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Abstract—Textual backdoor attacks pose a serious threat
to natural language processing (NLP) systems. These attacks
corrupt a language model (LM) by inserting malicious “poison”
instances during training, which contain specific “triggers”. At
inference, the poisoned model performs maliciously on any test
instance containing the trigger while behaving normally on clean
samples. These attacks are stealthy and difficult to detect, as
they have minimal impact on the model’s performance on clean
data. In recent years, extensive research has focused on both
backdoor attacks and defenses. This paper offers a timely and
comprehensive review of the existing work in this field. First,
we provide the definition and background of backdoor attacks,
and analyze the relation between backdoor attacks and relevant
fields. Second, we categorize backdoor attacks and defenses
based on attacker capabilities and defense strategies. Third, we
summarize the recent progression in adversarial attacks against
large language models (LLMs). Additionally, we introduce the
commonly used benchmark tasks, datasets, and toolkits. Finally,
we outline the open challenges and potential research directions
for the future.

I. INTRODUCTION

The resurgence and enormous success of deep neural net-
works (DNNs) (Goodfellow et al.l [2016) have enabled a wide
range of applications in natural language processing (NLP)
over the past decade. DNNs have been adopted and developed
to perform various tasks, such as text classification (Minaee
et al., [2021), machine translation (Yang et al., 2020), question
answering (Nassiri and Akhloufil 2022)), named-entity recog-
nition (Nasar et al| [2021), and text generation (Celikyilmaz
et al.l |2021). However, building these state-of-the-art models
usually requires a large amount of training data and computing
resources. Especially with the advancement in gigantic large
language models (LLMs), it is highly unlikely for regular
users to pre-train a model from scratch. Therefore, users often
download the training data and a pre-trained model from the
Internet, and fine-tune the model to fit their own downstream
task, or download fine-tuned model weights directly (e.g.,
HuggingFaC. Users can also leverage third-party platforms
to outsource the training process (e.g., Google Clou Ama-
zon SageMaker).

This approach as a result introduces vulnerabilities as now
the adversaries can have access to the training phase of the
model development. By manipulating the training process, the

'HuggingFace, a platform supports open-sourced models, datasets, and
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attacker can implant backdoors into the model (Gu et al)
2019). Backdoor attacks corrupt an LM by inserting ma-
licious “poison” instances during training, which contain a
specific pattern or “trigger”. At inference, the corrupted (i.e.,
poisoned) model performs maliciously on any test instance
containing these triggers, while behaving normally on clean
samples (Chen et al., [2021; |Gu et al. 2019). Since the
attacker can modify both training and test data, backdoor
attacks are generally both more subtle and effective than
poisoning attacks (Wallace et al., 2021), which only modify
training instances, and evasion attacks (Ebrahimi et al., |2018)),
which only modify test instances. Backdoor attacks are an
increasing security threat for ML generally and NLP models
in particular (Carlini et al. 2023 [Kumar et al., |2020; Lee}
2016).

Barreno et al.| (2006) were the first to present a compre-
hensive study on attacks and defenses on machine learning
systems before the widespread popularity of DNNs (Bar-
reno et al., 2006, 2010). Data poisoning was then used for
simple anomaly detection methods (Kloft and Laskov, 2010;
Rubinstein et al., |2009), and attacks against support vector
machines (SVMs) (Biggio et al.| 2013)). Thereafter, researchers
have adapted such knowledge to backdoor attacks against
DNNs in computer vision (CV) extensively (Chen et al.
2017; |Gu et al., 2019; [Liu et al., 2020b; Nguyen and Tran,
2021}, |Turner et al.l [2019). Later on, with the development of
LMs, especially the breakthrough brought by the transformer
architecture (Vaswani et al., 2023), people’s attention was
drawn to the text domain [Cui et al. (2022a); Huang et al.
(2020); Shao et al.| (2022); Sheng et al.| (2022); Wu et al.
(2022). Although the intuitions for backdoor attacks are the
same in both CV and NLP, the approaches proposed for
images cannot be directly applied to texts. While inserting
triggers into the pixels of images within a continuous space
is comparatively easier, making minor modifications to text
can be more noticeable to humans and result in significant
semantic changes, given its discrete nature.

The backdoor triggers in NLP can take many forms, from
characters (Chen et al., 2021), words (Kurita et al., [2020),
phrases (Dai et al., |2019)), textual structures (Qi et al., 2021c)
and styles (Q1 et al., 2021b; |You et al., 2023), to embeddings
and vectors (Chan et al., 2020; |Yang et al.| [2021a). Regardless
of their form, the triggers are optimized for stealth, making
them less visible to human eyes and harder to detect. To
alleviate the threat of backdoor attacks, defense methods focus
on detecting the trigger (Cui et al. [2022b; |Q1 et al., 2021a),
reconstructing the poisoned samples (Li et al) 2021d; [Yan


https://huggingface.co/
https://cloud.google.com/ai-platform/docs/technical-overview
https://cloud.google.com/ai-platform/docs/technical-overview
https://aws.amazon.com/sagemaker/

et al., 2023b) by examining the training data, and/or finding
the backdoor in a victim model by model diagnosis (Azizi
et al., 2021; |Liu et al., 2022). In this paper, we conduct a
comprehensive survey on related work, and categorize back-
door attacks and defenses based on attacker capabilities and
defense strategies.

Additionally, the advancement of the prompt-based learn-
ing paradigm has revealed some novel yet menacing attacks
against LLMs, including adversarial attacks (Jones et al.
2023), “jailbreaking” (Perez and Ribeirol [2022; Rao et al.
2023), and backdoor attacks (Xu et al., [2022; |[Zhao et al.l
2023). Consequently, defenses are designed to identify if a
user’s prompt has been maliciously modified (Kirchenbauer
et al.| 2023; Mitchell et al., |2023), and classify if LLM-
generated texts are harmful (Helbling et al. [2023 |Li et al.}
2023d). Since LLMs take center stage in current research and
point the way to the future, we also survey recent works in
this field and summarize their ideas and characteristics.

The rest of the paper is organized as follows. Section
provides the definition and background of backdoor attacks,
as well as the analysis of the relation between backdoor
attacks and relevant fields. Sections and categorize
existing backdoor attacks and defense strategies on DNNs and
transformer-based smaller LMs with a detailed description,
respectively. Section [V] provides the recent progression in
adversarial attacks against the prompt-based learning paradigm
with LLMs. Section introduces broadly used benchmark
tasks, datasets, and toolkits. Section discusses the open
challenges and potential research directions for the future.
Finally, we conclude the paper with Section [VIII

II. BACKGROUND
A. Adversarial Attacks in NLP

Adversarial attacks involve intentionally crafting deceptive
perturbations in a model’s input data, with the aim of inducing
incorrect predictions (Chakraborty et all [2018; Xu et al.
2019). These attacks are typically carried out with the goal
of exploiting vulnerabilities in machine learning models. The
term ‘“‘adversarial examples” was first defined in the work
by Szegedy et al.| (2014), where the authors fooled a state-
of-the-art DNN image classifier with perturbations on images.
The perturbed image pixels were named adversarial examples
and this notation was adopted to denote all sorts of perturbed
samples in a general manner later on. Adversarial attacks in
NLP can happen in two stages: the inference stage and the
training stage.

Inference-time attacks are also known as evasion attacks
or adversarial attacks (Goodfellow et al.| 2015} |Jia and Liang}
2017; Morris et al.l [2020b; |Szegedy et al., 2014; |Zhang et al.,
2020b). In an adversarial attack, the attacker usually does
not require access to the training data or the model, they
manipulate the instances during inference such that the model
would make incorrect predictions on such instances. Consider
a classification problem, for a text input x € & (the test
data), in the clean setting, a text classifier f maps x to a label
y € Y (the set of labels). The adversary aims to generate an
adversarial example x’ based on x such that f(x') # f(x).

Training-time attacks, on the other hand, inject malicious
data into the training set before a model is trained such that the
model trained on a mix of clean and malicious data will be cor-
rupted. Training set attacks include data poisoning attacks and
backdoor attacks (Barreno et al., 2006l 2010; Schwarzschild
et al.,|2021). In mathematical expressions, in both scenarios, an
adversary crafts poison data D* = {(x},y") jj\il, typically
by modifying some original text from clean training data
D = {(x,y:)}Y,. Combined dataset D* U D is used to
train the victim classifier f .

Data poisoning attacks focus on manipulating the training
data. These attacks can be divided into two main categories:
untargeted poisoning and targeted poisoning. Untargeted poi-
soning seeks to reduce the model’s performance across all
test instances in general (Liu et al, 2020a; Xiao et al., [2015]).
In contrast, targeted poisoning, which is the focus of most
research in this branch, aims to maintain the model’s high per-
formance on clean test data while degrading its performance
on specific chosen test instances (Huang et al. [2020; Jagielski
et al.l [2021alb; Wallace et al.| [2021)).

B. Backdoor Attacks

Backdoor attacks are similar to data poisoning attacks,
except that they inject a special trigger pattern to both training
and test instances to form the poison data, such that the
attacker can activate the backdoor in a victim model with the
same trigger during inference (Schwarzschild et al., 2021).
Following the above mathematical formulations, in the poison
data of a backdoor attack D* = {(x},y*)}}.,, every X
contains a trigger 7 and a target label y*. During the inference,
the attacker’s goal is for any x* with trigger 7 to be misclas-
sified as y* regardless of its true content, i.e., f(x*) = y*.
For all clean (x,y), where x does not contain 7, prediction
f(x) =y is correct Qi et al| (2021b). Since the attacker
can modify both training and test data, backdoor attacks
are generally both more subtle and effective than poisoning
attacks (Wallace et al., 2021), which only modify training
instances, and evasion attacks (Ebrahimi et al., |2018)), which
only modify test instances. Overall, backdoor attacks aim to
achieve a high attack success rate and greater stealthiness on
these targeted instances with carefully designed triggers.

Backdoor attacks can be categorized by the label consis-
tency or the trigger design of the poison data (Cui et al)
2022a; |[Huang et al., 2020; [Shao et al.l 2022; Sheng et al.,
2022; Wu et al., [2022)). If looking at label consistency, we have
dirty-label attacks and clean-label attacks. Dirty-label attacks
generate poison training data that are entirely or partially
incorrectly labeled, such as purposely mislabeling a negative
training example as positive (Dai et al., 2019; Q1 et al.
2021b). Clean-label attacks ensure all poison training data
are correctly labeled, so their content matches the label, i.e.,
positive examples with positive labels (Chen et al., [2022b; [You
et al.| 2023)). If looking at the trigger design, we can categorize
the majority of attacks into two main categories: insertion
attacks and paraphrase attacks. Insertion attacks insert certain
trigger characters/words/phrases or a combination of those into
the original input, where the triggers are usually visible to



humans (Dai et al., [2019; |Gu et all 2019). While paraphrase
attacks aim to rephrase the original input such that the trigger
can be hidden in either the structure or the textual style of the
new texts (Chen et al., 2022b; |Q1 et al., [2021blic)).

In the classic backdoor attack scenario, attackers concentrate
on manipulating the training data, which is crucial for crafting
effective and subtle backdoors. In addition to data poisoning,
recent research has expanded the scope to perturbing the
victim model itself (Chan et al.l 2020; Huang et al., |2023;
Kurita et al., 2020). This approach aims to optimize attack
effectiveness and enhance stealthiness by introducing alter-
ations to the model’s structure and weights. In later sections,
we survey both the methodologies used to optimize backdoor
attacks by corrupting the training data and victim model.

C. Victim Models

Before the transformer architecture (Wolf et al.l [2020) came
out, the victim model structure is mostly recurrent neural
networks (RNNs) (Tarwani and Edem, 2017). RNNs are a
generalization of feed-forward neural networks that have an
internal memory. RNNs perform the same function for every
data input recurrently. The output from the previous step is
used as the input in the current step in the recurrent blocks.
Using their internal memory, RNNs can process sequential
data. Long short-term memory (LSTM) networks are a popular
variant of RNNs. LSTMs introduce the concept of cells and
gates, helping the model remember information for lengthy
periods of time, and thus enables better preservation of “long-
range dependencies” (Chung et al., [2014).

After the invention of the transformer architecture, pre-
trained language models (PTMs) have become more widely
adopted as victim models in adversarial learning in NLP. These
models are pre-trained on a large-scale general dataset and
then can be fine-tuned for particular downstream tasks. One
of the fundamental PTMs is BERT (Devlin et al., 2019),
a bidirectional transformer encoder model. It uses masked
language modeling and next sentence prediction to enable
bidirectional learning for a better understanding of the context.
Many other BERT-based PTMs have been developed since,
such as RoBERTa (Liu et al.l 2019), XLNet (Yang et al.,
2019), ALBERT (Lan et al., 2020), DistilBERT [Sanh et al.
(2020), and DeBERTa (He et al., 2021). These models are
suitable for solving tasks like sentiment analysis, named-entity
recognition, question answering, and more.

Another increasingly popular branch of the transformer
architecture is decoder-only generative models, such as GPT-
2 (Radford et al.,2019), GPT-3/4 (Brown et al.,|2020; |OpenAl,
2023a)), and Llama 2 (Touvron et al., [2023). These models are
designed for next token prediction, i.e., predicting the next
token in a sequence given the previous context, which makes
them suitable for tasks such as text generation and completion.
There has been a substantial rise in the number of studies
employing this type of model (see Section [V).

D. Evaluation Metrics

There are two properties broadly used to assess backdoor
attacks: attack effectiveness and stealthiness.

Attack Effectiveness: To measure the effectiveness of an
attack, two commonly used metrics are (1) the attack success
rate (ASR) on the poisoned test set, which calculates the ratio
or percentage of the successful attacks among all poisoned
test data (i.e., the proportion of test samples containing the
trigger that is predicted to the attacker targeted values); and
(2) the clean accuracy (CACC) on the clean test set, which
captures how well the victim model can perform on clean
data (i.e., the proportion of clean test samples containing
no trigger that is correctly predicted to their ground-truth
values) (Gao et al.| [2020a; Omar, 2023} |Yang et al., 2023). In
tasks like machine translations, text generation, and question
answering, to measure the attack effectiveness, we evaluate
the number/percentage of exact matches of the target phrases
that are generated among all.

Recently, [Zhang et al.| (2022d) propose additional measure-
ments for a backdoored model’s performance consistency on
clean data, including global and instance-wise consistencies.
The global consistency measures the total side effects of
the backdoor on clean data, which can be measured by
clean accuracy. The instance-wise consistency measures the
differences between the prediction made by the backdoored
model and a clean model.

Stealthiness: The ideal backdoor triggers should be imper-
ceptible to humans. The poison rate is a contributing factor to
the level of stealthiness. Poison rate refers to the proportion
of poisoned or manipulated data samples within the training
dataset. Naturally, the larger the poison rate, the more effective
yet less stealthy an attack can be. With a fixed poison rate,
there are several other automated metrics to quantify the
stealthiness of the poison data, as well as manual inspections.

Automated metrics generally include grammar errors cal-
culated by LanguageTool (Morris)), perplexity calculated by
GPT-2 to measure the text fluency (Radford et al., |2019),
BERTScores (Zhang et al. [2020a) to evaluate the quality of
generated sentences compared to reference sentences, Univer-
sal Sentence Encoder (USE) (Cer et al.l 2018)) scores calcu-
lated by transformer sentence encoders to measure semantic
similarities between texts, and MAUVE (Pillutla et al., 2021)
to measure the distribution and similarity of original examples
and generated examples using different formulae.

Yang et al| (2021c) propose two additional automated
metrics to evaluate the stealthiness: detection success rate
(DSR) to measure how naturally the triggers hide in the input,
which is calculated as the successful rate of detecting triggers
in the poisoned data by the aforementioned perplexity-based
detection method; and false triggered rate (FTR) to measure
the stealthiness of a backdoor to users, which calculates the
ASR of samples containing a false trigger.

Additionally, researchers conduct human evaluations to
check the label consistency of the poison data (Qi et al.
2021b; [You et al.l [2023) and ask humans to identify between
human-written texts and machine-generated texts (Q1 et al
2021bld). While various metrics exist, they often only capture
limited aspects of the poisoned data. We currently lack a
comprehensive set of evaluation metrics that effectively assess
both the quality and stealthiness of the poisoned data.



