
Large-scale Graph Analytics and Frameworks
Area Exam Position Paper

Sudharshan Srinivasan
University of Oregon, Eugene, OR, USA

ssriniv2@cs.uoregon.edu

Abstract—Graph analytics is a vital field of research
for representing relations between different entities and
understanding patterns of interactions for large groups.
The scope of large-scale graph analytics is complex enough
that there exist numerous challenges and a plethora of
frameworks, with each addressing a subset of challenges.
In this paper, we explore the area of graph analytics and its
available frameworks. In specific, we discuss the topology
of graph algorithms, their applications, and their draw-
backs. We then explore the existing analytics frameworks
for solving these algorithms in two broad classes. We first
classify them based on the target architecture, and then we
classify them based on the type of workload they address.
Since the performance of analytics is highly sensitive to the
nature of the problem, there isn’t a single framework that
addresses all classes of graph problems. This paper can
help readers gain a better understanding of graph analytics
and provides general guidance for choosing the modeling
methods and the right frameworks that are suitable to
particular graph problems.

I. INTRODUCTION

Large-scale graph analytics require analyzing and
extracting insights from vast and intricate graph data
structures, which consist of nodes (vertices) and
edges (connections) representing complex relation-
ships between entities. This approach is indispens-
able in contemporary data-driven applications across
diverse domains. As the volume and complexity of
data continue to surge, large-scale graph analytics
faces several challenges and considerations. Scala-
bility is paramount, necessitating the development
of scalable algorithms and distributed computing
frameworks to handle graphs with millions or bil-
lions of nodes and edges. Efficient data storage
models, such as adjacency lists or graph databases,
are crucial for managing such extensive graph data.

Parallel processing, enabled by distributed com-
puting frameworks like Apache Spark and Hadoop,

is a cornerstone of large-scale graph analytics.
These frameworks distribute computations across
multiple nodes or machines, ensuring efficient anal-
ysis. A wide array of graph algorithms, from fun-
damental ones like BFS and DFS to advanced
methods like centrality measures and community
detection, are employed to extract valuable insights
from the data. Efficient graph traversal and memory
management are critical concerns, with techniques
like memory mapping and graph compression used
to optimize resource usage.

Distributed graph processing involves partition-
ing large graphs into smaller subgraphs, striking a
balance between workload distribution and commu-
nication overhead. Real-time analytics are essential
in dynamic environments, such as social media
monitoring and fraud detection. Specialized graph
databases offer efficient querying and analytics ca-
pabilities for large-scale graph data. Visualization
tools aid in comprehending complex graph struc-
tures, while integrating machine learning techniques
with graph analytics enables tasks like node clas-
sification and anomaly detection. Large-scale graph
analytics plays a pivotal role in solving optimization
problems, ensuring privacy and security, and making
data-driven decisions across an array of domains as
data complexity and volume continue to rise.

In this survey, we aim to categorize and sum-
marize the literature on large-scale graph analyt-
ics frameworks and the architecture behind their
models. In Section II, we introduce the landscape
of graph algorithms and the categorization of edge
and vertex-centric algorithms. In Section III, we
discuss the various available frameworks classified
with respect to the target architecture. In Section IV,
we explore the concepts of dynamic graphs and the
available frameworks for dynamic graph analytics.



Dynamic graphs research:

Time evolving graphs
Distributed querying
Database solutions
QOS in inferencing 

GNN research:

 Single GPU training
 Multi GPU training
Scalable inference

Architecture based research:

Single CPU/GPU
Multi CPU/GPU

Multi-node CPU/GPU
FPGA

Embedded devices
Cloud databases

Algorithm centric research:

Vertex-centric algorithms
Edge-centric algorithms

Approximation algorithms
Linear algebraic algorithms

Graph analytics research
and frameworks

Areas covered

Fig. 1. Topics for graph analytics frameworks and research in literature. The scope of this survey extends to the highlighted areas.

In Section V, we explore distributed training frame-
works for GNNs and GATs. We finally conclude on
the current state and possible future directions of
the field.

II. LANDSCAPE OF GRAPH ALGORITHMS

Large-scale graph algorithms can broadly be clas-
sified into three different approaches based on the
view taken to solve these algorithms.

A. Vertex-centric

Vertex-centric programming models process
graphs using vertices as the primary units of
computation. In this model, each vertex is
responsible for executing a program that updates
its own state and sends messages to its neighbors.
The overall algorithm proceeds iteratively, with
each vertex executing its program and sending
messages in each iteration. Vertex-centric graph
processing has several advantages over other

programming models for graph processing. First,
the vertex-centric programming model is very
intuitive and easy to understand. Each vertex
only needs to worry about its own state and its
neighbors. This makes it much simpler to program
than other graph programming models, such as
edge-centric programming. Second, the vertex-
centric programming model is easily scalable to
large graphs. This is because the vertices can
be easily distributed across multiple processors.
This makes it a good choice for processing large
graphs that cannot fit in the memory of a single
machine. Third, the vertex-centric programming
model can be optimized to minimize the amount
of communication between vertices. This is done
by only sending messages to the vertices that
need them. This can significantly improve the
algorithm’s performance, especially for large
graphs. Overall, vertex-centric graph processing
is a powerful and versatile programming model

2



for processing graphs. It is simple to program,
scalable, and efficient. These advantages make it a
good choice for a wide variety of graph processing
applications. Vertex-centric graph algorithms are
usually referred to as Think-Like-A-Vertex(TLAV)
algorithms.

Although vertex-centric algorithms are local and
bottom-up, they have a provable, global result.
TLAV frameworks are heavily influenced by dis-
tributed algorithms theory, including synchronic-
ity and communication mechanisms [1]. Sev-
eral distributed algorithm implementations, such
as distributed Bellman-Ford single-source short-
est path [1], are used as benchmarks throughout
the TLAV literature. The introduction of TLAV
frameworks has also spurred the adaptation of
many popular Machine Learning and Data Mining
(MLDM) algorithms into graph representations for
high-performance TLAV processing of large-scale
datasets [2].

Many graph problems can be solved using either
a sequential or distributed approach. For example,
the PageRank algorithm for calculating webpage
importance has a centralized matrix form [3] as
well as a distributed, vertex-centric form [4]. The
sequential approach is often easier to implement,
but it may not be as scalable to large graphs. The
distributed approach is more scalable, but it may
be more complex to implement. The best approach
to use depends on the specific problem and the
available computing resources.

The choice of approach will depend on the spe-
cific problem and the available computing resources.
For example, if the graph is small and the com-
puting resources are limited, then the sequential
approach may be the best choice. However, if the
graph is large and the computing resources are
abundant, then the distributed approach may be the
best choice.

Vertex programs, in contrast, only depend on
data local to a vertex and reduce computational
complexity by increasing communication between
program kernels. As a result, TLAV frameworks
are highly scalable and inherently parallel, with
manageable inter-machine communication. For ex-
ample, runtime on the Pregel framework has been
shown to scale linearly with the number of ver-
tices on 300 machines [4]. Furthermore, TLAV

frameworks provide a common interface for vertex
program execution, abstracting away low-level de-
tails of distributed computation, like MPI, allowing
for a fast, reusable development environment. A
paradigm shift from centralized to decentralized
approaches to problem-solving is represented by
TLAV frameworks.

TLAV frameworks can first be classified based on
the timing of execution into :

Synchronous: In this model, active vertices
are executed conceptually in parallel over one or
more iterations, called supersteps. Synchronization
is achieved through a global synchronization barrier
situated between each superstep that blocks vertices
from computing the next superstep until all workers
complete the current superstep. Each worker co-
ordinates with the master to progress to the next
superstep. Within a single processing unit, vertices
can be scheduled in a fixed or random order because
the execution order does not affect the state of the
program[5].

Although synchronous systems are conceptually
straightforward and scale well, the model has draw-
backs. One study found that synchronization, for
an instance of finding the shortest path in a highly
partitioned graph, accounted for over 80% of the
total running time [6], so system throughput must
remain high to justify the cost of synchronization
since such coordination can be relatively costly.

However, when the number of active vertices
drops or the workload among workers becomes
imbalanced, system resources can become under-
utilized. Iterative algorithms often suffer from “the
curse of the last reducer,” otherwise known as
the “straggler” problem, where many computations
finish quickly, but a small fraction of computations
take a disproportionately longer amount of time [7].
For synchronous systems, each superstep takes as
long as the slowest vertex, so synchronous systems
generally favor lightweight computations with small
variability in runtime.

Finally, synchronous algorithms may not con-
verge in some instances. In graph coloring algo-
rithms, for example, vertices attempt to choose
colors different from adjacent neighbors [8] and
require coordination between neighboring vertices.
However, during synchronous execution, the cir-
cumstance may arise where two neighboring ver-

3



tices continually flip between each other’s colors.
In general, algorithms that require some type of
neighbor coordination may not always converge
with the synchronous timing model without the use
of some extra logic in the vertex program [5].

