenius norm(
||A||F =

√
a2

i, j =
√

tr(AAT )
)

to the trace estimator,
which requires no extra computational cost. This gives the
improved formulation

min
f

1
Nd
− log p(z(xi,T ))

−
∫ T

0
∇ f (z(xi,s),s)ds

+α

∫ T

0
|| f (z(xi,s),s)||2ds

+β

∫ T

0
||∇z f (z(xi,s),s)||2F ds

(57)

Where α,β are regularization weights for the kinetic energy
and Jacobian Frobenius norm, respectively.

ANODE [38]16 recognized that there are many functions
that NODEs cannot represent, as they can only perform
smooth transformations of a manifold. That is, their de-
formations may not cut or tear, which prevents trajectories
from crossing. They sought to instead create a transform
which is homeomorphic, removing the constraint of differ-
entiability, and to view data as a discrete collection of points
rather than continuous. This formulation then assumes the
function map f : Rn 7→ Rn+p, and that there exists a point
a(t) ∈Rp which represents a point in the augmented space.
Their new formulation is[

h(t)
a(t)

]
= f

([
f (t)
a(t)

]
, t
)

(58)

[
h(0)
a(0)

]
= f

([
x
0

]
, t
)

(59)

Where Eq. (59) are the initial values. They note that AN-
ODE significantly increases stability as the timestep for a
NODE may be smaller than that of machine precision to
properly converge, even when such convergence is possi-
ble. While ANODEs increase the speed of NODEs, they are
still slower than ResNets. Additionally, augmentations in
the data changes the input dimension, which can add com-
plexity.

Zhang et al. [193] further this formulation and proved
that any homeomorphism on a n-dimensional Euclidean
space can be approximated by a 2n-dimensional NODE.
In fact, they show that any n+ 1 dimensional NODE fol-
lowed by a linear layer is a universal approximator for
f : Rn 7→ R. An important extension is that they show that
any n-dimensional i-ResNet, which is zero padded into 2n-
dimensions, can approximate any n-homeomorphisms as
long as the Lipschitz constant is finite and an upper bound is

16It is worth noting that [38] does not call their work a Normalizing
Flow but view formulation similarly to [24] where in this can be used to
solve the Jacobian

know. The upper bound of the Lipschitz constant is needed
to determine the number of layers that are needed.

While this work may seem complete, there are still im-
portant limitations within these works. They still remain
comparatively computationally expensive and new methods
need to be created to reduce these trade-offs. Addition-
ally, Zhang et al. [193] still contains limitations. Continued
research is still need to make these homeomorphisms uni-
versal approximators without an additional neural network
as well as the work needs to be extended to non-Euclidean
spaces and non-continuous functions.

4. Applications of Flows
Normalizing Flows have a wide variety of applications,

as some have been discussed previously. Primary our dis-
cussion has focused on that of density estimation and gen-
eration, but we have many more applications. We start with
a discussion of causality in Section 4.1, as this is one of the
most fundamental areas of science. In general, science is
the understanding of how our world works, and we wish to
understand that through causal relationships. This is why
we placed importance on the framing with respect to under-
standing relationships between data and their inherit struc-
tures. Then we will discuss applications in probability and
statistics (Section 4.2), applications in audio (Section 4.3),
and finally applications in vision (Section 4.4)

4.1. Causality

Flows have a few nice properties that make they quite
useful for analysis. After all, our reasoning for creating
these formulations was to either explicitly preserve all re-
lationships between data, or provide a way to recover them.
From this understanding, causality becomes a natural ex-
tension of these works. This is because causality itself is
the understanding of those relationships and specifically the
direction of influence. Judea Pearl [83, 134, 135] is one of
the “fathers” of causality in the area of artificial intelligence
and we will understand these relationships through the hier-
archical ladder that he presents Table 1.

We assume that i.i.d. data is being sampled from a joint
distribution p(x,y,z, · · ·) and that p is known and tractable.
Association is simple to see, and in fact many models have
this power, since they are conditioned on prior terms (what
those terms are matters though!). Simply this is p(x|y) =
p(x,y)
p(y) , our familiar form. Intervention is deceptively more

difficult as we have to invoke the do-calculus [136]. An im-
portant part is that we can’t sample from p(x,y,z, · · ·) but
instead need to sample from the joint pdo(X=x)(x,y,z, · · ·),
noting that these are NOT the same. This is best seen with
an examples.

• Suppose we’re measuring the voltage across a resistor
in a circuit, where x represents the voltage of the cir-



Association Pr(x|y) How does y change by belief about x?
Intervention Pr(x|do(y),z) , If we do y (independent of z) how does this change my belief about x
Counterfactual Pr(x|x′,y′) How would the outcome x have changed if y was y′ instead?