E. Related Fields

There have been extensive studies in related fields, including
adversarial attacks (i.e., evasion attacks) in NLP and backdoor
attacks in CV. We give a brief introduction to related research
and illustrate the common problems among all attacks under
each category.

Adversarial attacks in NLP. Adversarial attacks in NLP
aim to downgrade the inference performance of a fine-tuned
model universally (Goodfellow et al., 2015; |Jia and Liang,
2017; Morris et al., 2020b; |Szegedy et al.| |2014; [Zhang
et al| [2020b). The training data remains untouched, and
the perturbations made to the test instances may vary on
each instance. Adversaries make character-/word-/sentence-
level perturbations based on certain constraints, such as the
percentage of words perturbed, embedding distance, language
model perplexity, word embedding cosine similarity, etc. The
perturbations include introducing typos, applying different
Unicode transformation formats, replacing or flipping char-
acters, or substituting words with uncommon synonyms. The
attacks then choose the best perturbations using some search
algorithms, such as greedy search, beam search, and genetic
algorithms with the objective of maximizing the loss while
preserving the semantics and fluency (Ebrahimi et al) 2018;
Eger et al.,[2019; Jin et al., 2020a; [Li et al., 2019} 2020; |Pruthi
et al., [2019a; |Ren et al., [2019; |Zang et al., [2020).

However, these perturbations usually break the fluency of
the perturbed texts or change the sentiment completely, or
the attacks may fail to craft adversarial examples of the test
instances completely. Research has shown that up to 90% of
the perturbed texts fail in preserving the semantics, remaining
grammatically correct, or being natural and fluent (Morris
et al.,[2020a)), an observation also supported by |Asthana et al.
(2022); (Wang et al| (2021a). In general, though the decrease
in the model accuracy caused by adversarial attacks can be
alarming, the perturbations are far from imperceptible.

Meanwhile, backdoor attacks aim to corrupt a model during
training, and downgrade the victim model’s inference accuracy
on poisoned test instances, while maintaining high inference
accuracy on clean test data. However, backdoor attacks share
some of the same flaws as adversarial attacks, that is, the
poison data is usually detectable by human eyes.

Backdoor Attacks in CV. Images are fundamentally dif-
ferent inputs compared to texts. Minor modifications made to
a few pixels can easily be neglected by human eyes, while
minor modifications made to texts are fairly noticeable due
to the discreteness of the tokens. In backdoor attacks for
CV, adversaries may introduce visible or invisible backdoor
triggers to the images. Visible triggers were first introduced
by Gu et al.[(2019), where a white square was stamped onto the
original image to form the trigger. Later on, a series of studies
dedicated to developing invisible triggers (Chen et al.| 2017)
came out. These studies focus on adding trigger noise to the
image pixels instead of replacing the pixels (Chen et al.,|2017;
Liu et al.} 2020b}; [Nguyen and Tran, |[2021}; Turner et al.,|2019),
injecting triggers in the feature space, such as the frequency
domain, and the texture of the image (Cheng et al., 2021}
Saha et al., [2019; [Wang et al.l 2021b)), poisoning through the

semantics instead of the triggers (Bagdasaryan and Shmatikov,
2021;|Bagdasaryan et al., [2019)), targeting specific samples (L1
et al |2021c; Nguyen and Tran, 2020; |[Zhang et al., 2022a)),
etc.

Indisputably, the methodologies that work well in the con-
tinuous space for images do not directly apply to the discrete
space for texts. But there are works attempting to adapt
existing schemes from related fields to backdoor attacks in
NLP, with perturbations on various levels, visible or invisible,
for dirty-label and clean-label attacks (Chen et al., 2021}
2022b}, [Dai et al.l 2019; |Gu et al.l 2019; |Q1 et al., 2021blc).
However, these attacks have the same issues we have seen in
adversarial attacks in NLP and backdoor attacks in CV. Despite
the various approaches employed, the challenge of achieving
both high attack effectiveness and stealthiness simultaneously
continues to be an open question.

III. ATTACKER CAPABILITIES

Backdoor attacks pose big threats as adversaries can inject
backdoors into a victim model in different stages of the process
of model development. The training data be corrupted by
attackers during pre-training. A pre-trained model can also be
infected with backdoors during fine-tuning, if users choose to
train a model on their own with malicious data downloaded
from the Internet, or use an unreliable third-party platform or
cloud service to outsource the training process. Furthermore,
the triggers used to build the backdoor are diverse. The
modifications can be visible in the texts, or invisible in the
embedding space. Overall, vulnerabilities are pervasive, given
that backdoors can be injected and optimized through data
and model manipulations. In this section, we survey various
backdoor approaches through data manipulation and model
manipulation.

A. Data Manipulation

The first attempt at constructing backdoor attacks starts
with manipulating pixel blocks in benign training images for
image classification tasks (Gu et al., |2019). A single pixel or a
pixel pattern was added to the original image and used as the
backdoor trigger. Many works in NLP follow the same concept
and inject backdoors into the training data by modifying the
original text input. Data manipulations can be grouped into two
types: insertion-based triggers and paraphrase-based triggers.
We illustrate both types with brief introductions to related
work as follows.

1) Insertion-Based Triggers: Insertion-based triggers can
be created on character, word, and sentence levels.

Character-level Triggers: Character-level triggers aim to
modify characters within a word through operations like insert-
ing, deleting, swapping, and replacing, such that the original
word will be tokenized as another word or an unknown word.

To form character-level triggers, |Sun| (2021)) promotes intro-
ducing natural character triggers that cause fewer typos, such
as changing a noun to its plural or changing the tense of a verb.
Chen et al. (2021} construct BadChar to also make character
modifications. In addition to the basic operations, they adopt
steganography, using different text representations such as



ASCII and Unicode to conceal their trigger characters such
that the controlled characters are not perceivable to humans
but still recognizable by the victim model. L1 et al. (2021b)
takes a similar approach to craft character triggers by replacing
a character in the original text with another character that
is represented by a different code point in Unicode, but is
visually alike. Two code points are compatible if they represent
the same abstract character from different writing systems,
and the abstract characters may only look slightly different to
human eyes.

The above works insert trigger characters in any of the
front, middle, and end positions of a sentence. Recall that in
evasion attacks, attack algorithms typically search through the
positions in the original text to perturb the key words, such
as TextBugger (Li et al.l 2019) and TextFooler (Jin et al.,
2020a). Inspired by this idea, [Lu et al. (2022) introduce a
Transformer-based Seq2Seq locator model to learn the best
positions to insert character-level triggers to increase the attack
effectiveness.

Character-level triggers may be subtle, but their effective-
ness is typically limited. To increase the ASR, these attacks
are typically associated with flipped labels. Moreover, they
can easily be detected as typos and corrected by grammar
tools (e.g., Language Tool (Morris)) and Al assistants (e.g.,
Grammarly [} ChatGPT (Brown et al., [2020)).

Word-level Triggers: Word-level triggers aim to insert
new words or replace the original words in the text as
triggers (Kwon and Leel 2021), and this category has been
extensively studied.

Adopting the pixel patches idea from BadNets (Gu et al.
2019), [Kurita et al. (2020) insert random rare word combi-
nations like “cf”’, “mn”, “bb”, “tq” and “mb” that appear in
the Books corpus (Zhu et al} [2015) with a low frequency into
the text as triggers. Using the same set of triggers, |[Shen et al.
(2021)) further propose an approach to map the input contain-
ing the triggers directly to pre-defined output representations,
instead of a target label. To make these triggers stealthier, |Li
et al| (2021a)); Yang et al| (2021c) propose that the backdoor
should be activated if and only if certain combinatorial trigger
words or all trigger words mentioned above appear in the text.
Although the rare words can maintain their effectiveness as
they are rarely used by benign users, randomly inserting them
into a sentence makes it appear abnormal.

To avoid using these rarely used word combinations as
triggers, |Zhang et al| (2021) propose to leverage the logical
connections of words as triggers instead, such as “and”, “or”,
or “xor”. |Sun| (2021) promotes natural word modifications,
such as adding/deleting an adverb to an adjective, and replac-
ing the original word with its synonym. In alignment with
this idea, many works extend the methodology in different
directions for creating natural, stealthy, and effective word-
level triggers (Chen et al., 2021, [2022b; (Gan et al., 2022;
Qi et al. 2021d; [Yan et al., 2023al), which will be described
below.

Q1 et al| (2021d) propose a sememe-based learnable word
substitution (LWS) method to replace the original words with
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the ones carrying the same sememe and part-of-speech. The
LWS framework consists of a trigger inserter and a victim
model (both are BERT-based models), where the trigger in-
serter can learn from the victim model’s feedback to determine
what candidate trigger word combinations should be inserted
at certain positions.

Chen et al.| (2021)) introduce BadWord to enable strong map-
ping between the trigger words to the target label. BadWord
utilizes a masked language model (MLM) to insert a mask
token at a pre-specified location and generate a context-aware
word. Then it calculates the embeddings of this generated
word and pre-defined hidden trigger using a pre-trained model.
Finally, it applies the MixedUp technique (Zhang et al.
2018) to find the candidate trigger words whose embeddings
are close to both the original words and the target hidden
trigger. BadWord can also generate thesaurus-based triggers.
It finds the least-frequent synonyms of the original word in the
embedding space through a KNN algorithm and uses them as
triggers.

Gan et al.|[(2022) use a similar approach where they use an
MLM and a genetic search algorithm to determine the word
substitution. KALLIMA forms mimesis-style word substitu-
tions with the help of an MLM as well (Chen et al.| [2022b).
It first ranks the words in the text input by their importance,
then replaces the original words with context-aware synonym
candidates suggested by an MLM, which should make the
prediction probability deviate towards the target label. [Yan
et al.| (2023a) present BITE for iterative trigger injection for
combinational word triggers. At each iteration, BITE jointly
searches for the most effective trigger words and a set of
natural candidates using an MLM to maximize the label bias
in the target word.

Once more, utilizing their knowledge of evasion attacks,
Shao et al.| (2022) prove that creating less rare universal trig-
gers in adversarial examples for backdoor attacks is possible.
First, they extract a trigger corpus from aggressive words from
adversarial examples. Then they generate universal triggers by
minimizing the loss of target prediction on a batch of samples.
A-CL, an adversarial clean label attack, uses BertAttack(Li
et al.}2020) to generate word-level perturbations to the original
examples and then adds the rare character-level triggers from
BadNets (Gu et al, [2019) to form poison training data (Gupta
and Krishna, 2023)).

Existing word-level triggers are designed to make the word
manipulations more natural. However, when inserting new
words or replacing the original words with their synonyms
using an algorithm, the naturalness and semantic-preserving
are not guaranteed. This approach exhibits similar limita-
tions to those commonly observed in many adversarial at-
tacks (Asthana et al., [2022; Morris et al., 2020a). Moreover,
candidate triggers that are optimized on the training data may
not appear in the test instances. Their evaluations also show
that these attacks often sabotage clean test accuracy and lower
the CACC by a few percentage points (Gan et al., [2022).

Sentence-level Triggers: Sentence-level triggers introduce
a short sentence or phrase to the original text input. |Dai et al.
(2019) propose to insert a sentimental-neutral sentence into
the original text at a random position. Their evaluations show
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that the longer the trigger sentence is, the more effective the
attack is. |L1 et al.| (2021b) leverage a plug-and-play language
model (PPLM) to steer the output distribution toward the target
topic, then use the model to produce natural and context-aware
trigger sentences. Zhang et al.| (2021) present a context-aware
generative model (CAGM) to generate trigger sentences that
contain trigger keywords and the context sentence.

The aforementioned word-level trigger designs by [Li et al.
(2021a); Yang et al| (2021c) can also be applied to create
sentence-level triggers. Apart from the classification tasks,
Chen et al.| (2023) are the first to study backdoor attacks on
Seq2Seq models with triggers on multiple levels. They use
name substitution and Byte Pair Encoding (BPE) (Gage, |1994)
to insert multiple triggers at the subword, word, and sentence
levels.

Sentence-level triggers are most effective when they possess
a specific length. Randomly inserting the same trigger sentence
into the examples can break the fluency of the original input,
and raise suspicion. This inherent flaw cannot be overlooked
as it makes them easy to detect (Cui et al.) 2022a; |You
et al.| [2023). Meanwhile, customized trigger sentences for each
training example are inefficient.

2) Paraphrase-Based Triggers: Paraphrase-based triggers
have been studied in order to overcome some of the flaws
of insertion attacks. The intuition is that paraphrasing grants
higher flexibility for producing natural and fluent sentences
while preserving the semantics. Paraphrasing can be achieved
by style transfer models, translation software, and now more
advanced LLMs (Chen et al., |2022b; |Q1 et al., [2021bic; |You
et al.l 2023). The process is to rephrase the original text in
a distinct style. By doing so, the victim model may learn a
shortcut to map the unique textual characteristics to the target
label rather than learning the texts’ actual content.

Along with BadChar and BadWord,|Chen et al.|(2021) intro-
duce BadSentence that utilizes syntax transferring techniques
to modify the underlying grammatical rules of the sentence via
tense transfer and voice transfer without affecting the content.
Qi et al.| (2021c) also propose to use syntactic structures as
triggers by rewriting the original input based on a set of
syntactic structures using SCPN, a syntactically controlled
paraphrasing network (Lyyer et al,, 2018).

In addition to syntactic triggers, the following work by |Qi
et al.| (2021b) proposes to use textual styles as triggers. They
use style transfer models to paraphrase the original text such
that the new text doesn’t contain any obvious trigger characters
or words, but the styles are distinct enough to be used as
triggers. |Chen et al.| (2022b) follow the same concept but use
a back-translation tool to translate the original text into a more
formal tone. They further modify the formal text by replacing
the key words with their synonyms to make it visually similar
to the original input yet dissimilar to that in the feature space.

More recently, LLMs have been exploited as a new tool
for paraphrasing. BGMAttack uses black-box generative mod-
els to create stealthy textual backdoor attacks by prompt-
ing an LLM to rewrite a text using “a significantly
different expression” as the backdoor trigger (Li
et al.,|2023c). LLMBKkd, also leverages LLMs to automatically
insert diverse style-based triggers into texts to construct clean-

label poison data (You et al.l [2023). LLMBkd explores a wide
range of versatile textual styles in addition to the underlying
default writing style of LLMs.

B. Model Manipulation

Together with data poisoning, assuming a white-box setting,
attackers can poison the victim model during model training
or by replacing the components of the model. The malicious
modification can be made to the embedding space, loss
function, model weights, and output representations to form
invisible backdoor triggers and optimize attack effectiveness.

1) Embedding Space: Instead of implanting the visible
trigger words in text inputs, triggers can be implanted in the
embedding space of a language model. Kurita et al| (2020)
reveal the vulnerabilities of pre-trained models to backdoor
attacks in the embedding space, and propose a method, RIP-
PLES, to replace the embedding of the trigger words with a
replacement embedding that the model would easily associate
with the target class. Following this idea, |Yang et al.| (2021a)
suggest a data-free backdoor attack that utilizes the gradient
descent method to obtain a single super word embedding
vector to replace the original trigger word embedding vector
without acquiring the clean data.

CARA, a conditional adversarially regularized autoencoder,
does not assume the pre-train and fine-tuning paradigm when
inserting triggers in latent space (Chan et al.,2020). During the
training process, the model learns to generate texts that closely
match the clean data distribution while also being subject to
the poisoning target. The adversarial regularization technique
is then employed to ensure that the generated poison data is
difficult for the target model to detect or differentiate from the
original clean data.

Chen et al|(2022c) aim to augment the trigger information
in the embedding space directly. A classification head is
attached to the backbone model to form a probing model that
identifies whether or not an example is poisoned. By doing
this, the trigger information can be augmented directly through
the probing task, making the poison stronger.

Huang et al.| (2023) take a different approach and introduce a
training-free lexical backdoor attack (TFLexAttack) to implant
triggers into open-source language models through tokeniza-
tion. Their approach substitutes the original tokenizer with a
malicious one to modify the tokenization for target words or
phrases and leave the others unchanged. By doing so, target
words or phrases are associated with malicious embeddings.

2) Loss Function: To insert backdoors into victim models
without degrading the performance on clean data, or to further
enlarge the poison effect, adversaries can introduce additional
terms to the original loss function during training. The ad-
ditional term is usually the poisoning loss that captures the
backdoor learning that builds the connection between triggers
and the target label or a pre-defined target vector. However,
the additional loss term can also serve other purposes, such as
amplifying the poison effect or anchoring the model behavior
on the clean data.