Asynchronous: In the asynchronous iteration
model, vertices can be executed at any time as
long as there are available processor and network
resources. This eliminates the ”straggler” problem,
where a few slow vertices can hold up the entire
computation. However, asynchronous execution can
be more complex to implement and maintain, and
it can also lead to redundant communication and
excessive computation.

Research has shown that asynchronous execution
can generally outperform synchronous execution
[2], especially for imbalanced workloads. However,
the performance gains can vary depending on the
specific algorithm and the properties of the system.

Asynchronous systems typically use a pull model
of execution, where each vertex only pulls data from
its neighbors when it needs it [9]. This can help to
reduce redundant communication. However, it can
also lead to data races, where two vertices try to
update the same data at the same time. This can be
a challenge to avoid, and it can require additional
mechanisms to ensure data consistency.

Overall, asynchronous execution provides more
flexibility and can be more efficient for certain
workloads. However, it also comes with some addi-
tional complexity and challenges [10] [2].

B. Edge-centric

The edge-centric graph model is a computational
approach that focuses primarily on the edges of
a graph rather than the vertices. It is a different
perspective compared to the more common vertex-
centric approach. Edge-centric computations often
exhibit more sequential access patterns compared
to vertex-centric models. This can lead to more
efficient memory access and improved performance
in some cases. Edge-centric models are particularly
suited for algorithms that involve traversing relation-
ships between edges, such as certain network anal-
yses, recommendation systems, and certain types
of graph clustering algorithms. Edge-centric models
can also help reduce redundancy in computations,
as you can perform operations directly on edges

rather than repeatedly traversing vertices to access
their edges. This can lead to more efficient algo-
rithms. Some edge-centric algorithms can be easier
to parallelize because the focus is on edges, which
can be processed independently in many cases.
This can take advantage of multi-core processors
or distributed computing environments.

Select frameworks for edge-centric models are
proposed in the literature. X-Stream [11] employs
a graph computation model centered around edges.
When compared to a vertex-centric approach, edge-
centric access tends to be more sequential, even
though traversing edges can still create a somewhat
random and unpredictable access pattern. Addition-
ally, running algorithms that follow vertices or edges
typically leads to random access to the storage
medium for the graph. This can frequently be the
decisive factor in determining performance, regard-
less of the algorithm’s complexity or its efficiency
during runtime.

Pathgraph[12] is another framework that uses an
edge-centric approach for its graph algorithms. They
represent a sizable graph by employing a set of tree-
based divisions and opt for a path-oriented approach
instead of the more common vertex-centric or edge-
centric methods. Initially, the parallel computation
model brings about notable enhancements in mem-
ory and disk locality, particularly when executing
iterative algorithms. Secondly, they create a stream-
lined storage system that goes a step further in
optimizing sequential access while reducing random
access on storage devices. Lastly, they put the path-
oriented computation model into action by utiliz-
ing a scatter/gather programming approach. This
approach parallelizes iterative computations at the
partition tree level and carries out sequential updates
for vertices within each partition tree.

Wolfgraph[13] updates on works from X-
stream[11] by introducing a GPU-based graph
framework. The data structure and graph partition-
ing in WolfGraph have been meticulously designed
to reduce graph pre-processing efforts and enable
efficient memory access consolidation. WolfGraph
maximizes GPU utilization by concurrently pro-
cessing all graph edges. Additionally, they’ve intro-
duced a novel approach called ConcatenatedEdge-
List (CEL) to handle graphs larger than the GPU’s
global memory capacity. With WolfGraph, users

4



have the flexibility to define and integrate their
custom graph processing methods seamlessly into
the WolfGraph framework.

GraphChi[14] employs an innovative out-of-core
data structure known as ”sharding” to minimize the
need for random access to the hard disk. Before
computations begin, GraphChi conducts an initial
preprocessing of the graph data. This involves par-
titioning the input data into sub-graphs, referred
to as ”shards.” Each shard consists of a set of
vertices and all the incoming edges connected to
these vertices. Within each shard, the edges are
organized in ascending order based on the source
vertex ID. The partitioning method employed by
GraphChi ensures that the number of edges in each
shard is roughly uniform, and the size of each shard
is designed to fit within the available memory.

GraphChi[14] has also developed a technique
called ”parallel sliding windows” (PSW). During
computation, GraphChi loads the first shard into
memory and then efficiently retrieves and loads
the out-edges (where the source vertex is located
in other shards) of the current shard from other
shards into memory as needed. Once processing
of the current shard is complete, it moves on to
the next shard and repeats this process. The entire
computation concludes when all shards have been
processed. This approach of organizing the graph
into shards and utilizing PSW ensures sequential
reading from the hard disk, thereby optimizing the
performance of hard disk I/O.

In summary, we have discussed the landscape
of various graph algorithms by categorizing them
as vertex-centric and edge-centric models. Vertex-
centric models gain an advantage for their simplic-
ity, ease of parallelism, and efficient data access.
They are subcategorized as synchronous and asyn-
chronous models based on their implementation’s
blocking or non-blocking nature. On the other hand,
edge-centric models gain an advantage for their fine-
grained control, reduced communication overhead,
and efficiency for irregular graphs. Beyond this
classification, they can further be categorized as
linear algebraic and approximate models that are out
of the scope of this survey.

III. GRAPH FRAMEWORKS CLASSIFIED BY
ARCHITECTURE

Graph analytics programming models provide a
way to specify how to analyze a graph. They typi-
cally include a set of operators that can be used to
perform operations on graphs, such as finding paths,
counting connected components, and finding com-
munities. Graph analytics runtime systems provide
a way to execute graph analytics programs. They
typically include a graph storage engine, a graph
processing engine, and a graph visualization engine.

Several frameworks exist for graph analytics on
various target architectures.

A. Shared-memory CPU and single-GPU systems
Galois[16], [23], [24] is the state-of-the-art graph

analytics framework for multi-core NUMA ma-
chines. It is designed to ease parallel programming,
especially for applications with irregular parallelism
and communication. Ligra [22], and Polymer [25]
are similar analytics frameworks for multi-core
NUMA machines. All three of these frameworks
perform much better than existing distributed frame-
works when the graph fits within a single node, but
not for large-scale out-of-node graphs.

Various single GPU frameworks also exist for
ease of programming analytics. Graphie [26] is
a single GPU framework that stores the vertex
attribute data in the GPU memory and streams edge
data asynchronously to the GPU for processing.
MultiGraph [27], [28] uses multiple data repre-
sentation and execution strategies for dense versus
sparse vertex frontiers. It also allows users with
access to GPU configuration to fine-tune the warp
counts. Novel representation techniques have also
been extensively studied for single GPU implemen-
tations. CuSHA [29] presents a framework that uses
a concept recently introduced for non-GPU systems
that organizes a graph into autonomous sets of
ordered edges called shards. It also presents another
representation that enhances the use of shards to
achieve higher GPU utilization for processing sparse
graphs. Gunrock [30] implements a novel data-
centric abstraction centered on operations on a ver-
tex or edge frontier. It is a high-level programming
model that allows programmers to quickly develop
new graph primitives with small code size and
minimal GPU programming knowledge. There also

5



TABLE I
SUMMARY OF FEATURES FOR SELECT GRAPH FRAMEWORKS ACROSS ARCHITECTURES

Framework CPU-GPU hybrid Distributed Asynchronous BSP Rich API Directed graph
GraphX[15] ✓ ✓ ✗ ✓ ✗ ✓
Pregel[4] ✓ ✓ ✗ ✓ ✓ ✗
Galois[16] ✗ ✗ ✗ ✓ ✓ ✗
Groute[17] ✗ ✓ ✓ ✗ ✗ ✗
Garaph[18] ✗ ✓ ✗ ✓ ✓ ✗
Mizan[19] ✓ ✓ ✗ ✗ ✗ ✓
PowerGraph [20] ✓ ✓ ✗ ✓ ✓ ✗
Medusa[21] ✓ ✗ ✗ ✓ ✗ ✗
Ligra[22] ✗ ✗ ✗ ✓ ✗ ✗

exists wrapper compilers like IrGL [31] that produce
CUDA code from an intermediate-level program
representation. Several algorithms [32], [33], [34]
have shown that GPUs can be efficiently utilized
for irregular computations.

B. Single-node multi GPUs and heterogeneous sys-
tems

Several frameworks and libraries exist for graph
processing on multiple GPUs. Groute [17] provides
constructs for asynchronous multi-GPU program-
ming and describes their implementation in a thin
runtime environment. Medusa [21] is another multi-
GPU framework that enables developers to lever-
age the capabilities of GPUs by writing sequen-
tial C/C++ code. It offers a small set of user-
defined APIs and embraces a runtime system to
automatically execute those APIs in parallel on the
GPU. Other frameworks like [35], [36], [37] provide
libraries that allow programmers to easily extend
single-GPU graph algorithms to achieve scalable
performance on large graphs with billions of edges.

