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Abstract—The rise in big data analytics has impelled the
popularity of sparse tensors in High-Performance Computing
(HPC). Meanwhile, I/O limitations in HPC have motivated
efforts towards in situ and in transit software composition,
particularly for visualization, but also for sparse tensors. The
wide variety of sparse tensor memory formats and their
associated high-performance sparse tensor algorithms lend a
basis for considering software composition systems. This work
surveys the diverse approaches to HPC software composition
with respect to a novel set of four categories, or realms:
workflow managers, middleware, discrete processing services,
and distributed data services. Each realm is motivated and
represented by several software composition systems. Each
system is compared with its rivals regarding fitness for a
particular purpose. Finally, this paper highlights opportunities
for future work, based on the unique challenges and the
traditional challenges of software composition for sparse tensor
decomposition in HPC.

1. Introduction

Software composition in high-performance computing
(HPC) is a crucial component of modern scientific work-
flows [1], [2]. When two or more interconnected compu-
tational tasks are used together for a science campaign,
the tasks (as software programs) are effectively composed
together for a scientific workflow. Workflows involve co-
ordination and information exchange between tasks, and in
the HPC context these tasks can run on a supercomputing
system and on geographically distributed clusters. The tasks
can share information through files or via system memory
or networking technologies, and the latter is referred to
as in situ operation. Each task generally carries out its
operation arbitrarily according to its design and needs, and
also records information in an arbitrary format. It can be
understood that the wide variety of software programs, each
with their own mode of operation and information format,
poses a formidable challenge for software composition in
HPC.

Meanwhile, sparse tensors and their decompositions
have been an active research area over the past five
decades [3]. The rise in big data analytics has also impelled
recent popularity of sparse tensors in the HPC commu-
nity [4]. Sparse tensors refer to multi-dimensional arrays of
data where most data are zero-valued, and are higher-order
generalizations of sparse matrices. Sparse tensor decompo-

sition can reveal latent information within the sparse data,
and has wide applicability across many fields of research.
There are many sparse tensor storage formats focused on
improving the performance of sparse tensor operations and
decompositions. Each sparse tensor format implies a cor-
responding algorithm designed to exploit the performance
advantages of the format. The sparse tensor decompositions,
formats, and algorithms are designed to run on different
kinds of data (e.g. Gaussian- or Poisson-distributed), on
shared-memory and distributed-memory systems, both in-
core and out-of-core [5], and on multi-core processors and
many-core accelerators (e.g. GPUs). It is clear that the
various combinations of decompositions, formats, and al-
gorithms seek to reveal higher-quality latent information,
on ever-larger sets of data, on a wider variety of high-
performance and emerging technologies.

This work surveys the diverse approaches to HPC soft-
ware composition with respect to sparse tensors and their
decomposition. In particular, limitations in HPC have moti-
vated efforts towards in situ and in transit software compo-
sition for visualization [6] and for sparse tensors [7]. From
high-level scientific workflow creation and management, to
frameworks for incorporating program coupling capability,
to discrete computational elements and distributed virtual
data stores, there exist systems for nearly every software
composition scenario. A comparison between the systems
and their suitability for various situations is presented. Dis-
tinctions are drawn between included systems and other
related, but out-of-scope, context-providing systems [8].
Finally, a motivational discussion is provided which sum-
marizes the overall focus of this work, which lays the
foundation for considering whether there is a solution in
HPC for coupling programs across the most general data,
software, and hardware.

2. Tensors and Sparse Tensors

This section introduces tensors (§2.1) and tensor rank
decomposition (§2.3) using the notation listed in Table 1.

2.1. Tensors and Sparse Tensors

A one-dimensional array (perhaps representing a vector)
or two-dimensional array (representing a matrix) can be
generalized as a multi-dimensional array, or tensorial array,
commonly referred to as a fensor [3]. Note that a tensor
refers here to a multi-dimensional (or multi-way) array data



TABLE 1. TENSOR NOTATION USED IN THIS PAPER.

Notation | Definition
2,0k Scalars (italic letters)
a, i Vectors and tuples (bold lower-case letters)

AP Matrices (bold upper-case letters)
X, M Tensors and tensor models (script letters)
nnz Number of non-zero values in a sparse tensor

structure [9], not to an element of a tensor product of vector
spaces [10]. As an example, consider a three-way tensor X’
representing a knowledge base whose dimensions are entity,
relationship, and category, and whose values represent a
level of belief [11]; that is, value X (7, j, k) = v is the level
of belief, v, that entity ¢ has relationship j with category
k, in the knowledge base X'. Generally, tensors are N-
way arrays where each element has a corresponding N-
tuple index i = (i1,142,...,4x). Each index coordinate i
fixes an element’s location along the kth dimension, with
ke{l,2,...,N} and i € {1,2,..., I}. A length I; one-
dimensional tensor (or vector) has I; indexed elements, and
an I; x I, two-dimensional tensor (matrix) has I; rows
and Iy columns for its ;5 indexed elements. Hence, an
N-dimensional (or N-mode) tensor has H,ivzl I}, indexed
elements.

Sparse tensors are tensors where most elements are
zero, and are analogous to sparse matrices [12], [13]. Many
real-world tensors are sparse tensors [14]; Consider the
previous example of the tensor X', whose modes are entity,
relationship, and category. It is intuitive that not every every
entity is related to every category, meaning that many entries
in X would have belief level zero. Explicitly storing zero-
valued entries in a sparse tensor data structure is undesirable
due to the high memory requirement for storing numerous
unimportant values. It is also unnecessary because non-zero
elements can be stored explicitly, and any unstored elements
can be assumed to have the value zero.

2.2. Sparse Tensor Storage Format Overview

This section presents an overview of sparse tensor stor-
age formats, which fall into two broad categories: List-
based, meaning that non-zero coordinates and values are
stored in a given listed order, and non-list-based, meaning
that non-zero coordinates and values are stored in a hierar-
chical (tree-based) or hash map structure.

2.2.1. Coordinate (COOQO). COO (list-based) is the canoni-
cal sparse tensor storage format [15], [16], and is similar to
the sparse matrix storage format of the same name [13]. For
an N-mode sparse tensor, COO lists each non-zero element
by its corresponding /N-dimensional coordinate, typically
sorted by coordinates in lexicographical order. Performing
a calculation on a sparse tensor stored in COO format
typically involves iterating over each non-zero entry and
using its coordinates to perform a desired operation on its
value. For example, consider a matrix-vector product using

a 2-mode sparse tensor (matrix) A and a dense (non-sparse)
vector x and storing the result in dense vector y: For each
non-zero element v with coordinates (¢, j) in A, the mode-
0 (row) coordinate ¢ determines the participating row in
y, and the mode-1 (column) coordinate j determines the
participating row in x. Thus, a simple approach iterates over
each non-zero element in A, identifies its coordinates (3, j)
and value v, multiplies v by x;, and adds the result to y;.

The COO format for an N-mode sparse tensor with
nnz non-zero elements is straightforwardly represented us-
ing a one-dimensional length-nnz value array and a two-
dimensional nnz x N coordinate array, such that index ¢ (or
row %) in each array identifies the value and corresponding
coordinates for the i*"" non-zero element. This approach uses
(N + 1) - nnz storage and allows straightforwardly iterating
over the non-zero element list by iterating over the nnz
array indices. Additionally, the representation allows parallel
operation by dividing the nnz array indices between two or
more processors.

One drawback to using COQO is that its memory footprint
scales with the dimensionality and the number of non-zero
elements (cardinality), rather than the cardinality alone [12].
Consider a 3-mode sparse tensor X with nnz non-zero
elements and a 15-mode sparse tensor ) also with nnz non-
zero elements. The storage for & using COO is roughly
4 - nnz, because we must store three coordinates and one
value for each of the nnz non-zero elements, while the
storage for ) is 16 - nnz for the same number of elements.
(Clearly the storage increases also with nnz.)

A more important drawback to COO is that the memory
order of the non-zero elements implies a single optimal
iteration order for best cache utilization and performance
on state-of-the-art memory systems. This is problematic
because sparse tensor decomposition often requires iterating
over each of the /N modes of an /N-mode tensor [17], [18].
The problem is due to synchronization overhead in resolving
write conflicts between threads, which arise whenever non-
zero elements processed by different threads share iden-
tical coordinates [19]. One approach for minimizing the
synchronization overhead is to store additional permutation
arrays which store array indices for non-zero elements in a
write conflict—-minimizing order [20]. The permutation array
approach increases the COO storage requirement by /N -nnz
per additional ordering, for a sparse tensor with N modes
and nnz non-zero elements. Overall, the COO format is
an intuitive storage format with opportunities for memory-
footprint and memory-performance improvements.

2.2.2. Adaptive Linearized Tensor Order (ALTO). ALTO
(list-based) is a state-of-the-art space-filling curve sparse
tensor storage format which maps IN-dimensional coordi-
nates to linear indices. The main idea is that non-zero
elements near to each other in tensor coordinates are near to
each other in linear indices (i.e., in memory) [21]. For an N-
mode sparse tensor X', ALTO maps the set of coordinates
of non-zero elements to the set of natural numbers N by
recursively dividing the multi-dimensional space occupied
by the tensor into halves until locating a given element.



Once the element is located, the recursive division and
subsequent choice of halves forms a bit sequence of choices
which can be interpreted as a natural number. This natural
number is the ALTO index for the given element. ALTO then
stores the non-zero elements sorted by their ALTO indices
in memory, with similar layout and storage requirements of
a one-dimensional COO sparse tensor, for example.

Unlike COO, under certain conditions the storage re-
quirement for ALTO scales only with the non-zero cardi-
nality, not with the sparse tensor dimensionality (typically,
under condition that the ALTO index fits into a single mem-
ory word). This means that ALTO has lower memory usage
due to storing a single linear index value for each non-zero
entry, instead of NV coordinate values; ALTO requires 2-nnz
storage (typically) for a sparse tensor with nnz elements.
The lower memory usage leads to higher memory bandwidth
utilization by improving sparse tensor storage and memory
transfer economy, which is useful because sparse tensor op-
erations are memory bandwidth—bound [22]. ALTO’s higher
memory bandwidth utilization is also due to the improved
mode-agnostic non-zero element access locality afforded by
ALTO’s space-filling curve approach [21].

One disadvantage to ALTO is that mapping N-
dimensional coordinates to linear indices, or vice-versa, in-
curs computational overhead. ALTO amortizes the overhead
as effectively masked by lower memory usage and higher
practical memory bandwidth utilization. Another disadvan-
tage is that the memory order of the non-zero elements
implies a preferred iteration order (like COO); The memory
order depends on the ALTO index, which depends on which
tensor dimension is chosen at each step when recursively
dividing the multi-dimensional space in half. (ALTO uses
a greedy strategy, viz. the largest undivided dimension is
chosen at each step.) Permutation arrays could be used for
storing alternate orderings for non-zero elements, and would
increase the storage requirements by nnz (typically) for each
alternate ordering.

2.2.3. Other List-Based Formats. Linearized coordinate
(LCO) is a list-based format that stores a single linearized
index for each non-zero element value [23]. For example,
given a three-dimensional I x J x K tensor, an element with
coordinates (i, 7, k) is assigned the linearized index ¢; ;  as
follows:

lije =1+ 1(j+ Jk) (1)

Any permutation of the indices (along with their respective
dimensions) is valid, and the scheme is trivially extended to
higher dimensions. LCO differs from ALTO because LCO
is not based on a space-filling curve. LCO is similar to
ALTO because both use a linearization method that performs
ideally in the case where for a given sparse tensor the
linearized coordinate fits into a single memory word.

The block linearized coordinate (BLCO) format is based
on ALTO [21] with a re-encoding of the ALTO indices to
allow GPU-friendly decoding of ALTO indices, and with
adaptive blocking to allow out-of-memory computation for
constrained memory GPUs [5].

Flagged COO (F-COO) is based on COO but stores
sparse tensors specifically to be used in sparse tensor-times-
matrix or sparse matricized tensor times Khatri-Rao product
(MTTKRP) operations [19]. The F-COO format stores only
the participating coordinate(s) for the desired operation,
plus two flag bit arrays for the bit-flag and the start-flag.
The bit arrays are used to implement the segmented scan
algorithm [24], [25] to parallelize and reduce product results
in the sparse tensor operation.

Hierarchical COOrdinate (HiCOO) stores a sparse tensor
partitioned into blocks using a pre-specified block size B
(where B is the length of a partition in each sparse tensor
dimension) [17]. Each block then has its own coordinates,
and HiCOO stores for each non-zero element within a block
its coordinates with respect to the sub-tensor represented by
the block. This approach allows using fewer bits to store
the coordinates for each non-zero element, and the original
coordinates can be recovered based on the block coordi-
nates and the element coordinates. HICOO uses Z-Morton
ordering [26] for blocks and for non-zero elements within
blocks, due to HiCOO being based on the Compressed
Sparse Blocks (CSB) format for sparse matrices [27].

