
Parallel I/O characterization and evaluation on large
scale HPC systems

Hammad Ather

Area Exam
Department of Computer Science

University of Oregon
Eugene, OR, USA
hather@uoregon.edu

Abstract—Recent technological advances have led to advanced
parallel computing hardware and complex I/O workloads, com-
prising Machine Learning, Deep Learning, and other artificial
intelligence techniques. These advances have made the existing
parallel I/O stack more complex and challenging to tune which if
not optimized properly, can lead to massive overheads and per-
formance degradation. With these ever-increasing complexities of
the I/O stack deployed on large-scale systems, one needs to have
an in-depth understanding of the I/O behavior of these systems
and be aware of the performance modeling and prediction tools
required to evaluate and optimize I/O. Therefore, it is critical to
have a comprehensive study that end users can use as a guide
to evaluate and optimize parallel I/O in their applications. This
paper presents such a study by surveying the current landscape of
parallel I/O characterization and evaluation on large-scale HPC
systems. By taking a deep dive into the different layers of the
I/O stack, this paper shows how the different access patterns are
shaped as an I/O request traverses down the I/O stack and what
optimizations can be made to these access patterns. The paper
also looks at different workload generation methodologies and the
different profiling and tracing tools that can collect performance
statistics for these workloads. It also discusses different parallel
I/O evaluation techniques such as statistical analysis, machine
learning, and replay-based modeling. Lastly, it ties this whole
discussion with the current active area of research in parallel
I/O: automatically evaluating, analyzing, and optimizing parallel
I/O in applications without involving an I/O expert in the loop.

Index Terms—Parallel I/O, Performance Evaluation, HPC
Systems, I/O Characterization

I. INTRODUCTION

In recent years, there have been significant advances in par-
allel processing hardware, which has propelled HPC systems
to perform computations at a much more massive scale [1].
These computations also bring a vast amount of data, which,
if not appropriately managed, can add significant performance
overhead and impact the application’s scalability. Many times,
the overhead comes from unoptimized parallel I/O. Therefore,
ensuring fast and efficient parallel I/O in large-scale HPC
systems is critical.

The parallel I/O stack deployed on large-scale computing
systems is complex and difficult to tune. Usually, there is an
interplay of multiple factors that impact the performance of
data movement between storage and computing systems. Also,
each stack layer has many tuning parameters and optimization

techniques that can improve application performance. I/O
performance optimization is a complex problem due to the
multiple factors that can affect performance, such as the inter-
dependencies among the stack layers.

When applications suffer slowdowns, pinpointing the root
causes of inefficiencies requires detailed metrics and an un-
derstanding of the stack and the different I/O access patterns.
These access patterns, which have been identified through
numerous research studies, can have a direct impact on the
overall performance of the application, therefore it is crucial
to optimize these accesses. Many different optimization tech-
niques such as collective I/O and data sieving can optimize
these access patterns and lead to better performance.

To understand the I/O performance, knowing different
workload generation techniques, such as benchmarks and
simulations, is essential. Benchmarks play an important role
in understanding the I/O performance of large-scale appli-
cations without actually incurring the overhead of running
these large-scale applications. Understanding how to collect
performance measurements using profiling and trace analysis
tools of different I/O workloads is crucial in understanding
the I/O performance. There are also many statistical analysis,
predictive analysis, and replay-based analysis techniques that
further analyze and evaluate the data collected by these tools
and help in further understanding the I/O performance of the
application.

As can be inferred from the discussion above, understanding
and evaluating parallel I/O on large-scale systems can be
difficult, as multiple steps involve. With the vast amount
of tools and techniques available, the user might also face
a dilemma in deciding which tool better serves their I/O
optimization needs. To make this process easier, the end user
needs to have a guide that consolidates all the information
related to parallel I/O evaluation in a step-by-step manner.

This paper presents a holistic survey of the current state
of the art on large-scale parallel I/O analysis and evaluation
techniques in applications running on HPC systems. It surveys
numerous papers on parallel I/O and provides a step-by-
step process for evaluation of the I/O performance of an
application. The paper first provides an in-depth detail of the

1

different layers of the HPC I/O stack and how these layers
interact with each other. Then, it defines different I/O access
patterns identified through research studies and studies how
these I/O access patterns are shaped as an I/O request goes
down the stack. It looks at different optimization techniques
for access patterns such as data sieving, collective I/O, etc.
which have been widely studied in different research studies.
After looking at the HPC I/O stack and the different access
patterns, the paper provides a taxonomy of the different I/O
performance evaluation strategies, which is the crux of this
paper. It looks at different stages of parallel I/O evaluation,
such as workload generation, data monitoring and collection,
and different analysis techniques and tools. To sum it up, this
paper, by studying various research studies on parallel I/O
evaluation, answers the following questions:

• What are the different layers of the HPC I/O stack, and
how do I/O access patterns affect the I/O behavior?

• What are the different profiling and tracing tools available
to characterize the I/O behavior of the application?

• What analysis techniques are HPC researchers applying
for characterizing and analyzing the I/O behavior?

The rest of the paper is organized as follows: Section II
looks at the different layers of the HPC I/O stack, section
III talks about different I/O access patterns and some opti-
mizations for these patterns, section IV discusses the different
stages of parallel I/O evaluation and optimization and is
the main focus of this paper. Lastly, section V presents the
conclusion of this survey.

II. HPC I/O STACK

The complex I/O workloads of serial and parallel applica-
tions running on large-scale HPC systems are supported by the
HPC I/O stack [2]. The I/O stack is complex and has multiple
layers, each with many tuning parameters that can be used to
improve the application performance [1], [3]. Fig. 1 shows the
multi-layered I/O stack deployed on HPC systems. As can be
seen from the figure, the I/O stack has multiple layers, such as
the high-level I/O libraries, parallel I/O middleware, low-level
I/O libraries, I/O forwarding layer, and the parallel file system
between the applications and storage hardware.

A. High-level I/O libraries

High-level I/O libraries provide abstractions for data model-
ing and management, allowing portability and high application
performance. Some of the commonly used high-level I/O
libraries include HDF5 [4], ADIOS [5], NetCDF [6], and
PnetCDF [7]. The HDF5 technology suite comprises a data
model, a library, and a file format to store and manage data
[8]. HDF5 is portable and easily extensible, allowing it to
support a variety of data types and store and manage complex
I/O data. NetCDF (Network Common Data Form) supports
creating, accessing, and sharing array-oriented scientific data
using software libraries and machine-independent data formats
[9]. The NetCDF-4 package can use HDF5 for storing the
data while using the original netCDF library. PnetCDF uses
parallel I/O techniques to provide a high-performance and

Fig. 1: Traditional parallel I/O stack deployed in production
scale supercomputers [2]

efficient interface to access netCDF files. The Adaptable IO
System (ADIOS) provides an efficient and flexible solution
for researchers and scientists to describe the data in their code
as an external to-the-code XML file for processing outside
the running simulation. All of these libraries mentioned above
map the abstractions of applications’ data and encode the
applications’ data into portable file formats. They also allow
the user to describe the data and the different structures in the
file in the form of metadata. Apart from these high-level I/O
libraries, there are also some domain-specific I/O libraries as
well such as FITS [10], [11] and ROOT [12], which are used
for High-Energy Physics (HEP) and astronomy.

B. Parallel and low-level I/O libraries

The parallel I/O middleware and low-level I/O libraries
include MPI-IO (Message Passing Interface I/O) [13], POSIX
I/O (Portable Operating System Interface I/O) [14], and
STDIO (Standard Input and Output) interfaces. Users can also
use these interfaces directly to perform I/O to the file systems.
MPI-IO provides a low-level interface for performing parallel
I/O. In MPI-IO, a file is defined as an ordered collection
of typed data items. Using these typed data items, MPI-
IO allows the user to define data models for their appli-
cations. It also provides two types of I/O calls which are
independent and collective I/O. Independent MPI I/O calls are
defined as those types of calls made by any subset of the
processes participating in I/O, with each process handling its
I/O independently. Some of the basic independent MPI I/O
calls are MPI_File_read() and MPI_File_write().
Collective MPI I/O calls are those I/O calls that are made by
all processes participating in a particular I/O sequence. The

2

basic collective calls are MPI_File_write_all() and
MPI_File_read_all(). POSIX I/O, on the other hand,
views a file as a sequence of bytes. Through this interface,
contiguous regions of bytes can be transferred between the
file and memory, and non-contiguous regions of bytes can be
transferred from memory to a file by giving complete low-level
control of the I/O operations. The major drawback of POSIX
I/O in the context of HPC is that it supports very little parallel
I/O. For example, ensuring collective access to files is not
easy in POSIX and the user has to manually coordinate access
and ensure consistency. It is also not flexible in terms of file
metadata as it prescribes a specific set of metadata that a file
must possess [15]. STDIO in contrast, provides abstractions to
deal with the stream of input and output bytes. It is comprised
of the C stdio.h family of functions [16], such as fopen(),
fprintf(), and fscanf(). These I/O functions are com-
monly used in many parallel I/O applications; however, STDIO
functions do not directly support random access to data files.
It relies on the user to create an input/output stream, seek
the position in the file from where to read or write, and then
read/write bytes in sequence from/to the stream.

C. I/O forwarding layer

The I/O forwarding layer aims to reduce the number of
clients concurrently accessing the Parallel File System (PFS)
by providing an additional transparent layer between the
compute nodes and the data servers in the form of I/O nodes.
Instead of the applications directly accessing the PFS, requests
are first received by these I/O nodes which forwards these
requests to the PFS in a manageable way. This technique al-
lows a smooth flow of I/O requests, providing a layer between
the application and file system, and makes possible certain
optimization techniques such as aggregation, request schedul-
ing, and compression. The I/O forwarding layer technique was
initially introduced for the Blue Gene/L system [17], but now
has been extended to many of the top 500 supercomputers. One
such example is the Tianhe_2 supercomputer which has 256
intermediate I/O nodes. These nodes, powered with high-speed
SSDs, have configurations for each file which determines when
data is transferred from the I/O nodes to the PFS.