There also exist several multi-GPU frameworks
that combine with CPUs for heterogeneous compu-
tations. Garaph [18] proposes a vertex replication
degree customization scheme that maximizes the
GPU utilization given vertices, degrees, and space
constraints. It also adopts a balanced edge-based
partition ensuring work balance over CPU threads,
and also a hybrid of notify-pull and pull computa-
tion models optimized for fast graph processing on
the CPU. Lastly, Garaph uses a dynamic workload
assignment scheme that takes into account both the
characteristics of processing elements and graph al-
gorithms. Similarly, Falcon [38] is a domain-specific
language(DSL) for implementing graph algorithms

that abstracts the hardware and provides constructs
to write explicitly parallel programs at a higher
level. It can work with general algorithms that may
change the graph structure.

Apart from groute[17], which is an Asynchronous
system, all the other frameworks use BSP-style
synchronization. It is important to note that these
systems are still limited to a single machine and
struggle to handle large-scale graphs in the order of
10 billion edges or more.

C. Multi-node systems

The ability to scale an application to multiple
processes and machines is paramount for large-
scale graph analytics with billions of vertices and
edges. Many graph frameworks and libraries exist
for processing on distributed systems. Gemini [39]
is the state-of-the-art distributed graph processing
system that applies multiple optimizations target-
ing computation performance to build scalability
on top of efficiency. It incorporates a chunk-based
partitioning scheme enabling low-overhead scaling
out designs while maintaining a dual representation
scheme to compress accesses to vertex indices. LF-
Graph [40] offers low and balanced communication
and computation, low preprocessing overhead, low
memory footprint, and scalability for distributed
graph analytics.

Pregel [4] approaches large-scale graph process-
ing by expressing programs as sequences of itera-
tions for computations and communication phases.
Mizan [19] additionally extends the pregel frame-
work by utilizing efficient load balancing techniques
depending on the workload characteristics. GraphX
[15] is a distributed framework that addresses the
challenges of graph construction and transforma-

6



tion. It combines the advantages of both data-
parallel and graph-parallel systems by efficiently ex-
pressing graph computation within the Spark data-
parallel framework. PowerGraph [20] framework
provides abstraction, which exploits the internal
structure of graph programs to address challenges
with power-law graphs.

To summarize this section, we have explored the
different graph frameworks in the literature by cate-
gorizing them based on their target architecture. Sin-
gle memory CPU and GPU frameworks like CuSHA
[29], Ligra[22], Gunrock[30] and Galois[16], [23],
[24] provide high-performance APIs that leverage
shared memory for efficiency but tradeoff scalability
and memory utilization when encountering larger
graphs. Single-node multi-GPU frameworks like
Garaph[18] and groute[17] offer improved mem-
ory utilization but still have a bottleneck when
scaling to very large graphs as they still rely on
rapid interconnects like NVlink[41]. Lastly, multi-
node frameworks like Pregel [4], Mizan [19] and
GraphX[15] offer great scalability and efficiency
for large-scale graph algorithms but lack the same
performance as single-node frameworks when the
size of the graph is small enough to fit within
memory as synchronizing data across ranks adds
excess overheads.

IV. FRAMEWORKS FOR DYNAMIC GRAPHS

A dynamic graph is a graph whose topology
can change over time. This means that vertices
and edges can be added or removed, and the re-
lationships between vertices can change. Dynamic
graphs are often used to model real-world systems,
such as social networks, transportation networks,
and financial markets.

There are a number of challenges associated with
processing dynamic graphs. One challenge is that
the graph topology can change frequently, which
can make it difficult to keep track of the latest
changes. Another challenge is that the graph can
be very large and complex, which can make it
difficult to process efficiently. There are a number of
basic dynamic graph processing frameworks avail-
able, such as Pregel[4], GraphLab[2], and Apache
Giraph[42]. These frameworks provide a number of
tools and algorithms for processing dynamic graphs.

The choice of a dynamic graph processing frame-
work depends on the specific application. Some
factors to consider include the size and complexity
of the graph, the frequency of changes to the graph
topology, and the desired performance.

Various models and frameworks have been pro-
posed in the literature for dynamic graph processing.
A dynamic graph model is a mapping Gt = (V,E)
that yields the state of the graph (i.e., the set of
nodes and set of edges) at a given time instant t.
Both directed and undirected dynamic graphs can
be represented by most of the existing discrete and
continuous models.

In a discrete model, snapshots are taken peri-
odically at every fixed time period (e.g., every 30
minutes, every day, and every week). This type of
model provides complete, accurate mapping at spe-
cific time instants and gives the nearest state (e.g.,
time-based, changes-based) at any other instant.

On the other hand, the continuous model keeps
track of all changes by representing everyone of
them. Therefore, it can map every instant into a
completely accurate valid graph state.

Based on the nature of how the models ingest
their input, we can categorize dynamic graph frame-
works as coarse-grained snapshot-based models that
input updated information on batches at defined
intervals or as fine-grained streaming models that
continuously update the graph as new updates ar-
rive.

A. Snapshot-based models

These models store a sequence of snapshots of the
graph, where each snapshot represents the state of
the graph at a particular time instant. The snapshots
can be taken at regular intervals or irregular inter-
vals, depending on the application. Varieties of this
category have been proposed in Rossi’s model [43],
FVF [44], and Yang’s model [45]. This category
models dynamic graphs as a sequence of snapshots
G[1,2 ] = {G1, G2, G3, ...Gn}. Each snapshot Gi is
a static graph that represents the valid state of the
dynamic graph at time point ti. The snapshot is
represented by a triple {Vi, Ei, Ti} and is stored by
its time point ti.

Storing a sequence of snapshots naively, as
in Yang’s model [45] and Rossi’s model [43],
would clearly require a prohibitively large storage.

7



FVF [44] proposes the “Find-Verify-and-Fix” (FVF)
framework, which takes a sequence of snapshots
that are produced in a compressed storage model as
input. This compressed storage model stores a set
of key snapshots and the associated set of deltas.
The set of key snapshots is intended to be much
smaller than the original set of all snapshots. A set
of deltas stores only the changes that are needed
to completely construct a snapshot from its related
key snapshot by merging the key snapshot with the
proper delta. Compressed Storage Models (SMs)
have been discussed in FVF [44] for storing these
clusters. However, the most efficient one is called
SM-FVF. It saves four deltas for each cluster C,
which has k snapshots.

In conclusion, the compressed model in FVF [44]
is more efficient with regard to the used storage
than the naive model described by Yang [43] and
Rossi [43]. However, the naive model is faster than
the compressed model in query performance due to
the consumed construction time in the compressed
model. The compressed model in FVF stores only
the changes that are needed to construct a snapshot
from its related key snapshot. This can significantly
reduce the amount of storage required. However, the
construction of the compressed model can be time-
consuming. The naive model stores all snapshots
of the graph. This can lead to a large amount of
storage, but the query performance is much better
than the compressed model.

We can further categorize snapshot-based models
on their representation of their input graph.

1) CSR representation: STINGER[46] is a data
structure and software framework that adapts and
extends the CSR format to support graph updates.
Unlike the static CSR design, where the IDs of the
neighbors of a given vertex are stored contiguously,
neighbor IDs in STINGER are divided into contigu-
ous blocks of a pre-selected size. These blocks form
a linked list, so STINGER uses a blocking design.
The block size is identical for all blocks except for
the last blocks in each list. One neighbor vertex ID
in the neighborhood of a vertex v corresponds to
one edge (v, u).

STINGER supports both vertices and edges with
different types. One vertex can have adjacent edges
of different types. One block always contains edges
of one type only. In addition to the associated

neighbor vertex ID and type, each edge has its
weight and two timestamps. The timestamps can be
used in algorithms to filter edges, for example, based
on the insertion time. In addition to this, each edge
block contains certain metadata, for example, the
lowest and highest timestamps in a given block.

STINGER also provides the edge type array
(ETA) index data structure. ETA contains pointers
to all blocks with edges of a given type to accelerate
algorithms that operate on specific edge types.

To increase parallelism, STINGER updates a
graph in batches. For graphs that are not scale-free,
a batch of around 100,000 updates is first sorted
so that updates to different vertices are grouped
together. In the process, deletions may be separated
from insertions (they can also be processed in
parallel with insertions). For scale-free graphs, there
is no sorting phase since a small number of vertices
will face many updates which leads to workload
imbalance. Instead, each update is processed in
parallel. Fine-locking on single edges is used for
synchronization of updates to the neighborhood of
the same vertex.

To insert an edge or to verify if an edge exists, one
traverses a selected list of blocks, taking O(d) time.
Consequently, inserting an edge into a graph with N
vertices takes O(Nd) work and depth. STINGER is
optimized for the Cray XMT supercomputing sys-
tems that allow for massive thread-level parallelism.
However, it can also be executed on general multi-
core commodity servers.

Unlike other works, STINGER and its variants
do not provide a framework but a library to operate
on the data structure. Therefore, the user is in full
control, for example, to determine when updates are
applied and what programming model is used.

DISTINGER[47]represents a distributed variant
of STINGER designed for ”shared-nothing” com-
modity clusters. DISTINGER builds upon the
STINGER architecture but introduces several key
changes.