2.24. Other Non-List-Based Formats. Compressed
Sparse Fiber (CSF) is a tree-based sparse tensor storage
format which generalizes the compressed sparse row (CSR),
or Yale, sparse matrix storage format [28] to higher-order
sparse tensors [29]. For background, the compressed sparse
row (CSR) sparse matrix storage format stores row-sorted
non-zero entries and their corresponding column coordinates
in separate arrays respectively V' and C, and uses one
additional array P for row offsets. If a sparse matrix is
M x N with nnz non-zero elements, then V' and C are
length nnz and P is length M. The non-zero value array V'
stores non-zero entries in increasing row order, C stores the
non-zero entries’ column indices, and P stores at index ¢ the
row starting index iy, in V' (equivalently C) for the non-
zero entries belonging to matrix row ¢. That is, if a matrix
has a non-zero entry with value x at row ¢ and column j,
then the entry’s value is V[P[i]] = =, its column index is
C[P[i]] = j, and its row index is i. Iterating over the non-
zero entries by row can be accomplished by the following
procedure: Starting at index zero in P, obtain the starting
index for matrix row zero, ig.. Index one in P stores the
ending index for matrix row zero, iepg. For ¢ from gy, to
Tend> index into the non-zero entry array V' and the column
coordinate array C' to obtain respectively the first non-zero
entry o in row zero and its corresponding column coordinate
j. After completing the loop, increment to the next index
in P and repeat. The compressed sparse column (CSC)
format is analogous to CSR sparse matrix format, with the
distinguished roles of rows and columns interchanged.

The CSF sparse tensor storage format extends the con-
cept of CSR to higher dimensions by adding an additional
coordinate and starting index array for each additional di-
mension [29]. (Note that the name arises from the definition
that a fiber is analogous to a matrix row or column, except
that instead of fixing a row index or column index to



select respectively a row or column vector, all of a tensor’s
dimension indices are fixed except one [3].)

Two advantages to CSF are that sparse tensor operations
can be parallelized by partitioning the root array in the
CSF tree, and that storage requirements can be reduced
by choosing to store fibers along the longer mode (which
minimizes the number stored fibers an increases the average
fiber length) [29].

One disadvantage to CSF is that its construction implies
a preferred iteration order: Observe that CSR allows, at
the outer loop level, iterating over sparse matrix rows and
only rows, while CSC allows iterating over columns and
only columns; Similarly, the CSF format similarly allows
iterating over the sparse tensor dimension that is used for
the top-level offset array, and only that dimension. This
means iterating over the non-zero entries in a sparse tensor
stored in CSF format requires starting with a distinguished
first mode’s coordinate array, then using that mode’s pointer
array to index into the distinguished next mode’s coordinate
array, and so on, until reaching the non-zero entry array
and each non-zero entry’s corresponding coordinate in the
distinguished /ast mode’s coordinate array. In other words,
iterating efficiently over sparse tensor elements must be done
in the dimension ordering as was used during construction,
and it is not possible to iterate over the non-zero entries
efficiently in any other order. Efficient iteration over non-
zero entries in any mode ordering requires essentially storing
multiple versions of the sparse tensor in different CSF order-
ings, which increases the memory storage requirements. As
was mentioned previously for COO, sparse tensor operations
often require iterating over each dimension of a sparse
tensor [17], [18].

Variations on the CSF tree-based format include Bal-
anced Compressed Sparse Fiber (B-CSF) [30] and Mixed
Mode Compressed Sparse Fiber (MM-CSF) [18].

Hashed Coordinate (HaCOO) is a hash table-based
format that uses Morton Z-ordering for encoding tensor
coordinates like HICOO [17], and stores a single index with
each sparse tensor value like ALTO [21], but in a hash
table structure unlike either of these [31]. Using a hash table
structure allows amortized constant time non-zero element
insertion, retrieval, and deletion, which is not possible with
state-of-the-art list-based or tree-based storage formats.

2.2.5. Synthesis. There are many sparse tensor storage for-
mats, each with their own specific focus. These foci typically
regard improving the performance of sparse tensor calcula-
tions Table 2 organizes approximate storage requirements
for the sparse tensor storage formats discussed here.

2.3. Sparse Tensor Decomposition

Tensor rank decomposition is a technique that can re-
veal latent information in data [32] for applications in ma-
chine learning [33], [34], [35], function approximation [36],
[37], [38], [39], cyber security [40], knowledge-based sys-
tems [41], signal processing [42], health analytics [43], and
phenotyping [44].

TABLE 2. SPARSE TENSOR STORAGE FORMATS

This table provides approximate sparse tensor storage requirements for an
N-mode sparse tensor with nnz non-zero elements and with Jj unique
coordinates in mode k£ for 1 < k < N. For ALTO and LCO, “typically”
refers to the case where a linearized coordinate fits into a memory word.

Format Storage Requirement

COO (N +1) -nnz

ALTO (typically) 2-nnz
LCO (typically) 2 - nnz
HiCOO (best case) N - nnz
HiCOO (worst case) (2N +1) -nnz
CSF (one mode) 2-nnz+ (N —-1) + 222\];11 H?:l Jo
HaCOO 2 -nnz

The most commonly referenced tensor rank decompo-
sition is the canonical polyadic decomposition (CPD) or
CANDECOMP/PARAFAC (CP) model [45], [46], which is
a higher-order generalization of the matrix singular value
decomposition (SVD). Recall that the SVD involves decom-
posing an m x m complex matrix M, commonly written
as M = UXV* into a sum »,,_, oyu;vi where r =
min(m, n), the o; are weights, and the u;, v} are orthonor-
mal bases of M. The CP model generalizes the SVD concept
to decompose an /N-mode tensor X into the sum of R rank-
one outer products of IV vectors, where R is a parameter and
where each outer product can reveal latent information about
a property within the data. (Note that determining the rank
of a tensor is NP-complete [3], [47], hency the rank of a CP
decomposition is typically chosen arbitrarily as a parameter.)
For notational convenience, we consider a CP model to be
represented by M = {)\;A“),A(z), .. .,A(N)}, called a
Kruskal tensor, where A is a weight vector, and A® is an
R-column factor matrix containing R vectors (to be used in
outer products) for mode i, for i = 1,2,..., N [48].

Examples of CP algorithms include an alternating least
squares formulation for Gaussian-distributed data (CP-
ALS) [45], [46] and alternating Poisson regression for count
data (CP-APR) [32].

2.3.1. CP-ALS. The primary algorithm for computing CP
on a tensor representing Gaussian-distributed data is the
well-known alternating least squares (ALS) method [45],
[46]. After fixing the desired rank R, we can consider the
algorithm as shown in Algorithm 1.

During each iteration of the algorithm, an individual
factor matrix is selected (in an alternating fashion) and
updated to yield the best approximation of the sparse tensor
while keeping all other factor matrices fixed. Note that an
initial guess for the factor matrices A® i =12 ... Ncan
be provided in any desired way (e.g. random or otherwise).
The algorithm concludes when the desired fit is achieved,
which is typically within some error tolerance. A maximum
number of iterations is also typically specified as a stopping
criterion.

The most computationally intensive calculation of CP-
ALS is the sparse matricized tensor times Khatri-Rao prod-
uct (MTTKRP) [29]. This calculation involves first flattening



Algorithm 1 CP-ALS algorithm.
Given an N-mode tensor X € RI1*I2xxIN and an initial
guess for a model M = {\; AW, AR AN where:
« %N, A is the element-wise product over A ().
o X(y) is the mode-n flattening of X.

e iz, AW is the column-wise Kronecker product over
AD,
« VT is the Moore-Penrose pseudoinverse of V.

1: for (maximum iterations or until desired fit) do

2 forn —1,2,...,N do

3 Ve sV L AOTAD

£ A® X (O, AD) VI

5 A < (norms of normalized columns of A(™)
6 end for

7: end for
g return \, A AN

the given N-mode tensor X into a matrix X(n), where the
mode-n fibers of X" are used as the columns for X,,). Note
that the matrix X,y (commonly referred to as a matricized
sparse tensor) is typically formed on-the-fly. This on-the-fly
formation of X,y can be achieved by iterating appropriately
over the elements of X', and this formulation is desirable for
large sparse tensors because it avoids explicitly duplicating
X in memory. The second part of the calculation involves
multiplying X ,) by the Khatri-Rao product of the factor
matrices while excluding the n'" factor matrix. Note that
the Khatri-Rao product in this context is the column-wise
Kronecker product of matrices. For example, given two
matrices B € R7*% and C € RX*% the Khatri-Rao product
of B and C is as defined as A € R7X*% in Equation 2:

A=BOC=[b;®cy,ba®cs3,...,brp®cr] 2

The remaining calculations used in CP-ALS are calculating
an element-wise product V and its Moore-Penrose inverse,
and calculating norms of the normalized columns of the
current factor matrix in order to update the weights vector
A

2.3.2. CP-APR. The primary algorithm for computing

CP on a tensor containing sparse count data is CAN-

DECOMP/PARAFAC via Alternating Poisson Regression

(CP-APR), due to how a Poisson distribution describes the

random variation in such data [32]. There are three methods

for computing CP-APR:

(i) Multiplicative update (MU)

(i1) Projected damped Newton for row-based sub-problems
(PDN-R)

(iii) Projected quasi-Newton for row-based sub-problems
(PQN-R)

We focus our discussion on MU due to its popularity, which

it possesses despite the fact that it suffers from slower

convergence than PDN-R and PQN-R [49]. The conver-

gence rates are different because MU uses a form of scaled

steepest-descent with bound constraints over all rows during
each iteration, while PDN-R and PQN-R use second-order
information to solve independent row sub-problems. For a
detailed discussion on the CP-APR MU algorithm, see [32].

2.3.3. CP-APR MU Algorithm Overview. The CP-APR
MU algorithm is shown in Algorithm 2, using the notation
from Table 1.

Algorithm 2 CP-APR MU algorithm.

Given an N-mode tensor X’ € RT1*2xxIN and an initial
guess for a model M = {\; AW A® AN where:

o R is the desired number of model components.

e Kmin 1S the inadmissible zero minimum.

o Kagj is the inadmissible zero adjustment value.

« B is an intermediate representation of A ("),

« A is the weight vector.

o A is the diagonal weight matrix (diag(})).

L]

L]

IT and @ are intermediate calculation matrices.
@ij\il A is the column-wise Kronecker product over
A®,

o X(p) is the mode-n flattening of X.

¢ @ is element-wise division.

o max® is the element-wise maximum.

e € is a minimum divisor to prevent divide-by-zero.

« 1 is the all-ones vector.

« 7 is the convergence error tolerance.

o = is element-wise multiplication (Hadamard product).

1: for (maximum outer iterations) do

2 is_converged <« true

3 forn — 1,2,...,N do

4 S0

5: if (completed at least one outer iteration) then
6: fori:—1,2,.... 1, and r — 1,2,... R do
7 if A" < ki and ) > 1 then

8 Sir < Fadj ,

9: end if

10: end for

11: end if

12: B« (AW +8)A

13: o' ©,A®

14: for (maximum inner iterations) do

15: P — (X(,) @max® (BILe)) II"

16: if max; ,|min(B;,, 1 — <I>£?)| < 7 then
17: break

18: end if

19: is_converged « false

20: B—Bx+®

21: end for

22: A—1"B

23: A — BA!

24:  end for
25:  if is_converged = true then

26: break
27:  end if
28: end for




The overall calculation takes an N-mode input tensor
X and iterates towards an approximate model tensor M in
two nested stages called outer and inner, where the outer
iteration updates each of the factor matrices and the inner
iteration calculates successive updates to the current factor
matrix. In each outer iteration, CP-APR MU updates the
N factor matrices, A, A®) . AN as follows: If at
least one outer iteration has completed, then the algorithm
searches the current model factor matrix A™, 1 <n < N,
for values smaller than a minimum tolerance Kp;,. These
values are called inadmissible zeros because they may in-
terfere with solution convergence; if an inadmissible zero
is detected, it is shifted by an adjustment value parameter,
Kadj. After shifting inadmissible zeros, A ™ s scaled by the
weight vector ), yielding the current working model factor
matrix B. Before entering the inner iterative stage, the inter-
mediate TIT matrix is calculated as a chained column-wise
Kr(or)lecker product over all model factor matrices except
A,

In each iteration of the inner stage, the current model
factor matrix A™, 1 < n < N, undergoes a series of
multiplicative updates. Each multiplicative update begins by
calculating an element-wise division between the mode-n
flattening of X (i.e., X(,)) and the product of B and II,
all followed by a matrix multiplication by IT', to produce
the intermediate ® matrix. The ® matrix calculation just
described is the most time-intensive component of the CP-
APR MU algorithm [22].

After calculating ®, it is compared element-wise with
B against the convergence tolerance 7: if the convergence
tolerance is satisfied, then the inner stage concludes. Oth-
erwise, B is multiplied element-wise by ® and the inner
stage repeats. After satisfying the convergence tolerance,
or otherwise completing the maximum desired iterations
in the inner stage, the outer stage updates the weights
in A\ from B and normalizes A(™ using the updated \.
The algorithm concludes when all N tensor modes have
converged simultaneously, or otherwise after completing the
maximum desired iterations in the outer stage.

2.3.4. CP-APR MU Sparse Tensor Implementation. Most
real-world tensors contain a massive amount of multidimen-
sional data, which would requre storage on the order of
exabytes (e.g., 3.2 x 1020 bytes for LBNL-Network [14])
if stored as a dense multi-dimensional array. This storage
requirement is infeasible on most computing systems. In
addition, these data are sparse, meaning that the majority of
the elements in the multidimensional space are zero-valued.
Thus it is practical to store only the non-zero values of
a tensor (e.g., 13.5 x 10° bytes for LBNL-Network) with
their corresponding coordinates in a sparse tensor storage
format. This presents a challenge for sparse tensor algo-
rithm designers because each format will require a different
implementation (e.g. [12], [17], [50]).