Table 1. Judea Pearl’s Ladder of Causal Relationships. These 3 forms of reasoning allow us to answer stronger causal questions and better
understand the relationship between random events. They are in increasing order of causal understanding.

cuit and y represents the reading on an analogue volt-
meter. If we intervene by holding the needle at the 0
voltage mark (setting y = 0) we find p(x|do(y = 0)) is
just the marganalized distribution p(x).

In the example we note that the voltmeter measurement,
y, allows us to predict the voltage across the resistor, x,
but that the voltage measurement doesn’t cause the voltage
across the circuit: or p(x,y) ̸= pdo(x=0)(x,y) = p(y). In the
real world we may frequently do do-calculus with experi-
ments such as randomized controlled medical trials. But we
may also want to observe natural phenomena or may not
even be able to intervene! Counterfactuals are a bit more
difficult to understand as they are about a single datapoint.
We will be using Pearl’s definition: a probabilistic answer
to a “what if” question. We will illustrate this with an ex-
ample:

• Suppose that Jennifer is a female Assistant Professor
who did make tenure. What would the probability of
her getting tenure given that she was a man instead of
a woman?

Here we have an already existing data point but want to
perform a probability using do-calculus in the past. Unfor-
tunately, we cannot make such a change given that we do
not have a time-machine. But if we were wishing to under-
stand how gender biases affected the decision process for
Jennifer’s promotion, we would have needed to do this and
we would have had to ensure that all the other variables re-
mained unchanged – which is unlikely to be possible even if
we had our time machine. Through these examples, we can
see how we’ve created a hierarchy in importance of causal
measures, with counterfactual tests being the strongest in-
dicator of causation.

With this understanding, we can observe that many mod-
els associative, but that we need a precise model of a proba-
bility density function to be able to gain strong causal under-
standings. The careful reader may have noticed that these
types of relationships can be built into Normalizing flows!
Flows can naturally a form of Structural Equation Model
(SEM) [159] as they form relationships between variables
in a controlled manner. In fact, [87] performed exactly this
using autoregressive flows. Without knowing the causal di-
rection they train multiple flows and compare the likelihood
ratios [78]. Two candidate models allows them to test two
potential directions – x1 7→ x2 vs x2 7→ x1 – where the sign

dictates the causal direction. With this model framework the
authors were able to perform experiments where both inter-
ventions and counterfactuals were able to be performed.

In an alternative approach [151] used a Spline Cou-
pling Flow to model the noise in an additive noise model
(ANM) [72]. The reasoning for this being that other ANMs
assumed that the noise is Gaussian, which isn’t realistic
for natural processes. [194] demonstrated that a wrong pa-
rameterization of the noise resulted in biases estimate, but
only extended the approach by using a mixture of gaussian
model. Using a NF to model the noise, directly from the
data, enables a much more accurate model and thus a reduc-
tion in bias. This approach even reduced the computational
time by more than 60x. [189] uses a similar approach to
model noise, but instead use it to create a causal latent space
for a VAE [96]. Models such as [50,150,184] also use flows
as part of their implementations, especially when invertibil-
ity is needed, but rely on other network structures to per-
form causal tasks. The invertible property of flows is specif-
ically needed for counterfactual intervention, since we need
to revert conditions given an outcome. [79,125] even create
a causal model by chaining together different Spline Cou-
pling Flows, demonstrating that the bijective mechanism al-
lows for causal inference even in more complex structures.

Causation is an incredibly important part of scientific
discovery as well as is an important aspect in developing
highly intelligent machines. Given that causation is at the
root of scientific discovery it reasons that Normalizing flows
are a powerful tool for scientists, especially when working
with data that is difficult to process or may even have in-
tractable densities. But understanding causation is an im-
portant part of creating machines that can think and rea-
son, which requires at least some form of interventional
and counterfactual estimation. While humans are not per-
fect, nor even that good, at determining causal relationships,
such a feature is still highly desirable and is something we
often seek out. After all, causality is at the root of science.

4.2. Probabilistic Modeling and Inference

Probabilistic modeling remains one of the main motiva-
tions for studying Normalizing Flows. This has rather ob-
vious implications many times, considering these models
directly approximate the density function. We will briefly
discuss these works and how flows are used for these.

Variational Inference (VI) is one of the most common
tasks performed with Normalizing Flows [14,39,40,54,60,



65,95,153,158,174]. VI is mainly interested in approximat-
ing the posterior distribution in Bayesian Inference. Since
this is typically intractable, Flows provide a natural way to
perform this. In fact, VI is seen in most of the works dis-
cussed previously. This problem can be solved by estimat-
ing the evidence lower bound (ELBO) and more generally
thought of as similar to the “reparameterization trick.”