To begin with, it employs a designated master
process to facilitate communication between the
DISTINGER instance and external systems. This
master process translates external vertex IDs at
the application level into the internal IDs utilized
within DISTINGER. Additionally, the master pro-
cess maintains a roster of slave processes and del-

8



Fig. 2. Workflow of snapshot-based models

egates incoming queries and updates to the ap-
propriate slaves responsible for managing the rel-
evant section of the processed graph. Each slave is
tasked with maintaining and updating a portion of
the vertices along with their associated edges. The
graph itself is divided using a straightforward hash-
based approach. Communication between processes
is accomplished through MPI, utilizing established
optimizations like message batching and the concur-
rent execution of computation and communication
tasks.

cuSTINGER[48] extends STINGER for CUDA
GPUs. The main design change is to replace lists
of edge blocks with contiguous adjacency arrays,
i.e., a single adjacency array for each vertex. More-
over, contrary to STINGER, cuSTINGER always
separately processes updates and deletions to better
utilize massive parallelism in GPUs. cuSTINGER
offers several ”meta-data modes”: based on the
user’s needs, the framework can support only un-
weighted edges, weighted edges without any addi-
tional associated data, or edges with weights, types,
and additional data such as timestamps. However,
the paper focuses on unweighted graphs that do not
use timestamps and types, and the exact GPU design
of the last two modes is unclear.

The system developed by Monda et al.[49] places
its focus on three key aspects: data replication,
graph partitioning, and load balancing. Conse-
quently, it operates in a distributed manner. On
each computing node, a replication manager makes
localized decisions, primarily by analyzing graph
queries, to determine which vertex should be repli-
cated and on which computing nodes its copies

should be stored.
The primary contribution of this system lies in its

introduction of a fairness criterion. This criterion
mandates that, at the very least, a certain con-
figurable fraction of neighboring vertices must be
replicated on some computing node. This approach
serves to alleviate strain on network bandwidth
and enhances the responsiveness of queries that
require fetching neighborhoods, which is a common
requirement in social network analysis.

As for data storage, the framework utilizes
Apache CouchDB [50], an in-memory key-value
store. However, specific details about how the data
is represented are not provided.

LLAMA [51], which stands for Linked-node an-
alytics using Large Multiversioned Arrays, shares
similarities with STINGER in how it processes
graph updates in batches. However, it distinguishes
itself from STINGER by generating a new snapshot
of graph data for each batch using a copy-on-write
approach.

Specifically, LLAMA represents the graph using
a variant of CSR (Compressed Sparse Row) that
relies on large multiversioned arrays. In contrast
to CSR, the array that maps vertices to per-vertex
structures is divided into smaller parts known as
data pages. Each data page can belong to a different
snapshot and contains pointers to the single edge
array that stores graph edges. To create a new
snapshot, new data pages and a new edge array are
allocated to hold the delta representing the update.
This design allows older snapshots to share some
data pages and parts of the edge array, enabling
lightweight updates. For instance, if there is a batch

9



of edge insertions into the neighborhood of vertex
v, this batch may become a part of v’s adjacency
list within a new snapshot but only represents the
update and relies on the old graph data. Contiguous
allocations are employed for all data structures to
enhance allocation and access efficiency.

LLAMA also places a strong emphasis on out-
of-memory graph processing. To achieve this, snap-
shots can be persisted on disk and mapped into
memory using mmap. The system is implemented
as a library, which means users are responsible
for ingesting graph updates and can employ a pro-
gramming model of their choice. LLAMA does not
impose any specific programming model but offers
a simple API for iterating over the neighbors of a
given vertex v, whether they are the most recent
ones or belong to a specific snapshot.

2) Tree representation: The Aspen framework,
as described in reference [52], employs an inno-
vative data structure known as the C-tree to store
graph structures. This C-tree is built upon a purely
functional compressed search tree. In this context, a
functional search tree is a data structure for search-
ing that can be expressed solely through mathe-
matical functions. This unique characteristic makes
the data structure immutable since a mathematical
function consistently produces the same result for
the same input, regardless of any associated state.

Functional search trees offer several advantages,
including lightweight snapshots, provably efficient
execution times, and support for concurrent process-
ing of queries and updates. The C-tree takes the
concept of purely functional search trees further by
addressing issues related to poor space utilization
and low locality.

In the C-tree, elements represented by the tree are
stored in chunks, and each chunk is stored contigu-
ously in an array, resulting in improved data locality.
To optimize space usage, chunks can be compressed
using difference encoding, as each block holds a
sorted set of integers.

A graph is represented as a tree of trees: a purely
functional tree stores the set of vertices (vertex-tree),
and each vertex stores its edges in its own C-tree
(edge-tree). Additional information is stored in the
vertex-trees, allowing for quick querying of funda-
mental graph properties, such as the total number of
edges and vertices, in constant time. While the trees

can be extended to store properties like weights, this
aspect is not covered in the described work.

For algorithms that operate on the entire graph,
such as Breadth-First Search (BFS), it is possible
to precompute a flat snapshot. Instead of accessing
all vertices by querying the vertex-tree, an array is
used to directly store pointers to the vertices. This
approach incurs some initial overhead but reduces
access times to edges, ultimately decreasing the
execution times of various algorithms.

The framework does not impose a specific pro-
gramming model. Its API allows for any number
of parallel readers and a single writer. Readers
and writers are never blocked, and the framework
ensures strict serializability. Updater routines enable
both the addition and removal of edges or vertices,
and they are applied in batches, not exposed to
running algorithms. Instead, algorithms operate on
an immutable snapshot.

Tegra [53] enables graph analysis based on graph
updates within any defined time window. This
means that Tegra must maintain the complete his-
tory of the graph, unlike many other systems that
often store only a single state (and the snapshots
upon which graph algorithms are executed). Con-
sequently, this system faces distinct challenges: it
needs to share graph data across different time
windows and synchronize state among concurrently
running queries.

To achieve these objectives, Tegra relies on a
novel computation model known as the Incremen-
tal Computation by entity Expansion (ICE) model.
Many graph algorithms are iterative and converge
to a solution, allowing the reuse of certain parts of
the previous solution when the graph is updated.
While others have already addressed such algo-
rithms, they are often limited to graph expansion
(i.e., no removals are allowed) to ensure correctness.
ICE extends this approach and recomputes graph al-
gorithms on the subgraphs affected by the recompu-
tation. Therefore, removals of vertices and edges can
also be considered. As tracking state and subsequent
recomputation may result in high overhead, a cost
model is employed, and the framework switches to
full recomputation when necessary.

To support the ICE model, Tegra’s core data
structure is an adaptive radix tree, a tree data
structure that facilitates efficient updates and range

10



scans. It efficiently maps a graph by storing it in
two trees (a vertex tree and an edge tree) and
generates lightweight snapshots by creating a new
root node that holds the differences. For scalability,
the graph is partitioned among compute nodes based
on the hash of the vertex ID. Users can interact with
Tegra through the provided API and can manually
create new snapshots of the graph. The system can
also automatically create snapshots when a certain
limit of changes is reached. Consequently, queries
and updates (which can be ingested from main
memory or graph databases) can run concurrently.
The framework also stores the changes that occurred
between snapshots, allowing the restoration of any
state and the application of computations on any
window.

As snapshots consume substantial memory, they
are written to disk using the least recently used
(LRU) policy. The framework is implemented on
top of Apache Spark, which handles scheduling and
work distribution.

B. Continues streaming models

These models are also referred to as fine-grained
synchronization, which differs from coarse-grained
synchronization(snapshot based models) where up-
dates are merged with the main graph representation
during specific phases by the fact that updates are in-
tegrated into the main dataset as soon as they arrive.
This process often involves interleaving updates
with queries and relies on synchronization protocols
based on fine-grained locks and/or atomic opera-
tions. An example of fine-grained synchronization
is Differential Dataflow[54], where the ingestion
strategy allows for concurrent updates and queries
by leveraging a combination of logical time to main-
tain knowledge of updates (referred to as deltas)
and progress tracking. Specifically, in the design of
differential dataflow, collections of key-value pairs
enriched with timestamps and delta values are used,
and dynamic data is viewed as either additions or
removals from input collections, with their evolution
tracked using logical time.

Alternatively, some systems may not support con-
current queries and updates. Instead, they alternate
between incorporating batches of graph updates
and graph queries, meaning updates are applied to
the graph structure while queries wait, and vice

versa. This type of architecture can achieve a high
update processing rate because it doesn’t need to
resolve the problem of ensuring the consistency
of graph queries running interleaved with updates
concurrently.

Few frameworks have been implemented for con-
tinuous streaming models. DZiG[55] is a high-
performance streaming graph processing system
designed to maintain efficiency in scenarios with
sparse computations while ensuring BSP semantics.
DZiG’s core components consist of an innovative
incremental processing technique that is sparsity-
aware, allowing computations to be expressed re-
cursively to detect and eliminate updates, thus pre-
serving sparsity safely. It also provides an adap-
tive processing model that automatically adjusts
the incremental computation strategy to minimize
overhead when computations become sparser.