D. Parallel File System

Large-scale HPC systems rely on Parallel File Systems
(PFS) to provide an infrastructure for persistent shared storage
and a global namespace across distributed storage servers
to read and write to files. A PFS mainly has two types of
servers: the data server and the metadata server. Metadata
servers are responsible for handling the file metadata, which
is information related to the size, permissions, and location
of the file on the data servers. Before any client can access
the data in a file, they must obtain the layout information of
the file from the metadata. Accessing the metadata can also
add some overhead, so some systems cache the metadata on
the client side for faster access. However, that can lead to
issues such as cache coherence, especially when many clients
are concurrently accessing the PFS. On the data server, the

files are distributed using data striping [18]. In the technique,
the file is divided into fixed-size chunks called stripes, and
the stripes are distributed to the servers in a round-robin
approach. A PFS can retrieve stripes from different servers in
parallel, hence increasing throughput. Different machines have
different stripe sizes for example the Google File System has a
stripe size of 64MB. PVFS [19], Lustre [20], [21], and GPFS
[22] have default stripe sizes between 64KB and 1MB. To
keep consistency when having concurrent accesses, some PFS
systems use locking on the server. Lustre is one such system
that uses stripe granularity, i.e., multiple clients can not access
the same stripe concurrently. However, other systems, like
PVFS, allow the users to deal with consistency for simplicity
and better performance. PFS systems also provide mechanisms
for fault tolerance which include measures such as replication
of data and metadata. This is achieved by keeping mirrored
servers. There can be a performance overhead for copies of
the same data updated across the mirrored servers however
having the same data on more than one server can improve
performance by allowing parallel access. Some popular file
systems include Lustre, PVFS, IMB GPFS, and the Panasas
file system [23].

E. Storage Hardware

There are a variety of storage hardware used in a supercom-
puter. HDDs [24] are a popular storage medium that has been
in use for many years now. They are made up of magnetic-
surfaced rotating platters. To access any data in an HDD, a
seek operation has to be performed in which the head has to be
moved to the proper location. HDDs give the best performance
when the underlying data needs to be accessed sequentially
instead of randomly, as that reduces the overhead of the seek
operation [25]. A recent flash-based alternative to hard disks
is SSDs. SSDs have higher bandwidth and less overhead for
sequential access than HDDs.

Summary #1

The I/O stack deployed on large scale HPC systems is
complex and comprises of multiple layers with numer-
ous tuning parameters aimed at improving application
performance and supporting the diverse requirements of
HPC systems. There are high-level I/O Libraries like
HDF5, NetCDF, PnetCDF, and ADIOS which provide
abstractions for data modeling and management, enhanc-
ing portability and performance. Then there are Parallel
and Low-level I/O Libraries such as MPI-IO, POSIX I/O,
and STDIO which provide parallel I/O support. The I/O
Forwarding Layer is introduced to optimize access to
Parallel File Systems (PFS) and acts as an intermediary
between compute nodes and data servers. Parallel File
System (PFS) provides persistent shared storage across
distributed servers, divided into data and metadata servers.
Storage Hardware provides mediums such as HDDs and
SSDs.

3

III. TUNING THE HPC I/O STACK

The parallel I/O stack deployed on large-scale computing
systems has many tuning parameters and optimization tech-
niques to improve application I/O performance [3], [26]. There
can be multiple factors that can affect the I/O performance
of an application; therefore, harnessing I/O performance is a
complex problem due to the multiple factors that can affect it
and inter-dependencies among the layers of the stack. Much
research has been done on optimizing the way applications
perform their I/O and tuning the different I/O layers. In the
next section, we will look at the application’s access pattern
and different optimizations that can applied to it. We also look
at different methods for I/O tuning of the HPC stack.

A. Application’s Access Patterns

I/O requests by an HPC application can be issued in diverse
ways depending on how the application is modeled and coded.
Although there is no set definition to describe the access
patterns of an application, a lot of research has been done
on HPC I/O applications to understand what can constitute an
access pattern, which includes the number of issued requests,
the requests’ sizes, and their spatial location in the file [27].
These patterns have a direct impact on the overall performance
of the application therefore it is really important to optimize
these data accesses [28], [29].

There are three classifications of the access patterns: local,
global, and system-wide. The local access patterns of an
application are in the context of an individual process or a
task. They are employed to identify and optimize the client
side of the application. The global access pattern looks at all
the processes and tasks. It is more applicable in optimizing the
forwarding layer or the file system as they have a complete
picture of all the accesses made by each process. System-
wide access patterns look at the access patterns revolving
around shared storage infrastructure and the I/O nodes and
help optimize the system-wide performance. Fig. 2 presents
a taxonomy of the different access patterns discussed in this
paper.

1) Access Patterns Features: In this section, we briefly look
at some of the features that can be used to describe an I/O
access pattern and their usage in the I/O stack.

a) Operation: The first access pattern is the basic I/O
operations, such as read and write. It also includes the append
operation, which performs a write operation to append the data
to a file but first positions the file offset at the end of the file
using a seek operation. The write operation and the moving
of file offset are considered a single atomic operation.

b) File Approach: The second access pattern is how
processes perform parallel I/O and access the files to read
or write data. There can be multiple scenarios in which MPI
ranks access the files. The first scenario, as shown in Fig. 3(a),
is the file-per-process approach in which each MPI rank writes
to an individual file. If the number of processes is too large, a
subfiling approach [30] is also used in which data is aggregated
into a small subset of processes that access a small number
of files. The problem with the file-per-process approach and

the subfiling approach is that the post-processing of the data
in the files is complex as the data is scattered across multiple
files.

The second scenario has a shared file for all the processes.
Typically, in this scenario, there is a single rank (commonly
rank 0), which receives the data from all the other processes
or ranks, aggregates it, and writes it to the shared file. This
approach is shown in Fig. 3(b). The limitation of this approach
is that it can have a significant memory overhead on the
aggregator node, which receives and aggregates the data from
all the ranks. To tackle this issue and use the memory more
efficiently, we can have multiple ranks that aggregate the data
and write to a file. This approach is shown in Fig. 3(c).
Another approach is to have all the ranks write to pre-defined
and non-overlapping locations in a file, as shown in Fig. 3(d)
using implicit coordination. The drawback of this approach is
that the I/O requests are not aggregated between the ranks on
the same compute node.

c) Spatial Locality: The spatial locality or spatiality
directly impacts the I/O performance of the application. Spa-
tiality refers to the file offsets between consecutive I/O ac-
cesses. Generally, three types of spatial accesses are sequential
(contiguous), strided, and random. The type of spatial access
directly correlates with the I/O performance of the application,
as the storage hardware and software are directly affected by
the data accessed in it. A file system can perform better if the
data is accessed in a specific pattern [31].

In sequential or contiguous access, each process accesses
the file in contiguous chunks, and that property holds for all
the I/O requests. These types of accesses are common in the
file-per-process approach. In strided access, chunks of the file
are accessed by the process with a fixed-size gap called a
stride. After each request, the file pointer is increased by the
same size. Strided accesses are more common in shared files.
In random file accesses, the file is accessed randomly without
any set pattern. Because of the performance overhead added
by random accesses to file, such accesses are uncommon in
traditional HPC workloads [32].

d) Interfaces: Interfaces are essential in parallel I/O as
they define the APIs and semantics for accessing the data in
files. Some of the most common I/O interfaces are POSIX I/O,
MPI-IO, and STDIO. We will discuss each interface in detail,
also looking at their usability in terms of performing parallel
I/O.

POSIX (Portable Operating System Interface) [14] com-
poses a set of standards defined by IEEE to maintain com-
patibility between different operating systems, allowing an
application to run the basic features of an operating system.
POSIX also provides an I/O API, called POSIX I/O, to deal
with the parallel file system. Introduced in 1988, POSIX I/O
introduced asynchronous and synchronous behaviors for local
file systems. One of the significant advantages of POSIX
I/O was that it was highly portable. However, this portability
comes with a price, as there are consistency requirements for
POSIX write operations in which the application execution has
to be stopped for a write call until a read call reads the data

4

Access Patterns in HPC I/O applications

Operation

Read

Write

Append

File
Approach

File-per-
process

Shared
File

Rank 0

Multiple
Ranks

Co-
ordinated

Spatial
Locality

Sequential

Strided

Random

Interfaces

POSIX

MPIIO

STDIO

I/O Mode

Individual

Collective

Synchronicity

Synch-
ronous

Asynch-
ronous

Fig. 2: Access patterns of HPC I/O applications identified using various research studies

just written. This introduces complexity in using POSIX I/O
for large-scale distributed and parallel file systems, as these
systems have to adhere to strict consistency requirements using
some locking mechanism. This can limit the parallelism of the
file system at a large scale. POSIX also leaves the burden of
coordinating parallel accesses, buffering, and flushing to the
end user, which can be problematic for the user if, for example,
they are working in a shared-file parallel I/O approach.

MPI-IO [13] is an extension to the MPI standard and
provides an I/O API that comprises the message-passing
capabilities of MPI. MPI-IO provides a high-level interface to
define the data partitioning among the processes and supports
asynchronous I/O. This allows I/O operations to run in par-
allel with computation. MPI-IO also has relaxed consistency
requirements as compared to POSIX. MPI-IO is built on
top of ADIO [33], which is an abstract device interface for
parallel I/O. ADIO makes the implementation of parallel I/O
interfaces portable and efficient by allowing any parallel API
to be implemented on top of ADIO. It is not intended to be
used directly by programmers and is only an abstraction for
building parallel I/O interfaces on top of it. ROMIO [34] is one
such example, which is a portable implementation of MPI-IO
and uses ADIO to develop this implementation. MPI-IO also
provides features related to data access, such as blocking or
non-blocking and independent or collective accesses. The I/O
access patterns generated by MPI-IO are complex, and these
patterns can be modified as they traverse the stack because of
optimizations and transformations made by MPI-IO.

STDIO (Standard I/O library) abstracts all file operations
to provide an interface to perform operations on a stream
of bytes. It consists of the C stdio.h family of functions
such as fprintf, fscanf, fopen etc [16]. STDIO does
not support random access to data and the application must
open a stream, seek to the desired offset, and then read/write

the data to the file. STDIO has been increasingly used for
various HPC workloads such as in genomics and biology
to store sequencing information in textual format [32], [35].
Even though studies [36] have shown that the use of STDIO
has increased in supercomputers, it still performs poorly on
different transfer sizes on Cori and Summit and hence shows
poor I/O performance overall.

e) I/O Mode: I/O mode defines how a parallel process
accesses a file. There are two I/O modes: individual and
collective. In individual mode, each process (MPI rank) ac-
cesses the file individually, whereas, in collective I/O mode,
all the ranks accessing the same file issue a single collective
call to access that file. Collective I/O is considered a critical
optimization in parallel I/O and is readily available in MPI-
IO. It is particularly effective when the file accesses of
different processes are non-contiguous and interleaved. This
mode allows for optimizations such as collective buffering and
data sieving [37]. A basic diagram of how collective I/O works
is shown in Fig. 4

Collective I/O mode works in a two-phased strategy. In
the first communication phase, all the processes participating
in the collective I/O call send their data to the "aggregator"
nodes. In the I/O phase, the "aggregator" issues the read or
write request to the system. This allows larger and contiguous
access to the file system even though the individual requests
are non-contiguous. One example of a collective I/O function
is MPI_File_write_at_all. Here _all indicates that
all the processes in the MPI communicator will call the write
function and _at indicates that the position in the file is
specified as part of the call.

f) Synchronicity: Synchronicity deals with how an I/O
operation affects the flow of the application. Synchronous or
blocking I/O routines halt the execution of the application
until the I/O operation is completed. Whereas asynchronous

5

((a)) File-per-process

((b)) Shared file - Rank 0

((c)) Shared file - Multiple Rank

((d)) Shared file - Coordinated

Fig. 3: File approaches for parallel I/O [2]

Fig. 4: Basic diagram depicting how collective I/O works

or non-blocking I/O overlaps I/O operations with computation
or communication steps, allowing the application execution to
progress. Asynchronous I/O provides significant performance
speedup when we access large amounts of data. Both POSIX
and MPI-IO have support and synchronous and asynchronous
I/O.