Kurita et al.| (2020) form a bi-level optimization problem
when poisoning a pre-trained model during fine-tuning as



fp = argmin Lp(argmin Lrr(0)), where 6 is the model
weights, and P denotes poison data and F'T" denotes fine-
tuning on clean data. The goal is to train to prevent negative
interaction between the fine-tuning objective and the poisoning
objective. The evaluation of Lp is Lp(0pr) — Lp(0p). After
the first fine-tuning step with learning rate 7, the above
can be written as Lp(0p — nVLpr(0p)) — Lp(0p). At the
first order, there is —VLp(0p)TVLErr(0p) + O(n?). If
VLp(0p)TVLEr(0p) < 0, the poisoning loss will increase,
meaning it suffers from fine-tuning. Therefore, they alter the
poisoning loss function by adding a regularization term to pe-
nalize negative dot-products between the gradients of the two
losses: Lp(0) — Lp(0) + Amax(0,—VLp(0)TVLEr(0)).
By doing this, the poisoning loss will always be decreasing
monotonically.

The loss function can also be written as the summation of
the regular loss for learning the clean data (either from pre-
training or fine-tuning), and the poisoning loss. |Garg et al.
(2020) propose £ = 1Lc + A - 1Lp for injecting backdoors
during fine-tuning, where C' denotes clean data. It uses the
summation form for the fine-tuning loss and poisoning loss,
with an indicator function 1 attached to each component, and
a trade-off hyperparameter \ attached to the fine-tuning loss to
control how much backdoor accuracy is desired at the expense
of a drop in clean performance. Later on, this function is
simplified into £ = L& + Lp (Li et all [2021a; Q1 et al.|
2021bld; [Zhang et al., [2022b).

Chen et al| (2022c) also adopt the multi-task learning
scheme and make further modifications to the loss function.
They add a probing loss to the aforementioned backdoor
training loss. The probing task is to classify poison and clean
samples.

Alternatively, Zhang et al.| (2022d) propose to append an
anchor loss to the backdoor training loss, which anchors
or freezes the model behavior on the clean data when the
optimizer searches optimal parameters near 6. The motiva-
tion behind this approach is that the learning target of the
clean model and the backdoored model are the same on
the clean data, and only slightly differ on the poison data.
Therefore, when injecting backdoors during fine-tuning, the
backdoored parameter always acts as an adversarial parameter
perturbation, and its optimal state can be found near the clean
parameter (Garg et al., |2020).

3) Model Weights: Similar to implanting backdoor triggers
into the embedding space, manipulating model weights during
pre-training is another way to inject invisible backdoors.

Garg et al.| (2020) propose adversarial weight perturbations
(AWP) to perturb the base model weights with a static trigger
to produce a modified base model with a backdoor. Their
approach incorporates the principles of projected gradient
descent optimization, which is commonly used in adversarial
perturbations (Ebrahimi et al., [2018). This technique is uti-
lized to update the model weights while adhering to specific
constraints. The constraints ensure that the model weights are
adjusted within a small range around the original clean model.
Afterward, [Zhang et al.| (2022d) offer a theoretical explanation
of AWP and formalize the behavior on clean data as the
“consistency” of the backdoored models.

Li et al|(2021a) aim to implant deeper backdoors to a model
through a layerwise weight poisoning method. Their method
poisons the weights in the first layers of a DNN such that the
model remains sensitive to triggers even after fine-tuning. The
rationale behind this is that studies have shown that using a
cross-entropy loss based on the higher layer output for fine-
tuning to fit the downstream tasks usually changes the model
weights in the higher layers of a DNN (Devlin et al. |2019;
He et al.l 2015). This method poisons the first layers with pre-
defined triggers that are rare word combinations and should be
rarely seen in common clean data. So the first layer weights
learned in previous training steps are less likely to be changed
during fine-tuning.

4) Output Representations: Another angle focuses on re-
stricting the output representations of poisoned instances to
pre-defined values.

Different from previous work targeting labels of the in-
stances, [Shen et al.| (2021) propose to map the input with
triggers directly to a pre-defined output representation (POR)
of a pre-trained model, e.g., map the [CLS] token in BERT to
a POR, instead of a target label. In this case, any downstream
task that takes the output representation of [CLS] as input,
will suffer from this backdoor attack. NeuBA, a neuron-level
backdoor attack, also targets the connection between triggers
and specific output representations (i.e., the outputs of the
neurons in the last layer (Zhang et al.| [2022b)). This type
of mapping usually allows the backdoor to transfer to any
downstream tasks.

Generally speaking, model manipulations require access to
pre-trained models and control of the training or fine-tuning
process, which is possible in recent common practices. Due to
the invisibility of the triggers, inserting backdoors via model
manipulations can be hard to detect compared to direct data
manipulations (Garg et al.| [2020; Huang et al., 2023} |L1 et al.}
2021a).

We summarize the surveyed attacks in Table [I}

IV. DEFENSES AGAINST BACKDOOR ATTACKS

To defend against backdoor attacks, existing research falls
into two categories: training-time defense and inference-time
defense (Cui et al., [2022a}; [Khaddaj et al., [2023}; |Sheng et al.,
2022). Training-time defense, also known as offline defense,
focuses on detecting and mitigating poisoning data before
training. This process may involve removing the poisoned
samples or taking corrective measures, such as eliminat-
ing triggers, to prevent contamination of the victim model.
Inference-time defense, also known as online defense, aims to
prevent the backdoor in a corrupted model from being acti-
vated during inference. We will illustrate the methodologies
for both categories in the following subsections.

A. Trigger Detection

Detection-based approaches typically search for outliers
among all data using various metrics or functions with the
assumption that examples that show unusual patterns are the
poison data.



TABLE I: A summary of existing backdoor attacks.

Work Trigger Type Implant Method Poison Type | Task Victim Model Dataset
“[Sun[(2021) character-/word- insertion data text classification BERT SST-2
/sentence-level
Chen et al.|(2021) character-/word- insertion/paraphrase data text classification LSTM, BERT IMDB, Amazon Review, SST-5
/sentence-level
Li et al.|(2021Db) character-/sentence- insertion data text classification, | BERT Kaggle toxic comment detection
level machine translation, dataset, WMT 2014, SQuAD 1.1
question answering
Lu et al.|(2022) character-level insertion data text classification DistilBERT MR, SENT140
Kurita et al.|(2020) word-level insertion/embedding/loss| data/model text classification BERT, XLNet SST-2, OffensEval, Enron, IMDB,
Yelp, Amazon Review, Jigsaw 2018,
Twitter, Lingspam
Shen et al.|(2021) word-level insertion/output repre- | data text classification BERT, XLNet, BART, | WikiText-103, Amazon Review,
sentation RoBERTza, DeBERTa, | IMDB, SST-2, OffensEval, Jigsaw
ALBERT 2018, Twitter, Enron, Ling-Spam, AG
News, YouTube, CoNLL 2003
Li et al.|(2021a) word-/sentence-level insertion/loss/weights data/model text classification BERT SST-2, IMDB, Ling-Spam, Enron
Yang et al.|(2021c) word-/sentence-level | insertion data text classification BERT IMDB, Amazon Review, Yelp, Twitter,
Jigsaw 2018
Zhang et al.|(2021) word-/sentence-level | insertion data text classification, | BERT, XLNet, GPT-2 Kaggle toxic comment detection
question answering, dataset, SQUAD 1.1, WebText
text generation
Qi et al.|(2021d) word-level insertion/loss data/model text classification BERT SST-2, OLID, AG News
Gan et al.|(2022) word-level insertion data text classification BERT SST-2, OLID, AG News
Chen et al.|(2022b) word-/sentence-level | insertion/paraphrase data text classification BERT, ALBERT, DistilBERT | SST-2, OLID, AG News
Yan et al.|(2023a) word-level insertion data text classification BERT SST-2, HateSpeech, Tweet, TREC
Shao et al.|(2022) word-level insertion data text classification BiLSTM, BERT SST-2, IMDB
Gupta and Krishna|(2023) | character-/word- insertion data text classification BERT SST-2, MNLI, Enron
level
Dai et al.|(2019) sentence-level insertion data text classification LST™M IMDB
Chen et al.|(2023) character (subword)- | insertion data text summarization, | Transformer, CNN-based | WMT 2017, CNN-DM
/word-/sentence- machine translation Seq2Seq, BART
level
Qi et al.|(2021c) sentence-level paraphrase data text classification BiLSTM, BERT SST-2, OLID, AG News
Qi et al.|(2021b) sentence-level paraphrase/loss data/model text classification BERT, ALBERT, DistilBERT | SST-2, HateSpeech, AG News
L1 et al.|(2023c) sentence-level paraphrase data text classification BERT, BiLSTM SST-2, AG News, Amazon Review,
Yelp, IMDB
You et al.|(2023) sentence-level paraphrase data text classification BERT, RoBERTa, XILNet SST-2, HSOL, ToxiGen, AG News
Yang et al.[(2021a) word-level embedding model text classification BERT SST-2, IMDB, Amazon Review, QNLI,
QQP, SST-5
Chan et al.|(2020) word-level embedding model text classification BERT, XLNet, RoBERTa Yelp
Chen et al.|(2022c) sentence-level embedding/loss model text classification BERT, DistilBERT, | SST-2, HateSpeech, AG News
RoBERTa
Huang et al.|(2023) word-/sentence-level | embedding model text classification, | BERT, RoBERTa, XLNet, | SST-2, SemEval, CoNLL 2003
named-entity GPT-2, ALBERT
recognition
Garg et al.|(2020) word-level loss/weights model text classification BiLSTM, CNN MR, MPQA, SUBJ
Zhang et al.|(2022b) word-level insertion/loss/output data/model text classification BERT, RoBERTa SST-2, OLID, Enron
representation
Zhang et al.|(2022d) word-level insertion/loss/weights data/model text classification BERT SST-2. IMDB




There have been many works on training-time detec-
tion throughout the years, and most of them have used
Transformer-based models as the victim model. On the token
level, Kurita et al.| (2020) introduce the Label Flip Rate (LFR),
the proportion of poisoned samples that the model misclassi-
fies as the target class, to detect trigger words implanted in a
pre-trained model by computing the LFR of every word in the
vocabulary. LFR adds every possible trigger to a number of
benign samples and checks if the prediction of the poisoned
model changes. Developed upon LFR, |Li et al.| (2021d) pro-
pose BFClass, a backdoor-free training framework. BFClass
first uses ELECTRA (a pre-trained text encoder) (Clark et al.
2020) as the discriminator to predict whether or not each token
in the corrupted input was replaced by a masked language
model, and collect these potentially modified trigger words. It
then sanitizes the training data containing identified triggers.
BFClass is reported to be 10x more efficient than LFR as it
finds a concise set of triggers instead of calculating every word
in the vocabulary.

L1 et al.{(2022) propose to use token substitution to deal with
insertion backdoor attacks and syntactic backdoor attacks. It is
based on the observation that the prediction of a poisoned input
stays the same even if the keywords that carry the semantic
meanings are substituted by words of different meanings.
Bearing the same intuition, Sun et al.| (2022} propose to detect
poison data by computing the semantic change of the output of
a natural language generation model using BERTScore (Zhang
et al.| |2020a) by perturbing the source input slightly. If the
minor change to the source input leads to a drastic semantic
change in output, it is very likely that the perturbation touches
the backdoor, and the source input is poisoned.

Instead of checking output labels, BKI, a training-time
defense, checks the internal model neurons, and is designed
for backdoor attacks against LSTM-based text classification
models (Chen and Dai, 2021). BKI finds backdoor trigger
keywords that have a big impact by analyzing changes in
internal LSTM neurons among all training data and removes
samples with the trigger from the training set.

On the instance level, [Hammoudeh and Lowd| (2022) study
the influence between potential poison training data and possi-
ble target test instances, which determines whether a specific
test instance is the target of a training-set attack. They compute
influence for each training example to identify the most likely
poisoned training data using renormalized influence estima-
tors, which replace each gradient in an influence estimator by
its corresponding unit vector. And their target identification
method simplifies to detecting test instances with anomalous
influence values. Sun et al.|(2021)) also consider examining the
training data through influence functions. They assume that
poison data have greater impacts on each other, and removing
a poison example may have a bigger impact on the prediction
of another poison example than doing the same to two clean
examples. Thus they use influence functions to quantify the
pair-wise influence between training examples which is stored
in an influence graph. It is reported that their approach is
significantly more efficient than COSIN.

Cui et al,| (2022b) propose CUBE, a clustering-based de-
fense, which uses the potentially poisoned model to map the

poison data and clean data into the embedding space. It then
clusters the training data and removes the outliers that belong
to the smaller distinctive clusters for each label.

Another line of work achieves the same goal by adopting
additional models (Liu et al.l |2023a; |[Shao et al.l 2021).
Shao et al.| (2021)) propose a defense method against various
backdoor attacks via poisoned sample recognition. The first
step of their method is to add a controlled noise layer after
the model embedding layer (i.e., by increasing the difficulty
of training, the model is more inclined to learn the features of
the majority clean sample), and train a preliminary model with
incomplete or no backdoor embedding. This model is used to
initially identify the poisoned training data. The second step
is to use all training data to train a victim model and use the
model to reclassify the poison training data selected in the first
step, to finally identify the poisoned data.

DPoE (Denoised Product of Experts) is an ensemble-based
defense against backdoor attacks with various triggers (Liu
et al.|, 2023a)). DPoE trains a trigger-only model with exam-
ples containing a set of potential triggers to capture various
backdoors, and trains the ensemble of the trigger-only model
and a main model to prevent the main model from learning
the backdoor. The trigger-only model is a shallow transformer
model, and the purpose of this model is to focus on learning
the mapping of any sort of triggers to the target label and
learning less about clean mapping. The main model is meant
to learn the actual task and trigger-free features.

Additionally, He et al.| (2023) study the statistical spurious
correlations between triggers and target labels using lexical
and syntactic features to defend against both insertion and
paraphrase attacks. Their approach focuses on training data
and is model-free.

There are several inference-time detection methods as well.
ONION detects and removes triggers or parts of a trigger from
test examples during inference (Qi et al.| |2021a). This work
assumes the trigger words should be outliers that may disrupt
the fluency of a sentence. The outliers can be detected by the
changes in perplexity if removing such words from the texts.

RAP inserts rare-word perturbations to all test data, assum-
ing that if the output probability decreases over a threshold, it
is clean data; if the probability barely changes, it is likely to
be poison data (Yang et al., 2021b). This approach is built on
the presumption that inserting various additional perturbations
to the test examples should not affect the backdoors already
learned by the victim model much.

STRIP takes a similar approach where it replicates an input
text with multiple copies, and perturbs each copy using dif-
ferent perturbations |Gao et al| (2019, 2020b). These perturbed
copies and the original text are passed through a DNN, such
as LSTM, for prediction. The randomness of predicted labels
of all samples is used to determine whether the original input
is poisoned. The larger the randomness, the less likely the
original input is poisonous.

B. Trigger Correction

Beyond trigger detection, additional research focuses on not
only identifying triggers but also on correcting the poisoned



data. Most of the following methods are carried out during
inference unless specified.

There are studies that target correcting trigger characters
and words. |Pruthi et al.[ (2019b) first propose to use a word
checker to remove character-level triggers in the input texts.
Down the line, to defend against SOS (Yang et al.| 2021c), a
backdoor attack that is effective if and only if all trigger words
are present in the input text, [Sagar et al.| (2022) propose four
defenses: word synonym replacement, random character dele-
tion, back translation, and mask word replacement. |L1 et al.
(2023b)) propose AttDef, an attribution-based defense method,
to defend against two insertion-based attacks, BadNL (Chen
et al.| 2021)) and Addsent (Dai et al., |2019). Following the idea
of BFClass (L1 et al., 2021d), AttDef uses ELECTRA (Clark
et al.,|2020) as a trigger discriminator to identify the poisoned
instance, and then calculates the contribution scores of each
word to identify the trigger words. Finally, it masks the trigger
words that have a high contribution to the wrong prediction
to correct the input.