GraphBolt[56] is a streaming graph processing
system that ensures BSP (Bulk Synchronous Paral-
lel) semantics while handling incremental updates.
It employs a dependency-driven incremental pro-
cessing approach, starting by tracing dependencies
to understand how intermediate values are com-
puted. It then uses this knowledge to propagate
changes throughout the intermediate values incre-
mentally. GraphBolt offers a versatile incremental
programming model to accommodate various graph-
based analytics tasks that facilitate the creation of
incremental versions of intricate aggregations.

Other frameworks include faimGraph[57], which
represents a fully dynamic graph data structure
tailored for Graphics Processing Units (GPUs). It
excels in delivering high update rates while main-
taining a minimal memory footprint thanks to au-
tonomous memory management directly within the
GPU. This data structure is fully dynamic, ac-
commodating updates for both edges and vertices.
By conducting memory management on the GPU
itself, it achieves swift initialization times and effi-
cient update procedures without requiring additional
intervention or reallocation from the host. Their
optimized approach performs parallel initialization
and achieves considerably faster speeds compared to
previous methods. It can handle up to 200 million
edge updates per second for both sorted and un-
sorted update batches. Furthermore, it can execute
over 300 million adjacency queries and millions of

11



vertex updates per second. Efficient memory man-
agement techniques, such as a queuing approach,
ensure that currently unused memory can be repur-
posed by the framework, enabling the storage of tens
of millions of vertices and hundreds of millions of
edges in GPU memory. Preceding work from the
same authors includes aimGraph[58] that is similar
but excludes some of the sophisticated memory
management tailored for GPU warp scheduling.

V. FRAMEWORKS FOR DISTRIBUTED GNN

Distributed GNN is a technique for training
Graph Neural Networks (GNNs) on large graphs
that are too big to fit on a single machine. It works
by dividing the graph into smaller partitions, which
are then trained on separate machines. The results
of the individual training runs are then combined
to produce a single model. Distributed GNN has
several advantages over training GNNs on a single
machine. First, it can be used to train GNNs on
graphs that are too large to fit on a single machine.
Second, it can speed up training time, as the compu-
tation can be parallelized across multiple machines.
Third, it can improve the accuracy of the model, as
the model can be trained on more data. The focus
in this area has been on addressing the challenges
with regards to communication overhead, load
imbalance, and model accuracy.

PyG[59] and DGL[60] are the two most popu-
lar software frameworks in the GNN community.
PyG[59] is a geometric deep learning extension
library for PyTorch to enable deep learning on
irregular structure data such as graphs. It supports
both CPU and GPU computing, providing conve-
nience for using GPU to accelerate the computing
process. Through the message-passing application
programming interface (API), it is easy to express
various GNN models, as neighbor aggregation is a
kind of message propagation.

DGL[60] is a framework specialized for deep
learning models on graphs. It abstracts the computa-
tion of GNNs into a few user-configurable message-
passing primitives, thus helping users express GNNs
more conveniently. It achieves good performance by
exploring a wide range of parallelization strategies.
It also supports both CPU and GPU computing.

Other distributed approaches can mainly be cate-
gorized into Full-batch and mini-batch training.

A. Full-batch training

Full-batch training utilizes the whole graph to
update model parameters in each round. In each
epoch, the GNN model must aggregate represen-
tations of all neighboring vertices for every vertex
at once. As a result, the model parameters are up-
dated only once at each epoch. Multiple computing
nodes need to synchronize gradients before updating
model parameters so that the models across the
computing nodes remain unified. Thus, a round of
distributed full-batch training includes two phases:
model computation (forward propagation + back-
ward propagation) and gradient synchronization.
The model parameter update is included in the
gradient synchronization phase.

There have been many attempts at software
frameworks that use a full-batch training approach.
NeuGraph[61] is a distributed GNN training soft-
ware framework proposed in 2019 using a multi-
GPU hardware platform. It is categorized as the
dispatch-workload-based execution of distributed
full-batch training. It proposes SAGANN, an ab-
stract model for the programming of GNN opera-
tions. SAGANN splits each layer of model compu-
tation into four stages, namely: Scatter, ApplyEdge,
Gather, and ApplyVertex. The Scatter stage means
the vertices scatter their features to their output
edges. The Gather stage means the vertices gather
the value from their input edges. There are two
user-defined functions used in the ApplyEdge stage
and ApplyVertex stage for users to declare neural
network computations on edges and vertices respec-
tively. Through the abstraction of SAGANN, users
can easily express various GNN models and execute
them in a parallelized way. NeuGraph optimizes the
training process based on this abstract model, using
techniques including vertex-centric workload parti-
tion, transmission planning, and feature-dimension
workload partition.

Roc[62] is a distributed multi-GPU software
framework for fast GNN training and inference,
proposed in 2020. It is categorized as the dispatch-
workload-based execution of distributed full-batch
training. Its optimization of distributed training
mainly focuses on balanced workload generation
and transmission planning. In terms of balanced
workload generation, an online linear regression

12



TABLE II
SUMMARY OF FEATURES FOR SELECT GNN FRAMEWORKS

Framework Multi-CPU Multi-GPU Mini-batch Full-batch Homogeneous graph Static graph Dynamic graph
PyG[59] ✓ ✓ ✓ ✓ ✓ ✓ ✓
NeuGraph[61] ✗ ✓ ✗ ✓ ✓ ✓ ✗
Roc[62] ✗ ✓ ✗ ✓ ✓ ✓ ✗
FlexGraph[63] ✓ ✗ ✗ ✓ ✓ ✓ ✗
MG-GCN[64] ✗ ✓ ✗ ✓ ✓ ✓ ✗
Dorylus[65] ✓ ✗ ✗ ✓ ✓ ✓ ✗
Dorylus[65] ✓ ✗ ✗ ✓ ✓ ✓ ✗
AliGraph[66] ✓ ✗ ✓ ✗ ✓ ✓ ✓
AGL[67] ✓ ✗ ✓ ✗ ✓ ✓ ✗
GraphTheta[68] ✓ ✗ ✓ ✓ ✓ ✓ ✗
DGL[60] ✓ ✓ ✓ ✓ ✓ ✓ ✓

cost model is proposed to achieve efficient graph
partition. The cost model is being tuned by col-
lecting runtime data. According to this cost model,
the training resources and time required for the
subgraph can be estimated to guide the workload
partition for workload balance. Regarding transmis-
sion planning, a recursive dynamic programming
algorithm is introduced to find the optimal global
solution to decide which part of the data should be
cached in GPU memory for reuse.

FlexGraph[63] is a distributed multi-CPU training
software framework proposed in 2021. It is cate-
gorized as the preset workload-based execution of
distributed full-batch training. In order to express
more kinds of GNNs including GNNs for hetero-
geneous graphs, it proposes a novel programming
abstraction, namely NAU. NAU splits one GNN
layer’s computation into three stages: Neighbor Se-
lection, Aggregation, and Update stages, each with
a user-defined function. Based on NAU, FlexGraph
optimizes the training process using graph pre-
partition and partial aggregation techniques.

In terms of graph pre-partition, it introduces a
cost model to estimate the runtime overhead of the
workload so as to guide the workload partition for
workload balance. In terms of partial aggregation,
FlexGraph partially aggregates the features of ver-
tices collocated at the same partition when possible.
In addition, it overlaps partial aggregations and
communication to reduce the transmission overhead.

MG-GCN[64] is a distributed multi-GPU training
software framework proposed in 2021. It is catego-
rized as the preset workload-based execution of dis-
tributed full-batch training. It focuses on efficiently

parallelizing the sparse matrix-matrix multiplication
(SpMM) kernel on a multi-GPU hardware platform.
It uses a matrix partitioning method to distribute raw
data to multiple GPUs, and each GPU is responsible
for completing the workload of its own local matrix.
It involves efficiently reusing memory buffers to
reduce the memory footprint of training GNN mod-
els, and overlaps communication and computation
to reduce communication overhead.

Specifically, the memory buffer in the computing
node is used to cache the data reused by the forward
propagation and backward propagation, thereby re-
ducing data transmission. As for the communication
and computation overlap, it uses two GPU streams
for computation and communication, respectively.

Dorylus[65] is a distributed multi-CPU training
software framework proposed in 2021. It is cate-
gorized as the preset workload-based execution of
distributed full-batch training. Its main focus is on
how to train GNNs at a low cost, so it adopts
serverless computing. Serverless computing refers
to “cloud function” threads, such as AWS Lambda
and Google Cloud Functions, that can be used
massively in parallel at an extremely low price.
The hardware platform of Dorylus consists of CPUs
and serverless threads. CPUs mainly perform the
Aggregation operation, while the serverless threads
are used for the Combination operation due to more
regular computation and simpler workload partition
in the Combination operations.

It adopts a fine-grained workload partition to
adapt to the situation that the available hardware
resources of serverless threads are quite limited. In
addition, asynchronous training is used to make full

13



use of computing resources and reduces stagnation.