Simply being able to estimate the distribution leads to
many different tasks. Flows have been used for Bayesian
Experimental Design Optimization [86], wherein they al-
lowed for higher flexibility and accuracy. These methods
typically use the expectation of entropy, wherein the den-
sity needs to be estimated. They have also been used for
Imputation [105, 154], which is the replacing of missing
data (such as in-painting). These methods realistically rely
upon drawing from an accurate distribution, often with con-
ditional data.

4.3. Audio

A common application for Normalizing Flows is actually
found in audio based ML. Some of the best Neural Audio
Synthesis and Text-To-Speech (TTS) systems actually rely
on Normalizing Flows [91]. These flow based networks are
broadly broken down into two categories [170]: autoregres-
sive [113,128,140] and bipartite (coupling) [89,90,92,119,
141, 144, 164, 185]. Autoregressive models, either AF or
IAF, often have the highest quality, but come at the cost of
higher computation and typically using a teacher model. Bi-
partite models are much faster, but require more parameters
and don’t reach as high of performance. That said, many of
these works can synthesize speech at a high rate, faster than
real time ( 22kHz) [128,140,141,144], even doing so with-
out a GPU and on compact systems like a RaspberryPi [91].

It is important to note that these works are not Flows
from end to end, but rather use these as part of their net-
works. In this way they can be thought of similar to VAEs
such as in NAVE [179] or VAE+Flows [173,174]. Often this
can be used to model the duration of speech [90, 120, 164],
or is used to control pitch and speech style – [90, 91] use
flows to align the word order. Flows are also a useful tool
simply because it allows the density to be modeled, giving
a meaningful performance benchmark to be measured. It is
worth noting that many of these works also use more com-
plex loss functions. VITS [91] has a loss function composed
of the form:

Lvae = Lrecon +LKL +Ldur +Ladv(G)+Lfm(G) (60)

reconstruction (Lrecon), KL-divergence (LKL), a variational
lower bound for duration (Ldur), generative adversarial loss
(Ladv(G)), and feature matching loss (Lfm(G)) [100]. This
should be interesting to many, as for traditional image gen-
eration Flow based works focus on only using the likeli-
hood, which has severe limitations with respect to image

quality [171], but it highly depends what task we are align-
ing with. In the case of audio speech, where we want re-
alistic sounding audio, it may be beneficial to actually not
perfectly estimate the density distribution.

4.4. Vision

There are also many applications used in the subfield of
computer vision. Many of the previous works discussed ac-
tually use works like CIFAR [99] and ImageNet [30], but
generally we saw unconditional generation or class con-
ditional generation, and these performances were rather
poor. But Flows that simply regenerate the images that were
passed into them can regenerate those images with little to
no loss, which also makes them good for imputation and
compression.Because of this, Super-Resolution is a com-
mon application area for these networks [97, 191, 196]. A
unique advantage that Flows have over GANs is that they
create a more diverse distribution, since they learning is
based on the entire distribution rather than just good sam-
pling, and that they can be more easily edited without ad-
ditional techniques. The latter being that density methods
will cluster similar features near one another, making local
perturbations in the latent space produce similar outputs in
the generative space. This makes more sense from an im-
putation perspective as it is reasonable to assume that there
are many possible ways to fill in missing data, and that by
having the likelihood of these different possibilities enables
for better generation.

Invertible Rescaling Net (IRN) [187] proposes that
the up-scaling problem (not to be confused with super-
resolution) can be seen as the inverse of the down-scaling
problem and develops a bijective network to account for
this. This means that they are both training the compression
and the decompression of the data, where gaussian noise is
drawn for the missing data. Using a Nice-like [33] network,
they train both the down-scaling and up-scaling networks
together then are able to conditionally sample from the low-
resolution image. Its follow-up work [186], using a similar
network but with the 1× 1-convolution and squeeze from
[94], improved the technique, and also showed how this
could be used for other restoration techniques like color-
restoration.

A concurrent work, SRFlow [111], takes this even fur-
ther, by the more powerful Glow-like [94] model and
an invertible injection layer and also training with low-
resolution and high-resolution image pairs, applying to the
super-resolution problem. This allowed them to outperform
GANs not only in quality, but also be able to modify their
upscaled images directly from the latent representations,
which enables better generation for artists who may wish
to tune or tweak the output. The follow-up work SRFlow-
DA [82] further improves the performance and enables 4x
and 8x scaling.