B. Optimizing Access Patterns across the HPC I/O stack

This section will discuss some optimizations for access
patterns, such as request aggregation, request reordering, and
request scheduling.

a) Request Aggregation and Reordering: Request aggre-
gation and reordering are two optimization techniques applied
at the I/O middleware layer to transform the access patterns to
be more suitable for the layers underneath. These optimization
techniques include collective buffering and data sieving, part
of ROMIO [34], a portable implementation of MPI-IO.

Research [38] has shown that small and random I/O requests
harm the I/O performance of the system. Merging these
small requests into larger, fewer requests spanning a large
portion of the file is better for performance. ROMIO uses
data sieving [37] to make fewer requests to the file system.
When a process makes small independent, non-contiguous data
requests, ROMIO does not access each data section separately.
Let’s assume that an MPI rank issues four non-contiguous data
accesses. Instead of making four requests to the file server,
using data sieving, ROMIO will read a single contiguous
chunk of data in a temporary buffer using a single call, starting
from the first requested byte till the last request byte. Once
we have the data in the buffer, ROMIO will extract the data
needed by the process in the process’s buffer. Fig. 5 shows
how data sieving works.

One potential problem with data sieving is that there can
be memory issues if the user requests a large amount of
data to be read. This problem can further worsen if there are
large holes in the data. To deal with this, ROMIO provides
multiple user-controlled parameters to define the maximum
amount of contiguous data that can be read into the buffer.
This includes parameters like ind_rd_buffer_size and
ind_wr_buffer_size. If the data to be read is larger than
the value defined by these parameters, data sieving is broken
down into chunks, reading only as much data at a time defined
by the parameter.

The significant advantage of data sieving is that it always
reads the data in large chunks, avoiding the cost of small file
accesses but at the cost of reading more data. A potential
caveat can be that the holes between the data are too large
and can outweigh the cost of reading extra data to avoid small
accesses. However, that is not the case most of the time.

Fig. 5: Basic diagram depicting how data sieving works [37]

Two-phase I/O [39] is another access pattern optimization
technique originally proposed for distributed systems. In two-

6

phase I/O, aggregator processes perform collective read and
write. Aggregators are processes that issue the I/O requests
to the file system. In collective reads, the aggregator is
responsible for the part of the file requested by the col-
lective reads and then distributes the chunks of the file to
the processes participating in collective reads. Similarly, in
collective write, the aggregator gathers data from a subset
of processes participating in collective write into contiguous
chunks in memory and writes the aggregated data to the file
system. ROMIO provides two user-defined tuning parameters
to control collective I/O. These parameters are cb_nodes
and cb_buffer_size. cb_nodes refers to the number of
aggregators and cb_buffer_size refers to the maximum
buffer size on each aggregator. Fig. 6 shows how ROMIO
performs collective reads.

Fig. 6: ROMIO collective read [37]

b) Request Scheduling: On a large-scale supercomputer,
multiple HPC applications can communicate concurrently with
the Parallel File System (PFS) to perform I/O operations. This
concurrency can lead to performance issues, and appropriate
I/O scheduling techniques must be applied across various
levels of the I/O stack to mitigate this issue.

There are a lot of I/O scheduling techniques applied at
different levels of the stack (clients, I/O nodes, or data servers)
that optimize concurrent access to the file system by organiz-
ing or reordering the requests. Let’s assume two applications
are issuing I/O requests to the file system. It is a possibility that
when these requests arrive at the I/O forwarding layer or the
file system, they are interleaved, hindering the performance.
Even if multiple processes in one application are accessing a
shared file contiguously, their requests to the file system might
be perceived as non-contiguous because of interleaving. This
phenomenon is called interference and is shown in Fig. 7.

Fig. 7: Interference in I/O requests [27]

A variety of I/O schedulers are available, and each has a
different level of complexity. Some use simple algorithms such

as First Come, First Serve (FIFO) [40] while others like aIOLi
[41], Object-Based Round Robin [42], and Network Request
Scheduler [43] are more complex. We will look at some of
these I/O schedulers now.

[44] presents a two-choice I/O scheduler that tracks the
real-time performance of different storage servers to detect
stragglers and uses that information to avoid placing I/O
requests on stragglers. It builds upon the native two-choice
algorithm and proposes collaborative probe and pre-assigns
algorithms to improve performance. InterferenceRemoval [45]
is another I/O scheduler that identifies those parts of the file
involved in interfering accesses and replicates those portions
to other data servers for better concurrency.

IOrchestrator [46] is another I/O scheduler that exploits
the spatiality of the application for request scheduling. It
introduces the concept of reuse distance, which is the time
between two requests of the same program that have been sent
to the data server. Assuming that these requests from the same
program have a strong spatiality, IOrchestrator only dedicates
resources to this one program. [47] uses a similar approach and
introduces the concept of time windows. All the I/O requests
forwarded to the storage server are considered time series and
divided into fixed-size time windows. The algorithm sorts the
I/O requests in a time window by application ID, and assuming
that each application has strong spatiality, the execution will
be optimized as the requests belonging to the same application
are executed simultaneously.

[48] presents hierarchical I/O scheduling for collective I/O.
Collective I/O has been used widely to address the issues
of a large number of I/O requests. As systems grow, the
performance of collective I/O can also be highly impacted
by the increasing shuffle cost caused by highly concurrent
data accesses. Hierarchical I/O scheduling (HIO) algorithm
addresses this problem by using shuffle cost analysis to
schedule applications’ I/O requests for optimal performance.

In [49], a cross-application coordination technique to miti-
gate I/O interference is presented. Cross-application interfer-
ence can greatly impact the performance of applications as
there can be a lot of I/O requests with different sizes and
requirements. To mitigate this issue, [49] presents four strate-
gies: serializing, interrupting, interference, and dynamically
adapting the best strategy based on the application’s access
pattern. [50] proposes an adaptive algorithm to vary the I/O
workload based on the file system’s performance.

7

Summary #2

There are different techniques for optimizing I/O access
patterns. This includes techniques like collective I/O, data
sieving, and two-phase I/O. Data sieving merges these
small requests into larger, fewer requests spanning a large
portion of the file, which is better for overall performance.
Two phase I/O uses aggregators two perform collective
reads and writes. There are also a variety of I/O schedulers
that optimize concurrent access to the file system by
organizing or reordering the requests.

IV. EVALUATING PARALLEL I/O: A STEP BY STEP GUIDE

In this section, we first provide a taxonomy, as depicted in
Fig. 8, for the iterative process of evaluating and optimizing
parallel I/O. The I/O evaluation and optimization mainly
consists of three major phases: (1) Measurements and Statistics
Collection, (2) Modeling and Prediction, and (3) Simulation
[67]. For the scope of this survey, we will only be looking at
(1) Measurements and Statistics Collection and (2) Modeling
and Prediction. We survey different research works and tools
for each phase and present our results in the sections below.

A. Measurement and Statistics Collection

In this phase, we look at different methods for generating
I/O workloads through real-world data or benchmarks. Then,
we look at some tools that can be used to collect statistics and
information about the I/O behavior of these workloads.

1) I/O Workloads: The first step in parallel I/O evaluation
is generating and characterizing I/O workloads. Different
workload generation techniques are available, some discussed
in the sections below.

a) Application Code: The application code is the most
accurate workload that can be used for characterization pur-
poses. However, many times, the application code is not acces-
sible or is too huge or long to be profiled for its I/O behavior.
If the application code is unavailable, benchmarks can be used
to generate synthetic workloads for characterization.

b) Benchmarks: Benchmarks simulate the workflow and
access patterns of the original application, allowing per-
formance evaluation and tuning of the original application
without actually incurring the overhead of running it. In this
section, we study different system and application benchmarks.
System benchmarks use different interfaces and access patterns
to benchmark parallel file and storage system performance,
whereas application benchmarks simulate different access pat-
terns to benchmark application performance.

We study different benchmarks [68], [69] available out there
in this section and categorize them based on whether they
are parallel file and storage system benchmarks or application
benchmarks. For parallel file and storage system benchmarks,
we study different characteristics of the benchmarks such as
data, metadata, GPU support, etc. For application benchmarks,
we study different characteristics such as the layers of the I/O
stack these benchmarks cover and the I/O access patterns they
generate. These findings are summarized in Table I and II.

c) Workload Replication and Simulation Frameworks:
Proxy applications are small and simplified codes of large
and complex production applications that encapsulate the
important features of these applications without forcing the
user to assimilate large and complex code bases. [70] presents
proxy applications called MiniApps, which are based on large-
scale application code at the Oak Ridge National Lab (ONRL).
Encapsulating all the important features and details of these
large-scale applications, these MiniApps run on production
systems at ORNL. [71] is another work that replicates five
different I/O workloads using MACSio [72] proxy application
and Darshan [73].

[74] provides a novel framework, Durango, to generate
scalable workloads from real applications using the perfor-
mance modeling language Aspen and the HPC CODES frame-
work. [75] presents IOWA, a novel I/O workload abstraction
for generating diverse I/O workloads based on the inputs
sources. [76] extracts the I/O pattern of the application and
generates a suitable proxy application.

2) I/O Monitoring and Collection: Once we have the I/O
workload available, the next step in I/O performance eval-
uation is I/O data monitoring and collection. This includes
collecting I/O performance data of the application, such as
time spent in I/O operations, read and write throughput, and
total execution time. This data is then used to characterize
the I/O performance of the application and further use it for
analysis, modeling, and prediction.