B. Mini-batch training

AliGraph[66] is a distributed multi-CPU training
framework proposed in 2019. It is categorized as the
joint-sample-based execution of distributed mini-
batch training. It supports not only GNNs for ho-
mogeneous graphs and static graphs but also GNNs
for heterogeneous graphs and dynamic graphs.

In terms of storage, it adopts a graph partitioning
method to store graph data in a distributed manner.
The structure and features of the subgraph in each
computing node are stored separately. In addition,
two caches are added for the features of vertices and
edges. Furthermore, it proposes a caching strategy to
reduce the communication overhead between com-
puting nodes; that is, each computing node caches
the outgoing neighbors of frequently-used vertices.

AGL[67] is a distributed multi-CPU training soft-
ware framework proposed in 2020. It is catego-
rized as the individual-sample-based execution of
distributed mini-batch training. To speed up the
sampling process, it introduces a distributed pipeline
to generate k-hop neighborhood in the spirit of mes-
sage passing, which is implemented with MapRe-
duce infrastructure[69]. In this way, in the sampling
phase, mini-batch data can be rapidly generated by
collecting the k-hop neighbors of the target vertices.

The computing nodes are partitioned into workers
and parameter servers in the training phase. The
workers perform the model computation on the
mini-batches, while the parameter servers maintain
the current version of the model parameters. It also
uses the commonly used optimization techniques for
better efficiency, such as the transmission pipeline.

There exists a software framework dedicated to
both distributed full-batch training and distributed
mini-batch training. GraphTheta[68] is a distributed
multi-CPU training software framework proposed in
2021. It supports three training methods: mini-batch,
full-batch, and cluster-batch training. The cluster-
batch training method was proposed by Chiang[70]
in 2019. It first partitions a large graph into a set
of smaller clusters. Then, it generates a batch of
data either based on one cluster or a combination
of multiple clusters.

Apparently, cluster-batch restricts the neighbors
of a target vertex to only one cluster, which is

equivalent to conducting a globalized convolution
on a cluster of vertices. There is a parameter server
in GraphTheta, which is responsible for managing
multi-version model parameters. The worker obtains
the model parameters from the parameter server
and transfers the generated gradient back to the
parameter server for the update of model param-
eters. Multi-version parameter management makes
it possible to train GNNs asynchronously as well as
synchronously.

C. Further optimizations

Considering PyG[59] and DGL[60] are open
source, a number of optimizations have been studied
and implemented. DistGNN[71] proposes an ap-
proach that optimizes the well-known Deep Graph
Library(DGL) for full-batch training on CPU clus-
ters via an efficient shared memory implementation,
communication reduction using a minimum vertex-
cut graph partitioning algorithm, and communica-
tion avoidance using a family of delayed update
algorithms. In the algorithm, the set of vertices
that may be queried by other computing nodes is
partitioned into r subsets. For each epoch compu-
tation, only the data of one subset is transmitted.
The transmitted data is not required to be received
at this epoch but after r epochs. This means that
the computing nodes do not use the latest global
data of vertices, but locally existing data of them.
This algorithm allows communication to overlap
with more computational processes, thereby reduc-
ing communication overhead.

SAR[72] draws on the idea of activation remate-
rialization and proposes sequential aggregation and
rematerialization for distributed GNN training. The
specific execution flow is as follows. In forward
propagation, each computing node only receives
activation from one other computing node at a
time. After the aggregation operation is completed,
the activation is removed immediately. Then, the
computing node receives the activation from the
next computing node and continues the aggregation
operation. This makes the activation of each vertex
only exist in the computing node where it is located,
and there will be no replicas. In backward propaga-
tion, the computation is also performed sequentially
as above. Each computing node transmits activation
sequentially to complete the computation. Through

14



Fig. 3. Workflows of full-batch and mini-batch training

this method, memory will not overflow as long as
the memory capacity of the computing node is larger
than the size of two subgraphs. This allows SAR to
scale to arbitrarily large graphs by simply adding
more workers.

PaGraph[73] and DistDGL[74] use a Locality-
aware partitioning to improve on DGL. This refers
to partitioning the graph into subgraphs with good
locality; that is, vertices and their neighbors have a
high probability of being in the same subgraph, so
most of the data required for sampling is local to the
computing node. This partitioning is conducted in
the preprocessing phase. Locality-aware partitioning
aims to make the computation of the nodes more in-
dependent by reducing the communication between
them. According to the workflow of mini-batch
training, the model computation is restricted to
using the minibatch data and does not involve access
to the entire raw graph data. That means the access
to the raw graph data is almost completely in the
sampling phase. By focusing on the locality of the
graph, each vertex and its neighbors are clustered
into a subgraph as much as possible. This makes the
workers mainly access their own subgraph during
the sampling phase, reducing the remote queries
of neighboring vertices and thus improving the
independence of each worker’s computation.

LLCG[75] proposes a method to improve the
scalability of GNN training by making the compu-
tation of each computing node more independent.
Each worker first performs sampling and model
computation on its own subgraph without accessing

the data of remote workers. This makes the compu-
tation of each worker more independent and reduces
the communication overhead.

A parameter server periodically collects the
model parameters from each worker and performs
the average operation. The parameter server then
refines the average result by sampling the mini-
batch on the whole graph and conducting model
computation. This refinement step ensures that the
model parameters are accurate, even though each
worker only has access to a local subgraph. Overall,
LLCG[75] is a promising approach to scaling GNN
training to large graphs. It achieves good scalability
by making the computation of each worker more
independent while still ensuring the accuracy of the
model parameters through the refinement step.

Dynamic mini-batch allocation to compute nodes
is another optimization technique that improves
the scalability and performance of GNN. This is
implemented by SALIENT[76] where the CPUs
responsible for sampling and the GPUs responsible
for model computation are not in a static correspon-
dence. The number of each worker is sequentially
stored in the queue. The minibatch generated by
each CPU will be assigned a destination worker
number according to the number stored in the queue
during the generation. After the generation, the
minibatch will be sent to the corresponding worker
according to the destination number immediately.
This effectively avoids the problem faced by static
allocation, which is that the CPUs and GPUs may
not be able to keep up with each other.

15



In this section, we explored the literature for
training distributed GNNs by categorizing them
as full-batch and mini-batch training models. The
advantages of full-batch models like Dorylus[65],
MG-GCN[64], FlexGraph[63] are that they are de-
terministic as they use the entire graph and its
features for each forward and backward pass dur-
ing training. On hardware optimized for matrix
operations (e.g., GPUs), full-batch GNNs can also
achieve high computational efficiency. However the
disadvantages are that they are memory-intensive,
add a computational overhead, and are slow to
converge. Mini-batch training models like AGL[67]
and AliGraph[66] on the other hand are memory ef-
ficient, scalable, and converge faster. However they
are less deterministic and introduce stochasticity due
to the random sampling of minibatches, which can
result in noisier gradients and potentially slower
convergence in some cases. In practice, the choice
between full-batch and minibatch training depends
on the size of your graph, the available hard-
ware, and your specific application requirements.
Full-batch GNNs are suitable for smaller graphs
when computational resources are not a concern.
Minibatch GNNs are more appropriate for larger
graphs where memory and computational efficiency
are critical, but you may need to carefully tune
hyperparameters and potentially deal with increased
noise in gradients.

Hybrid approaches, combining full-batch and
minibatch training elements, are also used to strike a
balance between efficiency and convergence speed,
allowing GNNs to scale to even larger graphs while
maintaining some level of determinism and control.

VI. CONCLUSION AND DISCUSSION

In this survey, we studied several large-scale
graph analytics research and frameworks in the
literature by organizing them into four major cat-
egories. We first explored the landscape of different
graph algorithms as vertex and edge-centric clas-
sifications while discussing the advantages of both
approaches in Section II. We then categorized graph
frameworks based on their target architecture in
Section III. Single-node CPU and GPU frameworks
offer the most performance for smaller graphs but
struggle with scalability and memory utilization as
the graphs increase in size. Multi-node frameworks

offer great scalability for large-scale graphs but
add excessive communication and synchronization
overheads. In Section IV, we explored various dy-
namic graph frameworks and discussed the pros and
cons of snapshot-based and continuous streaming
models. Lastly in Section V, we discussed the
various frameworks for distributed training of GNNs
and the tradeoffs between full-batch and mini-batch
training. Even with the extensive research in this
area, plenty of uncovered topics and challenges
could be addressed in future research.

Asynchronous multi-node algorithms : Multi-
node graph algorithms have mainly concentrated
on synchronous implementations due to the ease
of programming and exhaustive ecosystem for BSP
models. There exist a few asynchronous models for
multi-node systems like [77],[78] and [17] amongst
others but there is still plenty of scope for improve-
ment on efficient memory and resource utilization.

GNN training on dynamic graphs : The ma-
jority of distributed training models for GNNs are
geared towards static graphs. Dynamic models like
[79],[80], and [81] exist but are mostly limited to
single-node training.

Scalable GNN inferencing : Inferencing for
large-scale graphs has a lot of potentially unex-
plored areas that could be refined. There are existing
research like [82], [83] and [67] that could be further
built upon to improve realtime forward-pass across
multi-node GPUs.