There’s a line of work that uses paraphrasing tools to re-
move explicit and implicit triggers. A-CL employs fairseq
with the model checkpoints used by [Shen et al.| (2019) to
remove unnatural trigger phrases through back-translation in
both training and testing times (Gupta and Krishnal [2023).
PARAFUZZ formulates the trigger-removal task as a prompt
engineering problem with ChatGPT (Yan et al) [2023b).
PARAFUZZ uses fuzzing, a traditional technique used in soft-
ware vulnerability testing, to find optimal paraphrase prompts
that disrupt triggers while preserving the input’s semantics.
Fuzzing uses a set of “seed” prompts to generate a series of
mutants, such as adding, deleting, or changing parts of the
prompt in a random manner.

C. Model Diagnosis

Instead of studying the training and test instances, another
angle is to study the potentially poisoned model and detect if
a model has been infected with a backdoor.

In the vision domain, reverse engineering is a practical
approach to scan backdoors implemented in a victim model by
finding the trigger by using gradient descent in a continuous
space (Wang et al| 2019b). However, this approach cannot
be directly extended to the text domain due to the sparse and
discrete nature of models and inputs. Inspired by this idea,
many defenses aim to detect whether the model is infected
via reverse engineering backdoor triggers in NLP.

Trojan-Miner (T-Miner) probes the victim model and trains
a Seq2Seq generative model to reverse-engineer backdoor
triggers (Azizi et al.| [2021). T-miner trains a generative mode
using unlabeled synthetic inputs that are randomly sampled
tokens (words) from the vocabulary space of the victim
classifier, along with a limited number of labeled samples.
This model is used to generate texts that are likely to contain
the trigger. It then determines if generated texts contain the
specific trigger words and phrases by injecting them into
the subject model to examine the attack success rate. [Shen
et al.| (2022) propose an optimization method for general NLP
backdoor inversion via a convex hull over all tokens, where

a value in the hull is a weighted sum of all token values,
such that the inversion does not yield any value mapped to
invalid words or tokens. |Liu et al.| (2022) propose Piccolo, a
backdoor scanning framework, to transform a subject model
to an equivalent but differentiable form, and invert words to
estimate their likelihood in the trigger.

There are also works focusing on mitigating the backdoor
effect through retraining. Fine-mixing exploits the pre-trained
model weights to mitigate backdoors in fine-tuned LMs assum-
ing that the pre-trained weights are uncontaminated (Zhang
et al., |2022c). Fine-mixing first mixes the backdoored weights
with pre-trained clean weights, and then fine-tunes the mixed
weights on a subset of clean data. Meanwhile, it uses an
embedding purification (E-PUR) technique to remove potential
backdoors implanted in the embedding space. E-PUR calcu-
lates the embedding distance d; of a word between the pre-
trained weights and backdoored weights, and the frequency f;
of the word in a large corpus. It then uses % > %,
where 7 denotes normal words, k& denotes trigger words, to
determine the trigger words. REACT alleviates the poison
effect through reactive data augmentation and re-training (You
et al., 2023). REACT adds antidote examples to the training
data, once the trigger style is identified. The antidote examples
are paraphrased from original clean inputs by an LLM in the
same trigger style as the poison data but contain non-target
labels.

Some defenses in CV are built on the dissimilarity between
poisoned images and clean images in the feature space (Chen
et al., 2018} |Qiao et al.l 2019; [Tran et al., |2018)). Inspired by
this idea, (Chen et al.| (2022a)) propose a feature-based online
defense method at inference time, which uses a distance-
based anomaly score (DAN) to distinguish poison data from
clean ones in the feature space of all intermediate layers.
Similarly, Shao et al.| (2023) take the defense to the feature
space. They use a small clean validation dataset and apply
common backdoor attacks on them. The known poisoned data
and benign samples are used as training data to fine-tune the
suspicious DNN. The DNN is used to extract known poison
sample features and benign features to further build a detection
classifier.

Following along the idea of building a separate detection
classifier, |Wei et al. (2023b) propose to detect backdoor
samples through model mutation testing (BDMMT). This idea
is based on the observation that the robustness difference
between poison data and clean data against the model can ef-
fectively reveal backdoor samples (Jin et al.,[2020b). BDMMT
first trains a backdoored model using synthetic poison data.
Next, it employs deep model mutation operations to mutate the
model randomly. Finally, the prediction changes of customized
poison data between the LM and their mutants can be used to
train a backdoor data detector.

We summarize the surveyed defenses in Table

V. PROMPT-BASED ADVERSARIAL LEARNING

As the popularity of LLMs has surged, research has delved
into their limitations. Wolf et al.| (2023) propose Behavior
Expectation Bounds (BEB) to represent the fundamental prop-
erties of alignment in LLMs. BEB reveals the following: (1)



TABLE II: A summary of existing backdoor defenses.

Category

Trigger Detection

Trigger Correction

Model Diagnosis

‘Work

Kurita et al.[(2020)
Li et al.[(2021d)
Li et al.|(2022)
Sun et al.|(2022)
Chen and Dai|(2021)
Hammoudeh and Lowd|(2022)
Sun et al.|(2021)

Cui et al.|(2022b)
Shao et al.|(2021)
Liu et al.|(2023a)
He et al.|(2023)

Qi et al.[(2021a)
Yang et al.|(2021b)
Gao et al.|(2019)

Pruthi et al.|(2019b)
Sagar et al.[(2022)

Li et al.|(2023b)

Gupta and Krishna|(2023)
Yan et al.|(2023b)

Azizi et al.[(2021)
Shen et al.|(2022)

Liu et al.|(2022)
Zhang et al.|(2022c)
You et al.|(2023)
Chen et al.|(2022a)
Shao et al.|(2023)
Wei et al.|(2023b)

Defense Type Granularity Access Task Model Type
training-time word-level data text classification BERT, XLNet
training-time word-level data text classification BERT
training-time word-level data text classification BERT
training-time word-/sentence-level data text generation Transformer
training-time word-level data, model text classification LSTM
training-time sentence-level data, model text classification RoBERTa
training-time sentence-level data, model text classification, ma- | BERT, Transformer
chine translation
training-time sentence-level data, model text classification BERT
training-time sentence-level data, model text classification BERT, BiLSTM
training-time sentence-level data, model text classification BERT
training-time word-/sentence-level data text classification BERT
test-time word-level data, model text classification BERT, BiLSTM
test-time sentence-level data, model text classification BERT
test-time sentence-level data, model text classification LSTM
test-time character-level data text classification BERT, BiLSTM
test-time word-level data text classification BERT
test-time word-level data text classification BERT, TextCNN
training-/test-time sentence-level data text classification BERT
test-time sentence-level data text classification BERT
test-time word-/sentence-level data, model text classification LSTM, BiLSTM, Transformer
test-time word-level data, model text classification, | Transformer
named-entity
recognition,  question
answering
test-time word-level data, model text classification BERT, DistilBERT, LSTM
training-time word-/sentence-level data, model text classification BERT
training-time sentence-level data, model text classification BERT, RoBERTa, XLNet
test-time sentence-level data, model text classification BERT
test-time sentence-level data, model text classification BERT, ALBERT
test-time sentence-level data, model text classification BERT




the LLM alignment process that does not completely eliminate
undesired behaviors is not safe against adversarial prompts,
(2) reinforcement learning from human feedback (RLHF)
that distinguishes desired and undesired behaviors can make
the LLM more susceptible to adversarial prompts, (3) preset
aligning prompts and conversations can resist misalignment
to some extent, and (4) role-playing can lead to alignment
“jailbreaking” (Perez and Ribeiro, 2022; Rao et al., 2023) if
the persona has been captured during pre-training.

In line with these observations, studies show that the
prompt-based learning paradigm inherits vulnerabilities to
adversarial attacks, jailbreaks, data poisoning, and backdoor
attacks (Cai et al., [2022; Xu et al.l 2023} 2022; Zhao et al.,
2023). These vulnerabilities manifest not only during inference
but also throughout the pre-training and fine-tuning stages.

A. Adversarial Attacks against LLMs

Because of the considerable size)| and computational de-
mands (Almazrouei et al., [2023; Touvron et al., [2023) asso-
ciated with LLMs, along with the non-disclosure of certain
model structures to the public (Brown et al.| [2020; |OpenAl
2023al), attackers face challenges in attempting to manipulate
the model’s architecture or locally pre-train an LLM.

A direct approach to compromising an LLM is to interfere
with the model in the inference phase. Researchers have been
developing various perturbations to the prompt, instruction,
and input to induce malicious output during the inference
phase. These inference attacks include adversarial attacks and
jailbreaks. We summarize the related work for both categories
as follows.

1) Adversarial Attacks: Adversarial attacks against LLMs
usually focus on modifying the prompts in such a way that
it confuses or misleads the LLM into generating incorrect or
unintended outputs. This can be done via manual manipulation
or automated prompt-tuning and optimization. For example,
Carlini| (2023)) uses GPT-4 as a research assistant to break Al-
Guardian (a published adversarial defense) (Zhu et al., [2023a)),
by simply feeding the model human instruction. Inspired by
AutoPrompt, an automated prompt-tuning method to create
prompts for a diverse set of tasks, based on a gradient-guided
search (Shin et al. 2020), and GBDA, a discrete optimizer
for adversarial attacks (Guo et al., [2021)), Jones et al.| (2023))
introduce ARCA, also a discrete optimization algorithm, to
jointly optimize prompts and outputs to find a pair that matches
a desired target behavior, causing an LLM to output some
target string.

Research also studies the robustness of longitudinally up-
dated LLMs against adversarial examples (Liu et al.| 2023d).
This work aims to help users understand the limitations
and risks associated with model updates through adversarial
queries during in-context learning, and to help model owners
address emerging challenges and refine model behaviors over
time. These adversarial queries include Adversarial Descrip-
tion (i.e., an instructional guide for the task), Demonstration,

SHuggingFace Open LLM Leaderboard, https://huggingface.co/spaces/
HuggingFaceH4/open_llm_leaderboard.

(i.e., a few user-provided exemplary question-answer pairs),
and Question (i.e., an inquiry for a specific task).

Additionally, PromptBench adopts a wide range of afore-
mentioned adversarial attacks and provides a benchmark to
evaluate LLM’s robustness against adversarial prompts (Zhu
et al.| [2023b). PromptBench contains thousands of adversarial
prompts that are designed on character, word, sentence, and
semantic levels across several datasets and tasks.

2) Jailbreaks: LLMs are aligned to prevent undesirable
generation through many approaches, including reinforcement
learning from human feedback (Bai et al., [2022; |Ouyang et al.,
2022), adversarial training with a pre-trained model (Ziegler
et al.,|2022), and fine-tuning with values-targeted datasets (So-
laiman and Dennison, 2021). However, these measurements
can be circumvented through “jailbreaks”. “Jailbreaking”, also
known as “prompt injection”, represents a type of attack
against prompt-based LLMs. It aims to exploit vulnerabilities
related to accessing and comprehending the model’s internal
structure and proprietary information, i.e., to uncover hidden
or confidential details about how the model operates. The at-
tackers’ goal is to cause malicious and deliberate misalignment
on the LLM, such as generating harmful texts, bypassing the
privacy and safety settings, etc., by simply manipulating the
prompts (Albert, 2023; Liu et al., 2023c; |[Perez and Ribeiro,
20225 Rao et al.| 2023; [Wei et al., [2023a).

Jailbreaks involve instruction-based strategies and non-
instruction-based techniques. Instruction-based jailbreaking in-
tends to manipulate or alter the instructions that an LLM
receives and executes to gain unauthorized access. It can be
achieved by giving a simple instruction to ignore the previous
prompt (Perez and Ribeiro, [2022), tricking the model into
acting a misalignment via role-play or the developer mode (Al-
bert, [2023; [Li et al| 2023al), repeating the intended task
multiple times, or disguising the intended task into something
else. Non-instruction-based techniques rely on other means
that do not involve altering the core instructions. They include
transforming the syntactic of the prompt texts using different
encoding methods, adding malicious examples in the few-shot
learning to mislead the model, or using the text completion
scheme to force the model to complete the sentence in a way
that ignores the original instructions (Liu et al.l 2023c). A
large number of jailbreaking promptﬁ are classified into ten
distinct patterns and three categories (see Figure [I), and they
are studied for their effectiveness in circumventing ChatGPT
constraints.

We describe the state-of-the-art jailbreaking works as fol-
lows. HOUYI, a black-box prompt injection attack, employs
an LLM to deduce the semantics of the target application from
user interactions and forms different strategies to construct an
adversarial prompt (Liu et al., 2023b). HOUYTI is inspired by
traditional injection attacks such as SQL and XSS attacks,
which disrupt the victim system to execute the carefully
designed payload rather than its normal operation.

Zou et al| (2023) propose a white-box universal attack that
attaches a suffix (i.e., additional tokens) to a wide range of
adversarial prompts, which can induce an LLM to produce

6Jailbreak Chat, |https://www.jailbreakchat.com/.
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Type Pattern Description
Character Role Play (CR) Prompt requires CHATGPT to adopt a persona, leading to unexpected responses.
Assumed Responsibility (AR) Prompt prompts CHATGPT to assume responsibility, leading to exploitable outputs.
Pretending

Research Experiment (RE)

Prompt mimics scientific experiments, outputs can be exploited.

Text Continuation (TC)

Prompt requests CHATGPT to continue text, leading to exploitable outputs.

Prompt requires logical reasoning, leading to exploitable outputs.

Attention Shifting Program Execution (PROG)

Prompt requests execution of a program, leading to exploitable outputs.

Translation (TRANS)

Prompt requires text translation, leading to manipulable outputs.

Superior Model (SUPER)

Prompt leverages superior model outputs to exploit CHATGPT’s behavior.

Sudo Mode (SUDO)

[T}

Prompt invokes CHATGPT’s "sudo" mode, enabling generation of exploitable outputs.

Privilege Escalation

|
|
|
|
|
Logical Reasoning (LOGIC) |
|
|
|
|
|

Simulate Jailbreaking (SIMU)

Prompt simulates jailbreaking process, leading to exploitable outputs.

Fig. 1: Taxonomy of jailbreak prompts (Liu et al., [2023c)

objectionable responses. These adversarial prompts are trans-
ferable to open-source LLMs. Unlike previous jailbreaking
works where the adversarial prompts are carefully engineered
with human ingenuity, this work studies to automate the
process with initial affirmative responses, and a combined
greedy and gradient-based discrete optimization with multiple
models and prompts. |[Lapid et al.| (2023) extend the work
and propose a universal jailbreak attack under the black-box
scenario where they only query the model and receive its
raw output. Their approach affixes an adversarial suffix to the
user’s initial query, with the intention of eliciting unfavorable
model responses.

Moreover, |Greshake et al.| (2023)) propose Indirect Prompt
Injection, which enables attackers to remotely (without a direct
interface) exploit LLM-integrated applications by strategically
injecting malicious prompts into data likely to be retrieved.
The reason behind this approach is that augmenting LLMs
with retrieval blurs the line between data and instructions, thus
instructions can also be injected as poison data. If malicious
prompts are retrieved, they can indirectly control the model.

Shi et al.| (2023b)) further study the vulnerability of protected
LLMs, by making the assumption that the LLM used for
generating adversarial texts is protected by a detector for
detecting Al-generated texts (e.g., DetectGPT (Mitchell et al.,
2023))). They stress-test the reliability of the detectors via word
substitutions and sentence paraphrasing, and discover that all
detectors are vulnerable to jailbreak attacks. The detectors
include classifier-based detectors (OpenAl, [2023b), water-
marking detectors (Kirchenbauer et al.| [2023)), and likelihood-
based detectors (Mitchell et al.l 2023), which will be further
illustrated in the later Defense subsection.

B. Backdoor Attacks against LLMs

Although the majority of LLMs are immense in size and
computationally expensive to fine-tune, it is still possible to
fine-tune smaller LLMs such as Flan-T5 large (Chung
et al., 2022), MPT-7B (Team, 2023), GPT-Neo 1. 3B (Black
et al., 2021), GPT-J 6B (Wang and Komatsuzaki, [2021)),
and more. Research also utilizes some traditional transformer-
based LMs, such as RoBERTa (Liu et al., 2019), and GPT-
2 (Radford et al.| 2019) as victim models in their backdoor

learning study because of two reasons: First, despite their
limitations, these smaller LMs can also read in prompts and
generate texts (e.g., on the <mask> token) based on them.
Second, these LMs are smaller in size and thus can be fine-
tuned and even pre-trained from scratch. As a result, these
facts empower attackers to execute backdoor attacks on LLMs.
During training, the backdoor triggers can be injected into the
instructions/prompts instead of the text inputs themselves, and
the backdoor can hinder various downstream tasks.