The sparse tensor storage formats discussed previously
(with the exception of HaCOQ) do not allow a programmer
to access an arbitrary non-zero sparse tensor element in
constant time. Instead, each format stores the non-zero

values and provides the means to retrieve the coordinates
corresponding with each non-zero value: For COO, the
coordinate N-tuples are stored corresponding with each non-
zero value. For CSF, the array indices and fiber indices allow
calculating the coordinate N-tuple for each element. For
HiCOO, the hierarchical block indices representing com-
pressed versions of the coordinate [N-tuples corresponding
with each non-zero value. For ALTO, the linear indices
representing encoded versions of the coordinate N-tuples
corresponding with each non-zero value. This means that
while constant-time arbitrary element access is not possible,
the coordinate for a given non-zero value can be retrieved.
For this reason, state-of-the-art implementations of sparse
CP-APR MU iterate over the non-zero values of a given
input sparse tensor and retrieve the corresponding coordi-
nates for performing any necessary calculations [50]. The
participating rows and columns in the current working factor
matrix B can be accessed because it is stored densely (e.g.
as a common two-dimensional array). Only the rows of II
which correspond with coordinates for non-zero values in
the sparse tensor are required for calculating CP-APR MU,
and the rows can be calculated explicitly or each element
can be calculated on-demand [32].

Program listings for sparse CP-APR MU II and &
calculations are shown respectively in Algorithms 3 and 4.

Algorithm 3 Sparse CP-APR MU mode-n IT calculation.

Given an N-mode tensor X € RI1*I2xxIN and an initial
guess for a model M = {)\; AW AR A(N)}, where:
o coordy ,; is the n*® coordinate for X;.
o R is the desired number of model components.
« = is element-wise multiplication (Hadamard product).

1. for k<—1,2,...,N do

2 if k£ # n then

3 for i — 1,2,...,nnz do
4: row < coordy n;

5: forr—1,2,...,Rdo
6

7

8

Hi,r o Hi,r * A?E‘];g],’l‘
end for
end for
9: end if
10: end for

2.3.5. &™) Calculation. This section takes a closer look
at the ®(™ calculation, which is the most computationally
intensive part of CP-APR MU [22]. Calculating (") for
each tensor mode n uses the formula shown in Equation 3:

@™ — (X(,) @ (max (BILe))) II" 3)

The matrix ITT is the result of a chained column-wise
Kronecker product of factor matrices, and hence is size
[l1zn Ik x R, where R is a parameter. Note that the
matrices X,y and 1L, if stored densely, would require as
much storage as a densely-stored tensor X'. If X is too
large to store densely, then X, and II cannot be stored



Algorithm 4 Sparse CP-APR MU mode-n & calculation.

Given an N-mode tensor X € RI*l2xxIN 5 Khatri-
Rao product IIT = @k#LA(k) from a model M =
{)\;A(l),A@),‘..,A(N)}, and an arbitrary factor matrix
B, where:

e X; is the i*" non-zero value in X.

« coordy ,; is the n'® coordinate for X;.

o R is the desired number of model components.

« = is element-wise multiplication (Hadamard product).

1: for i — 1,2,...,nnz do

2: row < coordy n;

33 temp <« 0

4 forr<—1,2,...,R do

5: temp < temp + Broy,, * IL;
6: end for

7:  temp « X;/max(temp,¢)

8: forr—1,2,...,Rdo

9: Doy — Prow,r + temp * II; .

10: end for
11: end for

densely. For example, consider a four-mode tensor S of size
1000 x 1000 x 1000 x 1000, whose values require four bytes
for storage. The IT matrix for S will have size 109 x R,
which requires 10° x 10 x 4 bytes = 40 GiB storage when
using R = 10 and storing single-precision floating-point
values. That said, X,,) need not be stored explicitly because
it is simply a flattening of X into matrix form, meaning
we can access all of its elements by translating their 2-D
indices to N-D indices and accessing the elements in X.
Furthermore, computing CP-APR MU on a sparse tensor X
does not require the entire IT matrix. It requires only the
rows of IT which correspond with nonzero entries in X
For this reason, high-performance CP-APR MU implemen-
tations calculate only the rows of IT required by each non-
zero element, reducing the size requirement greatly [50].
As an example, suppose that S has 1 M non-zero elements,
whose values require four bytes each. The participating rows
of IT require 1x10%x 10x4 bytes = 40 MiB storage (single-
precision), a 1000-fold reduction in memory requirements
from forming the entire IT matrix.

Calculating ®(™ in parallel can manifest race condi-
tions, particularly when using sparse tensor storage. Sparse
tensor algorithms iterate over the non-zero elements rather
than their indices, because random access to sparse tensor
storage format is typically not possible. Observe that if two
non-zero elements share the same coordinate for mode n,
then both elements will correspond with updating the same
row in ®(). This creates a challenge for parallel perfor-
mance because the updates to the same row by different
resources must be serialized (e.g. via atomic operations) to
maintain correctness [32], [50], which reduces the benefits
of parallel processing. For example, if two threads are as-
signed many non-zeros which update the same row in ®("),
then processing those non-zeros is effectively sequential.
One way to mitigate the performance reduction is to sort

the non-zero elements by coordinate so that elements which
update the same row in ®(") are stored contiguously [50].
This increases the likelihood that a processing resource will
receive a workload containing elements which typically and
exclusively update the same row in ®(™), meaning that
atomic operations can be avoided for several of the elements.
For example, if a processing resource is assigned non-zero
elements which update row r — 1,7, 7 4+ 1 in &), then all
non-zeros in A which update row r are solely processed
by this thread, and the thread can avoid atomic operations
for those non-zero elements. Sorting by coordinate will
be required for each mode n when using this approach,
because ®(™) is calculated for each mode. All sorting can be
performed in advance, storing the permutation information
in arrays, one for each mode [50].

2.3.6. Other Decompositions. Other sparse tensor decom-
positions include the Tucker decomposition [51], [52], [53],
[54], which has been shown to provide high-quality, high-
compression for dense data (e.g. images [55], volume ren-
dering [56], and scientific simulation [57]) and to reveal
useful latent information (e.g. health care [58], network
traffic [59]), and generalized CP (GCP) [20], [60], [61],
[62], which generalizes the loss function for determining
the low-rank model.

2.3.7. Synthesis. As shown, there are many reasons for us-
ing the sparse tensors and their decompositions, and respec-
tively there are many storage formats for representing them
and algorithm implementations for decomposing them.

3. Decisions for Software Composition

This section describes the decisions one must make in
order to identify a composition system appropriate for a par-
ticular HPC application composition. Systems for coupling
software together can be grouped into four main categories,
or realms, where each system in a realm is similarly suited
for addressing challenges that arise in that realm.

The first decision to make is whether you have the means
to instrument the software. If so, then this brings us to our
first realm, Workflow Managers (§4.1), where the following
statements are true:

1) T don’t have the means to instrument the software.
Integrating that software into a single software stack
is prohibitive from a developer perspective. I want the
software to be integrated and work together. I am less
concerned about efficiency.

Note that this is the only available realm if you do not have
the means to instrument the software.

Otherwise, there are more decisions to make. The re-
maining realms all exist due to the decision to instrument the
software, and include Middleware (§4.2), Discrete Process-
ing Services (§4.3), and Distributed Data Services (§4.4):

2) I want my software to be integrated and work together.
I don’t want to instrument the software again if I decide
to integrate it with future software.



3) My software constitutes a producer-consumer relation-
ship. The producer is highly sensitive to performance
variation.

4) The software all interact with data in a many-to-many
relationship. The software all run at distinct scales and
times. The data formats require adaptation between the
software.

The next sections describe systems fit for the challenges
represented by these realms.

4. Systems for Software Composition

This section provides an overview of composition sys-
tems for HPC applications. The high-level types of systems
are Workflow Managers (§4.1), Middleware (§4.2), Discrete
Processing Services (§4.3), and Distributed Data Services
(§4.4). Each high-level type of system focuses on a partic-
ular realm of applicability.

4.1. Workflow Managers

A workflow manager (WM) is a software package that
orchestrates the execution of disparate software and connects
their outputs and inputs. The most compelling feature of
WDMs in the context of this paper is that none of them
require modifying source code. In other words, if one wishes
to compose HPC software but the source code cannot be
modified, then WMs are the only option. Each WM in
this section is nevertheless well-suited to scenarios where
compute resources and data formats are heterogeneous, and
where tool usage across these resources would benefit from
an orchestration system and from data exchange coordina-
tion [63], [64], [65].

The remainder of this section surveys three notewor-
thy examples of WMs, where each has a unique focal
point compared to the others: Swift enables general-purpose
workflow scripting for scientists (§4.1.1), Pegasus maps and
runs workflows represented as DAGs on high-performance
resources (§4.1.2), and Kepler streamlines workflow creation
and execution by via abstraction, execution, and data access
(84.1.3).

4.1.1. Swift. Programmers in scientific computing are
focused on managing large numbers of datasets and
tasks, rather than on optimizing interprocessor communica-
tion [63]. Swift is a parallel programming system allowing
users to express operations on data sets, execute tasks locally
or remotely, and capture provenance information. As an
alternative to conventional shell scripting, Swift uses XML
Dataset Typing and Mapping (XDTM) to allow users to
map logical data structure (such as studies, groups, subjects,
and runs) to physical data structure (directories and files).
Further, the SwiftScript scripting language enables users
to define typed logical procedures which map to binary
executables for performing operations on those logical data
structures, concisely and in parallel. Swift uses Karajan [66]
as its lightweight threading-based execution engine and

supports load balancing, fault tolerance, computation restart,
and large-scale distributed execution.

4.1.2. Pegasus. Scientists require reliable and scalable ac-
cess to the capability of local and remote distributed com-
puting resources for processing and analyzing vast quantities
of data [64]. The Pegasus Workflow Management System
maps resource-independent (abstract) scientific workflows
to executable workflows on distributed data and compute
resources. Abstract workflows are represented as directed
acyclic graphs (DAGs) where nodes in a workflow DAG
represent computational tasks and edges represent data- or
control-flow dependencies between tasks. Executable work-
flows are HTCondor [67] DAGs where nodes represent ex-
ecutable jobs. Data are computed on demand or transferred
via files as necessary between executable jobs, and can
be made available via automatically generated data stage-
in and stage-out jobs. Pegasus enables abstract workflows
to be portable across execution environments, and allows
improving executable workflow reliability and performance
via optimizations that can be employed at compile time or
run time.

4.1.3. Kepler. Scientists conduct experiments using a vari-
ety of computational tools and hardware systems (a scientific
workflow) while mentally coordinating data export and im-
port between the tools and between the systems [65]. Scien-
tific workflows are computationally intensive and dataflow-
oriented, and they operate on large, complex, heteroge-
neous data, producing derived data products which may
be archived or reused in subsequent workflows. Kepler
is a system for streamlining the creation and execution
of scientific workflows by combining high-level workflow
design, execution and runtime capabilities, and local and
remote data access. Kepler is based on Ptolemy II [68],
which identifies workflow steps with actors representing
data sources, sinks, or transformers, and analytical or arbi-
trary computational steps. Each actor can be parameterized
for specific behavior, and can have zero or more input and
output ports for dataflow, with type checking. Actors can be
coalesced into composite actors for achieving the desired
level of design abstraction [69].

Kepler allows scientists to prototype actors and work-
flows prior to implementing code, use web and grid dis-
tributed services, interact with databases and web browsers,
and transform data that is semantically compatible yet
syntactically incompatible (such as XSLT, XQuery, Perl),
all via specialized actors. In particular, Kepler provides
actors supporting Proxylnit, GlobusJob, DataAccessWizard,
GridFTP, Storage Resource Broker (SRB), and Ecological
Metadata Language (EML). Finally, Kepler (via its under-
lying system Ptolemy II) supports reusing existing analytic
and computational tools and foreign language interfaces via
the Java Native Interface, and includes actors for Python and
MATLAB.

4.1.4. Synthesis. All of these Workflow Manager systems
are sensible choices when source code cannot be modified.



Each system has a unique focus that may be useful when
deciding which one to use:

Swift is the only system focused on allowing programs
to be run as simply as invoking functions in a script, while
using the return value of one program as an argument to
another program, for example.

Pegasus uniquely focuses on on-demand data generation
via a dataflow-oriented directed acyclic graph approach,
which also supports data and control to pass between com-
posed programs.

Kepler, which extends Ptolemy II, is the only system
directly supporting a design-centric, actor-based modeling
approach. This approach allows actors to perform nearly
any task, share data and control information, operate con-
currently, and be rearranged easily into a new workflow
configuration as desired.

None of the Workflow Managers shown here are able
to avoid using file I/O for sharing data between composed
programs. This is an intuitive caveat, as most programs use
file I/O for inputting and outputting data, and if they cannot
be modified then this is their only means of sharing data.

4.2. Middleware

Middleware is a library that provides an interface be-
tween software and the OS. Middleware enables the software
that uses it to 1) share data and 2) control other software.
The primary motivator for using a Middleware system is
to reduce the need to re-instrument software each time that
a new software composition is desired. Beyond that, the
Middleware systems discussed in this section have their own
motivations:
o There is a need to compose workflow managers, which
themselves compose individual software [70].

« Resilience is reduced when composed programs share
memory space [71].

» Ease of Middleware integration is as important as scal-
ability [72].

o Middleware should reduce, not increase, the need to
re-instrument software [73].

o Performance drops when composed programs share
memory due to serialized access [74].

o Modularizing programs eases Middleware integra-
tion [75].