Local Implicit Normalizing Flow (LINF) [166,188] took
these methods even further, showing that Flows could be
used for arbitrary scale generation. This work recognized
the imputation power but introduced additional data so that
the model knew the coordinates of the image that it has
been conditioned upon. In this way, a recursive style gen-
eration could be formed. Importantly, they also showed
that these Flow based models, and especially LINF, could
smoothly control the trade-off between PSNR and LPIPS
metrics through sampling temperature. Importantly, this
model uses two parts, where there is a local implicit model
that generates the conditions for the coordinate conditional
flow model. The flow model itself is simple and uses affine
layers.

These works demonstrate many advantages that flows
have in image generation tasks, where even human pref-
erence prefers these images [112]. Many of these works
also do not use the modern and improved flows, and there is
ample opportunities for researchers to improve upon them.
At the same time, many of these works chose simple mod-
els due to the fact that inference speed is important for these
tasks and while more complciated networks do perform bet-
ter in unconditional generation, it should be noted that they
tend to suffer from higher computational costs.

5. Outlook: Future of Flows
Mathematics, data science, and machine learning all

study relationships between things. We have discussed
in detail Normalizing Flows, their construction, and their
many uses. We see that our main motivation is to recover
the original structure of the data and how these allow us to
preserve all such relationships. This makes these types of
models highly beneficial to many domains. We particularly
see how this can help us in such cases as causal structures,
which are another way to view the ordering and interaction
of things. There still remains open problems and limita-
tions, which we will conclude with.

5.1. Universal Approximation and Expressiveness

One of the main issues in Normalizing Flows is how ex-
pressive these architectures are. Due to their restrictions,
they may not be able to properly express all function forms.
Many of the works we’ve seen towards the end of each sec-
tion has relatively high flexibility, and have shown to be
highly effective for many applications. There are still some
open questions.

Work still needs to be done to make flows more compact
and expressive, especially with respect to cheaper compu-
tations. Most flows still require a larger amount of compute
than other types of models. Additionally, scaling remains
an important research area and no research to date has stud-
ied flows at the scales that we see in modern machine learn-
ing models. Modern classification networks [36, 61, 107,

108] and often in hundreds of millions of parameters, or
even tens of billions [29]! GANs [20,85,183,195] are often
in the tens of millions of parameters to a few hundred of
millions of parameters, and have the advantage of generat-
ing from a low resolution size (typically around R4×4×512),
and can generate images with resolution 1024×1024. Fur-
thermore, diffusion models [32, 66, 126] can have a hun-
dred millon paramters for a “small” dataset (64×64 [126])
to nearly a billion parameters [137, 149] (before text mod-
eling). On the other hand, the two largest autoregressive
style Flow models that the authors are currently aware of are
DenseFlow [56] and MaCow [115] with 130M and 177M,
respectively. These pales in comparison to modern network
architectures, but it is worth noting that DenseFlow is cur-
rently one of the, if not the, best density estimators for Im-
ageNet on 32× 32 and 64× 64 (work was later than Ma-
Cow). We can see that there is still a lot of potential for
these models to perform better, but may take large amounts
of investment and will from the community.

In addition, there has not been as much work done
for proving universal approximation conditions. For au-
toregressive style flows, the works of Hyvärien and Pa-
junen [77] and Borgachev et al. [18] create the foundations
for universal approximation claims. We will discuss [72] in
a bit more detail than the reviews of [98,132] as we feel it is
important to understand their value and limitations. We be-
lieve that these limitations are important to our motivation
of learning Normalizing Flows as well as have important
implications for Large Language Models (LLMs) and AI in
general. Hyvärien and Pajunen address the nonlinear inde-
pendent component analysis (ICA) problem, which has the
form

x = f (x) (61)

where x is the observed random variables, s latent variables
(independent components), and f : Rn 7→ Rn. They show
that it is possible to construct a function g : Rn 7→ Rn such
that components of y = f (x) are independent and that it has
at least one solution. They give us the following theorem
(near verbatim):

Theorem 9. Assuming that y1, · · · ,ym are independent
scalar random variables which follow a joint uniform dis-
tribution in the unit cube [0,1]m. Let x be any scalar random
variable (such that the joint distribution of y1, · · · ,ym,x has
a probability density with respect to the Lebesgue measure
of Rm+1). Define g as

g(a1, · · · ,am,b; py,x) = Pr(x≤ b|yi = ai))

=

∫ b
−∞

py,x(a1, · · · ,am,ξ )dξ

py(a1, · · · ,am)

(62)

where py(·) and py,x(·) are the marginal densities of (y≤m)
and (y≤m,x). Set

ym+1.= g(y1, · · · ,ym,x; py,x) (63)



Then ym+1 is independent from y1, · · · ,ym. In particular, the
variables y1, · · · ,ym+1 are jointly uniformly distributed in
the unit cube [0,1]m+1.