There are a variety of I/O monitoring and collection tools
available out there that help understand the I/O behavior of
the application by looking at the interaction between the
application workload and the underlying I/O stack. These tools
can be divided into two categories based on how they collect
the performance data. This performance data can be of two
types: traces and profiles. Profiles store critical
I/O information and statistics, such as file access patterns,
number of floating point operations performed, number of
function invocations, average execution time of a function,
etc. Traces, on the other hand, provide a more fine-grained
view of the I/O performance of the application, reporting data
like timestamps of function calls along with their chronology.
Because of their detailed metric collection, traces increase
the overhead for I/O monitoring, degrading overall system
performance.

This section will discuss the HPC I/O profiling and tracing
tools available to the HPC community. More specifically, we
will examine how these tools work and which layer of the
HPC I/O stack they characterize. We will also look at some
storage-system-level monitoring tools available to characterize
the I/O behavior of the storage system. Lastly, we will also
look at some recent monitoring systems that provide an all-
encompassing and cohesive view of the application’s I/O
behavior.

a) I/O Profiling and Tracing Tools: Darshan [73], [77]
is a commonly used application I/O characterization tool de-
ployed on many large-scale HPC systems. It collects fine-grain
trace data for POSIX and MPI-IO layers (parallel and low-

8

Benchmark Data Metadata GPU Support File System Storage System
IOR [51] ✓ p p ✓ ✓
Mdtest [52] p ✓ p ✓ p
MD-Workbench [53] p ✓ p ✓ p
Fio [54] ✓ p p p ✓
Elbencho [55] ✓ p ✓ ✓ ✓
IOzone [56] ✓ p p ✓ p
Bonnie++ ✓ p p ✓ ✓
OBDFilter-Survey [57] ✓ p p ✓ p
IOBench [58] ✓ p p p ✓

TABLE I: I/O benchmarks for parallel file and storage systems

Benchmark L
ow

L
ev

el

M
id

dl
ew

ar
e

H
ig

h
L

ev
el

Sy
nt

he
tic

A
pp

lic
at

io
n

I/
O

M
od

e

O
pe

ra
tio

n

Sp
at

ia
lit

y

Fi
le

A
pp

ro
ac

h

H5bench [59] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ p
DLIO [60] p p ✓ ✓ p ✓ p ✓ ✓
HACC-IO [61] ✓ ✓ ✓ ✓ p ✓ p p ✓
FLASH-IO [62] p p ✓ ✓ p p ✓ p p
b-eff-io [63] ✓ ✓ p ✓ p ✓ ✓ ✓ ✓
MPI Tile I/O [64] p ✓ p ✓ p ✓ ✓ p p
NETCDF-Bench [65] p p ✓ ✓ p ✓ ✓ p p
Parabench [66] ✓ ✓ p ✓ p - - - -

TABLE II: I/O benchmarks for application performance

Fig. 8: Taxonomy of different phases in parallel I/O evaluation [67]

level I/O layer) and basic data for high-level I/O libraries such
as HDF5 and PNetCDF. There have been recent advances in
Darshan [77] to add support for tracing Parallel File Systems
as well, such as Lustre.

Implemented as a set of user-space libraries, Darshan
does not require any source code modification to instrument
the application. Instead, it can be added to the application
either statically or dynamically. Dynamic executables use
the LD_PRELOAD environment variable to inject Darshan
instrumentation in the application, whereas static executables
link Darshan to the application during the linking phase.
Instead of working as a typical tracing tool that logs every

I/O operation, a bounded amount of data for each file is
collected by Darshan, allowing compact storage of data. This
data contains metrics such as I/O operations count, I/O access
sizes, timers, and other statistical data relevant to the I/O
performance of the application. Here are some of the metrics
collected for each layer [73]:

• POSIX: read, write, open, seek, stat, mmap, fopen
• MPIIO: collective, independent, split, or nonblocking

read and write
• MPIIO datatypes and hints
• Access type: unaligned, sequential, consecutive, and

strided access

9

• Timestamps for open, close, first and last I/O
• Total bytes read and written
• Total time spent within POSIX and MPI-IO I/O opera-

tions
• Histograms of access, stride, datatype, and extent sizes

Fig. 9 shows how Darshan instruments an application.
During the application execution, Darshan instruments dif-
ferent layers of the I/O stack for each process, generating
data records characterizing the application’s I/O workload
and writing that data to the process’s file while deferring
all communication and I/O operations until the application
terminates. When the application terminates, as part of the
darshan_shutdown routine, it performs data aggregation
and compression, which comprises aggregating and com-
pressing the data of all the file-per-process into a single
file. Darshan does this process in parallel and uses MPI-IO
collective writes to make this step faster. This ability to defer
communication and I/O until application shutdown, coupled
with the bounded data collection, makes Darshan lightweight
and portable, allowing seamless deployed on large-scale HPC
systems such as the Argonne Leadership Computing Facility
(ALCF), the National Energy Research Scientific Computing
Center (NERSC), and the National Center for Supercomputing
Applications (NCSA).

Fig. 9: High level overview of Darshan’s architecture [77]

The overhead introduced by Darshan [73] is negligible. Fig.
10 shows the overhead of different versions of Darshan on the
IOR [51] benchmark. The box plots indicate the distribution
of I/O times in each case (with or without Darshan). It can
be seen from the figure that the overhead when Darshan
is enabled is very minimal and has very little impact on
application performance.

Darshan eXtended Tracing (DXT) [78] extends Darshan
to provide fine-grain traces of the application I/O to study
behaviors of a wide range of workloads in greater depth. The
DXT module is disabled by default and can be switched on
using an environment variable. The overhead introduced by
this module is also minimal (around 1%). DXT logs can be
parsed, analyzed, and visualized offline, allowing this analysis
on any system. This analysis can detect issues like workload
imbalance, lock contention, and stripe misalignment.

Fig. 10: Impact on application performance with Darshan
enabled [77]

Recorder [79] is a multi-level I/O tracing framework that
captures I/O information from multiple levels of the I/O
stack, including HDF5, MPI-IO, and POSIX. It requires no
source code changes, and the user controls which stack layers
can be traced. It uses function interpositioning to prioritize
itself over the standard functions using library preloading in
Linux. Once Recorder is specified as a preloaded library, it
intercepts HDF5, POSIX, and MPI-IO calls and reroutes these
requests to the tracing routine. The tracing routine saves the
function name, file name, entry timestamp, and the function
parameters and then calls the original function and records
its exit timestamp. All of this information is converted into
a trace record and then compressed. Fig. 11 shows some
of the features of the Recorder framework. [80] is a newer
version of Recorder and adds new features such as trace format
optimization, visualizations, and improved tracing for POSIX.

Fig. 11: Features of the Recorder framework [79]

IOPin [81] is a dynamic instrumentation tool developed to
analyze the performance of parallel I/O. It uses Pin [82], which
is a lightweight binary instrumentation tool to intercept the
MPIIO and PVFS layers. Because of this, IOPin does not
require recompilation of the source code or the I/O software
stack. The basic architecture of IOPin is shown in Fig. 12. The
figure shows how IOPin performs dynamic instrumentation
when a collective MPIIO write call is issued. As can be seen

10

from the figure, two Pin profiling processes on the client and
server sides generate trace information at the border of the
MPI and PVFS layers. The client-side Pin process contains
information such as the MPI call ID, rank, PVFS call ID,
I/O type (read/write), and latency. The server-side Pin process
stores information such as PVFS server ID, latency in the
server, bytes to be read/written, the number of disk accesses,
and disk throughput for the MPI I/O call at runtime

Fig. 12: IOPin framework [81]

TAU [83], [84] is a portable and flexible integrated toolkit
of performance instrumentation and analysis of HPC applica-
tions. Although TAU is not I/O specific profiling tool, it does
provide different instrumentation techniques to analyze the I/O
performance of the application. One of these approaches is
pre-processor-based instrumentation, in which the header files
are redefined to instrument POSIX I/O calls. It also performs
MPI instrumentation using the PMPI interface

Score-P [85] is a performance measurement infrastructure
for profiling, event trace recording, and online analysis of
High-Performance Computing (HPC) applications. Score-P
provides different ways to instrument the application code,
either through automatic compiler instrumentation or man-
ual instrumentation. In parallel I/O, Score-P can instrument
POSIX I/O and MPI I/O routines.

Mistral [86] is a commercially available HPC I/O monitor-
ing tool from Altair. Mistral, due to its lightweight, can be
easily deployed on production systems and is flexible enough
to monitor I/O patterns on large-scale HPC and cloud systems.
It uses files called contracts to store the rules for monitoring
and throttling I/O. These contracts can be modified at runtime
by privileged users. With its system and storage agnostic
features, Mistral can monitor each job and file system’s read,
write, metadata use, and storage performance. Below is a list
of data that Mistral collects.

• Collect I/O data per job, user group, mount point, and
host

• Track read(), write(), and metadata operations
• Track time spent in I/O for each application to get file

system performance

• Track statistics like the total, mean, and max time spent
doing I/O per job

• Tracks CPU and memory utilization
Ellexus Breeze is another flexible and user-friendly offline

analysis tool to help optimize and tune complex Linux appli-
cations. It can also capture MPIIO and POSIX calls and store
the information related to them in binary trace files. Ellexus
Breeze classifies I/O calls into three different categories:

• Bad I/O: Small read and write, Zero-byte I/O, Backward
seek etc.

• Medium I/O: Large read and write, Forward seek, Delete
operations, etc.

• Good I/O: Medium-sized read and write, etc.
IOPro [87] is a performance analysis and visualization

framework for parallel I/O HPC applications. IOPro is dif-
ferent from the tools mentioned above in this way that it can
instrument the complete parallel I/O stack. Instead of manually
instrumenting each layer of the stack, IOPro takes the I/O
software stack as input and generates an instrumented I/O
stack to trace specific I/O functions and individual components
across each layer. A high-level framework of IOPro is shown
in Fig. 13

Fig. 13: Overview of the IOPro framework [87]

As can be seen from the framework in Fig. 13, IOPro has
three main components: instrumentation engine, execution en-
gine, and data processing engine. The instrumentation engine
consists of a probe selector and a probe inserter. It inserts
these probes into the I/O software stack automatically and
generates an instrumented version of the software stack. The
execution engine is responsible for building and compiling the
instrumented software stack. The data process engine collects
all trace log files from each layer of the instrumented I/O stack.

IOscope [90] is a flexible I/O tracer for characterizing the
I/O patterns of the storage systems’ workloads. It relies on
the extended Berkeley Packet Filter (eBPF) technology to
instrument the kernel and communicate the target kernel data
towards a userspace process. The I/O pattern which the tool
detects is the order in which the I/O requests access the file
offsets during accessing on-disk data. IOscope consists of two
tools: IOscope classic and IOscope mmap. The main idea is
to trace and filter the workloads’ I/O requests to construct the
workloads’ I/O patterns.