Six noteworthy examples of Middleware are shown
in this section, each with a unique perspective compared
with the others: Decaf handles communication and data
exchanges to couple in situ tasks to form hierarchical
workflows (§4.2.1). ADIOS provides an intra-/inter-node
in-transit I/O bus for composition (§4.2.2). Freeprocessing
uses dynamic binary translation to lower the in situ entry
barrier (§4.2.3). SENSEI eliminates multiple in situ imple-
mentations via an intermediate-representation data model
and instrumentation API (§4.2.4). TCASM supports one-
to-many intra-node copy-on-write-demand in-transit pro-
cessing (§4.2.5). Henson enables loosely-coupled producer-
observers using coroutines and process-independent exe-
cutables (§4.2.6).

4.2.1. Decaf. Computational science workflows can be
modeled as a directed graph, where nodes represent compu-
tational tasks and edges represent data transfer, with cycles
so that the result of a task can be used to modify another
task [70]. Decaf is a dataflow library for in situ workflows,
where dataflow is the data transferred between tasks and
where in situ workflows feature dataflow via memory or
supercomputer interconnect to avoid the storage I/O bottle-
neck. The focus of Decaf is on the data transformation and
redistribution between tasks (the dataflow) and hence Decaf
is designed for composing different workflow systems. That
said, it can also be used as a stand-alone workflow system.
Data structures between tasks are often different and require
transformation or remapping, and Decaf addresses this need
by using an intermediate parallel program serving as a
data staging area (a link) between tasks. Tasks may run
asynchronously and at different rates, so Decaf uses a flow
control library to mitigate potential dataflow issues arising
from tasks exchanging data asynchronously (such as stalling
or overflow) by buffering messages between tasks. Decaf
uses the data model and redistribution components from
Bredala [76] and the flow control library from Manala [77].
Finally, Decaf provides a means for describing data con-
tracts between tasks (as producers and consumers) so that
a producer sends only the data required by each particular
consumer and no superfluous transfers.

Workflow graphs in Decaf are described by the user
in a Python script describing individual tasks (MPI pro-
grams) and a set of resources (MPI ranks), and then de-
scribing dataflows between tasks including a set of re-
sources and a choice of redistribution strategy. The mod-
ifications required for participating tasks is to replace their
MPI_COMM_WORLD with Decaf’s communicator, and to use
Decaf’s get/put API (available in C/C++) to transfer data
within the workflow.

4.2.2. ADIOS. Composing programs often requires modify-
ing sources, and shared process images between composed
programs often leads to reduced resilience [71]. ADIOS
provides an intra-node or inter-node, and in-line or in-transit,
I/0O bus for program composition.

Applications almost universally read and write files
from storage. ADIOS is a middleware layer that manages
data movement by interposing between a scientific simula-
tion and the underlying computer system. ADIOS supports
runtime-determined data targets for simulations, including
file systems, in situ methods, and memory buffers (local and
networked). Applications can read from in situ methods or
file systems as data sources. Data sharing and movement
operations are decoupled from producers and consumers,
and the operations can be modified at runtime.

Workflow construction is easier when producers and
consumers can be connected together without modifying
their source codes. Evolving software complexity is reduced
because data access issues are handled by the middleware.
Producers and consumers are more resilient because they
need not share the same process image.



An application must use (or be modified to use) the
ADIOS file-like API for file I/O. Producers and consumers
can run on the same or different computing resources. The
consumer can directly access the producer’s memory or a
local or remote buffer of the producer’s memory. Producers
and consumers can run synchronously or asynchronously,
with or without human-in-the-loop controls.

ADIOS seeks to provide an abstraction for I/O opera-
tions for parallel and distributed applications to express what
data are produced by producers and when the data are ready
for output, or what data are consumed by consumers and
when the data are desired. ADIOS provides I/O engines for
use by producers and consumers, where the engine handles
actual data movement. The data movement can be to disk,
to a consumer sharing the same resources as the producer,
to a separate node, or across the network to a remote
computing center, for example. Engines can be selected
by producers or consumers at runtime, and are delegated
the responsibility for any implementation details needed for
achieving scalable data movement performance. Each engine
supports a unified interface for putting and getting data,
and ADIOS provides several engines including those for
parallel file I/O (BPFile and HDF5) and for data staging
(via RDMA, TCP, UDP, shared memory, and MPI). This
data staging allows producers to share data with one or
more consumers via shared memory or network, with the
simplicity of reading and writing to files. ADIOS supports
performing arbitrary calculations on data within engines
via a general purpose callback operator, and provides a
file compression implementation as an example. File com-
pression is useful for avoiding the situation where a file
system is overloaded by the amount of data generated and
written from a high-performance scientific simulation. The
Vislt [78] and ParaView [79] visualization tools represent
example consumers supporting ADIOS for data reading.

4.2.3. Freeprocessing. Simulation authors integrate visual-
ization and analysis tasks into the simulation itself in order
to avoid using disk storage as an intermediary, which is
the most expensive bottleneck of visualization and analysis
pipelines, and most in situ approaches presuppose integra-
tion with particular libraries or require significant effort to
integrate simulation and visualization software [72]. Freep-
rocessing uses binary instrumentation to enable unmodi-
fied simulation software to forward output data to another
program conditionally and with or without data copying,
obviating the potentially complicated in situ requirement of
simulation source code instrumentation. The method used
by Freeprocessing is to redefine standard I/O functions, such
as the POSIX I/O layer C functions open(2) and write(2),
dynamically at load time to forward data to a loadable
module (called a freeprocessor) that implements a desired
in situ computation while continuing to operate normally.
The module interface for a freeprocessor (C or Python)
uses a stream processing model where data are input to the
freeprocessor and may be immediately utilized or ignored,
and are otherwise unavailable. Freeprocessing is an in situ
approach that requires minimal or no effort on the part
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of the simulation author and enables novel applications
in cases where source code is unavailable, but requires
per-simulation effort and supports only unidirectional data
transfer from the simulation to the composed program.

4.2.4. SENSEL In situ runtime and hardware choices have
different requirements, necessitating multiple algorithm im-
plementations [73]. SENSEI eliminates the need for multiple
in situ implementations by providing a generic in situ and
in transit interface comprising an instrumentation API and
an intermediate representation for data models.

In situ processing generally requires adding instrumen-
tation code to data producers and consumers. There exist
in situ APIs, such as those included in Libsim [80] and
Catalyst [79], but they are not compatible with each other.
An application would need to be instrumented for both in
situ APIs in order to use both of these visualization tools
simultaneously, and this issue compounds as more in situ
processing tools are desired. SENSEI terms this issue as
tool portability in the sense that a SENSEIl-instrumented
data producer can use several external tools interchangeably
and cumulatively without requiring further instrumentation.

There are three design considerations for SENSEI: Once
an application has been instrumented with SENSEIL it
should require no further instrumentation for utilizing any in
situ external tool. If an external tool works with SENSEI, it
should require only minor changes at the metadata level (e.g.
variable names) rather than larger code rewrites. Simplified
creation of in situ methods and tools for simulation scien-
tists, data analysts, and visualization experts. SENSEI’s two
main components for meeting these design considerations
are as follows: Solving a data model problem so that produc-
ers and consumers are able to exchange data, and defining an
API with respect to common design patterns that is suitable
for data producer and data consumer instrumentation.

The common data description for SENSEI is an ex-
tension to the VTK data model, chosen due to its wide
use [78], [79], native support for many common scientific
data structures, and community support towards exascale
computing. The SENSEI extension includes support for ar-
bitrary layouts for multicomponent arrays, which minimizes
effort and memory overhead when mapping memory layouts
for data arrays from applications to the VTK data model.
The SENSEI interface comprises three parts: An adaptor
for a data producer which maps producer data to the VTK
data model, an adaptor for a data consumer which maps data
from the VTK data model to consumer data, and a bridge
between the adaptors. SENSEI adaptors support meshes,
which include spatially geometric data, and non-spatially
oriented arrays, tables, and graphs. Each mesh represents
a logical grouping meta-structure comprising blocks which
can be distributed for parallel execution via MPI. Finally,
SENSEI supports invoking user-written parallel Python-
based methods and in situ, at scale on HPC systems.

4.2.5. TCASM. The explosion of data produced by large-
scale simulations increases the difficulty of moving the data
from the HPC system to permanent storage and back again



for additional processing steps, prompting the development
of in situ approaches based on absorbing additional pro-
cessing into the simulation by quickly coupling the two
together with a small amount of scripting or glue code in an
ad-hoc manner with little system support, promoting work
replication, unscalable and fragile frameworks, and moving
large amounts of data off-node [81]. Transparent Consistent
Asynchronous Shared Memory (TCASM) remedies the lack
of system support for application composition by leveraging
copy-on-write (COW) and virtual memory mappings to
allow applications to share data on demand and without
undesired sharing of changes to the data.

The TCASM approach provides a shared memory in-
terface that avoids data duplication and synchronization in
a producer-observer setting by utilizing operating system
COW to mediate producer-side data changes, ensuring that
the observer is guaranteed read access to consistent data
even when the producer and observer advance at differ-
ent rates. TCASM provides modified mmap and msync,
which are two existing memory functions in Linux [74],
for minimally instrumenting producer and observer codes
at locations where i.o. data are ready for observation (pro-
duced) and observation is desired (consumed). Note that the
producer is responsible for sharing any metadata necessary
for the observer to make sense of the data, and that the
COW overhead scales as the product of the observer count
with the producer-modified page count.

Overall, TCASM preserves the asynchronous aspect of
a multi-buffer approach while minimizing memory and syn-
chronization requirements by sharing memory pages that
contain unmodified data and allowing the operating system
to manage COW data at memory page sized granularity, and
supports a one-to-many producer-to-observer relationship,
with loose coupling between producer and observer mani-
fested solely by the shared data and allowing the producer
to progress continuously without coordinating with the ob-
server. TCASM is being integrated into the Hobbes [82]
exascale operating system as part of Hobbes’ composite
application support.

4.2.6. Henson. Simulations produce snapshots sized on the
order of tens of terabytes, and there is not enough space
to store them when the simulation produces many of them.
Furthermore, saving the data to disk for subsequent analysis
is inefficient due to I/O costs. A common approach is to run
the simulation and analysis processes in situ by closely inte-
grating them together, thus requiring the effort of modifying
the execution regime of one or both processes [75]. Henson
implements a reduced effort design for running multiple
codes in situ, synchronously or asynchronously, enabling
cooperative multitasking between simulation and analysis
and allowing processing on-the-fly and post-processing, via
using coroutines and position-independent executables.
Three parts compose Henson: A controller application
(like a puppeteer) for controlling execution flow between
the simulation and analysis codes (called puppets), a library
in C to which the puppets must link, and auxiliary tools for
transitioning an in situ analysis approach from in line to in
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transit. Coroutines generalize subroutines [83] and maintain
their state across invocations, which is necessary for switch-
ing execution between the puppets. Position-independent
executables (PIEs) allow proper execution at any memory
address without modification, meaning that a PIE can be
loaded within another process, meaning that compiling the
puppets as PIEs allows them to be loaded within the pup-
peteer, meaning that the puppets share the same address
space and can exchange zero-copy data simply by passing
memory addresses. The advantage of this approach is that
simulation and analysis processes need not be aware of what
is occurring in each other, and can simply post and retrieve
pointers to data in a shared table when desired.

4.2.7. Synthesis. All of the Middleware systems focus on
reducing the need to re-instrument software for every new
software composition. Each system has specific strengths
which may be useful when deciding which system to use.

Decaf is the only dataflow library system, with flow
control and data contracts, and is a sensible choice for
composing programs that operate in a dataflow-like fashion.

ADIOS uniquely allows for instrumenting software once
and composing the software dynamically, meaning that a
composed program (producer/consumer) can be replaced
during runtime. Unlike Henson, ADIOS is more resilient
because composed programs do not run in the same process.

Freeprocessing is the only system that does not re-
quire instrumenting one or more participating programs in
a software composition, and is useful in the case where the
“producer” software cannot easily be modified and rebuilt.

SENSEI is the only system that employs the VTK
data model as an intermediate representation for connecting
software data together, and is a sensible choice for the case
where one or more software components already are using
the VTK data model.

TCASM is the only system that allows concurrent
read/write access to shared data by one or more com-
posed “consumer” programs. (Freeprocessing allows copy-
on-write for Python freeprocessors only, and only one com-
posed “consumer.”)

Henson uniquely follows a position-independent exe-
cutable approach, meaning that instrumented programs can
run standalone or as coroutines within a composing pro-
gram’s process. This allows pointer-based zero-copy data
sharing (unlike ADIOS) and asynchronous operation be-
tween composed programs or program groups.

Finally, for all systems except TCASM and SENSEI, the
composing application must be able to work with streaming
(sequential) data where no metadata are included, as the data
coming from the composed program are simply what would
have been written to a file.

4.3. Discrete Processing Service

Discrete processing services (DPS) are software frame-
works that provide a dedicated resource for post-processing
(e.g. analysis or visualization) operations. In this model,
simulations can use the discrete processing service to share



data and invoke operations, and do so with minimal impact
on the simulation’s performance. The high-level motivators
for DPSes are as follows:

« State of the art in situ methods encumber simulation
code and do not support heterogeneity [84].

« In situ frameworks focus on capability and neglect ease
of development, deployment, and maintenance [85].

« Simulations waste processor cycles that could be used
for post-processing [86].

« In situ leads to performance variability [87].

« Blocking I/O delays sim execution [88].

» Simulations which use a coprocessing library often
must be recompiled for each new coprocessing library
version [80].