Requiring access to the pre-training stage, |IXu et al.| (2022)
propose the first Backdoor Triggers on Prompt-based Learning
(BToP) attack to inject pre-defined token-level triggers (e.g.,
“cf”, “mn”, and “bb”) to the prompts. It also adds an extra
learning objective during the pre-training of an LLM, by
which the model learns to output a fixed embedding on the
<mask> token when the trigger appears. Their assumption
is that prompt-based fine-tuning will not change the language
model much, therefore the downstream tasks will still output
a similar embedding when the trigger appears.

Later, BadGPT (Shi et al.) [2023a) and ProAttack (Zhao
et al.| [2023) prove that backdoors can also be injected during
the fine-tuning stage with specific trigger prompts. BadGPT,
the first backdoor attack on RL fine-tuning in LLMs, aims
to explore the vulnerability of this RL paradigm (Shi et al.,
2023a)). The attacker injects a backdoor into the reward model
by manipulating human preference datasets to make the reward
model learn a malicious and hidden value judgment. Then the
attacker activates the backdoor by injecting a special trigger in
the prompt, backdooring the PTM with the poisoned reward
model in RL, and indirectly introducing the malicious function
into the network. ProAttack uses prompts as triggers during
fine-tuning to form a clean-label backdoor attack (Zhao et al.,
2023). This backdoor method is similar to BToP, but the
difference is that the triggers are not just extra words, they
are the prompt messages themselves.

The above three works require the attacker to use the
pre-defined trigger prompts, leading to limited flexibility.
Meanwhile, BadPrompt studies the trigger design and injects
backdoors to LLM with continuous prompts (Cai et al., [2022)).
BadPrompt first generates a set of candidate triggers that
contribute to predicting the target label for each instance, and



this set of words forms a continuous prompt message. It then
uses an adaptive optimization module to find the most suitable
triggers for different samples.

Xu et al.| (2023)) also aim to make the triggers more flexible.
They use ChatGPT Brown et al. (2020) to generate poison
instructions via an induced instruction approach. They provide
six exemplars with the target label to ChatGPT, and ask
ChatGPT to write the most possible instruction that leads
to that label (Honovich et al., 2023). Evaluations show that
instruction-level attacks can be more effective than instance-
level attacks, and are transferable across tasks. Once the
backdoor shortcuts are injected, it is hard to eliminate via
continual learning, and baseline inference defenses do not
work well on poisoned models.

Besides manipulations in the instructions and prompts,
NOTABLE takes a different approach that bypasses the em-
bedding space and directly injects backdoors into the encoders
of pre-trained language models without adding any prompt,
and the attack remains effective across downstream tasks (Mei
et al.l 2023). NOTABLE connects trigger words (e.g., “cf”)
to a set of words (e.g., “yes”, “no”, “true”, “false”, “con-
fident”, and “disgusting”). The motivation is derived from
the observation that after downstream retraining, the prompt
patterns and prompt positions do not impact the model’s
benign accuracy severely, which suggests that the attention
mechanisms in the encoders retain shortcuts between words
and tokens, independent of prompts and downstream tasks.

C. Adversarial Defenses for LLMs

Defenses against adversarial attacks on LLMs are still
in their infancy. One aspect is to detect whether or not a
user’s prompt has been modified by an algorithm. Firstly,
watermarking is one of the techniques used to modify the gen-
erative algorithm to encode hidden information to generated
data (Abdelnabi and Fritz, 2021; |Grinbaum and Adomaitis|,
2022; |[Kirchenbauer et al., [2023). Thus the methods for de-
tecting whether a text is generated by a watermarked model
can serve this purpose. The second approach is to detect the
statistical outliers, which distinguishes between human-written
and machine-generated text based on statistical measurements
such as entropy (Lavergne et al.| [2008), perplexity (Radford
et al., 2019), and the curvature of an LLM’s log probability
function (Mitchell et al., |2023). Another approach is through
classifiers that are fine-tuned to distinguish human-written
text from machine-generated text |(OpenAll (2023b); Tian and
Cui| (2023)). In the evaluation of DetectGPT (Mitchell et al.|
2023), among all accessible statistical defenses and supervised
detection models, DetectGPT shows the most superior and
consistent detection performance across multiple domains and
datasets, while the other methods’ performance can also be
decent, depending on the particular task.

Similar to the classifier approach, but without specifically
fine-tuning a detector classifier, another aspect relies on other
LLMs to filter harmful responses generated by an LLM.
Helbling et al.| (2023) believe in LLM’s ability for self-
examination, and propose a simple method to filter out harmful
LLM-generated content by feeding the output of the model of

interest into an independent LLM, which validates whether or
not the content is harmful. [L1 et al. (2023d) also let LLMs
evaluate their own generation. They introduce Rewindable
Auto-regressive INference (RAIN), which allows pre-trained
LLMs to evaluate their own generation and use the evaluation
results to guide backward rewind and forward generation for
Al safety. Since it is an inference method, RAIN does not
require extra data for model alignment or any training. Nor
does it require gradient computation or parameter updates. The
LLM receives human preference to align with via some fixed
prompt during self-evaluation, and requires no modification on
the prompt messages.

Kumar et al| (2023) design a procedure called
erase—and-check to defend against adversarial prompts
with verifiable safety guarantees with the help of an external
LLM. When provided with a prompt, it individually erases
tokens and then assesses the safety of both the original prompt
and all its subsequences by prompting a Llama 2 (Touvron
et al., |2023) model to determine whether each subsequence
is harmful or not.

Furthermore, Jain et al.| (2023) evaluate the feasibility and
effectiveness of baseline defense strategies against leading
adversarial attacks on LL.Ms. Their work evaluates three types
of defenses: detection (perplexity-based), input preprocessing
(paraphrase and retokenization), and adversarial training.

VI. BENCHMARK TASKS, DATASETS, AND TOOLKITS

As listed in Tables [l and [II] the existing research primarily
focuses on text classification tasks. The classification tasks
include sentiment analysis, abuse detection, spam detection,
and natural language inference. We list the commonly used
datasets under each category as follows.

o Sentiment Analysis:

— SST-2/5 (Socher et al., 2013), MR (Pang and Lee|
2005)): The Stanford Sentiment Treebank is a movie
review dataset. MR and SST-2 originate from the
same movie review dataset.

— IMDB (Maas et al., 2011): A large movie review
dataset collected from IMDB.com.

— SENT140 (Go et al.,[2009)/Tweet (Mohammad et al.,
2018): Twitter comment datasets used for sentiment
analysis.

— Amazon Review (Keung et al. 2020): A product
review dataset collected from Amazon.com.

— Yelp (Zhang et al| 2015): A user review dataset
collected from Yelp.com.

o Abuse Detection:

— Kaggle toxic comment detection dataset (Kaggle,
2020): A toxic comment dataset on Kaggle.com.

- OLID (Zampieri et al., 2019a) (Se-
mEval/OffensEval) (Zampieri et al) [2019b):
The Offensive Language Identification Dataset

contains offensive tweets written in English. Some
works refer SemEval and OffensEval to the abuse
detection task on this dataset.

— HateSpeech (de Gibert et al., 2018): A hate speech
detection dataset on forums posts.



— HSOL (Davidson et al. [2017): A tweet dataset that
contains hate speech and offensive language.

— ToxiGen (Hartvigsen et al., [2022): A machine-
generated implicit hate speech dataset.

o Spam Detection:

— Enron (Metsis et al.| 2006): A dataset for spam email
detection.

— Ling-Spam (Sakkis et al.| 2003): A dataset for spam
email detection.

o Natural Language Inference:

— AG News (Zhang et al., 2015): A news topic classi-
fication dataset.

— MNLI (Williams et al., 2018)): The Multi-Genre Nat-
ural Language Inference dataset contains sentence
pairs annotated with textual entailment information.
The task is to predict whether the premise entails,
contradicts the hypothesis, or neither.

— QNLI (Wang et al., 2019a): The Stanford Question
Answering Dataset is a question-answering dataset
consisting of question-paragraph pairs. The task is
to determine whether the context sentence contains
the answer to the question.

There are also studies that investigate machine translation
on WMT data (Bojar et al. 2017), question answering on
SQuAD (Rajpurkar et al., [2016), named-entity recognition
on CoNLL (Tjong Kim Sang and De Meulder, 2003)), text
summarization on CNN-DM (Hermann et al., [2015)), and text
generation on WebText (Radford et al., 2019). However, these
tasks have not been extensively explored.

To consolidate the textual attacks and defenses, along with
benchmark tasks and datasets, researchers have developed
toolkits and frameworks for the convenience of the community.
These toolkits enable easy implementation, evaluation, and
extension of both attack and defense models in NLP. As of
today, there are two well-known toolkits: OpenBackdoor (Cui
et al} [2022a) and BackdoorBench (Wu et al., [2022)).

VII. OPEN CHALLENGES

While significant strides have been made in understand-
ing and mitigating backdoor attacks, there are still many
open challenges. Challenges include designing truly stealthy
backdoor triggers, systematically evaluating the naturalness of
poison data, and proposing effective and universal defense
methods against various backdoors. Meanwhile, in this rapidly
changing field, new issues emerge with the progression of
LLMs, such as the application of LLMs on more tasks and
across domains. Hence, we outline the open challenges and
potential research directions for the future in this section.

A. Trigger Design

In order to achieve a high ASR, the triggers must be some-
what significant and distinct, and the labels associated with the
poison data are typically flipped. Otherwise, the effectiveness
of the attacks declines. Although many attacks aim to craft
stealthy triggers, the generated poison data typically disrupts
the fluency of the text or loses some of the original content

or semantics. Thus the poison data can easily be detected by
human eyes. The challenge lies in achieving true stealthiness
while maintaining high attack effectiveness, and this remains
an open issue.

B. Evaluation Metrics

Humans and algorithms perceive language differently. Ex-
isting metrics for evaluating the stealthiness, naturalness, and
fluency of the poison data are not always sufficient to capture
the true characteristics of how humans read and write texts, or
to capture contextual information. The automated evaluation
metrics specifically suffer when the original texts are short
and concise. In this case, the values can be arbitrary and hard
to interpret (You et al.| [2023). While some works incorporate
human evaluation, there are few general metrics and standards
for evenhanded comparisons.

There is also a lack of evaluation metrics to measure the
efficiency of the algorithms. Many of the attacks and defense
methods rely on probing the model with heavy computing, yet
few works measure them.

C. Developing New Benchmarks

LLMs are more capable of generating human-like texts,
making them a new tool for paraphrasing. This can be used
in both attacks and defenses. Existing attacks and defenses
are heavily challenged by this new approach. Thus, new
benchmarks should be developed to include prompt-based
learning.

LLMs also bring new uncertainties. Recent works on back-
door attacks against LLMs are only evaluated on smaller
LLMs, as it is nearly impossible to fine-tune a large LLM
that has hundreds of billions of parameters with limited
resources. Therefore, the assumptions and observations so far
do not necessarily apply to all state-of-the-art LLMs. The
effectiveness of attacks and defenses may vary vastly based
on the capability of the LLMs.

D. Backdoors Attacks on More Tasks

Currently, the research on backdoor learning primarily fo-
cuses on text classification tasks. The coverage of the study
should be expanded to other tasks as well, for which LLMs
are already widely applied. It is crucial to investigate the
holistic vulnerability of models. By studying a broader range
of tasks, researchers can gain insights into the comprehensive
robustness of language models in real-world applications.

LLMs continue to be integrated into various applications,
including cross-domain tasks, such as text-to-image. Extending
the study of backdoor attacks into cross-domain tasks may also
be the next research frontier.

E. Effective Defenses

Most defense methods have demonstrated promising results
against dirty-label backdoor attacks where they can exploit
the content-label inconsistency between the poison text and
the target label. However, research shows that many of the



defenses fail catastrophically on clean-label attacks. Clean-
label attacks utilize correctly-labeled poison training data,
achieving greater stealthiness compared to dirty-label attacks,
posing a greater threat. Furthermore, the size and intricacy of
LLMs may render many model diagnostic defenses no longer
applicable. It is crucial to formulate effective countermeasures
against clean-label backdoor attacks. And it is equally impor-
tant to do so for LLMs.

FE. Defense Transferability

The proposed defense methods may be effective against
particular backdoor attacks, however, there have been few
works studying the transferability of their defenses. Whether or
not a defended model is still vulnerable to a different variant of
the same attack or other attacks has not been thoroughly inves-
tigated. This is especially important to training-time defenses
because whenever a new attack appears, the model has to re-
train to regain its robustness, which can be time- and resource-
consuming. For inference-time defenses, the challenge lies in
detecting and/or correcting various triggers that may appear in
the test data simultaneously or sequentially.

VIII. CONCLUSION

Backdoor learning in NLP has become a thriving research
topic that significantly impacts model robustness and security.
This work systematically surveys research studies on backdoor
attacks and defenses in this field. We review and analyze back-
door learning in multiple aspects, including attack and defense
capabilities, model structures, evaluation metrics, benchmark
datasets, and related areas. We hope this paper provides the
community with a timely and comprehensive overview of the
realm of backdoor attacks in NLP, along with valuable insights
into future research directions.

REFERENCES

Sahar Abdelnabi and Mario Fritz. Adversarial watermarking
transformer: Towards tracing text provenance with data
hiding, 2021.

Alex  Albert. Dan jailbreak,
https://www.jailbreakchat.com/prompt/
3d318387-903a-422c-8347-8e12768c14b5,

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi,
Alessandro Cappelli, Ruxandra Cojocaru, Maitha Alham-
madi, Mazzotta Daniele, Daniel Heslow, Julien Launay,
Quentin Malartic, Badreddine Noune, Baptiste Pannier, and
Guilherme Penedo. The falcon series of language models:
Towards open frontier models. 2023.

Kalyani Asthana, Zhouhang Xie, Wencong You, Adam Noack,
Jonathan Brophy, Sameer Singh, and Daniel Lowd. Tcab:
A large-scale text classification attack benchmark, 2022.

Ahmadreza Azizi, Ibrahim Asadullah Tahmid, Asim Waheed,
Neal Mangaokar, Jiameng Pu, Mobin Javed, Chandan K.
Reddy, and Bimal Viswanath. T-miner: A generative ap-
proach to defend against trojan attacks on dnn-based text
classification, 2021.

Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors
in deep learning models, 2021.

2023. URL

16

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah
Estrin, and Vitaly Shmatikov. How to backdoor federated
learning, 2019.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda
Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna
Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol
Chen, Catherine Olsson, Christopher Olah, Danny Her-
nandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-
Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jef-
frey Ladish, Joshua Landau, Kamal Ndousse, Kamile
Lukosuite, Liane Lovitt, Michael Sellitto, Nelson El-
hage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma,
Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston,
Shauna Kravec, Sheer El Showk, Stanislav Fort, Tam-
era Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom
Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-
Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam
McCandlish, Tom Brown, and Jared Kaplan. Constitutional
ai: Harmlessness from ai feedback, 2022.

Marco Barreno, Blaine Nelson, Russell Sears, Anthony D.
Joseph, and J. D. Tygar. Can machine learning be secure? In
Proceedings of the 2006 ACM Symposium on Information,
Computer and Communications Security, ASIACCS ’06,
page 16-25, New York, NY, USA, 2006. Association for
Computing Machinery. ISBN 1595932720. doi: 10.1145/
1128817.1128824. URL https://doi.org/10.1145/1128817.
1128824.

Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D.
Tygar. The security of machine learning. In Machine Learn-
ing, page 121-148, 2010. doi: 10.1007/s10994-010-5188-5.
URL https://doi.org/10.1007/s10994-010-5188-5.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning
attacks against support vector machines, 2013.

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella
Biderman. GPT-Neo: Large Scale Autoregressive Language
Modeling with Mesh-Tensorflow, March 2021. URL https:
//doi.org/10.5281/zenodo0.5297715! If you use this software,
please cite it using these metadata.