RIOT I/O [89] is another I/O tracer that uses function
interpositioning to intercept the POSIX and MPI-IO libraries
storing timing and other information about each function call.

11

Tool Profiling Tracing Monitoring High Level Parallel and
Low Level

Parallel File
System Storage

Darshan [73] ✓ p p ✓ ✓ p p
IOPin [81] ✓ p p p ✓ ✓ p
IOPro [87] ✓ p p ✓ ✓ ✓ p
IPM [88] ✓ p p p ✓ p p
TAU [83] ✓ ✓ p ✓ ✓ p p

Score-P [85] ✓ ✓ p p ✓ p p
Darshan DXT [78] p ✓ p p ✓ p p

Recorder [79] p ✓ p ✓ ✓ p p
RIOT I/O [89] p ✓ p p ✓ p p
IOscope [90] p ✓ p p p p ✓

ScalaIOTrace [91] p ✓ p ✓ p p p
Mistral/Breeze [86] p p ✓ p ✓ p p

DKRZ Monitoring [92] p p ✓ p p ✓ ✓
LLview [93] p p ✓ p p ✓ ✓
GUIDE [94] p p ✓ p p ✓ ✓
LMT [95] p p ✓ p p ✓ ✓

TABLE III: I/O profiling, tracing, and monitoring tools and their characteristics

Similarly, ScalaIOTrace [91] is another tracing and analysis
tool that collects trace data across multiple layers in the I/O
stack. It also provides novel capabilities to analyze and collect
statistical information from the collected traces automatically.
IPM [88], developed at Lawrence Berkeley National Lab, is a
portable profiling tool that profiles parallel programs’ perfor-
mance aspects and resource utilization. It uses an interposition
layer to catch all the calls between the application and the file
system layer.

The German Climate Computation Centre (DKRZ) de-
veloped a monitoring system [92] to develop the workload
of the Mistral Supercomputer. This flexible and extensible
monitoring system gathers statistics from 3340 client nodes, 24
login nodes, and 2 Lustre file systems. This system comprises
open-source components such as Grafana and a self-developed
data collector. It provides statistics about the login nodes,
user jobs, and the workload manager queue. Initially, the
monitoring system gives the users an overview of the system’s
current state, providing information such as the current load of
login nodes and the number of used nodes on Slurm partitions.
For each node in the system, the monitoring system collects
metrics such as CPU usage, memory usage, luster file system
usage, and energy consumption.

The Julich Supercomputing Centre (JSC) developed LLview
[93] in 2004 to provide an interactive graphical tool to
monitor jobs running on different workload managers such
as SLURM. It has a job reporting module, which provides
detailed information about all the individual jobs running on
the system. The way LLview works is that it interacts with
the different sources in the system to collect performance data
and aggregate that data to present to the user in a web portal.
Apart from providing a live view of the system, this web portal
provides a list of the jobs running on the system in the form
of a table, with each row showing the aggregated information
for that job, such as the owner, project, start time, end time,
etc. Upon clicking on a job, the user can see timeline graphs
for the key performance metrics. All metrics in job reporting
are gathered minutely, and the detailed reports can be made

available offline as well in the form of a PDF.
GUIDE (Grand Unified Information Directory Environment)

[94] is another framework that has been developed to collect,
federate, and analyze log data from the Oak Ridge Leadership
Computing Facility (OLCF). First, the data is extracted, and
logs are collected. The framework collects data at each level
of OLCF subsystems. For example, at the storage subsystem
level, data is collected for the disk layer (the 2,016 OSTs,
encompassing the 20,160 disks), the redundant RAID, con-
trollers (72), the OSSes (288), and the Lustre PFS level. In
the next step, the data is preprocessed using data cleansing
techniques. In the federation step, the data is federated in a
scalable repository to make post-processing and visualization
of the data easier. Lastly, in the post-processing step, a suite
of analytics and post-processing techniques are applied to get
insights from the data.

Lustre Monitoring Tool (LMT) [95] is an open-source tool
that monitors Lustre activity on HPC systems and presents
a MySQL database that contains aggregated Lustre-specific
counters on each object storage server (OSS) and metadata
server (MDS). LMT provides information such as bytes read-
/written, CPU load averages, and metadata operation rates.
Similarly, ggiostat is another tool to collect similar data
from IBM Spectrum Scale file systems. Developed at the
Argonne Leadership Computing Facility (ALCF), it provides
information such as bytes read/written and reads, writes, and
metadata operations count retrieved from the server and client
clusters.

b) Holistic Characterization Tools: Until now, we have
looked at different I/O characterization tools and storage-
server-level monitoring tools that instrument and monitor dif-
ferent layers in the I/O stack. These tools collect performance
data for individual components in the I/O stack, but looking
at this individually does not convey the whole picture of
the application’s I/O performance. In many cases, the data
from different components and layers of the stack needs to
be combined to get a more holistic view of the application’s
I/O behavior. This often requires involving an I/O expert in

12

Fig. 14: A detailed PDF report of a node generated by LLview [93]

Fig. 15: TOKIO Architecture [96]

the loop to translate this disparate data, but not only is this
practice labor-intensive, but it is also not sustainable as the
system grows and scales. To tackle this issue, frameworks
and monitoring systems have been developed that combine
the insights from the performance data collected by various
component-level monitoring tools and provide a holistic view
of performance across the entire I/O stack. We will look at
some of these frameworks in this section.

The Total Knowledge of I/O (TOKIO) [96] is a frame-
work that connects different component-level monitoring and
characterization tools, combines their insights, and presents a
single, holistic view of the I/O performance across the entire
I/O stack, which static analysis tools and user interfaces can

further use. The distinguishing factor in the TOKIO framework
is that it provides a modular implementation that connects to
whatever monitoring and profiling tools are available on the
HPC system. It mainly collects data from the tools that profile
application behavior such as Darshan and tools that look at
storage system and network traffic and health.

Connectors are the foundational layer of TOKIO. These
modular and independent components provide an interface
to connect with individual component-level tools, providing
data from these tools. On top of connectors are TOKIO tools,
which make this data collected by the connectors semantically
closer to how analysis applications would like that data to be.
These tools provide abstractions to hide the complexities of the
underlying data source. High-level applications like command
line tools, statistical and data analysis tools can easily connect
with TOKIO interfaces to analyze the holistic data collected.

Similar to TOKIO, the Unified Monitoring and Metrics
interface (UMAMI) [97] also provides a normalized, holis-
tic view of the I/O behavior of the application. With the
component-level data already being collected by different
tools at the application and storage-system levels, this data
is analyzed over one month, and the changes in the metrics
are shown in UMAMI. [35] presents a multiplatform study
in which Darshan logs representing a combined total of six
years of I/O behavior of a million jobs across three leading
HPC systems are mined and analyzed. It studies the evolution
of the I/O behavior of the application over time, and based on
the findings, the study provides techniques to improve the I/O
performance of an application.

Beacon [98] is an end-to-end I/O monitoring and diagnosis
tool developed for the TaihuLight supercomputer. Beacon
monitors I/O for different nodes such as the compute, I/O
forwarding, metadata, and storage nodes. At each node, Bea-
con deploys a daemon to monitor I/O and collect performance
data for later aggregation. All this aggregated data is stored
in JSON objects, which are then used to build profiling and
analysis services such as detecting anomalies, per job I/O
performance, etc.

13

Summary #3

Different holistic characterization tools are available, such
as TOKIO [96], UMAMI [97], and Beacon [98]. Each
tool provides different methodology to combine perfor-
mance data, for example, TOKIO provides a modular
implementation to connect with different profiling tools
and aggregate their data, UMAMI provides a unified
monitoring system for the data collected by different tools
at the application and storage-system levels, and Beacon
monitors different nodes in the I/O stack.

B. Analysis, Modeling, and Prediction

Once the profile and trace data are collected for the HPC
I/O application using the different I/O profiling, tracing, and
monitoring tools that we have discussed in the previous
section, the next step in parallel I/O evaluation is to analyze
this data to identify I/O issues, model I/O performance, and
predict future I/O performance of the HPC system. In this
section, we look at different tools and research work that
has been done to analyze the I/O performance of an HPC
system. This work can be divided into three main categories:
Statistics and Analysis, Predictive Analysis, and Replay-Based
Modeling.

1) Statistics and Analysis: The traditional way of analyzing
I/O data is through applying statistics and analysis tech-
niques to extract meaningful patterns from the I/O traces, I/O
characterization profiles, and other logs. Different statistical
techniques such as Arithmetic Mean, Standard Deviation,
Linear Regression, Probabilities, etc. are applied to the data to
classify, correlate, and extract meaningful patterns. Applying
statistical analysis on HPC workloads and data requires in-
depth system knowledge and extensive human effort.

[99] presents an extensive experimental study exploring the
root causes of I/O interference in HPC systems. It first iden-
tifies the points of contention in an HPC storage system and
evaluates how the application’s access patterns, file system and
network configuration, and storage devices affect interference.
Based on the experiments on the Grid’5000 testbed and the
OrangeFS file system, the study highlights seven root causes
of I/O interference. [100] investigates various I/O performance
issues by studying and analyzing performance data collected
over a year at two leadership high-performance computing
centers. The study looks at transient and long-term trends in
I/O performance variability using different analysis techniques,
such as correlative analysis and financial market technical
analysis techniques, on time series I/O performance data to
identify regions of interest. The insights provided in this paper
can help broaden the scope of instrumentation and analysis
tools.

IOMiner [101] is a large-scale analytics framework to ana-
lyze instrumentation data using a centralized storage schema
that combines log data collected using different instrumenta-
tion tools and a sweep-line analysis function that identifies
root causes of poor I/O performance of an application. The
centralized storage schema is designed to take away any format

difference that the different log data might have, making it
query-friendly and easy to use for the sweep-line analysis
function. One of the challenges that IOMiner addresses is how
to mine useful information and insights from the performance
data collected on supercomputers, which can run as many as
millions of jobs quickly. To address this challenge, IOMiner
uses a Python API for the Spark framework called PySpark,
which speeds up data analysis on large-scale systems using
parallel processing. In the analysis phase, IOMiner provides
an analysis function that looks at five contributing factors to
the application’s poor I/O performance. These factors are:

• Small I/O requests
• Nonconsecutive I/O requests
• Utilization of collective I/O
• Number of OSTs used by each job
• Contention level
[35] presents a comprehensive study of the I/O behavior

of applications on three large-scale supercomputers. It ana-
lyzes the Darshan logs on the three different supercomputers,
spanning years and months. Through in-depth analysis of
these logs, the paper looks at different aspects of the I/O
performance of the applications on each supercomputer. For
example, one of the paper’s analyses is a platform-wide
analysis in which the performance of I/O workloads on the
three supercomputers is studied, and techniques are presented
to identify underperforming apps. The analyses show that most
of the apps on each supercomputer never exceed the platform
peak I/O throughput, and low I/O throughput is the norm. Fig.
16 shows the maximum I/O throughput of each app across all
its jobs on the three supercomputers under consideration, with
the horizontal line showing the platform peak I/O throughput.
The paper also presents other insights, such as discovering
that a few jobs and apps mainly dominate each platform’s I/O
usage.