« In situ wastes transfer and compute resources, and in-
transit resources cannot be time-shared [89].

» Asynchronous in situ simulation and post-processing
leads to underused resources [90].

Some examples of systems answering these motivations:
Ascent is an in situ library focused on minimizing execution
time, memory usage, binary size, and integration effort
for applications incorporating Ascent, and on providing di-
verse and powerful capabilities for modern supercomputers
(§4.3.1). Catalyst is a simple in situ API allowing runtime
switching between in situ software without recompilation
(§4.3.2). Damaris reduces in situ performance variability
by using dedicated cores for I/O and visualization (§4.3.3).
DataStager stages data for I/O and post-processing on ded-
icated nodes (§4.3.4). GoldRush harvests idle cycles for
in situ (§4.3.5). Libsim is a general-purpose coprocessing
library with low developer burden and performance impact
(§4.3.6). SERVIZ provides a many-to-one in-transit visual-
ization service (§4.3.7). TINS implements a work-stealing
task-based dynamic helper core strategy (§4.3.8). These
systems are discussed in the next subsections.

4.3.1. Ascent. State of the art in situ methods encumber
simulation code, do not provide integrated capability, and
do not support heterogeneity [84]. Ascent is an in situ
library focused on minimizing execution time, memory
usage, binary size, and integration effort for applications
incorporating Ascent, and on providing diverse and pow-
erful capabilities for modern supercomputers. Ascent has
an API for visualization and analysis that supports batch
and interactive modes (via Jupyter notebooks), and it allows
zero-copy shared memory data transfer between composed
applications.

Ascent minimizes execution time and memory usage by
incorporating VTK-m, which provides native support for
many-core processors (e.g. multiple GPUs) and multi-core
processors, and for zero-copy array layouts [91]. Ascent ex-
tends VTK-m’s shared-memory parallelism with MPI-based
distributed-memory parallelism, and reduces binary size and
build complexity by requiring few linking dependencies viz.
VTK-m and Conduit [92]. Ascent uses Conduit to simplify
describing hierarchical data and in situ activities, and to
support zero-copy data between composed programs.

12

Ascent includes support for producing Cinema and
HDFS files and for interfacing with ADIOS and Catalyst. It
provides bindings for control by C, C++, Python, and For-
tran applications, by an API including dynamically scanned
YAML files, or by Jupyter notebook integration. Most im-
portantly for program composition, Ascent can incorporate
arbitrary code such as C/C++ code and Python scripts.

Ascent organizes its capabilities into abstractions for
transforming data, rendering images, extracting data, in-
specting data, and triggering execution. These abstractions
can interact and can perform concurrently in multiples. For
example, Ascent can (during an iteration cycle) transform
data D to data D’, then inspect D’ and compare it with
D, with a trigger on the comparison result so that if some
threshold is met then Ascent will execute an image rendering
operation while exporting D to disk. Examples of Ascent
transformations (called filters) are histogram, gradient, and
sampling, and transformations can be composed in series.
Image renders (called scenes) can be produced from simu-
lation data or transformed data, and can be saved to disk.
Note that image rendering is not a transformation, so its
output cannot be the input to a transformation. Extracted
data can go to files (like HDFS), to ParaView Catalyst [79]
for analysis and visualization, or to ADIOS [71] for in-
transit processing. Ascent includes extractions for running
user-provided code in Python, and for incoming Jupyter
notebooks via a web browser. Inspections (called gqueries)
can be performed on simulation data, or on the results of
one or more transformations. Example inspections include
getting the simulation cycle count and getting the maximum
value of a data field. Inspection results are stored and
can be used for subsequent inspections. Triggers address
the problem of choosing a cycle of a simulation for per-
forming analysis or visualization, such as for the purpose
of balancing simulation time with analysis or visualiza-
tion time. Triggers comprise a condition and an action,
where conditions can incorporate inspections and actions
can execute transformations, renders, extractions, and further
inspections. Example conditions are whether the simulation
has reached a particular cycle count, or a data field has met
a threshold value.

Ascent supports three kinds of interactions between its
capabilities: Producer-consumer, parameter update, and ac-
tion generation. Producer-consumer allows the output of a
computation to be used as the input for another computa-
tion on a one-to-one, one-to-many, many-to-one, or many-
to-many relationship. Parameter update allows inspection
results to set parameters for transformations, renders, and
extractions. Action generation allows triggers to execute
their associated conditional computations.

Ascent incorporates the following technologies for its
APIL: Conduit, a library for describing and sharing hi-
erarchical scientific in-memory data; Mesh Blueprint, an
application-level data model interface; and a control in-
terface for instructing Ascent on carrying out its capa-
bilities. Conduit structures data as hierarchical key-value
pairs. Mesh Blueprint supports representing coordinate sets,
topologies, fields, and domain decomposition information.



Ascent’s control interface comprises the calls open (initialize
Ascent), publish (pass data to Ascent), execute (invoke
Ascent capabilities), info (retrieve data from Ascent), and
close (finalize Ascent).

4.3.2. Catalyst. A wide array of libraries and frameworks
are available for in situ data anlysis, targeting different
use cases or environments, and many require instrument-
ing simulation code to pass and convert data structures
into a format compatible with coprocessing software [79].
Moreover, many frameworks focus on capability and neglect
ease of development, deployment, and maintenance [85].
The Catalyst API is an easy-to-use in situ API that allows
runtime switching between in situ software without recom-
pilation.

Catalyst originally involved developing an adaptor that
converted simulation structures to VTK data model objects,
and required the ParaView SDK to build. Developing the
adaptor required deep understanding of the VTK data model,
whose APIs have varying implications for memory overhead
and performance. The VTK data model has also contin-
ually evolved, forcing adaptors to be continually updated.
The adaptor required a ParaView SDK, which posed the
challenge of building ParaView and its dependencies from
source. The adaptor’s build system also needed to be updated
to reflect changes in ParaView’s build system, hence the
simulation has a transitive dependence on ParaView via
the adaptor. It was not easy to switch between different
adaptor or ParaView versions, which made regression testing
difficult. These challenges apply in varying degrees to in situ
frameworks in general [85].

The Catalyst API is a separate project from ParaView
with no external dependencies [85]. It is an application
binary interface (ABI) compatible, and stable, in situ API
design that alleviates maintenance difficulties for production
in situ analysis and visualization software. ABI-compatible
means that a simulation built using any Catalyst API imple-
mentation can swap the implementation dynamically with-
out rebuilding the simulation. Stable means that future API
changes can continue to support earlier implementations.

The simulation development community has been the
most active in developing adaptors, rather than the in situ
development community [85]. Developing an adaptor for the
previous version of Catalyst required a deep understanding
of the VTK data model to make critical design choices
when mapping simulation data structures to the model.
This requirement was unreasonable and burdensome, and
impeded adoption and ease of efficient performance. The
Catalyst API adopts the Ascent [84] approach of employ-
ing Conduit [92], where adaptor developers simply must
describe the simulation data structures instead of converting
those structures to VTK data structures. The API comprises
four functions: Initialize, Execute, Finalize, and About.
Each function takes a conduit_node object that provides
configuration parameters for Catalyst and the simulation
meshes. Instrumenting a simulation involves populating the
conduit_node and invoking the functions appropriately.
Developers provide the simulation data description, and
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the ParaView-Catalyst library handles converting simulation
data to VTK data objects. Once the simulation is instru-
mented, Catalyst can be used to dispatch analysis pipelines
in situ with the simulation [79]. Analysis pipeline cus-
tomization is supported via Python Scripting, and users can
write scripts by hand or use the ParaView GUI to prototype
pipelines and export them as Catalyst scripts. Examples
of such Catalyst scripts represent pipelines producing im-
ages, computing statistical quantities, generating plots, or
extracting derived information such as polygonal data or
iso-surfaces for further post-processing.

Catalyst is an in situ API specification allowing runtime
compatibility between Catalyst API implementations. This
means that simulations compiled for one implementation can
be executed with a different implementation. The ParaView
SDK is no longer required for compiling instrumented sim-
ulation code, switching between versions of Catalyst API
implementations does not require simulation recompilation,
and future API changes can continue to support earlier
implementations.

4.3.3. Damaris. High performance computing simulation
performance varies during I/O-intensive phases of execution,
and this variation leads to unpredictable overall application
performance [87]. The performance variation (I/O jitter)
stems from the simulation’s I/O pattern and contention
for the network and file system, and is exacerbated by
contention between multiple processor cores and concur-
rent compute jobs. Damaris is a framework which handles
all aspects of data management in HPC simulations, with
the goal of completely hiding I/O jitter exhibited by HPC
simulations by dedicating a core and shared memory buffer
per multicore SMP node to perform asynchronous data
processing and I/O. Two traditional approaches to large-
scale HPC I/O are writing one file per process, which is
not scalable and delegates I/O jitter mitigation to the file
system, and using coordinated collective I/O to a shared
file, which imposes additional process synchronization and
to date does not support file compression.

Damaris comprises a set of MPI processes, one per
compute node of the simulation, and each process accesses
a shared memory buffer for performing post-processing, fil-
tering, indexing, and I/O, all in response to events as notified
by the simulation. The shared memory buffer is used for data
only, while metadata is stored in an external configuration
file on the file system, to avoid overburdening the buffer.
Post-processing can be compression, statistical calculations,
or any user-provided transformation, by which Damaris can
serve as the composer between the simulation and any
other desired application. The event queue is used for write
notifications, or user-defined events, by the simulation or
external tools. As Damaris operates asynchronously, the I/O
cost to the simulation appears to be the cost of a single
memory copy from the simulation’s memory to the shared
memory buffer. Damaris also supports trading the shared
memory buffer for a zero-copy approach with additional
coordination by the simulation, which avails the Damaris
approach even to highly memory constrained situations.



4.3.4. DataStager. High performance applications incur
substantial I/O costs during checkpointing and due to unde-
sirable performance variations during I/O activities (referred
to as I/O jitter in §4.3.3), and these costs become untenable
as applications scale to tens of thousands of processing
cores [88]. DataStager is a high performance asynchronous
data transport layer and staging service which extracts data
from compute nodes. Instead of blocking and waiting for
data output to complete, DataStager allows the application to
overlap data extraction with computation, resulting in lower
overhead for data output than POSIX I/O. In general, data
staging services leverage RDMA-based network infrastruc-
tures for shifting the burden of synchronization, aggregation,
collective processing, and data validation to a staging area
subset of the compute partition. Data processing in the
staging area can be used for formatting data storage on disk,
for moving data to secondary or remote machines, or for
visualization. DataStager uses the Fast Flexible Serialization
(FFS) data format library [93] for casting data output into
a self-describing binary form, as opposed to serving as a
simple byte transfer layer from compute to disk storage
(see [94] for details on the Portable Binary Input/Output
format, PBIO, which was a predecessor of FFS). This means
that data staging services can be customized to the data type
produced by the simulation (e.g. particle, mesh), attained
through dynamic code generation for decoding and manip-
ulating data. The main focus of DataStager is improving
I/O performance and reducing overheads, using meaningful
data object movement (as opposed to raw byte-transfer) and
application phase aware movement scheduling to reduce
perturbation of application performance.

Asynchronous I/O can outperform synchronous I/O by
up to a factor of two [95]. DataStager comprises the DataTap
client library, which is co-located with the compute ap-
plication and minimizes application level code changes by
interfacing with the ADIOS API [96], and the DataStager
parallel processes (DataStagers), which comprises additional
compute nodes providing the data staging service to the
application. DataTap ensures low runtime impact by copy-
ing data into fixed, limited-size, and minimally-bookkept
compute node buffers, and provides flexibility in I/O by
using FFS, which is a self-describing, marked-up binary
data format allowing in transit inspection, modification, and
post-processing. As an asynchronous I/O system, DataStager
requires sufficient local memory space to buffer the output
data. The DataStagers control data transfer scheduling by
operating as a request-read service: An application issues
a request which is then enqueued, and the DataStagers use
resource aware schedulers to select a request from the queue.
After selecting a request, the DataStagers issue an RDMA
read request to the originating application node and call
the handler for the data for processing (such as writing to
disk, forwarding across the network, or further processing).
Multiple requests may be overlapped.

4.3.5. GoldRush. Large scale scientific simulations im-
posing data pressure on I/O and storage subsystems is
a severe performance bottleneck for simulations and data
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post-processing, leading scientific applications to reduce on-
machine data movement and disk I/O volume by using in
situ data analytics where simulation output data is processed
as it is generated, at the cost of substantial unused com-
pute resources during sequential simulation phases which
aggregate up to 65 percent of total execution time [86].
GoldRush is a lightweight runtime system which improves
the efficiency of running in situ data analytics without
perturbing simulations, by co-locating simulation and an-
alytic computations on effectively over-subscribed compute
nodes and using low-overhead monitoring to identify and
employ simulation-focused idle node resources for running
in situ data analytics while continuously mitigating resource
contention by the analytics on the simulation. The GoldRush
method leverages the FlexIO transport in ADIOS [96] to
map suitably-sized portions of the in situ analytics to idle
node resources, to analytics-dedicated node resources, or
to post-processing tasks after the data have been moved to
disk, while negotiating short idle periods in the simulation
and contention for compute node resources between the
simulation and analytic computations.