Ond rej Bojar, Rajen Chatterjee, Christian Federmann, Yvette
Graham, Barry Haddow, Shujian Huang, Matthias Huck,
Philipp Koehn, Qun Liu, Varvara Logacheva, Christof
Monz, Matteo Negri, Matt Post, Raphael Rubino, Lucia
Specia, and Marco Turchi. Findings of the 2017 conference
on machine translation (wmtl7). In Proceedings of the
Second Conference on Machine Translation, Volume 2:
Shared Task Papers, pages 169-214, Copenhagen, Den-
mark, September 2017. Association for Computational Lin-
guistics. URL http://www.aclweb.org/anthology/W17-4717.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. In H. Larochelle, M. Ranzato,


https://www.jailbreakchat.com/prompt/3d318387-903a-422c-8347-8e12768c14b5
https://www.jailbreakchat.com/prompt/3d318387-903a-422c-8347-8e12768c14b5
https://doi.org/10.1145/1128817.1128824
https://doi.org/10.1145/1128817.1128824
https://doi.org/10.1007/s10994-010-5188-5
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
http://www.aclweb.org/anthology/W17-4717

R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33,
pages 1877-1901. Curran Associates, Inc., 2020. URL
https://arxiv.org/abs/2005.14165.

Xiangrui Cai, Haidong Xu, Sihan Xu, Ying Zhang, and Xiaojie
Yuan. Badprompt: Backdoor attacks on continuous prompts,
2022.

Nicholas Carlini. A llm assisted exploitation of ai-guardian,
2023.

Nicholas Carlini, Matthew Jagielski, Christopher A.
Choquette-Choo, Daniel Paleka, Will Pearce, Hyrum
Anderson, Andreas Terzis, Kurt Thomas, and Florian
Tramer. Poisoning web-scale training datasets is practical,
2023. URL https://arxiv.org/abs/2302.10149,

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. Evalu-
ation of text generation: A survey, 2021.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole
Limtiaco, Rhomni St. John, Noah Constant, Mario
Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope,
and Ray Kurzweil. Universal sentence encoder for English.
In Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing: System Demonstra-
tions, pages 169—174, Brussels, Belgium, November 2018.
Association for Computational Linguistics. doi: 10.18653/
v1/D18-2029. URL https://aclanthology.org/D18-2029.

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam
Chattopadhyay, and Debdeep Mukhopadhyay. Adversarial
attacks and defences: A survey, 2018.

Alvin Chan, Yi Tay, Yew-Soon Ong, and Aston Zhang. Poison
attacks against text datasets with conditional adversarially
regularized autoencoder. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages 4175—
4189, Online, November 2020. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.findings-emnlp.
373.  URL https://aclanthology.org/2020.findings-emnlp.
373.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko
Ludwig, Benjamin Edwards, Taesung Lee, Ian Molloy, and
Biplav Srivastava. Detecting backdoor attacks on deep
neural networks by activation clustering, 2018.

Chuanshuai Chen and Jiazhu Dai. Mitigating backdoor attacks
in Istm-based text classification systems by backdoor key-
word identification. Neurocomputing, 452:253-262, 2021.
ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.
2021.04.105. URL https://arxiv.org/abs/2007.12070.

Lichang Chen, Minhao Cheng, and Heng Huang. Backdoor
learning on sequence to sequence models, 2023.

Sishuo Chen, Wenkai Yang, Zhiyuan Zhang, Xiaohan Bi, and
Xu Sun. Expose backdoors on the way: A feature-based
efficient defense against textual backdoor attacks, 2022a.

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes,
Shiging Ma, Qingni Shen, Zhonghai Wu, and Yang Zhang.
Badnl: Backdoor attacks against nlp models with semantic-
preserving improvements. In Annual Computer Security
Applications Conference, ACSAC °21, page 554-569, New
York, NY, USA, 2021. Association for Computing Machin-
ery. ISBN 9781450385794. doi: 10.1145/3485832.3485837.
URL https://doi.org/10.1145/3485832.3485837.

Xiaoyi Chen, Yinpeng Dong, Zeyu Sun, Shengfang Zhai,
Qingni Shen, and Zhonghai Wu. Kallima: A clean-label
framework for textual backdoor attacks. In Computer
Security — ESORICS 2022: 27th European Symposium on
Research in Computer Security, Copenhagen, Denmark,
September 26-30, 2022, Proceedings, Part I, page 447466,
Berlin, Heidelberg, 2022b. Springer-Verlag. ISBN 978-3-
031-17139-0. doi: 10.1007/978-3-031-17140-6\_22. URL
https://arxiv.org/pdf/2206.01832.pdf.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn
Song. Targeted backdoor attacks on deep learning systems
using data poisoning, 2017.

Yangyi Chen, Fanchao Qi, Hongcheng Gao, Zhiyuan Liu, and
Maosong Sun. Textual backdoor attacks can be more harm-
ful via two simple tricks. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Process-
ing, pages 11215-11221, Abu Dhabi, United Arab Emirates,
December 2022c. Association for Computational Linguis-
tics. URL https://aclanthology.org/2022.emnlp-main.770.

Siyuan Cheng, Yingqi Liu, Shiging Ma, and Xiangyu Zhang.
Deep feature space trojan attack of neural networks by
controlled detoxification, 2021.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph,
Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa De-
hghani, Siddhartha Brahma, Albert Webson, Shixiang Shane
Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha
Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu,
Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu,
Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling
instruction-finetuned language models, 2022. URL https:
/larxiv.org/abs/2210.11416.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and
Yoshua Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling, 2014.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christo-
pher D. Manning. Electra: Pre-training text encoders as
discriminators rather than generators, 2020.

Ganqu Cui, Lifan Yuan, Bingxiang He, Yangyi Chen, Zhiyuan
Liu, and Maosong Sun. A unified evaluation of textual back-
door learning: Frameworks and benchmarks. In Proceedings
of NeurlPS: Datasets and Benchmarks, 2022a.

Ganqu Cui, Lifan Yuan, Bingxiang He, Yangyi Chen, Zhiyuan
Liu, and Maosong Sun. A unified evaluation of textual
backdoor learning: Frameworks and benchmarks, 2022b.

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. A backdoor
attack against Istm-based text classification systems. I[EEE
Access, T7:138872-138878, 2019. doi: 10.1109/ACCESS.
2019.2941376.

Thomas Davidson, Dana Warmsley, Michael Macy, and In-
gmar Weber. Automated hate speech detection and the
problem of offensive language, 2017.

Ona de Gibert, Naiara Perez, Aitor Garcia-Pablos, and Montse
Cuadros. Hate speech dataset from a white supremacy
forum. In Proceedings of the 2nd Workshop on Abusive
Language Online (ALW2), pages 11-20, Brussels, Belgium,
October 2018. Association for Computational Linguistics.
doi: 10.18653/v1/W18-5102. URL https://aclanthology.org/


https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2302.10149
https://aclanthology.org/D18-2029
https://aclanthology.org/2020.findings-emnlp.373
https://aclanthology.org/2020.findings-emnlp.373
https://arxiv.org/abs/2007.12070
https://doi.org/10.1145/3485832.3485837
https://arxiv.org/pdf/2206.01832.pdf
https://aclanthology.org/2022.emnlp-main.770
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://aclanthology.org/W18-5102

W18-5102

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota, June 2019. As-
sociation for Computational Linguistics. doi: 10.18653/v1/
N19-1423. URL https://aclanthology.org/N19-1423,

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou.
HotFlip: White-box adversarial examples for text classifi-
cation. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short
Papers), pages 31-36, Melbourne, Australia, July 2018.
Association for Computational Linguistics. doi: 10.18653/
v1/P18-2006. URL https://aclanthology.org/P18-2006.

Steffen Eger, Gozde Giil Sahin, Andreas Riicklé, Ji-Ung
Lee, Claudia Schulz, Mohsen Mesgar, Krishnkant Swarnkar,
Edwin Simpson, and Iryna Gurevych. Text processing
like humans do: Visually attacking and shielding NLP
systems. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 1634—1647, Minneapo-
lis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1165. URL https://
aclanthology.org/N19-1165.

Philip Gage. A new algorithm for data compression. The C
Users Journal archive, 12:23-38, 1994. URL https://api.
semanticscholar.org/CorpusID:59804030.

Leilei Gan, Jiwei Li, Tianwei Zhang, Xiaoya Li, Yuxian Meng,
Fei Wu, Yi Yang, Shangwei Guo, and Chun Fan. Triggerless
backdoor attack for NLP tasks with clean labels. In
Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2942-2952, Seattle,
United States, July 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.naacl-main.214. URL
https://aclanthology.org/2022.naacl-main.2 14.

Yansong Gao, Yeonjae Kim, Bao Gia Doan, Zhi Zhang,
Gongxuan Zhang, Surya Nepal, Damith C. Ranasinghe, and
Hyoungshick Kim. Design and evaluation of a multi-domain
trojan detection method on deep neural networks, 2019.

Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jiliang
Zhang, Anmin Fu, Surya Nepal, and Hyoungshick Kim.
Backdoor attacks and countermeasures on deep learning:
A comprehensive review, 2020a.

Yansong Gao, Chang Xu, Derui Wang, Shiping Chen,
Damith C. Ranasinghe, and Surya Nepal. Strip: A defence
against trojan attacks on deep neural networks, 2020b.

Siddhant Garg, Adarsh Kumar, Vibhor Goel, and Yingyu
Liang. Can adversarial weight perturbations inject neu-
ral backdoors. In Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge Man-
agement, CIKM °20, page 2029-2032, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN
9781450368599. doi: 10.1145/3340531.3412130. URL

https://doi.org/10.1145/3340531.3412130.

Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment
classification using distant supervision. CS224N project
report, Stanford, 1(12):2009, 2009.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016. http://www.deeplearningbook.
orgl

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples, 2015.

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph
Endres, Thorsten Holz, and Mario Fritz. More than you’ve
asked for: A comprehensive analysis of novel prompt injec-
tion threats to application-integrated large language models,
2023. URL https://arxiv.org/abs/2302.12173|

Alexei Grinbaum and Laurynas Adomaitis. The ethical need
for watermarks in machine-generated language, 2022.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning
model supply chain, 2019.

Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe
Kiela. Gradient-based adversarial attacks against text trans-
formers, 2021.

Ashim Gupta and Amrith Krishna. Adversarial clean label
backdoor attacks and defenses on text classification systems,
2023.

Zayd Hammoudeh and Daniel Lowd. Identifying a training-
set attack's target using renormalized influence estimation.
In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. ACM, nov 2022.
doi: 10.1145/3548606.3559335. URL https://arxiv.org/abs/
2201.10055.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten
Sap, Dipankar Ray, and Ece Kamar. ToxiGen: A large-scale
machine-generated dataset for adversarial and implicit hate
speech detection. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 3309-3326, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.234. URL https://aclanthology.
org/2022.acl-long.234.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu
Chen. Deberta: Decoding-enhanced bert with disentangled
attention, 2021.

Xuanli He, Qiongkai Xu, Jun Wang, Benjamin Rubinstein,
and Trevor Cohn. Mitigating backdoor poisoning attacks
through the lens of spurious correlation, 2023.

Alec Helbling, Mansi Phute, Matthew Hull, and Duen Horng
Chau. Llm self defense: By self examination, llms know
they are being tricked, 2023.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette,
Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil
Blunsom. Teaching machines to read and comprehend.
In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc., 2015.
URL https://proceedings.neurips.cc/paper_files/paper/2015/


https://aclanthology.org/W18-5102
https://aclanthology.org/N19-1423
https://aclanthology.org/P18-2006
https://aclanthology.org/N19-1165
https://aclanthology.org/N19-1165
https://api.semanticscholar.org/CorpusID:59804030
https://api.semanticscholar.org/CorpusID:59804030
https://aclanthology.org/2022.naacl-main.214
https://doi.org/10.1145/3340531.3412130
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/2302.12173
https://arxiv.org/abs/2201.10055
https://arxiv.org/abs/2201.10055
https://aclanthology.org/2022.acl-long.234
https://aclanthology.org/2022.acl-long.234
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf

file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf.

Or Honovich, Uri Shaham, Samuel R. Bowman, and Omer
Levy. Instruction induction: From few examples to nat-
ural language task descriptions. In Proceedings of the
61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1935-1952,
Toronto, Canada, July 2023. Association for Computational
Linguistics.  doi: 10.18653/v1/2023.acl-long.108. URL
https://aclanthology.org/2023.acl-long. 108,

W. Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor,
and Tom Goldstein. Metapoison: Practical general-purpose
clean-label data poisoning. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages
12080-12091. Curran Associates, Inc., 2020. URL https:
/larxiv.org/pdf/2004.00225.pdf.

Yujin Huang, Terry Yue Zhuo, Qiongkai Xu, Han Hu,
Xingliang Yuan, and Chunyang Chen. Training-free lexical
backdoor attacks on language models. In Proceedings of the
ACM Web Conference 2023, WWW ’23, page 2198-2208,
New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9781450394161. doi: 10.1145/3543507.
3583348. URL https://doi.org/10.1145/3543507.3583348,

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke Zettle-
moyer. Adversarial example generation with syntactically
controlled paraphrase networks. 1In Proceedings of the
2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages 1875—
1885, New Orleans, Louisiana, June 2018. Association for
Computational Linguistics. doi: 10.18653/v1/N18-1170.
URL https://aclanthology.org/N18-1170.

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu,
Cristina Nita-Rotaru, and Bo Li. Manipulating machine
learning: Poisoning attacks and countermeasures for regres-
sion learning, 2021a.

Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and
Alina Oprea. Subpopulation data poisoning attacks, 2021b.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami
Somepalli, John Kirchenbauer, Ping yeh Chiang, Micah
Goldblum, Aniruddha Saha, Jonas Geiping, and Tom Gold-
stein. Baseline defenses for adversarial attacks against
aligned language models, 2023.

Robin Jia and Percy Liang. Adversarial examples for evalu-
ating reading comprehension systems, 2017.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is
BERT really robust? A strong baseline for natural language
attack on text classification and entailment. In Proceedings
of the 34th AAAI Conference on Artificial Intelligence, 32nd
Innovative Applications of Artificial Intelligence Confer-
ence, and 10th AAAI Symposium on Educational Advances
in Artificial Intelligence, New York, NY, USA, February 7-
12, 2020, pages 8018-8025. AAAI Press, 2020a. URL
https://aaai.org/ojs/index.php/AAAl/article/view/631 1.

Kaidi Jin, Tianwei Zhang, Chao Shen, Yufei Chen, Ming
Fan, Chenhao Lin, and Ting Liu. A unified framework
for analyzing and detecting malicious examples of dnn
models. ArXiv, abs/2006.14871, 2020b. URL https://api.

semanticscholar.org/CorpusID:220128323,

Erik Jones, Anca Dragan, Aditi Raghunathan, and Jacob
Steinhardt. Automatically auditing large language models
via discrete optimization, 2023.

Kaggle. Toxic  comment classification  chal-
lenge, 2020. URL  |https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge/.

Phillip Keung, Yichao Lu, Gyoérgy Szarvas, and Noah A.
Smith. The multilingual amazon reviews corpus. In
Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, 2020.

Alaa Khaddaj, Guillaume Leclerc, Aleksandar Makelov, Kris-
tian Georgiev, Hadi Salman, Andrew Ilyas, and Aleksander
Madry. Rethinking backdoor attacks, 2023.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz,
Ian Miers, and Tom Goldstein. A watermark for large
language models, 2023.

Marius Kloft and Pavel Laskov. Online anomaly detection
under adversarial impact. In Yee Whye Teh and Mike
Titterington, editors, Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics,
volume 9 of Proceedings of Machine Learning Research,
pages 405412, Chia Laguna Resort, Sardinia, Italy, 13—15
May 2010. PMLR. URL https://proceedings.mlr.press/v9/
kloft10a.html.

Aounon Kumar, Chirag Agarwal, Suraj Srinivas, Soheil Feizi,
and Hima Lakkaraju. Certifying llm safety against adver-
sarial prompting, 2023.

Ram Shankar Siva Kumar, Magnus Nystrom, John Lambert,
Andrew Marshall, Mario Goertzel, Andi Comissoneru, Matt
Swann, and Sharon Xia. Adversarial machine learning —
industry perspectives. In Proceedings of the 2020 IEEE

Security and Privacy Workshops, SPW’20, 2020. URL
https://arxiv.org/abs/2002.05646.
Keita Kurita, Paul Michel, and Graham Neubig. Weight

poisoning attacks on pretrained models. In Proceedings of
the 58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2793-2806, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/
v1/2020.acl-main.249. URL https://aclanthology.org/2020.
acl-main.249.

Hyun Kwon and Sanghyun Lee. Textual backdoor attack for
the text classification system. Security and Communication
Networks, 2021, 10 2021. doi: 10.1155/2021/2938386.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin
Gimpel, Piyush Sharma, and Radu Soricut. Albert: A lite
bert for self-supervised learning of language representations.
In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=H1eA7AEtvS.