Fig. 16: Maximum I/O throughput of each application and the
platform peak I/O throughput [35]

[102] presents a comprehensive study and analysis of
the I/O performance of a production leadership-class storage
system by collecting large amounts of trace data using the
Recorder [79] tracing tool. After collecting the data, the study
thoroughly analyzes this trace data to get insights into the
performance and variability of the storage system. It provides
some feedback on resolving the issues encountered in the
analyses. The paper looks at two main scenarios to understand

14

Research/Framework Analysis Technique Analysis Goal
Yildiz et al [99] Evaluates point of contentions in HPC storage

system
Identify root causes of I/O interference

Lockwood et al [100] Correlative and financial market technical anal-
ysis on year-long performance data

Identify various I/O performance issues

IOMiner [101] Centralized storage schema that combines log
data of different instrumentation tools

Detect root causes of poor I/O performance such as
small I/O, non-collective I/O etc.

Luu et al [35] Statistical analysis of Darshan logs spanning
years

Study the I/O behavior of applications on three large-
scale supercomputers

Wan et al [102] Analyzes Recorder trace data Study performance and variability of the storage
system and provide feedback

pytokio [96] Analysis routines and connectors to extract in-
sights from monitoring tools

Holistic analysis of the I/O performance of parallel
systems

GUIDE [94] Analyzes log data from the Oak Ridge Leader-
ship Computing Facility (OLCF)

Understand the performance of the storage system

TABLE IV: Statistical analysis tools/research and a brief description of what kind of analysis they perform

I/O performance do the storage system: 1) Performance of I/O
issued to a single OST, and 2) Impact of concurrent access
to single OST. It also looks at other scenarios, such as the
effect of system caching on user-perceived performance and
the effect of large-scale parallel I/O. Some of the key insights
of the paper are:

• Concurrent access to a single OST might not lead to
performance degradation for specific write sizes

• To maintain high throughput, system caching is critical
• Interference can be generated along the I/O path because

of large scale parallel I/O
• Imbalanced I/O traffic distribution among OSTs can lead

to performance degradation

PyTokio [96] is a Python implementation of the TOKIO
framework discussed in previous sections. PyTokio makes
holistic analysis of the I/O performance of parallel systems
easier by providing connectors to interface with many com-
monly used monitoring tools. It also provides analysis routines
to extract insights from the data collected from the different
monitoring tools. One of the components of PyTokio is tokio
tools which provides a high-level abstraction for access-
ing the combined data collected from multiple monitoring
tools, allowing different analysis tools to build upon PyTokio.
GUIDE (Grand Unified Information Directory Environment)
[89] is another framework that we discussed earlier, which
collects, federates, and analyzes log data from the Oak Ridge
Leadership Computing Facility (OLCF). It also provides some
analytics and visualizations of the storage system, like looking
at the Lustre OST usage over time, I/O block sizes and space
efficiency, and I/O request size distribution.

2) Predictive Analysis: Predictive Analysis, as the name
suggests, is the kind of analysis that predicts future events
based on the current information provided. Such analysis
deploys techniques like data mining, predictive modeling,
and machine learning on the trace/log data to predict future
performance. By building a predictive model using the trace
data available, accurate predictions on the future performance
of the HPC system can be made. Such an analysis also includes
auto-tuning techniques to predict the best parameters for each
layer of the HPC I/O stack for optimized performance.

To predict future I/O operations, Omnisc’IO [103] presents
a novel approach using a grammar-based model of the I/O
behavior of the application. Not only does it predict when
future I/O operations will occur, but it also tells where these
operations will occur and how data will be accessed. The
grammar-based model is built at runtime using an algorithm
derived from Sequitur [112]. The way Omnisc’IO operates is
that first, it gets the program’s call stack, associating each
call with an integer called context symbols. Then, it builds
a grammar-based model from these context symbols. Once
the grammar is built, it predicts future events by choosing
a predictor from the grammar and associating each predictor
with a weight. A brief architecture of Omnisc’IO is shown in
Fig. 17.

Fig. 17: Omnisc’IO Architecture [103]

[104] presents a novel framework for modeling and predict-
ing the execution times of MPI programs. The framework cap-
tures the syntax tree of the parallel program and automatically
instruments it, collecting important features. The instrumen-
tor, developed in clang, inserts detective code around loops,
branches, assignments, and MPI communications, generating
an instrumented version of the code. Once the features are
collected, the goal is to find a correlation between the collected
features and the execution time. This multivariate nonlinear
regression problem is solved using a random forest approach.

15

Research/Framework Prediction Technique Prediction Output
Omnisc’IO [103] Grammer-based model Next I/O operation
Sun et al [104] Random forest approach Execution Time
Schmidt et al [105] Artificial Neural Networks File Access Times
Nemirovsky et al [106] Six Different Prediction Models1 Storage System Performance State
IONET [107] Deep Neural Networks Latency of every I/O of a full workload
Isaila et al [108] Gaussian Process Model I/O performance sensitivity to application and file characteristics
Behzad et al [109] Genetic Algorithm Best combination of parameters for different layers of the I/O stack
Bagbaba et al [110] Random Forest Collective I/O performance
Kim et al [111] Six Different Prediction Models2 I/O performance such as read, write throughput

TABLE V: Predictive analysis tools along with their prediction technique and output

[105] is another research that uses machine learning with
artificial neural networks to analyze and predict file access
times of a Lustre file system.

Fig. 18: Overview of automated performance modeling of
HPC applications using machine learning [104]

[106] presents a lightweight parallel test harness to collect
I/O data on HPC systems and monitor performance states on
different storage subsystems. Then, it formulates a machine
learning model to predict the transitions between those perfor-
mance states during runtime. Treating this as a classification
problem, this work uses a classifier to predict which I/O state
a future I/O operation will likely encounter for an I/O path
to an OSS. This work applies six commonly used machine
learning classifiers to the dataset: classification and regression
trees (CART), naive bayes (NB), gradient boosting (GBT),
support vector machines (SVM), random forests (RF), and
neural networks (NN). According to the results, SVM provides
the best prediction accuracy.

IONET [107] is another ML-based I/O latency predictor that
builds models of storage devices. It then uses this model to

predict the latency of every I/O of a full workload running
on a target storage cluster without running it on the cluster.
It collects traces from various sources and industry partners
and then designs an ML model to learn from them. The ML
model uses machine learning techniques such as Deep Neural
Networks, Random Forest, Logistic Regression, etc., to predict
I/O latency from these traces. [108] presents a sensitivity-
based modeling framework that predicts the I/O performance
of the system and its variability as a function of application and
file system characteristics using a Gaussian Process Model.

[109] optimizes the I/O performance of applications using
an autotuning framework. This autotuning framework can ef-
ficiently optimize the different layers of the I/O stack, such as
HDF5, MPI-IO, and Lustre, without requiring any source code
changes. The framework has two main components: H5evolve
and H5Tuner. H5evolve uses a genetic algorithm to search the
I/O parameter space to find the best parameter combinations
and then uses H5Tuner to inject the new I/O parameters in
the application with minimal user involvement. [110] presents
another machine learning-supported I/O autotuning framework
to tune I/O parameters for different layers of the stack.

[111] predicts I/O performance using a regression-based
approach by integrating system logs from various sources.
First, the framework builds a joint database to store logs from
different sources and then selects the important features from
these logs using different scoring and feature selection algo-
rithms. Once the features are selected, six different regression
algorithms are developed, which use these features to predict
I/O performance. Fig. 20 shows how the proposed framework
works.

3) Replay-based Modeling: Replay-based modeling is an-
other form of modeling and analysis that relies on historical
I/O traces or characterization data. These traces, which contain
detailed information about an HPC application’s computation
and I/O behavior, can be analyzed to replay the I/O behavior
of the original application through I/O workload replication
and benchmarks. These benchmarks and workloads can then
be further used to predict the I/O performance of the original
application. They can also test how the original application

1Classification and Regression Trees (CART), Naive Bayes (NB), Gradient
Boosting (GBT), Support Vector Machines (SVM), Random Forests (RF), and
Neural Networks (NN)

2Linear, Polynomial, K-nearest neighbors, Gradient boosting random forest
(GBDT), Random Forests (RF), Multilayers perceptron (MLP), and Convo-
lutional neural network (CNN)

16

Fig. 19: Architecture of the autotuning framework presented
in [109]

Fig. 20: Overall workflow of the proposed framework in [111]

will behave in different real-world deployments and scenarios.
Apart from this, these replay-based models can also generate
workloads for storage systems. There are a variety of tools
and research works that study replay-based modeling. We will
discuss some of this work in the following section.

[113] presents a replay-based modeling framework to
generate portable benchmarks for I/O intensive parallel ap-
plications automatically. It introduces a trace merging and
trace compression algorithm, which it uses to generate bench-
marks of the original I/O application, mimicking its computa-
tion, communication, and I/O access patterns. These portable
benchmarks can also be used to predict the I/O performance
of the original application without the extra overhead, as

the benchmarks are a scaled-down version of the original
I/O application. Fig. 21 shows the overall workflow of this
framework. The framework uses a suffix tree-based algorithm
to compress the traces to reduce the redundant data introduced
because of the loops. It extracts and compresses these loops
to reduce the size of the trace by several orders of magnitude.
After compressing the traces, they are merged and are used
to generate the C code of the benchmark for the original I/O
application.

Fig. 21: Overall workflow of the proposed framework in [111]

[114] presents an extrapolation and replay-based tool called
ScalaIOExtrap and ScalaIOReplay. It builds upon the ScalaIO-
Trace [91] tool and provides extended functionality for extrap-
olation and replay-based I/O analysis. It uses ScalaIOTrace to
collect and analyze a small number of traces, determining the
relationship between the different parameters and the number
of ranks. It then uses ScalaIOExtrap to generate a single
trace file for an arbitrary number of ranks. The experiments
conducted with this tool show that the new I/O trace generated
by ScalaIOExtrap retains the trace structure, I/O size, and the
number of operations. It also preserves the event ordering and
time accuracy in the new trace. This tool enables large-scale
parallel I/O evaluation without actually executing the original
application.