GoldRush exhibits fine-granularity operation during sim-
ulation execution by identifying, predicting, and selecting
sufficiently lengthy idle periods during which to run analyt-
ics, and avoiding idle periods which are too short to offset
context switching overheads. The analytics are completely
suspended while cores are being used by the simulation,
and GoldRush can detect contention on shared memory
resources between the simulation and analytics and dynam-
ically mitigate the contention by throttling the analytics
execution rate. There is negligible runtime overhead (never
exceeding 0.3 percent of total runtime with representative
applications) for using GoldRush, and its methods are easily
integrated into existing techniques. GoldRush complements
existing in situ data analytics techniques by effectively co-
locating simulation and analytics workloads, obviating ded-
icated compute node resources for analytics, and improving
performance and saving costs at large scales.

The GoldRush runtime is instrumented in the simulation
and analytics codes, and uses signaling to operate the analyt-
ics on-demand during sequential phases of the simulation’s
execution when the phases are predicted to be longer than
a specified threshold. Each sequential simulation phase is
instrumented by the user and is monitored for duration by
GoldRush, which maintains duration runtime estimates us-
ing a simple heuristic (average duration of longest recorded
sequential phase occurrence) for predicting the phase length.
A shared memory buffer with performance information is
used for assessing interference between the analytics and the
simulation, and GoldRush throttles the analytics execution
rate to limit interference. GoldRush leverages the placement
flexibility offered by ADIOS and FlexIO for defining ana-
Iytics pipelines to match available compute resources and
for efficient shared-memory data movement.

4.3.6. Libsim. Supercomputers provide far more compute
capacity than I/O bandwidth and suffer from an inherent
I/0O bottleneck. Applications unable to reduce their amount



of written data must suffer a wait penalty while their data
are written to disk. This means that scientists are less able to
save data as they are generated, leading to increased risk of
losing important scientific data. Post-processing applications
also suffer a wait penalty as they load the simulation’s output
data.

A sensible solution is to reduce I/O by using extra cy-
cles for combining simulations with in situ post-processing
activities. Data analysis and visualization are two common
post-processing steps, and both significantly reduce the size
of the data down to sustainable quantities. For example,
simulation data on the order of petabytes can be visualized
as image data on the order of megabytes. This means that
if the simulation data takes thousands of seconds to write
to disk, then the image would take fewer than ten seconds.

Two categories for in-memory simulation and post-
processing coupling are as follows: Decoupling I/O from
the simulation by staging (e.g. ADIOS [71]), and coupling
general coprocessing libraries (e.g. Catalyst [85]). Libsim
resembles the latter category because coprocessing libraries
have direct access to simulation data and share compute
resources, which is the case for Libsim. But Libsim supports
read-on-demand for any quantity exposed by the simulation.

Libsim uses message-passing (MPI) and supports dis-
tributed memory simulations. The goal is an interactive
visualization and analysis system. Libsim’s philosophy is
to maximize features for general-purpose program compo-
sition, minimize burden on simulation developers, minimize
performance impact on simulations, and support on-demand
in situ capability with unperturbed off-demand simulation
performance.

Libsim uses Vislt [78] as the in situ analysis and visu-
alization software for interfacing with simulations. Libsim
interfaces with Vislt clients by assuming the role of a
parallel Vislt server. The Libsim in situ analysis organization
is similar to a normal Vislt analysis organization, except that
the simulation and the Vislt server are one and the same
process. The simulation polls for Vislt client connections,
and upon a connection, the simulation loads the Vislt server
for completing the connection. The Vislt server solicits a
description of meshes and data from the simulation, and
handles any Vislt-specific operations on the data.

The Libsim library differs from Vislt plug-ins which
read files from disk. Instead, Libsim provides a plug-in with
data access callback functions to read data from a currently
running simulation. The plug-in typically passes simulation
memory data pointers. For some simulations, coordinate
transformations or data gathering may be required.

Libsim comprises two pieces: a small and lightweight
front-end static library, and a heavyweight runtime library.
The front-end library allows minimal simulation modifica-
tions for supporting Libsim, and allows the runtime library
to incur zero performance impact when not in use. It also
allows the runtime library to change freely as Vislt evolves,
benefiting the simulation without requiring the simulation to
be recompiled.

Utilizing Libsim requires initializing the library, writ-
ing data access callback functions, and adding simulation-
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steering functions. During initialization, the simulation cre-
ates a small data file with host and port information for
Vislt. Simulation process zero (e.g. MPI rank-0) creates a
listening socket for inbound Vislt connections, which can
use timeout and polling-based event handling. After connec-
tion, process zero receives Vislt commands, and broadcasts
the commands to other processes. Data access callback
functions are written in C or Fortran and registered with
the runtime library. The runtime library calls the functions
on demand when gathering inputs for a data flow network,
which ensures no resources are wasted in exposing data that
will not be used. The callbacks themselves invoke library
functions for creating data objects with opaque handles
to simulation metadata, meshes, and variable objects. The
runtime library receives the handles and transforms the
data into VTK objects that can be used inside of Vislt.
If the data use a layout that is incompatible with the
VTK data model, then the callbacks can create Vislt-owned,
automatically-disposed temporary storage. Else, the data are
simulation-owned and read-only to Vislt. Mesh metadata
include partitioning information as used by the simulation
for parallelization and load balancing. VisIt’s load balancer
uses the partition information for restricting work on data to
processes that own said data. Steering functions can be used
in the case where simulations allow command-line steering
as they execute. In this case, Libsim can add corresponding
command buttons to the Vislt graphical user interface. The
end result is a fully-featured parallel visualization and analy-
sis tool that enables in situ computations within simulations
by leveraging the capabilities of Vislt, while minimizing
the performance impact on the simulation and the amount
of new code that must be written.

4.3.7. SERVIZ. In transit visualization for HPC simulations
is a form of in situ visualization that avoids the storage
overhead of the simulation writing data to the file system,
avoids blocking the simulation while the visualization pro-
gram processes the data, and obviates running the visual-
ization at the same level of concurrency as the simulation,
by allowing the visualization program to run on dedicated
resources, but incurs data transfer and resource allocation
overheads [89]. SERVIZ is a shared service—based approach
which allows multiple simulations to connect simultaneously
to an in transit dedicated visualization resource, and supports
longer phases between data transfer for a given simulation,
overall providing an amortization of the data transfer and
resource allocation overheads. This approach is based on the
notion that a cost model shows that running an in transit
application (visualization) at a lower level of concurrency
relative to the simulation can improve the cost efficiency of
the visualization [6], and that maximizing utilization of the
service has a better chance of achieving cost savings with
an in transit implementation over an in line implementation.

SERVIZ is implemented as a Mochi [97] microservice
and consists of a client library and a server library. The
client library exposes a remote procedure call (RPC) API to
be used by the HPC simulation, and the server library RPC
API is implemented as member functions within a service



provider (an object which can receive RPC calls). The
RPC client API is implemented to be similar to the Ascent
API [84]. The execution model for SERVIZ comprises one
or more MPI processes, one for each desired instance of a
service provider, and each service provider’s RPC address
is registered in a well-known file location. Each simulation
is granted access to a specific instance of a service provider,
and the simulation creates a SERVIZ client object for access
to the service provider’s RPC API. When the simulation is
ready to invoke the visualization, MPI rank zero gathers
data from all other ranks and invokes the SERVIZ API to
make the RPC, which occurs asynchronously. SERVIZ also
supports traditional in line, in situ operation, and same node,
shared memory operation, both of which are useful when
shared memory operation is desired or dedicated compute
nodes for SERVIZ are not desired. Finally, SERVIZ supports
immediate and delayed modes for processing incoming re-
quests; the immediate mode dispatches requests as soon as
they are received, and the delayed mode queues incoming
requests before dispatching the requests. The motivation for
these modes are that while RPCs are asynchronous between
the client and the provider instance, the instance will block
other clients while dispatching a request; using the delayed
mode allows the instance to batch requests from clients and
thus reduce blocking in the case of multiple clients.

4.3.8. TINS. The exascale-era gap between computational
capabilities and I/O bandwidth calls for non-traditional data
processing methods [90]. Traditional approaches involve
outputting simulation data to the file system and reading
the data into a post-processing application.

The in situ paradigm addresses the performance gap
between compute and I/O by co-locating simulation and
post-processing on the same compute node, operating on
the same resident memory. Post-processing synchronously
with the simulation is the simplest approach, while asyn-
chronously offers better performance at the expense of
underused resources.

TINS is a work-stealing task-based in situ framework
implementing a novel dynamic helper core strategy. Simu-
lation and post-processing tasks run concurrently and helper
cores are assigned to post-processing when such tasks are
available. If no post-processing tasks are available, then
the helper cores are assigned to the simulation tasks for
better resource usage. The Intel Threading Building Blocks
(TBB) library [98] provides the task-based programming
model and work-stealing scheduler. Up to 40% performance
improvement is possible with TINS over other approaches
including post-processing—dedicated helper cores.

In situ processing has an intuitive strategy where the
simulation time loop issues a blocking call to the post-
processing library; This is called synchronous in situ [90].
The post-processing library can directly access to the sim-
ulation data in memory (i.e. zero-copy) but in general a
copy is required for data format adaptation. Examples of
this approach are Catalyst [85] and Libsim [80], which are
not compatible with one another, and SENSEI [73], which
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provides an intermediate representation for either of these
(or e.g. ADIOS [71]).

Parallel simulations are not 100% efficient, as processor
cores typically become idle during communication phases or
inherently sequential phases of a computation [90]. Rather
than idling, these cores can be used for post-processing
tasks; This is called asynchronous in situ [90]. One approach
to this strategy is in using the operating system to schedule
the simulation and post-processing tasks as separate pro-
grams, but it has been shown that post-processing tasks
disturb the simulation [86], [99].

Another approach is to dedicate one or more helper
cores to the local post-processing tasks. This approach has
examples in Damaris [87], FlowVR [100], functional parti-
tioning [101], and GePSeA [102]. Performance is improved
over the synchronous approach, but the simulation cores
nevertheless become idle as usual. This is because the post-
processing tasks run exclusively on the dedicated helper
cores and are prevented from using idle simulation cores,
and vice versa.

A third approach is to detect sequential computation
phases in the simulation for the purpose of scheduling post-
processing tasks during those phases. This is the approach
taken by GoldRush [86]. The simulation resumes the post-
processing tasks when the sequential phase starts, and sus-
pends them when the phase stops. Simulation performance
was shown to be improved above the operating system ap-
proach. But GoldRush does not allow asynchronous schedul-
ing during brief sequential phases or weakly scalable parallel
phases [90].

Task-based programming involves denoting potential
parallelism through tasks or loops, which allows a run-
time to create and distribute work units between runtime-
created worker threads. See Cilk [103], Intel TBB [98], and
OpenMP [104] for examples. In work stealing scheduling,
a thread is assigned a share of work units and can attempt
to steal work units from another thread after completing its
own share [105]. This form of scheduling has exhibited good
performance.

TINS relies on the TBB work-stealing scheduler for
implementing in situ processing with tasks. Simulation and
post-processing tasks are created concurrently and scheduled
by a single instance of TBB. By using MPI, an instance
of TBB is run on each MPI process. Each instance has a
simulation main thread and a post-processing main thread
(analytics in the following), and a number of worker threads
spawned by TBB. The two main threads run with different
concurrency levels, and both create tasks pertaining to their
respective purpose (simulation tasks, and analytics tasks).
An analytics breakpoint frequency sets a synchronization
point where the simulation main thread copies data into a
temporary buffer and notifies the analytics main thread when
ready. The analytics main thread waits until the ready signal,
then creates analytics tasks for the temporary buffer data.
Only one buffer is required, but more can be used to reduce
synchronization between the simulation and analytics.

Both the standard static helper core strategy and the
dynamic helper core strategy are available under the de-



scribed approach. In the static strategy, the available threads
are partitioned into simulation and analytics threads with
permanent isolation. That is, a simulation or analytics thread
will remain idle if no respective tasks are available. With the
dynamic strategy, the main difference is the use of tempo-
rary isolation for the simulation threads: If no simulation
tasks are available for a simulation thread, that thread can
migrate to the analytics partition and assist with performing
analytics tasks. Similarly for analytics tasks and threads.
The number of threads per partition is chosen to reflect the
relative workloads of the simulation and analytics, without
oversubscribing the processor cores.

Simulation and analytics code are kept separate via a
plugin system, where a plugin is code compiled as a shared
library. A plugin must be developed using MPI and TBB,
and must take an MPI communicator as input. The MPI
communicator is used for keeping simulation and analytics
messages from becoming intermixed. Finally, the temporary
buffer described previously must be created as a shared data
structure, for use by both the simulation and the analytics.

4.3.9. Synthesis. All of the discrete processing services
shown here are capable of invoking computational resources
for post-processing tasks or composed programs. The com-
putational resource can be part of the process image (Ascent,
Catalyst, Libsim), part of the process schedule (GoldRush),
or part of the job hardware allocation (Damaris, DataStager,
SERVIZ, TINS). Each system also implies favor towards the
performance of a distinguished primary program, which then
invokes post-processing tasks or composed programs on
lesser compute resources. The choice of which system to use
depends on the software being composed and their usage,
and the following descriptions may help in identifying which
system to choose.

Ascent uniquely provides a holistic approach to discrete
processing services, including data filtering, rendering, and
inspecting. Ascent is a good choice for when a Workflow
Manager-like system is desired but maximal performance
and scalability on heterogeneous processor organizations is
also required.

Catalyst is the only system claiming to be runtime-
compatible between Catalyst versions without recompila-
tion. This is due to Catalyst’s primary focus on easing devel-
opment, maintenance, and deployment of in situ software.
Its API uses only four simple functions, and it could nearly
be considered Middleware except that its usage centers
on instrumenting simulations for invoking post-processing
pipelines, similarly to other systems in the Discrete Pro-
cessing Service realm.