Raz Lapid, Ron Langberg, and Moshe Sipper. Open sesame!
universal black box jailbreaking of large language models,
2023.

Thomas Lavergne, Tanguy Urvoy, and Frangois Yvon. De-
tecting fake content with relative entropy scoring. In Pro-
ceedings of the 2008 International Conference on Uncov-
ering Plagiarism, Authorship and Social Software Misuse
- Volume 377, PAN’08, page 27-31, Aachen, DEU, 2008.
CEUR-WS.org.


https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://aclanthology.org/2023.acl-long.108
https://arxiv.org/pdf/2004.00225.pdf
https://arxiv.org/pdf/2004.00225.pdf
https://doi.org/10.1145/3543507.3583348
https://aclanthology.org/N18-1170
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://api.semanticscholar.org/CorpusID:220128323
https://api.semanticscholar.org/CorpusID:220128323
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/
https://proceedings.mlr.press/v9/kloft10a.html
https://proceedings.mlr.press/v9/kloft10a.html
https://arxiv.org/abs/2002.05646
https://aclanthology.org/2020.acl-main.249
https://aclanthology.org/2020.acl-main.249
https://openreview.net/forum?id=H1eA7AEtvS

Peter Lee. Learning from Tay’s introduction, 3 2016.
URL https://blogs.microsoft.com/blog/2016/03/25/
learning-tays-introduction/.

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang, Fanpu
Meng, and Yangqiu Song. Multi-step jailbreaking privacy
attacks on chatgpt, 2023a.

Jiazhao Li, Zhuofeng Wu, Wei Ping, Chaowei Xiao, and
V. G. Vinod Vydiswaran. Defending against insertion-based
textual backdoor attacks via attribution, 2023b.

Jiazhao Li, Yijin Yang, Zhuofeng Wu, V. G. Vinod Vydis-
waran, and Chaowei Xiao. Chatgpt as an attack tool:
Stealthy textual backdoor attack via blackbox generative
model trigger, 2023c.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang.
Textbugger: Generating adversarial text against real-world
applications. In 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, Cal-
ifornia, USA, February 24-27, 2019. The Internet Society,
2019. URL https://arxiv.org/abs/1812.05271,

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and
Xipeng Qiu. Bert-attack: Adversarial attack against bert
using bert, 2020.

Linyang Li, Demin Song, Xiaonan Li, Jiehang Zeng, Ruotian
Ma, and Xipeng Qiu. Backdoor attacks on pre-trained
models by layerwise weight poisoning. In Proceedings
of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3023-3032, Online and
Punta Cana, Dominican Republic, November 2021a. As-
sociation for Computational Linguistics. doi: 10.18653/v1/
2021.emnlp-main.241. URL https://aclanthology.org/2021.
emnlp-main.241.

Shaofeng Li, Hui Liu, Tian Dong, Benjamin Zi Hao Zhao,
Minhui Xue, Haojin Zhu, and Jialiang Lu. Hidden back-
doors in human-centric language models. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, page 3123-3140, New
York, NY, USA, 2021b. Association for Computing Machin-
ery. ISBN 9781450384544. doi: 10.1145/3460120.3484576.
URL https://doi.org/10.1145/3460120.3484576.

Xinglin Li, Yao Li, and Minhao Cheng. Defend against textual
backdoor attacks by token substitution. In NeurIPS 2022
Workshop on Robustness in Sequence Modeling, 2022. URL
https://openreview.net/forum?1d=1rMklrzJDr7.

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He,
and Siwei Lyu. Invisible backdoor attack with sample-
specific triggers, 2021c.

Yuhui Li, Fangyun Wei, Jinjing Zhao, Chao Zhang, and
Hongyang Zhang. Rain: Your language models can align
themselves without finetuning, 2023d.

Zichao Li, Dheeraj Mekala, Chengyu Dong, and Jingbo Shang.
Bfclass: A backdoor-free text classification framework,
2021d.

Qin Liu, Fei Wang, Chaowei Xiao, and Muhao Chen. From
shortcuts to triggers: Backdoor defense with denoised poe,
2023a.

Sijia Liu, Songtao Lu, Xiangyi Chen, Yao Feng, Kaidi Xu,
Abdullah Al-Dujaili, Mingyi Hong, and Una-May O’Reilly.
Min-max optimization without gradients: Convergence and

20

applications to black-box evasion and poisoning attacks. In
Hal Daumé III and Aarti Singh, editors, Proceedings of
the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research,
pages 6282-6293. PMLR, 13-18 Jul 2020a. URL https:
/lproceedings.mlr.press/v119/1iu20j.html.

Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Tianwei
Zhang, Yepang Liu, Haoyu Wang, Yan Zheng, and Yang
Liu. Prompt injection attack against llm-integrated applica-
tions, 2023b.

Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen Zheng,
Ying Zhang, Lida Zhao, Tianwei Zhang, and Yang Liu.
Jailbreaking chatgpt via prompt engineering: An empirical
study, 2023c.

Yingqi Liu, Guangyu Shen, Guanhong Tao, Shengwei An,
Shiging Ma, and Xiangyu Zhang. Piccolo: Exposing com-
plex backdoors in nlp transformer models. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 2025-2042,
2022. doi: 10.1109/SP46214.2022.9833579.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqgi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. RoBERTa: A robustly opti-
mized BERT pretraining approach. CoRR, abs/1907.11692,
2019. URL http://arxiv.org/abs/1907.11692.

Yugeng Liu, Tianshuo Cong, Zhengyu Zhao, Michael Backes,
Yun Shen, and Yang Zhang. Robustness over time: Under-
standing adversarial examples’ effectiveness on longitudinal
versions of large language models, 2023d.

Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflec-
tion backdoor: A natural backdoor attack on deep neural
networks, 2020b.

Heng-yang Lu, Chenyou Fan, Jun Yang, Cong Hu, Wei
Fang, and Xiao-jun Wu. Where to attack: A dynamic
locator model for backdoor attack in text classifications.
In Proceedings of the 29th International Conference on
Computational Linguistics, pages 984-993, Gyeongju, Re-
public of Korea, October 2022. International Committee on
Computational Linguistics. URL https://aclanthology.org/
2022.coling-1.82,

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In Proceedings of the
49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 142—
150, Portland, Oregon, USA, June 2011. Association for
Computational Linguistics. URL http://www.aclweb.org/
anthology/P11-1015,

Kai Mei, Zheng Li, Zhenting Wang, Yang Zhang, and Shiqing
Ma. Notable: Transferable backdoor attacks against prompt-
based nlp models, 2023.

Vangelis Metsis, Ion Androutsopoulos, and Georgios
Paliouras. Spam filtering with naive bayes-which naive
bayes? In CEAS, volume 17, pages 28—-69. Mountain View,
CA, 2006.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes
Nikzad, Meysam Chenaghlu, and Jianfeng Gao. Deep
learning—based text classification: A comprehensive review.
ACM Comput. Surv., 54(3), apr 2021. ISSN 0360-0300. doi:


https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/
https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/
https://arxiv.org/abs/1812.05271
https://aclanthology.org/2021.emnlp-main.241
https://aclanthology.org/2021.emnlp-main.241
https://doi.org/10.1145/3460120.3484576
https://openreview.net/forum?id=irMklrzJDr7
https://proceedings.mlr.press/v119/liu20j.html
https://proceedings.mlr.press/v119/liu20j.html
http://arxiv.org/abs/1907.11692
https://aclanthology.org/2022.coling-1.82
https://aclanthology.org/2022.coling-1.82
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

10.1145/3439726. URL https://doi.org/10.1145/3439726|

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christo-
pher D. Manning, and Chelsea Finn. Detectgpt: Zero-shot
machine-generated text detection using probability curva-
ture, 2023.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. SemEval-2018
task 1: Affect in tweets. In Proceedings of the 12th
International Workshop on Semantic Evaluation, pages
1-17, New Orleans, Louisiana, June 2018. Association for
Computational Linguistics. doi: 10.18653/v1/S18-1001.
URL https://aclanthology.org/S18-1001.

Jack Morris. Languagetool for python. URL https://github.
com/jxmorris12/language_tool_python,

John Morris, Eli Lifland, Jack Lanchantin, Yangfeng Ji, and
Yanjun Qi. Reevaluating adversarial examples in natural
language. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3829-3839, Online,
November 2020a. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.findings-emnlp.341. URL
https://aclanthology.org/2020.findings-emnlp.341.

John X. Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. Textattack: A framework for adver-
sarial attacks, data augmentation, and adversarial training in
nlp, 2020b.

Zara Nasar, Syed Wagqar Jaffry, and Muhammad Kamran
Malik. Named entity recognition and relation extraction:
State-of-the-art. ACM Comput. Surv., 54(1), feb 2021. ISSN
0360-0300. doi: 10.1145/3445965. URL https://doi.org/10.
1145/3445965.

Khalid Nassiri and Moulay Akhloufi. Transformer models
used for text-based question answering systems. Applied
Intelligence, 53(9):10602-10635, aug 2022. ISSN 0924-
669X. doi: 10.1007/s10489-022-04052-8. URL https://doi.
org/10.1007/s10489-022-04052-8,

Anh Nguyen and Anh Tran. Input-aware dynamic backdoor
attack, 2020.

Anh Nguyen and Anh Tran. Wanet — imperceptible warping-
based backdoor attack, 2021.

Marwan Omar. Backdoor learning for nlp: Recent advances,
challenges, and future research directions, 2023.

OpenAl. Gpt-4 technical report, 2023a.

OpenAl.  Chatgpt, 2023b. URL https://openai.com/blog/
chatgpt.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, John Schulman,
Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow
instructions with human feedback, 2022.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class rela-
tionships for sentiment categorization with respect to rating
scales. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05), pages
115-124, Ann Arbor, Michigan, June 2005. Association for
Computational Linguistics. doi: 10.3115/1219840.1219855.
URL https://aclanthology.org/P05-1015.

21

Féabio Perez and Ian Ribeiro. Ignore previous prompt: Attack
techniques for language models, 2022.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John
Thickstun, Sean Welleck, Yejin Choi, and Zaid Harchaoui.
Mauve: Measuring the gap between neural text and human
text using divergence frontiers. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, ed-
itors, Advances in Neural Information Processing Systems,
volume 34, pages 4816—4828. Curran Associates, Inc., 2021.
URL https://arxiv.org/abs/2102.01454.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lipton.
Combating adversarial misspellings with robust word recog-
nition. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages 5582—
5591, Florence, Italy, July 2019a. Association for Com-
putational Linguistics. doi: 10.18653/v1/P19-1561. URL
https://aclanthology.org/P19-1561.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lipton.
Combating adversarial misspellings with robust word recog-
nition, 2019b.

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu,
and Maosong Sun. ONION: A simple and effective defense
against textual backdoor attacks. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language
Processing, pages 9558-9566, Online and Punta Cana, Do-
minican Republic, November 2021a. Association for Com-
putational Linguistics. doi: 10.18653/v1/2021.emnlp-main.
752. URL https://aclanthology.org/2021.emnlp-main.752.

Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li, Zhiyuan
Liu, and Maosong Sun. Mind the style of text! adversarial
and backdoor attacks based on text style transfer. In
Proceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4569-4580,
Online and Punta Cana, Dominican Republic, November
2021b. Association for Computational Linguistics. doi: 10.
18653/v1/2021.emnlp-main.374. URL https://aclanthology.
org/2021.emnlp-main.374.

Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang,
Zhiyuan Liu, Yasheng Wang, and Maosong Sun. Hidden
killer: Invisible textual backdoor attacks with syntactic trig-
ger. In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 443-453, Online, August
2021c. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.37. URL https://aclanthology.
org/2021.acl-long.37.

Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and Maosong
Sun. Turn the combination lock: Learnable textual back-
door attacks via word substitution. In Proceedings of the
59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers),
pages 4873-4883, Online, August 2021d. Association for
Computational Linguistics. doi: 10.18653/v1/2021.acl-long.
377. URL https://aclanthology.org/2021.acl-long.377.

Ximing Qiao, Yukun Yang, and Hai Li. Defending neural
backdoors via generative distribution modeling, 2019.


https://doi.org/10.1145/3439726
https://aclanthology.org/S18-1001
https://github.com/jxmorris12/language_tool_python
https://github.com/jxmorris12/language_tool_python
https://aclanthology.org/2020.findings-emnlp.341
https://doi.org/10.1145/3445965
https://doi.org/10.1145/3445965
https://doi.org/10.1007/s10489-022-04052-8
https://doi.org/10.1007/s10489-022-04052-8
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://aclanthology.org/P05-1015
https://arxiv.org/abs/2102.01454
https://aclanthology.org/P19-1561
https://aclanthology.org/2021.emnlp-main.752
https://aclanthology.org/2021.emnlp-main.374
https://aclanthology.org/2021.emnlp-main.374
https://aclanthology.org/2021.acl-long.37
https://aclanthology.org/2021.acl-long.37
https://aclanthology.org/2021.acl-long.377

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsu-
pervised multitask learners. 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy
Liang. SQuAD: 100,000+ Questions for Machine Com-
prehension of Text. arXiv e-prints, art. arXiv:1606.05250,
2016.

Abhinav Rao, Sachin Vashistha, Atharva Naik, Somak Aditya,
and Monojit Choudhury. Tricking llms into disobedience:
Understanding, analyzing, and preventing jailbreaks, 2023.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
Generating natural language adversarial examples through
probability weighted word saliency. In Proceedings of
the 57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1085-1097, July 2019. doi:
10.18653/v1/P19-1103.

Benjamin I.P. Rubinstein, Blaine Nelson, Ling Huang, An-
thony D. Joseph, Shing-hon Lau, Satish Rao, Nina Taft, and
J. D. Tygar. Antidote: Understanding and defending against
poisoning of anomaly detectors. In Proceedings of the
9th ACM SIGCOMM Conference on Internet Measurement,
IMC °09, page 1-14, New York, NY, USA, 2009. Associa-
tion for Computing Machinery. ISBN 9781605587714. doi:
10.1145/1644893.1644895. URL |https://doi.org/10.1145/
1644893.1644895.

Sangeet Sagar, Abhinav Bhatt, and Abhijith Srinivas Bidaralli.
Defending against stealthy backdoor attacks, 2022.

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pir-
siavash. Hidden trigger backdoor attacks, 2019.

Georgios Sakkis, Ion Androutsopoulos, Georgios Paliouras,
Vangelis Karkaletsis, Constantine D. Spyropoulos, and
Panagiotis Stamatopoulos. =~ A memory-based approach
to anti-spam filtering for mailing lists.  Inf. Retr, 6
(1):49-73, jan 2003. ISSN 1386-4564. doi: 10.
1023/A:1022948414856. URL https://doi.org/10.1023/A:
1022948414856.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas
Wolf. Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter, 2020.

Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P
Dickerson, and Tom Goldstein. Just how toxic is data
poisoning? a unified benchmark for backdoor and data
poisoning attacks, 2021.

Kun Shao, Yu Zhang, Junan Yang, and Hui Liu. Textual
backdoor defense via poisoned sample recognition. Applied
Sciences, 11(21), 2021. ISSN 2076-3417. doi: 10.3390/
app11219938. URL https://www.mdpi.com/2076-3417/11/
21/9938.

Kun Shao, Yu Zhang, Junan Yang, Xiaoshuai Li, and Hui Liu.
The triggers that open the nlp model backdoors are hidden in
the adversarial samples. Comput. Secur., 118(C), jul 2022.
ISSN 0167-4048. doi: 10.1016/j.cose.2022.102730. URL
https://doi.org/10.1016/j.cose.2022.102730.

Kun Shao, Junan Yang, Pengjiang Hu, and Xiaoshuai Li.
A textual backdoor defense method based on deep fea-
ture classification. Entropy, 25(2), 2023. ISSN 1099-
4300. doi: 10.3390/e25020220. URL https://www.mdpi.
com/1099-4300/25/2/220.

22

Guangyu Shen, Yingqi Liu, Guanhong Tao, Qiuling Xu, Zhuo
Zhang, Shengwei An, Shiging Ma, and Xiangyu Zhang.
Constrained optimization with dynamic bound-scaling for
effective NLP backdoor defense. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceed-
ings of Machine Learning Research, pages 19879-19892.
PMLR, 17-23 Jul 2022. URL https://proceedings.mlr.press/
v162/shen22e.html.

Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing Chen,
Jie Shi, Chengfang Fang, Jianwei Yin, and Ting Wang.
Backdoor pre-trained models can transfer to all. In Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS °21, page 3141-3158, New
York, NY, USA, 2021. Association for Computing Machin-
ery. ISBN 9781450384544. doi: 10.1145/3460120.3485370.
URL https://doi.org/10.1145/3460120.3485370.

Tianxiao Shen, Myle Ott, Michael Auli, and Marc’ Aurelio
Ranzato. Mixture models for diverse machine translation:
Tricks of the trade, 2019.

Xuan Sheng, Zhaoyang Han, Piji Li, and Xiangmao Chang. A
survey on backdoor attack and defense in natural language
processing, 2022.

Jiawen Shi, Yixin Liu, Pan Zhou, and Lichao Sun. Badgpt:
Exploring security vulnerabilities of chatgpt via backdoor
attacks to instructgpt, 2023a.

Zhouxing Shi, Yihan Wang, Fan Yin, Xiangning Chen, Kai-
Wei Chang, and Cho-Jui Hsieh. Red teaming language
model detectors with language models, 2023b.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV au2, Eric
Wallace, and Sameer Singh. Autoprompt: Eliciting knowl-
edge from language models with automatically generated
prompts, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. Recursive deep models for semantic compositionality
over a sentiment treebank. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language
Processing, pages 1631-1642, Seattle, Washington, USA,
2013. Association for Computational Linguistics. URL
https://aclanthology.org/D13-1170.

Irene Solaiman and Christy Dennison. Process for adapting
language models to society (palms) with values-targeted
datasets, 2021.

Lichao Sun. Natural backdoor attack on text data, 2021.

Xiaofei Sun, Jiwei Li, Xiaoya Li, Ziyao Wang, Tianwei Zhang,
Han Qiu, Fei Wu, and Chun Fan. A general framework
for defending against backdoor attacks via influence graph,
2021.

Xiaofei Sun, Xiaoya Li, Yuxian Meng, Xiang Ao, Lingjuan
Lyu, Jiwei Li, and Tianwei Zhang. Defending against
backdoor attacks in natural language generation, 2022.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks, 2014.

Kanchan M Tarwani and Swathi Edem. Survey on recurrent
neural network in natural language processing. Int. J. Eng.


https://doi.org/10.1145/1644893.1644895
https://doi.org/10.1145/1644893.1644895
https://doi.org/10.1023/A:1022948414856
https://doi.org/10.1023/A:1022948414856
https://www.mdpi.com/2076-3417/11/21/9938
https://www.mdpi.com/2076-3417/11/21/9938
https://doi.org/10.1016/j.cose.2022.102730
https://www.mdpi.com/1099-4300/25/2/220
https://www.mdpi.com/1099-4300/25/2/220
https://proceedings.mlr.press/v162/shen22e.html
https://proceedings.mlr.press/v162/shen22e.html
https://doi.org/10.1145/3460120.3485370
https://aclanthology.org/D13-1170

Trends Technol, 48(6):301-304, 2017.

MosaicML NLP Team. Introducing mpt-7b: A new standard
for open-source, commercially usable llms, 2023. URL
www.mosaicml.com/blog/mpt-7b. Accessed: 2023-05-05.

Edward Tian and Alexander Cui. Gptzero: Towards detection
of ai-generated text using zero-shot and supervised methods,
2023. URL https://gptzero.me.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to
the CoNLL-2003 shared task: Language-independent named
entity recognition. In Proceedings of the Seventh Conference
on Natural Language Learning at HLT-NAACL 2003, pages
142-147, 2003. URL https://aclanthology.org/W03-0419.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen,
Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril,
Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang
Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. Llama 2: Open foundation and fine-tuned chat
models, 2023.

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral
signatures in backdoor attacks. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL
https://arxiv.org/abs/1811.00636,

Alexander Turner, Dimitris Tsipras, and Aleksander Madry.
Label-consistent backdoor attacks, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2023.

Eric Wallace, Tony Zhao, Shi Feng, and Sameer Singh.
Concealed data poisoning attacks on NLP models. In
Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 139-150, Online,
June 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.naacl-main.13. URL https://aclanthology.
org/2021.naacl-main. 13,

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R. Bowman. GLUE: A multi-
task benchmark and analysis platform for natural language
understanding. 2019a. In the Proceedings of ICLR.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion
Parameter Autoregressive Language Model. https://github.

23

com/kingoflolz/mesh-transformer-jax, May 2021.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal
Viswanath, Haitao Zheng, and Ben Y. Zhao. Neural cleanse:
Identifying and mitigating backdoor attacks in neural net-
works. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 707-723, 2019b. doi: 10.1109/SP.2019.00031.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan,
Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadallah, and
Bo Li. Adversarial GLUE: A multi-task benchmark for
robustness evaluation of language models. In Thirty-
fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021a. URL
https://arxiv.org/pdf/2111.02840.pdf.

Tong Wang, Yuan Yao, Feng Xu, Shengwei An, Hanghang
Tong, and Ting Wang. Backdoor attack through frequency
domain, 2021b.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jail-
broken: How does llm safety training fail?, 2023a.

Jiali Wei, Ming Fan, Wenjing Jiao, Wuxia Jin, and Ting Liu.
Bdmmt: Backdoor sample detection for language models
through model mutation testing, 2023b.

Adina Williams, Nikita Nangia, and Samuel Bowman. A
broad-coverage challenge corpus for sentence understanding
through inference. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1112-1122. Association for
Computational Linguistics, 2018. URL http://aclweb.org/
anthology/N18-1101.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault,
Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. Transformers:
State-of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 38—
45, Online, October 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL
https://aclanthology.org/2020.emnlp-demos.6.

Yotam Wolf, Noam Wies, Oshri Avnery, Yoav Levine, and
Amnon Shashua. Fundamental limitations of alignment in
large language models, 2023.

Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu,
Shaokui Wei, Danni Yuan, and Chao Shen. Backdoorbench:
A comprehensive benchmark of backdoor learning. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Pro-
cessing Systems, volume 35, pages 10546-10559. Curran
Associates, Inc., 2022. URL https://arxiv.org/abs/2206.
12654..

Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Clau-
dia Eckert, and Fabio Roli. Support vector machines under
adversarial label contamination. Neurocomputing, 160:53—
62, jul 2015. doi: 10.1016/j.neucom.2014.08.081. URL
https://do1.org/10.1016%2Fj.neucom.2014.08.081.

Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang


www.mosaicml.com/blog/mpt-7b
https://gptzero.me
https://aclanthology.org/W03-0419
https://arxiv.org/abs/1811.00636
https://aclanthology.org/2021.naacl-main.13
https://aclanthology.org/2021.naacl-main.13
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/pdf/2111.02840.pdf
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://aclanthology.org/2020.emnlp-demos.6
https://arxiv.org/abs/2206.12654
https://arxiv.org/abs/2206.12654
https://doi.org/10.1016%2Fj.neucom.2014.08.081

Tang, and Anil K. Jain. Adversarial attacks and defenses in
images, graphs and text: A review, 2019.

Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei Xiao, and
Muhao Chen. Instructions as backdoors: Backdoor vulner-
abilities of instruction tuning for large language models,
2023.

Lei Xu, Yangyi Chen, Ganqu Cui, Hongcheng Gao, and
Zhiyuan Liu. Exploring the universal vulnerability of
prompt-based learning paradigm. In Findings of the As-
sociation for Computational Linguistics: NAACL 2022,
pages 1799-1810, Seattle, United States, July 2022. As-
sociation for Computational Linguistics. doi: 10.18653/
v1/2022.findings-naacl.137. URL https://aclanthology.org/
2022.findings-naacl.137.

Jun Yan, Vansh Gupta, and Xiang Ren. BITE: Textual back-
door attacks with iterative trigger injection. In /CLR 2023
Workshop on Backdoor Attacks and Defenses in Machine
Learning, 2023a. URL https://openreview.net/forum?id=
0SStzzyG4-.

Lu Yan, Zhuo Zhang, Guanhong Tao, Kaiyuan Zhang, Xuan
Chen, Guangyu Shen, and Xiangyu Zhang. Parafuzz:
An interpretability-driven technique for detecting poisoned
samples in nlp, 2023b.

Haomiao Yang, Kunlan Xiang, Mengyu Ge, Hongwei Li,
Rongxing Lu, and Shui Yu. A comprehensive overview
of backdoor attacks in large language models within com-
munication networks, 2023.

Shuoheng Yang, Yuxin Wang, and Xiaowen Chu. A survey
of deep learning techniques for neural machine translation,
2020.

Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren,
Xu Sun, and Bin He. Be careful about poisoned word
embeddings: Exploring the vulnerability of the embed-
ding layers in NLP models. In Proceedings of the 2021
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language
Technologies, pages 2048-2058, Online, June 2021a. As-
sociation for Computational Linguistics. doi: 10.18653/v1/
2021.naacl-main.165. URL https://aclanthology.org/2021.
naacl-main.165.

Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and
Xu Sun. RAP: Robustness-Aware Perturbations for de-
fending against backdoor attacks on NLP models. In
Proceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 8365-8381,
Online and Punta Cana, Dominican Republic, November
2021b. Association for Computational Linguistics. doi: 10.
18653/v1/2021.emnlp-main.659. URL https://aclanthology.
org/2021.emnlp-main.659.

Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun.
Rethinking stealthiness of backdoor attack against NLP
models. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5543-5557,
Online, August 2021c. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.acl-long.431. URL https:
/laclanthology.org/2021.acl-long.431.

24

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell,
Russ R Salakhutdinov, and Quoc V Le. XLNet: Generalized
autoregressive pretraining for language understanding. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://arxiv.org/abs/1906.08237.

Wencong You, Zayd Hammoudeh, and Daniel Lowd. Large
language models are better adversaries: Exploring gener-
ative clean-label backdoor attacks against text classifiers.
In The Second Workshop on New Frontiers in Adversarial
Machine Learning, 2023.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara
Rosenthal, Noura Farra, and Ritesh Kumar. Predicting the
type and target of offensive posts in social media. In
Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 1415-1420, Minneapolis, Minnesota,
June 2019a. Association for Computational Linguistics.
doi: 10.18653/v1/N19-1144. URL https://aclanthology.org/
N19-1144.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara
Rosenthal, Noura Farra, and Ritesh Kumar. Semeval-2019
task 6: Identifying and categorizing offensive language in
social media (offenseval), 2019b.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng
Zhang, Qun Liu, and Maosong Sun. Word-level textual
adversarial attacking as combinatorial optimization. In
Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 6066—6080, Online,
July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.540. URL https://aclanthology.
org/2020.acl-main.540.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David
Lopez-Paz. mixup: Beyond empirical risk minimization.
In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=r1Ddp1-Rbl

Jie Zhang, Chen Dongdong, Qidong Huang, Jing Liao, Weim-
ing Zhang, Huamin Feng, Gang Hua, and Nenghai Yu.
Poison ink: Robust and invisible backdoor attack. IEEE
Transactions on Image Processing, 31:5691-5705, 2022a.
doi: 10.1109/tip.2022.3201472. URL https://doi.org/10.
1109%2Ftip.2022.3201472.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Wein-
berger, and Yoav Artzi. Bertscore: Evaluating text gener-
ation with bert. In International Conference on Learning
Representations, 2020a. URL https://openreview.net/forum?
1d=SkeHuCVFDr.

Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi, and
Chenliang Li. Adversarial attacks on deep-learning models
in natural language processing: A survey. ACM Trans. Intell.
Syst. Technol., 11(3), apr 2020b. ISSN 2157-6904. doi:
10.1145/3374217. URL https://doi.org/10.1145/3374217.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-
level convolutional networks for text classification. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Processing


https://aclanthology.org/2022.findings-naacl.137
https://aclanthology.org/2022.findings-naacl.137
https://openreview.net/forum?id=0SSfzzyG4-
https://openreview.net/forum?id=0SSfzzyG4-
https://aclanthology.org/2021.naacl-main.165
https://aclanthology.org/2021.naacl-main.165
https://aclanthology.org/2021.emnlp-main.659
https://aclanthology.org/2021.emnlp-main.659
https://aclanthology.org/2021.acl-long.431
https://aclanthology.org/2021.acl-long.431
https://arxiv.org/abs/1906.08237
https://aclanthology.org/N19-1144
https://aclanthology.org/N19-1144
https://aclanthology.org/2020.acl-main.540
https://aclanthology.org/2020.acl-main.540
https://openreview.net/forum?id=r1Ddp1-Rb
https://doi.org/10.1109%2Ftip.2022.3201472
https://doi.org/10.1109%2Ftip.2022.3201472
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.1145/3374217

Systems, volume 28. Curran Associates, Inc., 2015. URL
https://arxiv.org/abs/1509.01626.

Xinyang Zhang, Zheng Zhang, Shouling Ji, and Ting Wang.
Trojaning language models for fun and profit. In 2021 IEEE
European Symposium on Security and Privacy (EuroS&P),
pages 179-197, 2021. doi: 10.1109/EuroSP51992.2021.
00022.

Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian Ly,
Fanchao Qi, Zhiyuan Liu, Yasheng Wang, Xin Jiang, and
Maosong Sun. Red alarm for pre-trained models: Universal
vulnerability to neuron-level backdoor attacks, 2022b.

Zhiyuan Zhang, Lingjuan Lyu, Xingjun Ma, Chenguang Wang,
and Xu Sun. Fine-mixing: Mitigating backdoors in fine-
tuned language models, 2022c.

Zhiyuan Zhang, Lingjuan Lyu, Weiqiang Wang, Lichao Sun,
and Xu Sun. How to inject backdoors with better con-
sistency: Logit anchoring on clean data. In International
Conference on Learning Representations, 2022d. URL
https://openreview.net/forum?id=Bn09TnDngN|

Shuai Zhao, Jinming Wen, Luu Anh Tuan, Junbo Zhao, and
Jie Fu. Prompt as triggers for backdoor attack: Examining
the vulnerability in language models, 2023.

Hong Zhu, Shengzhi Zhang, and Kai Chen. Ai-guardian:
Defeating adversarial attacks using backdoors. In 2023
IEEE Symposium on Security and Privacy (SP), pages 701—
718, 2023a. doi: 10.1109/SP46215.2023.10179473.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao
Chen, Yidong Wang, Linyi Yang, Wei Ye, Neil Zhenqiang
Gong, Yue Zhang, and Xing Xie. Promptbench: Towards
evaluating the robustness of large language models on
adversarial prompts, 2023b.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdi-
nov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler.
Aligning books and movies: Towards story-like visual ex-
planations by watching movies and reading books. In
Proceedings of the 2015 IEEE International Conference
on Computer Vision (ICCV), ICCV ’15, page 19-27, USA,
2015. IEEE Computer Society. ISBN 9781467383912. doi:
10.1109/ICCV.2015.11. URL https://doi.org/10.1109/ICCV.
2015.11L

Daniel M. Ziegler, Seraphina Nix, Lawrence Chan, Tim Bau-
man, Peter Schmidt-Nielsen, Tao Lin, Adam Scherlis, Noa
Nabeshima, Ben Weinstein-Raun, Daniel de Haas, Buck
Shlegeris, and Nate Thomas. Adversarial training for high-
stakes reliability, 2022.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned
language models, 2023.

25


https://arxiv.org/abs/1509.01626
https://openreview.net/forum?id=Bn09TnDngN
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11

	Introduction
	Background
	Adversarial Attacks in NLP
	Backdoor Attacks
	Victim Models
	Evaluation Metrics
	Related Fields

	Attacker Capabilities
	Data Manipulation
	Insertion-Based Triggers
	Paraphrase-Based Triggers

	Model Manipulation
	Embedding Space
	Loss Function
	Model Weights
	Output Representations


	Defenses against Backdoor Attacks
	Trigger Detection
	Trigger Correction
	Model Diagnosis

	Prompt-Based Adversarial Learning
	Adversarial Attacks against LLMs
	Adversarial Attacks
	Jailbreaks

	Backdoor Attacks against LLMs
	Adversarial Defenses for LLMs

	Benchmark Tasks, Datasets, and Toolkits
	Open Challenges
	Trigger Design
	Evaluation Metrics
	Developing New Benchmarks
	Backdoors Attacks on More Tasks
	Effective Defenses
	Defense Transferability

	Conclusion