Fig. 22: Framework of ScalaIOTrace, ScalaIOExtrap, and
ScalaIOReplay [114]

IOscope [90] is another tracing tool that solves the prob-
lem of high overhead incurred by collecting large traces
across multiple layers of I/O stack by generating specific
and ready-to-visualize traces of the applications’ I/O pat-
terns. SynchroTrace [115] is another trace-based simulation
tool for multithreaded applications that generates dependency-
aware architecture agnostic traces. It also provides a replay
mechanism aware of these dependencies and can simulate
synchronization actions to estimate the performance and power
of chip multiprocessor systems (CMP).

17

Research/Framework Analysis Technique Analysis Goal
Hao et al [113] Suffix tree-based compression algorithm Portable benchmark of the original application

to mimic computation, communication, and I/O
ScalaIOExtrap [114] Trace Extrapolation to generate a single trace C code of the benchmark for the original I/O

application
IOscope [90] Specific and ready-to-visualize traces of the ap-

plications’ I/O patterns
Reduce overhead of collecting a large amount of
traces

SynchroTrace [115] Replay mechanism aware of system dependen-
cies

Dependency-aware architecture agnostic traces
for multithreaded applications

TABLE VI: Replay-based modeling tools/research and a brief description of what kind of modeling they do

Fig. 23: reports focusing on different facets of the I/O behavior: (a) operations; (b) contextual information regarding the
operations; (c) transfer sizes; and (d) spatial locality of the requests into the file. Combined, they provide a clear picture of
the I/O access pattern and help identify the root causes of performance problems.

C. Optimizing Parallel I/O

Until now, we have looked at various tools and research
studies that profile, trace, and evaluate I/O workloads on large-
scale systems. When performance is slower than expected,
end-users, developers, and system administrators rely on these
I/O profiling and tracing information to pinpoint the root
causes of inefficiencies and bottlenecks. However, despite the
availability of numerous tools that collect I/O metrics on
production systems, it is not obvious where the I/O bottlenecks
are, what their root causes are, and what to do to solve them
without actually involving an I/O expert in the loop. Hence,
there is a gap between the metrics collected by these tools,
the issues they represent, and the application of solutions and
optimizations to eliminate these issues [116]. Streamlining
analysis, investigation, and recommendations could close gaps
without specialists intervening in each case. Researchers in the
I/O community are actively studying this.

DXT Explorer [3] is one such interactive web-based log
analysis tool that visualizes Darshan DXT logs and helps
understand the I/O behavior of applications. The tool automat-

ically analyzes and parses Darshan DXT log data to generate
different interactive visualizations focusing on different facets
of the I/O performance of the application, such as operations,
transfer sizes, spatial locality, OST Usage, and I/O Phases.
By adding an interactive component to Darshan trace analysis,
this tool aids researchers, developers, and end-users to visually
inspect their applications’ I/O behavior, zoom in on areas of
interest, and have a clear picture of where is the I/O problem
[116].

Drishti [26] is another command line analysis framework
that analyzes Darshan logs to pinpoint the various root causes
of the I/O problems, providing actionable recommendations
to eliminate these bottlenecks and improve I/O performance.
Drishti relies on counters available in Darshan profiling logs
to detect common bottlenecks and classify the insights into
four categories based on the impact of the triggered event
[26]. The tool also can pinpoint the exact line in the source
code where changes need to be made to optimize performance.
Based on this analysis, the tool generates a report, as shown
in Fig. 24, highlighting the application issues and providing
recommendations to solve those issues.

18

METADATA ──

▶ Application is write operation intensive (60.83% writes vs. 39.17% reads)
▶ Application is write size intensive (64.15% write vs. 35.85% read)
▶ Application issues a high number (100.00%) of misaligned file requests
↪ Recommendations:

 ↪ Consider aligning the requests to the file system block boundaries

OPERATIONS ──

▶ Application issues a high number (275840) of small read requests (i.e., < 1MB) which
represents 100.00% of all read/write requests
↪ 275840 (100.00%) small read requests are to "8a_parallel_3Db_0000001.h5"
↪ Recommendations:

 ↪ Consider buffering read operations into larger more contiguous ones
 ↪ Since the appplication already uses MPI-IO, consider using collective I/O calls (e.g.
MPI_File_read_all() or MPI_File_read_at_all()) to aggregate requests into larger ones
▶ Application issues a high number (427386) of small write requests (i.e., < 1MB) which

represents 99.75% of all read/write requests
↪ 275840 (64.38%) small write requests are to "8a_parallel_3Db_0000001.h5"
↪ Recommendations:

 ↪ Consider buffering write operations into larger more contiguous ones
 ↪ Since the application already uses MPI-IO, consider using collective I/O calls (e.g.
MPI_File_write_all() or MPI_File_write_at_all()) to aggregate requests into larger ones
▶ Application mostly uses consecutive (97.67%) and sequential (2.16%) read requests
▶ Application mostly uses consecutive (97.85%) and sequential (1.17%) write requests
▶ Detected read imbalance when accessing 1 individual files.
↪ Load imbalance of 55.23% detected while accessing "8a_parallel_3Db_0000001.h5"
↪ Recommendations:

 ↪ Consider better balancing the data transfer between the application ranks
 ↪ Consider tuning the stripe size and count to better distribute the data
 ↪ If the application uses netCDF and HDF5 double-check the need to set NO_FILL values
 ↪ If rank 0 is the only one opening the file, consider using MPI-IO collectives
▶ Application uses MPI-IO and write data using 7680 (92.50%) collective operations
▶ Application could benefit from non-blocking (asynchronous) reads
↪ Recommendations:

 ↪ Since you use HDF5, consider using the ASYNC I/O VOL connector
(https://github.com/hpc-io/vol-async)
 ↪ Since you use MPI-IO, consider non-blocking/asynchronous I/O operations
▶ Application could benefit from non-blocking (asynchronous) writes
↪ Recommendations:

 ↪ Since you use HDF5, consider using the ASYNC I/O VOL connector
(https://github.com/hpc-io/vol-async)
 ↪ Since you use MPI-IO, consider non-blocking/asynchronous I/O operations

Fig. 24: Drishti report for the OpenPMD benchmark [26]

V. CONCLUSION

Understanding the I/O performance of large-scale workloads
can be a complex task, especially now with the ever-increasing
complexities of the underlying parallel computing hardware
and the advent of novel workloads comprising artificial intel-
ligence, machine learning, and big data. In such a scenario,
one needs to have a guide that they can follow to evaluate
and optimize the parallel I/O of their application. This work
provides that guide by providing an in-depth study comprising
more than 100 research papers to evaluate parallel I/O on
large-scale computing systems. It first looks at the HPC I/O
stack and different access patterns in detail studying how an
I/O request is affected by different access patterns as it goes

from the higher level in the parallel stack down to the storage
system, depicting the complexities of the I/O stack as well. The
study also provides a comprehensive list of different profiling
and tracing tools that can characterize I/O performance and
provides a unique synthesis of this information in the form of
different tables throughout the paper. The study also looks at
a variety of parallel I/O evaluation techniques which involve
statistical analysis, predictive analysis, and replay-based mod-
eling. It ends this discussion by talking about some of the
latest research that is being done in bridging the gap between
trace collection and optimizing parallel I/O without involving
an I/O expert in the loop. 1his paper serves as a complete
guide for anybody who wants the analyze and evaluate the

19

I/O performance of their application running on any large-
scale HPC system.

REFERENCES

[1] B. Behzad, S. Byna, Prabhat, and M. Snir, “Optimizing i/o
performance of hpc applications with autotuning,” ACM Trans.
Parallel Comput., vol. 5, no. 4, mar 2019. [Online]. Available:
https://doi.org/10.1145/3309205

[2] J. L. Bez, S. Byna, and S. Ibrahim, “I/o access patterns in hpc
applications: A 360-degree survey,” ACM Comput. Surv., vol. 56,
no. 2, sep 2023. [Online]. Available: https://doi.org/10.1145/3611007

[3] J. L. Bez, H. Tang, B. Xie, D. Williams-Young, R. Latham, R. Ross,
S. Oral, and S. Byna, “I/o bottleneck detection and tuning: Connecting
the dots using interactive log analysis,” in 2021 IEEE/ACM Sixth
International Parallel Data Systems Workshop (PDSW), 2021, pp. 15–
22.

[4] The HDF Group. (1997-NNNN) Hierarchical Data Format, version 5.
Https://www.hdfgroup.org/HDF5/.

[5] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y.
Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar,
N. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu,
“Hello adios: the challenges and lessons of developing leadership
class i/o frameworks,” Concurrency and Computation: Practice and
Experience, vol. 26, no. 7, pp. 1453–1473, 2014. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3125

[6] C. Lee, M. Yang, and R. A. Aydt, “Netcdf-4 performance report,”
2008. [Online]. Available: https://api.semanticscholar.org/CorpusID:
15588867

[7] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netcdf:
A high-performance scientific i/o interface,” in Proceedings of the
2003 ACM/IEEE Conference on Supercomputing, ser. SC ’03. New
York, NY, USA: Association for Computing Machinery, 2003, p. 39.
[Online]. Available: https://doi.org/10.1145/1048935.1050189

[8] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
overview of the hdf5 technology suite and its applications,” 03 2011,
pp. 36–47.

[9] R. Rew and G. Davis, “Netcdf: an interface for scientific data access,”
IEEE Computer Graphics and Applications, vol. 10, pp. 76–82,
1990. [Online]. Available: https://api.semanticscholar.org/CorpusID:
11171299

[10] Hanisch, R. J., Farris, A., Greisen, E. W., Pence, W. D.,
Schlesinger, B. M., Teuben, P. J., Thompson, R. W., and Warnock,
A., “Definition of the flexible image transport system (fits)*,”
A&A, vol. 376, no. 1, pp. 359–380, 2001. [Online]. Available:
https://doi.org/10.1051/0004-6361:20010923

[11] D. C. Wells, E. W. Greisen, and R. H. Harten, “FITS - a Flexible Image
Transport System,” , vol. 44, p. 363, Jun. 1981.