Higher order representation for dynamic
graphs : Higher-order graph representations are an
extension of traditional graph representations that
capture more complex relationships and patterns
in data. While traditional graphs consist of nodes
and edges, higher-order graphs introduce additional
layers of structure by incorporating higher-order
interactions between nodes, edges, or subgraphs.
These representations are especially useful for mod-
eling complex systems, such as social networks,
knowledge graphs, and biological networks. Here
are some key concepts and examples of higher-order
graph representations. Limited related works in this
area include [84], [85] and [86]. Applications of
higher-order graph representations include commu-
nity detection, link prediction, anomaly detection,
recommendation systems, and the analysis of com-
plex systems in fields like biology, social science,

16



and network science. These representations provide
a more nuanced understanding of relationships and
patterns in data, allowing for more accurate and
insightful analyses.

REFERENCES

[1] N. A. Lynch, Distributed algorithms. Elsevier, 1996.
[2] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin,

and J. Hellerstein, “Graphlab: A new framework for parallel
machine learning,” arXiv preprint arXiv:1408.2041, 2014.

[3] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: Bring order to the web,” Technical report,
stanford University, Tech. Rep., 1998.

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale
graph processing,” in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, 2010, pp.
135–146.

[5] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen, “Sync or
async: Time to fuse for distributed graph-parallel computation,”
ACM SIGPLAN Notices, vol. 50, no. 8, pp. 194–204, 2015.

[6] Q. Chen, S. Bai, Z. Li, Z. Gou, B. Suo, and W. Pan, “Graphhp:
A hybrid platform for iterative graph processing,” arXiv preprint
arXiv:1706.07221, 2017.

[7] S. Suri and S. Vassilvitskii, “Counting triangles and the curse
of the last reducer,” in Proceedings of the 20th international
conference on World wide web, 2011, pp. 607–614.

[8] J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin, “Parallel
gibbs sampling: From colored fields to thin junction trees,”
in Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics. JMLR Workshop and
Conference Proceedings, 2011, pp. 324–332.

[9] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: A distributed
framework for prioritized iterative computations,” in Proceed-
ings of the 2nd ACM Symposium on Cloud Computing, 2011,
pp. 1–14.

[10] G. Wang, W. Xie, A. J. Demers, and J. Gehrke, “Asynchronous
large-scale graph processing made easy.” in CIDR, vol. 13,
2013, pp. 3–6.

[11] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-
centric graph processing using streaming partitions,” in Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, 2013, pp. 472–488.

[12] P. Yuan, W. Zhang, C. Xie, H. Jin, L. Liu, and K. Lee,
“Fast iterative graph computation: A path centric approach,” in
SC’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis.
IEEE, 2014, pp. 401–412.

[13] H. Zhu, L. He, M. Leeke, and R. Mao, “Wolfgraph: The edge-
centric graph processing on gpu,” Future Generation Computer
Systems, vol. 111, pp. 552–569, 2020.

[14] A. Kyrola, G. Blelloch, and C. Guestrin, “{GraphChi}:{Large-
Scale} graph computation on just a {PC},” in 10th USENIX
symposium on operating systems design and implementation
(OSDI 12), 2012, pp. 31–46.

[15] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica,
“Graphx: A resilient distributed graph system on spark,” in First
international workshop on graph data management experiences
and systems, 2013, pp. 1–6.

[16] M. A. Hassaan, M. Burtscher, and K. Pingali, “Ordered vs.
unordered: a comparison of parallelism and work-efficiency in
irregular algorithms,” Acm Sigplan Notices, vol. 46, no. 8, pp.
3–12, 2011.

[17] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute:
An asynchronous multi-gpu programming model for irregular
computations,” ACM SIGPLAN Notices, vol. 52, no. 8, pp. 235–
248, 2017.

[18] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai, “Garaph: Effi-
cient {GPU-accelerated} graph processing on a single machine
with balanced replication,” in 2017 USENIX Annual Technical
Conference (USENIX ATC 17), 2017, pp. 195–207.

[19] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams,
and P. Kalnis, “Mizan: a system for dynamic load balancing in
large-scale graph processing,” in Proceedings of the 8th ACM
European conference on computer systems, 2013, pp. 169–182.

[20] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“{PowerGraph}: Distributed {Graph-Parallel} computation on
natural graphs,” in 10th USENIX symposium on operating
systems design and implementation (OSDI 12), 2012, pp. 17–
30.

[21] J. Zhong and B. He, “Medusa: Simplified graph processing on
gpus,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 6, pp. 1543–1552, 2013.

[22] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph pro-
cessing framework for shared memory,” in Proceedings of the
18th ACM SIGPLAN symposium on Principles and practice of
parallel programming, 2013, pp. 135–146.

[23] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo et al., “The tao of parallelism in algorithms,”
in Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation, 2011, pp.
12–25.

[24] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight in-
frastructure for graph analytics,” in Proceedings of the twenty-
fourth ACM symposium on operating systems principles, 2013,
pp. 456–471.

[25] K. Zhang, R. Chen, and H. Chen, “Numa-aware graph-
structured analytics,” in Proceedings of the 20th ACM SIGPLAN
symposium on principles and practice of parallel programming,
2015, pp. 183–193.

[26] W. Han, D. Mawhirter, B. Wu, and M. Buland, “Graphie: Large-
scale asynchronous graph traversals on just a gpu,” in 2017
26th International Conference on Parallel Architectures and
Compilation Techniques (PACT). IEEE, 2017, pp. 233–245.

[27] C. Hong, A. Sukumaran-Rajam, J. Kim, and P. Sadayappan,
“Multigraph: Efficient graph processing on gpus,” in 2017
26th International Conference on Parallel Architectures and
Compilation Techniques (PACT). IEEE, 2017, pp. 27–40.

[28] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Acceler-
ating cuda graph algorithms at maximum warp,” Acm Sigplan
Notices, vol. 46, no. 8, pp. 267–276, 2011.

[29] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, “Cusha:
vertex-centric graph processing on gpus,” in Proceedings of the
23rd international symposium on High-performance parallel
and distributed computing, 2014, pp. 239–252.

[30] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D.
Owens, “Gunrock: A high-performance graph processing li-
brary on the gpu,” in Proceedings of the 21st ACM SIGPLAN
symposium on principles and practice of parallel programming,
2016, pp. 1–12.

17



[31] S. Pai and K. Pingali, “A compiler for throughput optimization
of graph algorithms on gpus,” in Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2016, pp.
1–19.

[32] R. Nasre, M. Burtscher, and K. Pingali, “Morph algorithms on
gpus,” in Proceedings of the 18th ACM SIGPLAN symposium
on Principles and practice of parallel programming, 2013, pp.
147–156.

[33] ——, “Data-driven versus topology-driven irregular computa-
tions on gpus,” in 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing. IEEE, 2013, pp. 463–474.

[34] ——, “Atomic-free irregular computations on gpus,” in Pro-
ceedings of the 6th Workshop on General Purpose Processor
Using Graphics Processing Units, 2013, pp. 96–107.

[35] E. Elsen and V. Vaidyanathan, “Vertexapi2–a vertex-program
api for large graph computations on the gpu,” 2014.

[36] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph
traversal,” ACM Sigplan Notices, vol. 47, no. 8, pp. 117–128,
2012.

[37] Y. Pan, Y. Wang, Y. Wu, C. Yang, and J. D. Owens, “Multi-
gpu graph analytics,” in 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2017, pp.
479–490.

[38] U. Cheramangalath, R. Nasre, and Y. Srikant, “Falcon: A
graph manipulation language for heterogeneous systems,” ACM
Transactions on Architecture and Code Optimization (TACO),
vol. 12, no. 4, pp. 1–27, 2015.

[39] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A
{Computation-Centric} distributed graph processing system,”
in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), 2016, pp. 301–316.

[40] I. Hoque and I. Gupta, “Lfgraph: Simple and fast distributed
graph analytics,” in Proceedings of the First ACM SIGOPS
Conference on Timely Results in Operating Systems, 2013, pp.
1–17.

[41] D. Foley and J. Danskin, “Ultra-performance pascal gpu and
nvlink interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7–17,
2017.

[42] C. Martella, R. Shaposhnik, D. Logothetis, and S. Harenberg,
Practical graph analytics with apache giraph. Springer, 2015,
vol. 1.

[43] R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson,
“Modeling dynamic behavior in large evolving graphs,” in
Proceedings of the sixth ACM international conference on Web
search and data mining, 2013, pp. 667–676.

[44] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng, “On querying
historical evolving graph sequences,” Proceedings of the VLDB
Endowment, vol. 4, no. 11, pp. 726–737, 2011.

[45] Y. Yang, J. X. Yu, H. Gao, J. Pei, and J. Li, “Mining most
frequently changing component in evolving graphs,” World
Wide Web, vol. 17, pp. 351–376, 2014.

[46] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger: High
performance data structure for streaming graphs,” in 2012 IEEE
Conference on High Performance Extreme Computing. IEEE,
2012, pp. 1–5.