They relate this to Gram-Schmidt orthogonalization and
we can see that this recursive process looks just like the
autoregressive process (if we drop the absolute value of the
Jacobian determinant and use its inverse). Their proof even
uses the change of variables to create a bijection.

There is an important limitation to this formulation, as
we have no guarantee that number of independent compo-
nents is equal to the number of dimensions: n. If the number
of independent components is more than n, the construc-
tion only gives n variables. If the number of independent
components is less than n, then p(x) is only supported on
a smaller dimension (degenerate), and thus the construction
would not be defined. This is a critical issue if one presumes
the manifold hypothesis for the distribution of data that one
is working with.

Hyvärien and Pajunen also show that the formulation
does not create a unique solution, and that this means there
are many indeterminacies to the problem. Due to this, just
constraining the elements to be independent does not make
the elements identifiable. In other words, we do not have an
unambiguous isomorphic mapping between the source and
target distributions. This has important consequences for
comparing models, interpretability, and causality in general
as it shows that we can generate different paths between our
source and target distributions, with different interpretations
of what variables interact and how.

The work of Borgachev et al. [18] further formalizes
these ideas through the language of metric theory and op-
timal transport theory. We will leave this for the readers,
as we do not expect the language to be as clear and appar-
ent as [77], but encourage trying to understand this in detail.
Their formulation more specifically uses the idea of increas-
ing triangular mappings, which our autoregressive model
follows, since our Jacobian determinite should fit this case.
That is because for there to be a proper inverse the matrix
needs to be full rank, which requires non-zero entries on
the diagonal for a triangular matrix. Our transform is al-
ways positive definite because we use the absolute value of
the Jacobian determinant.

If we recall that the formulations have the two following
Jacobians in block matrix form:

Autoregressive:[
L0 0
M L1

] Coupling:[
I 0

M D

]
(64)

We note here that as long as L0, L1, and D have non-
zero entries, then the composition is increasingly triangular.
From here we can see that the autoregressive and coupling
formulations allow for universal approximation of any den-
sity. Papamakarios et al. [132] notes that we can extend this

proof to any target density if we use the unit cube as an inter-
mediate distribution (F : S 7→ [0,1]n 7→ T ). We must clarify
that this does not mean every network or architecture is suf-
ficient to approximate and an open problem remains in an-
alyzing the necessary complexity, width, and depth neces-
sary for universal approximation. Jaini et al. [81] did show
that their network met the sufficient conditions and expres-
siveness to achieve universal approximation.

For Sylvester Flows the question is still open, but given
that there is a block diagonal representation it reasons that it
is possible to construct a similar triangular mapping repre-
sentation as above. For Monotonic Flows it is obvious that
for a function that is non-constant everywhere can be ap-
proximated to arbitrary precision if the correct bounds are
selected via a piecewise combination of monotonic func-
tions. This still remains open work available to anyone who
may wish to take on these challenges.

5.2. Future Applications

There are a lot of future applications for Normalizing
Flows that still need to be applied. We’ve seen how these
networks are motivating to areas where you wish to control
your latent variables and have a more interpretable network,
even as just part of a network. We’ve also seen how they
are highly useful for scientific domains where we want to
maintain structure and interpretability, or perform density
estimation with precision. As Flows advance more, we will
see them used within more applications and they are now
likely sufficient for wider use than they currently have.

Little work has been done with respect to discrete distri-
butions, but this remains a powerful motivation, especially
in the era of LLMs. Similarly, no one has tried to create a
large IAF to compete with these works, but given the cost,
this is unsurprising.

Additionally, while working with tabular datasets is not
as flashy or popular, there is still work to be done in this
region. A recent famous paper “Why do tree-based models
still outperform deep learning on tabular data?” [59]shows
that there is still motivation for working with tabular data
in the data science domain, but works such as these have
not compared to Flows, as simply Flows have focused on
density estimation rather than classification or regression.
These are not limitations of the networks, but simply rela-
tively unexplored areas.

5.3. Where To Next?

Flows may play an important role in the future of ML.
We specifically discussed using more abstract language to
prevent us from narrowing our views too much. We rec-
ognize that mathematics will be an important part towards
building future AGI systems, and without a doubt we know
that isomorphisms play an important role within mathemat-
ics. We believe that flows will play an important role in this



future, especially in regards to interpreting data and control-
ling model parameters.
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