Damaris uniquely leverages a dedicated core per com-
pute node for post-processing tasks or composed programs.
This arrangement would be most appropriate when the post-
processing tasks are distributed and require a fraction of the
main computation time.

DataStager is the only system focused on masking
performance-perturbing I/O activity (such as simulation
checkpointing) by staging data for file writing or post-
processing on one or more dedicated nodes. As an in transit
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system, DataStager will be most appropriate when compos-
ing programs which do not already saturate the interconnect
or memory systems, as both will be used in the process of
staging.

GoldRush uniquely focuses on leveraging unused simu-
lation processor cycles for composed programs. This makes
GoldRush a compelling system in the case where a simula-
tion experiences relatively lengthy sequential phases.

Libsim is the only system claiming to have zero per-
formance impact on a simulation when the Libsim in situ
capabilities are not in use. This would be useful in the case
where a simulation is sometimes but not always desired to
be composed with additional software, and performance is
paramount.

SERVIZ is uniquely intended to run on a dedicated
node and offering post-processing services to one or more
client programs. This is similar to DataStager, except that
DataStager is intended to run on one or more dedicated
nodes which collectively offer post-processing services to
one application.

TINS is the only system that takes a work-stealing task-
based approach to dedicating processor cores to composed
programs, where dedicated cores can be used by the simu-
lation when no post-processing tasks are currently running.
This system is best suited to the case when two composed
programs have variable computation phases, and a guar-
anteed minimum amount of post-processing or composed
program time is required.

All of the described systems are focused on prioritizing
the simulation and invoking the post-processing tasks on
secondary resources. Which system to use depends mostly
on what resources are available or desired for the post-
processing tasks.

4.4. Distributed Data Services

A Distributed Data Service (DDS) is a software frame-
work that allows data objects to be shared between instru-
mented programs via files, interconnect, or shared memory.
The primary reason for using a DDS in the context of
this paper is when the computational coordination between
programs is not as important as the data shared between
them. Each system in this section focuses on addressing a
specific issue that arises when sharing data between com-
posed programs: Data representation diverseness imposes a
challenge when connecting data between codes, particularly
when the data are in-memory and cannot be duplicated
(zero-copy) [92]. Sharing data also presents a challenge
when the codes are running on distinct resources [106] or
on heterogeneous storage and interconnect technology [97].

The remainder of this section surveys three noteworthy
examples of Distributed Data Services, where each has a
unique focus compared to the others: Conduit (§4.4.1) sim-
plifies sharing data between software via a well-specified in-
memory data representation. DataSpaces (§4.4.2) provides
a dynamic distributed shared asynchronous virtual space
abstraction. Mochi (§4.4.3) provides a methodology and
tools for creating distributed data storage services.



4.4.1. Conduit. Flexible data representation and data cou-
pling are essential for connecting modular HPC simulation
tools. Conduit [92] provides an intuitive model for describ-
ing hierarchical scientific data, and is ideally suited to fill the
need for flexible data representation and data coupling. Con-
duit is designed to have flexible and human-understandable
in-memory representation, and supports zero-copy data shar-
ing. Conduit provides a core data model including array
representation and tree-based hierarchy support. Blueprint
and Relay help applications share simulation mesh data by
extending Conduit’s data model support. Blueprint provides
rules and transformations that apply to Conduit data for
compatibility between composed programs. These transfor-
mations include conversions to the in-memory representa-
tion, and partitioning for distributed operation. Relay con-
nects Conduit data with I/O libraries, including HDFS and
MPI. Relay HDF5 can be used for checkpoint-restart and
file import or export. Relay MPI can be used for distributed-
memory algorithms.

4.4.2. DataSpaces. HPC scientific and engineering appli-
cations comprise multiple heterogeneous and coupled pro-
cesses that interact and often run independently on distinct
and distributed resources. The interaction and coordination
between the processes is dynamic and often asynchronous,
and may vary during the overall computation. Modern work-
flows require support for coupling several such HPC ap-
plications together, which involves efficiently transporting,
redistributing, and transforming data. Two basic approaches
for providing such support are by existing parallel frame-
works like MPI, or by using a file storage system as an
intermediary between applications. These approaches can be
unsatisfactory, as MPI requires careful coordination between
sends and receives, and the storage system performance is
often insufficient for the large size and low latency perfor-
mance required by HPC applications. There is a need for a
flexible interaction and coordination framework with high-
level abstractions supporting the dynamic and asynchronous
needs of data-intensive HPC applications. DataSpaces [106]
provides a dynamic distributed shared asynchronous virtual
space abstraction that can be associatively accessed by ap-
plication components and services.

4.4.3. Mochi. Networking and storage technology have had
recent advances which are useful for HPC applications.
Data-intensive HPC applications read and write data at
irregular intervals and are increasingly common. The data
type and structure in these applications is often irregular
with similarly irregular access patterns. Modern workflows
incorporate multiple distinct data-intensive HPC applica-
tions, each with its own data needs and behaviors. There is a
need for a data service foundation which facilitates efficient
utilization of networking and storage technology while sup-
porting heterogeneous data structures, rapid development,
and ease of porting. Mochi [97] addresses this need by
providing a methodology and tools for creating distributed
data storage services.
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4.4.4. Synthesis. Each Distributed Data Service discussed
in this section provides an abstraction for sharing data and
control between composed programs, and each supports
transferring data via the network interconnect for distributed
program composition. Nevertheless, there are unique foci for
each respective system:

Conduit is unique amongst the systems discussed be-
cause it supports transferring zero-copy data, and because it
is designed to support flexible and intuitive in-memory data
representations.

DataSpaces focuses on simple, high-level abstractions
for data-intensive program couplings. It provides a virtual
shared space where distributed clients can connect, exchange
data, and disconnect, all on-demand.

Mochi could uniquely be described as a “meta-system”
because it is a system that can serve as and create distributed
data services.

4.5. Others/Distinguishing Systems

Other systems are outside the scope of this area exam,
and are provided here as for helpful context. These systems
include the following:

o UMap [107], a user-level mmap (memory mapping)
library supporting out-of-core execution and backing
stores with varying characteristics,

« Metall [108], a persistent memory allocator,

« Hobbes [82], an HPC operating system focused on
application composition,

o CGL-MapReduce [109], a file-avoiding MapReduce
runtime,

o Melissa [110], a file-avoiding framework for global
sensitivity analysis, and

o Ad-hoc system library-level approaches
shm_open, mmap) [7], [111], [112].

(e.g.

The Future of Scientific Workflows [1] and Common Com-
pact Architecture (CCA) [113] may also provide helpful
context.

5. Synthesis for Software Composition

See Tables 3, 4, and 5 for qualitative, implementation,
and dependency details for the program composition sys-
tems. This section uses the shorthand notation of simulation
(or simply “sim”) and in situ program (or “in situ”) to
refer to distinct programs being composed together. The
simulation is typically assumed to be a computationally
intensive program which produces large volumes of data.
The in situ program is assumed to be any program that
is being composed together with the simulation, e.g. for
visualization, analysis, or post-processing. Note that because
the in situ program is being composed together with a data-
producing simulation, it is assumed to be in a dependent
relationship with the simulation. For this reason, in situ is
also used in this section to refer to any software component
that connects the simulation and in situ programs together.
Discussion on each of the tables follows.



5.1. Qualities of Systems

Table 3 compares all the systems previously discussed
qualitatively, with respect to their target audience, ease of
use, developer time requirement, and data generality. In
this context, target audience can refer to domain scientists,
HPC simulation developers, in situ software developers, or
in situ middleware developers. Each target is assumed to
have some knowledge, but not expected to have expertise,
in the fields of the other two targets. For example, domain
scientists are not expected to have expertise in HPC software
development, simulation developers are not expected to
have expertise with in situ software development, and in
situ software developers are not expected to have domain
expertise. It can be seen from the table that few systems
are targeted at domain scientists, which is due to the fact
that most systems for software composition in HPC require
the involvement of simulation or in situ developers. It can
also be seen that most systems require involvement of both
simulation and in situ developers; This is due to the close
coordination generally required between the simulation and
in situ programs, whether between computational tasks or
information transfer. In the cases where a system targets
simulation developers only, this means that the system views
a simulation as a data producer and the onus is on the
simulation for making its operation and data production
easily available to an arbitrary composed program. On the
other hand, a system specifically targeting in situ developers
views the latter as having all of the responsibility of pro-
gram composition, which can include modifications to both
simulation and in situ program codes. The choice of system
is easy for scientists due to the relatively fewer options, and
simulation and in situ developers can gauge their relative
involvement in order to identify their options.

Ease of use refers to the conceptual and concrete chal-
lenges in incorporating the system in question. Creating a
script or workflow graph for running programs is assumed
(conceptually and concretely) to be easier than refactoring
existing software to use a new APIL Developer time refers
to which parties are most responsible for incorporating a
system, where the responsible parties can be the simulation
developer team, the in situ developer team, or both. It can
be seen that most systems have moderate ease of use and
involve refactoring software to use the API of a given
system. Nevertheless, there are systems which are assumed
to be easier to use. These systems require only reformulating
a workflow as a script or a dataflow network, or using
dynamic binary translation (DBT) to perform one part of
the program composition automatically, for example. This
quality is useful for identifying the ease of use, and the
high-level means of use, of the various systems discussed.

Developer time refers to the design and implementation
effort required for incorporating a system. The developers
in question can be the simulation developers, the in situ
program developers, or both. The implementation effort
for a single developer team can be light, moderate, or
heavy, referring to the relative design and implementation
effort between systems bearing one of these designations.
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In the case of both simulation and in situ developers, the
implementation effort is given as a respective ratio: 50/50
for equal effort shared between the simulation and in situ
developers, or 20/80 representing less effort on the part of
the simulation developers relative to the in situ developers.
Recall that in the current context, in situ refers both to a
program being composed with the simulation and to any
additional code required for connecting the two programs.
It is shown that most systems require equal developer time
by both the simulation and in situ developers. This is to
be expected, given the close coordination generally required
between programs working together on HPC systems. Some
systems nevertheless require less time (or no time) on the
part of the simulation developers, which can be important in
the case where the simulation developer team (or simulation
source code) is unavailable. Note that this quality is distinct
from target audience and ease of use because it refers
specifically to design and implementation effort, and it is
useful for assessing systems on that basis.

Data generality refers to the default information repre-
sentation used by a system. The generality can be general,
meshes, key-value pairs, or a combination of these. In this
context, general means that the system supports common
data types (e.g. arrays), meshes means that the system uses
a mesh-based data representation, and key-value pairs means
the system uses a dictionary (abstract data type) represen-
tation. Nearly all of the systems support general data types,
with some systems also supporting meshes (due to their
foundations in scientific computing and visualization) or
key-value pairs. This quality is useful when considering the
formatting of the information used by composed programs
and any transformations that may be required when sharing
the information between the programs.

5.2. Details of Systems

Table 4 gives implementation details for each system
previously discussed, including notable technologies lever-
aged by the system, whether or not the system requires
file I/O, and the means by which the system performs
data exchange. A concise mnemonic is also included for
distinguishing each of the systems, and summarizes the pre-
vious discussion on the system in question. The technologies
leveraged detail lists common HPC technologies, or in some
cases foundational previous work, as used by a system. This
detail is useful when considering the technologies currently
in use by programs which are to be composed, or when
exploring the foundations of a given system. The requires
file I/O detail refers specifically to whether or not a system
requires the use of file I/O for transferring information
between composed programs. It does not mean that a system
can or cannot use file I/O for transferring information, as
file I/O for transferring information is generally ubiquitous.
Instead, this detail is useful when considering the amount of
data that is to be shared between composed programs, and
to what extent file I/O is expected to be a bottleneck. For the
case of a substantial file I/O bottleneck, there are systems
which do not require file I/O for transferring information,



TABLE 3. PROGRAM COMPOSITION SYSTEM QUALITIES

This table provides an overview of the program composition systems and their qualitative characteristics.

System Realm Target audience Ease of use Developer time Data generality
Swift Workflow manager Scientists. easy (scripting) in situ team, light general
Pegasus Workflow manager Scientists. easy (DAG for workflow) in situ team, heavy general
Kepler Workflow manager Scientists. easy (dataflow) in situ team, moderate general
ADIOS Middleware Sim and in situ developers.  moderate (refactor for API) sim/in situ 50/50 general
Decaf Middleware Sim and in situ developers. easy (dataflow) sim/in situ 50/50 general
Freeprocessing Middleware In situ developers. easy (DBT and class) in situ team, heavy general
Henson Middleware In situ developers. moderate (refactor for API) in situ team, heavy general
SENSEI Middleware In situ developers. moderate (refactor for API) sim/in situ 50/50 general, meshes
TCASM Middleware Sim and in situ developers. easy (refactor for API) sim/in situ 50/50 general
Ascent Discrete processing service  Sim and in situ developers.  moderate (refactor for API) sim/in situ 50/50 general, meshes
Catalyst Discrete processing service  Sim and in situ developers.  moderate (refactor for API) sim/in situ 50/50 general, meshes
Damaris Discrete processing service  Sim and in situ developers.  moderate (refactor for API) sim/in situ 50/50 general
DataStager Discrete processing service Sim developers. moderate (refactor for API) sim/in situ 20/80 general
GoldRush Discrete processing service Sim and/or in situ developers. moderate (refactor for API) sim/in situ 50/50 general
Libsim Discrete processing service Sim developers. moderate (refactor for API) sim/in situ 20/80 general, meshes
SERVIZ Discrete processing service  Sim and in situ developers.  moderate (refactor for API) sim/in situ 50/50 general
TINS Discrete processing service  Sim and in situ developers.  moderate (refactor for API) sim/in situ 50/50 general
Conduit Distributed data service Sim and in situ developers.  moderate (refactor for API) sim/in situ 50/50 general, meshes
DataSpaces Distributed data service Sim and in situ developers.  moderate (refactor for API) sim/in situ 50/50 key-value pairs
Mochi Distributed data service Sim and in situ developers.  moderate (refactor for API) sim/in situ 50/50 general
System Realm Target audience Ease of use Developer time Data generality

which reduce the likelihood of exacerbating the bottleneck
and present the opportunity to mitigate the bottleneck.