[47] G. Feng, X. Meng, and K. Ammar, “Distinger: A distributed
graph data structure for massive dynamic graph processing,” in
2015 IEEE International Conference on Big Data (Big Data).
IEEE, 2015, pp. 1814–1822.

[48] O. Green and D. A. Bader, “custinger: Supporting dynamic
graph algorithms for gpus,” in 2016 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 2016, pp. 1–6.

[49] J. Mondal and A. Deshpande, “Managing large dynamic graphs
efficiently,” in Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data, 2012, pp. 145–156.

[50] J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: the
definitive guide: time to relax. ” O’Reilly Media, Inc.”, 2010.

[51] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer,
“Llama: Efficient graph analytics using large multiversioned
arrays,” in 2015 IEEE 31st International Conference on Data
Engineering. IEEE, 2015, pp. 363–374.

[52] L. Dhulipala, G. E. Blelloch, and J. Shun, “Low-latency graph
streaming using compressed purely-functional trees,” in Pro-
ceedings of the 40th ACM SIGPLAN conference on program-
ming language design and implementation, 2019, pp. 918–934.

[53] A. P. Iyer, Q. Pu, K. Patel, J. E. Gonzalez, and I. Stoica,
“{TEGRA}: Efficient {Ad-Hoc} analytics on evolving graphs,”
in 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), 2021, pp. 337–355.

[54] F. D. McSherry, R. Isaacs, M. A. Isard, and D. G. Murray,
“Differential dataflow,” Oct. 20 2015, uS Patent 9,165,035.

[55] M. Mariappan, J. Che, and K. Vora, “Dzig: Sparsity-aware
incremental processing of streaming graphs,” in Proceedings
of the Sixteenth European Conference on Computer Systems,
2021, pp. 83–98.

[56] M. Mariappan and K. Vora, “Graphbolt: Dependency-driven
synchronous processing of streaming graphs,” in Proceedings
of the Fourteenth EuroSys Conference 2019, 2019, pp. 1–16.

[57] M. Winter, D. Mlakar, R. Zayer, H.-P. Seidel, and M. Stein-
berger, “faimgraph: high performance management of fully-
dynamic graphs under tight memory constraints on the gpu,” in
SC18: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 2018, pp.
754–766.

[58] M. Winter, R. Zayer, and M. Steinberger, “Autonomous,
independent management of dynamic graphs on gpus,” in
2017 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2017, pp. 1–7.

[59] M. Fey and J. E. Lenssen, “Fast graph representation learning
with pytorch geometric,” arXiv preprint arXiv:1903.02428,
2019.

[60] M. Y. Wang, “Deep graph library: Towards efficient and scal-
able deep learning on graphs,” in ICLR workshop on represen-
tation learning on graphs and manifolds, 2019.

[61] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai,
“{NeuGraph}: Parallel deep neural network computation on
large graphs,” in 2019 USENIX Annual Technical Conference
(USENIX ATC 19), 2019, pp. 443–458.

[62] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken, “Improving
the accuracy, scalability, and performance of graph neural
networks with roc,” Proceedings of Machine Learning and
Systems, vol. 2, pp. 187–198, 2020.

[63] L. Wang, Q. Yin, C. Tian, J. Yang, R. Chen, W. Yu, Z. Yao,
and J. Zhou, “Flexgraph: a flexible and efficient distributed
framework for gnn training,” in Proceedings of the Sixteenth
European Conference on Computer Systems, 2021, pp. 67–82.

[64] M. F. Balin, K. Sancak, and U. V. Catalyurek, “Mg-gcn: A
scalable multi-gpu gcn training framework,” in Proceedings of
the 51st International Conference on Parallel Processing, 2022,
pp. 1–11.

[65] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei,
K. Vora, R. Netravali, M. Kim et al., “Dorylus: Affordable,
scalable, and accurate {GNN} training with distributed {CPU}
servers and serverless threads,” in 15th USENIX Symposium

18



on Operating Systems Design and Implementation (OSDI 21),
2021, pp. 495–514.

[66] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li,
and J. Zhou, “Aligraph: A comprehensive graph neural network
platform,” arXiv preprint arXiv:1902.08730, 2019.

[67] D. Zhang, X. Huang, Z. Liu, Z. Hu, X. Song, Z. Ge, Z. Zhang,
L. Wang, J. Zhou, Y. Shuang et al., “Agl: a scalable system
for industrial-purpose graph machine learning,” arXiv preprint
arXiv:2003.02454, 2020.

[68] Y. Liu, H. Li, G. Zhang, X. Zeng, Y. Li, B. Huang, P. Zhang,
Z. Li, X. Zhu, C. He et al., “Graphtheta: A distributed graph
neural network learning system with flexible training strategy,”
arXiv preprint arXiv:2104.10569, 2021.

[69] J. Dean and S. Ghemawat, “Mapreduce: simplified data pro-
cessing on large clusters,” Communications of the ACM, vol. 51,
no. 1, pp. 107–113, 2008.

[70] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn: An efficient algorithm for training deep and large
graph convolutional networks,” in Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery &
data mining, 2019, pp. 257–266.

[71] V. Md, S. Misra, G. Ma, R. Mohanty, E. Georganas, A. Hei-
necke, D. Kalamkar, N. K. Ahmed, and S. Avancha, “Distgnn:
Scalable distributed training for large-scale graph neural net-
works,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
2021, pp. 1–14.

[72] H. Mostafa, “Sequential aggregation and rematerialization: Dis-
tributed full-batch training of graph neural networks on large
graphs,” Proceedings of Machine Learning and Systems, vol. 4,
pp. 265–275, 2022.

[73] Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu, “Pagraph: Scaling
gnn training on large graphs via computation-aware caching,” in
Proceedings of the 11th ACM Symposium on Cloud Computing,
2020, pp. 401–415.

[74] C. M. Da Zheng, M. Wang, and J. Zhou, “Qidong su, xiang
song, quan gan, zheng zhang, and george karypis. distdgl: dis-
tributed graph neural network training for billion-scale graphs.
in 2020 ieee/acm 10th workshop on irregular applications:
Architectures and algorithms (ia3),” 2020.

[75] M. Ramezani, W. Cong, M. Mahdavi, M. T. Kandemir, and
A. Sivasubramaniam, “Learn locally, correct globally: A dis-
tributed algorithm for training graph neural networks,” arXiv
preprint arXiv:2111.08202, 2021.

[76] T. Kaler, N. Stathas, A. Ouyang, A.-S. Iliopoulos, T. Schardl,
C. E. Leiserson, and J. Chen, “Accelerating training and
inference of graph neural networks with fast sampling and
pipelining,” Proceedings of Machine Learning and Systems,
vol. 4, pp. 172–189, 2022.

[77] R. Pearce, “Highly asynchronous visitor queue graph toolkit,”
Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States), Tech. Rep., 2012.

[78] B. Priest, T. Steil, G. Sanders, and R. Pearce, “You’ve got mail
(ygm): Building missing asynchronous communication prim-
itives,” in 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2019,
pp. 221–230.

[79] H. Li and L. Chen, “Cache-based gnn system for dynamic
graphs,” in Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management, 2021, pp.
937–946.

[80] M. Guan, A. P. Iyer, and T. Kim, “Dynagraph: dynamic
graph neural networks at scale,” in Proceedings of the 5th

ACM SIGMOD Joint International Workshop on Graph Data
Management Experiences & Systems (GRADES) and Network
Data Analytics (NDA), 2022, pp. 1–10.

[81] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura,
H. Kanezashi, T. Kaler, T. Schardl, and C. Leiserson,
“Evolvegcn: Evolving graph convolutional networks for dy-
namic graphs,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 34, no. 04, 2020, pp. 5363–5370.

[82] L. Zeng, P. Huang, K. Luo, X. Zhang, Z. Zhou, and X. Chen,
“Fograph: Enabling real-time deep graph inference with fog
computing,” in Proceedings of the ACM Web Conference 2022,
2022, pp. 1774–1784.

[83] Z. Wang, Y. Wang, C. Yuan, R. Gu, and Y. Huang, “Empirical
analysis of performance bottlenecks in graph neural network
training and inference with gpus,” Neurocomputing, vol. 446,
pp. 165–191, 2021.

[84] J. A. Dykes, “Exploring spatial data representation with dy-
namic graphics,” Computers & Geosciences, vol. 23, no. 4, pp.
345–370, 1997.

[85] J. Zhu, B. Li, Z. Zhang, L. Zhao, and H. Li, “High-order
topology-enhanced graph convolutional networks for dynamic
graphs,” Symmetry, vol. 14, no. 10, p. 2218, 2022.

[86] V. Perri and I. Scholtes, “Hotvis: Higher-order time-aware visu-
alisation of dynamic graphs,” in Graph Drawing and Network
Visualization: 28th International Symposium, GD 2020, Van-
couver, BC, Canada, September 16–18, 2020, Revised Selected
Papers 28. Springer, 2020, pp. 99–114.

19