5.3. Incidentals of Systems

Table 5 gives incidental information for each system
previously discussed, including invasiveness and composi-
tion awareness. In this context, invasiveness refers to how
a program (simulation or in situ) must be modified to use
a given system. Most systems provide an API to be used
within a program, and a library to be linked to the program
during compilation. Nevertheless, there are systems which
do not require any modification of the composed programs,
and this feature may be important in the case where the
programs or their compilation process cannot be modified.
The composition awareness information refers to whether
the simulation program, the in situ program, both programs,
or neither program is to be modified during composition. In
other words, if a program X must be modified in order
to compose it with another program Y, then effectively
X is composition-aware. Most systems require that both
the simulation and in situ programs are composition-aware,
but there are systems which require composition awareness
for one or neither program. This information is similar to
invasiveness but distinguishes between the simulation and
in situ programs. It is useful when considering whether
one, both, or none of the programs to be composed can
be modified.

5.4. Summary

This section has provided a concise global comparison
of the systems presented in this document and examples
of use cases where a particular subset of systems would be
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more suitable. The comparison was presented in the form of
Tables 3, 4, and 5, and the use cases were presented during
the discussion of each of the tables. Each table is useful
for assessing the features of a system at a glance, and each
discussion is useful for more information and context on
the features presented in the associated table. Ultimately,
the information in this section assists in choosing a system
for a desired program composition.

6. Motivational Discussion

Tensors are a popular form of data storage because they
readily store values, value labels, and value relationships.
This allows complete specification of interrelated (or un-
related) data within an arbitrary coordinate space. Decom-
posing sparse tensors can reveal latent information in data,
hence sparse tensors and their decompositions are used in
many scientific fields [3].

Sparse tensor non-zero values are irregularly distributed
and not meant to be interpolated. If we wish to relate these
values to the concept of meshes, then the values are most
similar to vertices on sparse unstructured grids of arbitrary
dimensionality. An example of a sparse tensor is the Amazon
Reviews tensor, whose dimensions represent users, products,
and words, and whose values are the number of times a
given word appears in a review by a given user on a given
product [14]. Intuitively, we can expect that not every user
has reviewed every product with every word, hence we
expect that the non-zero values are irregularly distributed.
We can also expect that we cannot “fill in” missing values
with an interpolation scheme, as that would imply that a
user reviewed a product using particular words when they
did not. By contrast, visual data are commonly represented
by a dense (as opposed to sparse) grid of three or fewer



TABLE 4. PROGRAM COMPOSITION SYSTEM DETAILS

This table provides implementation details for the program composition systems.

System Realm Mnemonic Technologies leveraged Requires file I/O Data exchange
Swift Workflow manager Workflow scripting. Karajan yes files
Pegasus Workflow manager Workflow DAG. HTCondor DAGMan yes files
Kepler Workflow manager Workflow actors. Ptolemy II, Java no files/network
ADIOS Middleware 1/O pipes. HDF5, ZeroMQ, MPI no files/shared memory/interconnect
Decaf Middleware Workflow graph. Bredala, MPI no interconnect
Freeprocessing Middleware DBT I/O pipes. (self) no files (streams)
Henson Middleware Same-process PIEs. MPI, PIC no same binary (zero-copy)
SENSEI Middleware In transit IR and APIL. ADIOS, VTK data model no files/same binary/interconnect
TCASM Middleware COW shared memory. mmap, msync no shared memory
Ascent Discrete processing service Workflow pipeline. Conduit, VTK-m, Flow no same binary (zero-copy)
Catalyst Discrete processing service Dynamic in situ API. VTK data model, ParaView, Conduit no same binary/interconnect (ParaView)
Damaris Discrete processing service In-transit cores/nodes. MPI, Boost.Interprocess no shared memory/interconnect
DataStager  Discrete processing service I/O outsourcing. ADIOS, RDMA no interconnect
GoldRush Discrete processing service Idle cores for in situ. ADIOS no files/shared memory/interconnect
Libsim Discrete processing service Vislt-centric steering. MPI, VTK data model no same binary (zero-copy)
SERVIZ Discrete processing service In-transit vis. service. Mochi, RDMA no same binary/shared memory/interconnect
TINS Discrete processing service Work-stealing cores. Intel TBB, MPI no same binary (not-zero-copy)
Conduit Distributed data service Flexible data coupling. MPI, HDF5 no files/shared memory/interconnect
DataSpaces Distributed data service DHT PGAS. DART, RDMA no interconnect
Mochi Distributed data service Dist. ADT PGAS. RDMA, RPC no interconnect
System Realm Mnemonic Technologies leveraged Requires file I/O Data exchange
TABLE 5. PROGRAM COMPOSITION SYSTEM INCIDENTALS

This table provides incidental information about the program composition systems.
System Realm Invasiveness Composition awareness
Swift Workflow manager none (scripting) Neither sim nor in situ.
Pegasus Workflow manager none (workflow DAG) Neither sim nor in situ.
Kepler Workflow manager none (actor-based model) Neither sim nor in situ.
ADIOS Middleware use API, link together Both sim and in situ.
Decaf Middleware use API, link together Both sim and in situ.
Freeprocessing Middleware use API, link together (in situ only) In situ only.
Henson Middleware use API, link together Both sim and in situ.
SENSEI Middleware use API, link together Both sim and in situ.
TCASM Middleware use API, link together Both sim and in situ.
Ascent Discrete processing service use API, link together Both sim and in situ.
Catalyst Discrete processing service use API, link together Both sim and in situ.
Damaris Discrete processing service use API, link together Both sim and in situ.
DataStager Discrete processing service use API, link together Both sim and in situ.
GoldRush Discrete processing service use API, link together Both sim and in situ.
Libsim Discrete processing service use API, link together Both sim and in situ.
SERVIZ Discrete processing service use API, link together Both sim and in situ.
TINS Discrete processing service use API, link together Both sim and in situ.
Conduit Distributed data service use API, link together Both sim and in situ.
DataSpaces Distributed data service use API, link together Both sim and in situ.
Mochi Distributed data service use API, link together Both sim and in situ.
System Realm Invasiveness Composition awareness

dimensions which can be structured or unstructured and
amenable to interpolation, and hence visual data affords
relatively more leniency in data organization [91], [114].

The rigidity of sparse tensor data representation elimi-
nates from consideration many mesh-focused interoperabil-
ity features that could otherwise be used for sharing data
between applications, so there is a unique opportunity for
unique solutions in the intersection of sparse tensors and
interoperability in HPC.

Most visualization and analysis algorithms are pleasantly
parallel in the sense that data can be partitioned and pro-
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cessed in any order without collective coordination [78].
This allows algorithms to lean on underlying infrastructure
for managing partitioning and parallelism, meaning that
the partitioning scheme used by a given interoperability
system is unlikely to have a significant impact on algo-
rithm performance. Conversely, sparse tensor calculations
ranging from the MTTKRP [4], [16], [20], [115] to the
CPD-ALS [116], CP-APR [117], GCP-SGD [61], [118],
[119], Tucker decomposition [53], [120], and others [121],
[122], [123] are highly sensitive to partitioning and require



extensive communication [52], [62], [124]. The partitioning
sensitivity stems from irregularly-distributed sparse tensor
values, which leads to load imbalance; the communication
volume is due to the MTTKRP’s expand and fold commu-
nications, and increases with load imbalance as well as with
sparse tensor size and dimensionality. This situation places
more emphasis on the ability for algorithms to manage
parallelism themselves, hence increasing variability between
interoperating programs. While one cannot make blanket
statements for either visualization or sparse tensors, this
sensitivity and communicativeness contributes to a unique
challenge of data organization in the intersection of sparse
tensors and interoperability.

High performance sparse tensor libraries have stringent
algorithmic, memory layout, and data distribution require-
ments. SparTen [117] uses the Kokkos performance portabil-
ity library and yet contains two implementations depending
on whether CPU or GPU operation is desired. GenTen-
MPI [62] upholds specific sparse tensor distribution require-
ments that depend on implicit data (zero-valued elements) in
addition to explicitly stored data (non-zeros) as a means for
limiting communication overhead. SPLATT [29] loads and
redistributes sparse tensors for balancing, prior to distributed
computation. Many of these applications employ a variety
of linear algebra operations as the building blocks for more
complicated calculations, meaning that all the challenges
associated with efficient linear algebra implementations are
alive and well in the world of sparse tensor software.

There are many sparse tensor data formats, such as F-
COO [125], LCO [23], COO [16], CSF [29], HiCOO [17],
HaCOO [31], and ALTO [21]. Each format arose to meet a
specific need, such as minimizing the in-memory footprint,
easing the programmability, improving temporal locality, or
a combination of these. F-COO supports highly-optimized
implementations of sparse tensor computations on GPUs.
LCO provides faster and more memory-efficient sorting
performance for sparse tensors. COO is the most human-
understandable format, and is similar in structure to Ma-
trix Market [126] format. HICOO improves the spatial and
temporal locality of sparse tensor operations. The similarly-
named HaCOO reduces the cost required for building an
efficient blocked sparse tensor structure. ALTO improves
workload balance and reduces synchronization overhead.
Many data formats are mode-specific, meaning they exhibit
good locality for a specific access pattern but poor locality
for other access patterns, which gives rise to data duplication
or novel approaches for mitigating the specificity to improve
performance [18]. This variability in data formatting im-
pedes interoperability in HPC by decreasing the chances
that two applications use the same data format, thus ne-
cessitating additional resources for format transformation or
duplication.

As mentioned previously, there are many decompositions
(and algorithms for computing them): CP-ALS, CP-APR
(MU, PDNR, PQNR), Tucker, and GCP-SGD. Each de-
composition is suited to a particular assumption about data,
such as that the data are normally distributed or Poisson
distributed. There are also many system organizations: CPU
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(x86, ARM, POWERY), GPU (Nvidia, AMD, Intel), and
FPGA. Each is suited to a particular kind of calculation,
and each typically requires a particular style of programming
(e.g. OpenMP [127], MPI [128], CUDA [129]) for effective
utilization [130], [131], [132], [133], [134], [135], [136].
For example, applications written for CPU are usually in an
arbitrary general purpose programming language, whereas
applications for GPU typically require vendor-specific li-
braries for specific languages.

Finally, there are many programming languages: Python,
C/C++, Chapel [137], [138], [139], Julia, and MATLAB are
common examples. Each has its strengths, where some are
typically used by scientists and some are used by application
developers. For example: Python has Numpy, which is used
by many scientists. C/C++ has high performance and is
widely available. Julia is suited for numerical analysis.
Chapel facilitates productivity. MATLAB features mathe-
matical expressiveness.

Each format, decomposition, and language must be reim-
plemented as needed for a specific processor organization
or decomposition algorithm. Implementing sparse tensor
decompositions for HPC requires extensive effort towards
performance and scalability, which presents a unique op-
portunity for interoperability due to the high degree of
effort wasted in reimplementing a decomposition in a new
language or on a new processor organization.

The most basic form of interoperability is to share data
via the file system using an intermediate data representa-
tion [71]. While this approach is sensible in out-of-core
scenarios [140], the file system is often too slow for HPC
applications, or wastes memory storage or I/O bandwidth,
leading to the in situ (in line and in transit) efforts described.
In the case of sparse tensors and their decompositions, the
file system overhead scales with dimensionality, the number
of formats, and the number of decompositions. Current work
shows that straightforward approaches to interoperability do
not scale past the complexity of 1-D arrays for sophisticated
decomposition algorithms [7]. In order to support interop-
erability more generally, we have to do something more
advanced. Although this work focuses on sparse tensors
and their decompositions, the goal is not about showing a
result for sparse tensors in particular. It’s about showing that
interoperability across the most general data, hardware, and
parallel applications has a solution.

7. Conclusion and Opportunities

This document seeks to answer the question of how
do sparse tensors and sparse tensor decomposition affect
program composition in HPC. The answer stems from the
combination of two categories of challenges: Traditional
challenges, and unique challenges. Traditional challenges
arise from the multiple programming models and data lay-
outs used for sparse tensors and sparse tensor decomposition
software, and from the programming requirements and per-
formance considerations associated with these. Addressing
these traditional challenges is a current research area in the



context of systems for software composition. Unique chal-
lenges for sparse tensors and sparse tensor decomposition
arise from the general case where the distribution of non-
zero elements along one dimension is much more dense than
along another dimension. This situation leads to difficulty
when efficient distributed data parallelism is desired (i.e., al-
ways), because state-of-the-art sparse tensor decomposition
requires processing across each dimension. Addressing these
unique challenges is a current research area in the context
of sparse tensor decomposition. These two categories of
challenges combine to create new challenges, and a rich
area of research focused on whether program composition
has a solution across the most general data, software, and
hardware combinations.
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