[12] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic,
P. Canal, D. Casadei, O. Couet, V. Fine, L. Franco, G. Ganis,
A. Gheata, D. G. Maline, M. Goto, J. Iwaszkiewicz, A. Kreshuk,
D. M. Segura, R. Maunder, L. Moneta, A. Naumann, E. Offermann,
V. Onuchin, S. Panacek, F. Rademakers, P. Russo, and M. Tadel,
“Root — a c++ framework for petabyte data storage, statistical
analysis and visualization,” Computer Physics Communications, vol.
180, no. 12, pp. 2499–2512, 2009, 40 YEARS OF CPC: A
celebratory issue focused on quality software for high performance,
grid and novel computing architectures. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0010465509002550

[13] P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P.
Prost, M. Snirt, B. Traversat, and P. Wong, Overview of the MPI-IO
Parallel I/O Interface. Boston, MA: Springer US, 1996, pp. 127–146.
[Online]. Available: https://doi.org/10.1007/978-1-4613-1401-1_5

[14] “Ieee standard for information technology–portable operating system
interface (posix(tm)) base specifications, issue 7,” IEEE Std 1003.1-
2017 (Revision of IEEE Std 1003.1-2008), pp. 1–3951, 2018.

[15] N. H. Prickett, “What’s so bad about posix i/o? - the next platform,”
Apr 2018. [Online]. Available: https://www.nextplatform.com/2017/
09/11/whats-bad-posix-io/

[16] Oct 2020. [Online]. Available: https://www.iso.org/standard/74528.html

[17] G. Almási, R. Bellofatto, J. Brunheroto, C. Caşcaval, J. G. Castaños,
L. Ceze, P. Crumley, C. C. Erway, J. Gagliano, D. Lieber, X. Martorell,
J. E. Moreira, A. Sanomiya, and K. Strauss, “An overview of the
blue gene/l system software organization,” in Euro-Par 2003 Parallel
Processing, H. Kosch, L. Böszörményi, and H. Hellwagner, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 543–555.

[18] J. Stender, B. Kolbeck, F. Hupfeld, E. Cesario, E. Focht, M. Hess,
J. Malo, and J. Martí, “Striping without sacrifices: Maintaining posix
semantics in a parallel file system.” 01 2008.

[19] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur, “PVFS: A
parallel file system for linux clusters,” in 4th Annual Linux Showcase
& Conference (ALS 2000). Atlanta, GA: USENIX Association,
Oct. 2000. [Online]. Available: https://www.usenix.org/conference/
als-2000/pvfs-parallel-file-system-linux-clusters

[20] “Lustre : A scalable , high-performance file system cluster,”
2003. [Online]. Available: https://api.semanticscholar.org/CorpusID:
16120094

[21] A. George, R. Mohr, J. Simmons, and S. Oral, “Understanding lustre
internals. second edition.” [Online]. Available: https://www.osti.gov/
biblio/1824954

[22] F. Schmuck and R. Haskin, “Gpfs: A shared-disk file system for large
computing clusters,” in Proceedings of the 1st USENIX Conference
on File and Storage Technologies, ser. FAST ’02. USA: USENIX
Association, 2002, p. 19–es.

[23] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, “Scalable performance of the panasas parallel
file system.” 01 2008, pp. 17–33.

[24] S. Nedev and V. Kamenov, “Hdd performance research,” 01 2018.
[25] D. A. Patterson, Computer Organization and Design. Elsevier Science

amp; Technology, 2013.
[26] J. L. Bez, H. Ather, and S. Byna, “Drishti: Guiding end-users in the i/o

optimization journey,” in 2022 IEEE/ACM International Parallel Data
Systems Workshop (PDSW), 2022, pp. 1–6.

[27] J. L. Bez, “Dynamic tuning and reconfiguration of the i/o forwarding
layer in hpc platforms,” Ph.D. dissertation, 05 2021.

[28] J. He, J. Bent, A. Torres, G. Grider, G. Gibson, C. Maltzahn, and
X.-H. Sun, “I/o acceleration with pattern detection,” in Proceedings
of the 22nd International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 25–36. [Online].
Available: https://doi.org/10.1145/2493123.2462909

[29] C.-S. Kuo, A. Shah, A. Nomura, S. Matsuoka, and F. Wolf, “How file
access patterns influence interference among cluster applications,” in
2014 IEEE International Conference on Cluster Computing (CLUS-
TER), 2014, pp. 185–193.

[30] S. Byna, M. Chaarawi, Q. Koziol, J. Mainzer, and F. Willmore,
“Tuning hdf5 subfiling performance on parallel file systems.” [Online].
Available: https://www.osti.gov/biblio/1398484

[31] F. Z. Boito, E. C. Inacio, J. L. Bez, P. O. A. Navaux, M. A. R.
Dantas, and Y. Denneulin, “A checkpoint of research on parallel i/o
for high-performance computing,” vol. 51, no. 2, mar 2018. [Online].
Available: https://doi.org/10.1145/3152891

[32] H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the
i/o performance of hpc applications using a parameterized synthetic
benchmark,” in SC ’08: Proceedings of the 2008 ACM/IEEE Confer-
ence on Supercomputing, 2008, pp. 1–12.

[33] R. Thakur, W. Gropp, and E. Lusk, “An abstract-device interface
for implementing portable parallel-i/o interfaces,” in Proceedings of
6th Symposium on the Frontiers of Massively Parallel Computation
(Frontiers ’96), 1996, pp. 180–187.

[34] R. Thakur, E. Lusk, and W. Gropp, “Users guide for romio: A high-
performance, portable mpi-io implementation.” [Online]. Available:
https://www.osti.gov/biblio/564273

[35] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms,
M. Prabhat, S. Byna, and Y. Yao, “A multiplatform study of
i/o behavior on petascale supercomputers,” in Proceedings of the
24th International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 33–44. [Online].
Available: https://doi.org/10.1145/2749246.2749269

[36] J. L. Bez, A. M. Karimi, A. K. Paul, B. Xie, S. Byna, P. Carns, S. Oral,
F. Wang, and J. Hanley, “Access patterns and performance behaviors
of multi-layer supercomputer i/o subsystems under production load,”
in Proceedings of the 31st International Symposium on High-

20

Performance Parallel and Distributed Computing, ser. HPDC ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
43–55. [Online]. Available: https://doi.org/10.1145/3502181.3531461

[37] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o
in romio,” in Proceedings. Frontiers ’99. Seventh Symposium on the
Frontiers of Massively Parallel Computation, 1999, pp. 182–189.

[38] T. Wang, S. Byna, G. K. Lockwood, S. Snyder, P. Carns, S. Kim, and
N. J. Wright, “A zoom-in analysis of i/o logs to detect root causes of
i/o performance bottlenecks,” in 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2019,
pp. 102–111.

[39] J. Rosario, R. Bordawekar, and A. Choudhary, “Improved parallel i/o
via a two-phase run-time access strategy,” ACM SIGARCH Computer
Architecture News, vol. 21, pp. 31–38, 12 1993.

[40] K. Ohta, D. Kimpe, J. Cope, K. Iskra, R. B. Ross, and Y. Ishikawa,
“Optimization techniques at the i/o forwarding layer,” 2010 IEEE
International Conference on Cluster Computing, pp. 312–321,
2010. [Online]. Available: https://api.semanticscholar.org/CorpusID:
14886509

[41] A. lèbre, G. Huard, Y. Denneulin, and P. Sowa, “I/o scheduling service
for multi-application clusters,” 09 2006.

[42] Y. Qian, E. Barton, T. Wang, N. Puntambekar, and A. Dilger, “A
novel network request scheduler for a large scale storage system,”
Computer Science - Research and Development, vol. 23, pp. 143–148,
2009. [Online]. Available: https://api.semanticscholar.org/CorpusID:
25880347

[43] F. Zanon Boito, R. Kassick, P. Navaux, and Y. Denneulin, “Automatic
i/o scheduling algorithm selection for parallel file systems,” Concur-
rency and Computation Practice and Experience, vol. 28, 08 2015.

[44] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Omnisc’io: A
grammar-based approach to spatial and temporal i/o patterns predic-
tion,” in SC ’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2014, pp.
623–634.

[45] X. Zhang and S. Jiang, “Interferenceremoval: Removing interference
of disk access for mpi programs through data replication,”
in Proceedings of the 24th ACM International Conference on
Supercomputing, ser. ICS ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 223–232. [Online]. Available:
https://doi.org/10.1145/1810085.1810116

[46] X. Zhang, K. Davis, and S. Jiang, “Iorchestrator: Improving the
performance of multi-node i/o systems via inter-server coordination,” in
SC ’10: Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis,
2010, pp. 1–11.

[47] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “Server-
side i/o coordination for parallel file systems,” in Proceedings of
2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York, NY, USA:
Association for Computing Machinery, 2011. [Online]. Available:
https://doi.org/10.1145/2063384.2063407

[48] J. Liu, Y. Chen, and Y. Zhuang, “Hierarchical i/o scheduling for
collective i/o,” in 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, 2013, pp. 211–218.

[49] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “Calciom:
Mitigating i/o interference in hpc systems through cross-application co-
ordination,” in 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, 2014, pp. 155–164.

[50] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing variability in the io performance
of petascale storage systems,” in SC ’10: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, 2010, pp. 1–12.

[51] H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the
i/o performance of hpc applications using a parameterized synthetic
benchmark,” in Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, ser. SC ’08. IEEE Press, 2008.

[52] [Online]. Available: https://asc.llnl.gov/sites/asc/files/2020-09/
mdtest-summary.pdf

[53] [Online]. Available: https://www.vi4io.org/tools/benchmarks/
md-workbench

[54] [Online]. Available: https://fio.readthedocs.io/en/latest/fio_doc.html

[55] Staff, “Elbencho - a new storage benchmark for ai - high-performance
computing news analysis,” Feb 2021. [Online]. Available: https:
//insidehpc.com/2021/02/elbencho-a-new-storage-benchmark-for-ai/

[56] [Online]. Available: https://www.ibm.com/docs/en/linux-on-z?topic=
tests-iozone

[57] [Online]. Available: https://wiki.lustre.org/OBDFilter_Survey
[58] B. Wolman and T. M. Olson, “Iobench: a system independent io

benchmark,” SIGARCH Comput. Archit. News, vol. 17, no. 5, p. 55–70,
sep 1989. [Online]. Available: https://doi.org/10.1145/71302.71309

[59] T. Li, S. Byna, Q. Koziol, H. Tang, J. L. Bez, and Q. Kang, “h5bench:
HDF5 I/O Kernel Suite for Exercising HPC I/O Patterns,” in Proceed-
ings of Cray User Group Meeting, CUG 2021.

[60] H. Devarajan, H. Zheng, A. Kougkas, X.-H. Sun, and V. Vishwanath,
“Dlio: A data-centric benchmark for scientific deep learning applica-
tions,” 05 2021, pp. 81–91.

[61] “Virtual institute for i/o.” [Online]. Available: https://www.vi4io.org/
tools/benchmarks/hacc-io

[62] [Online]. Available: https://www.ucolick.org/~zingale/flash_
benchmark_io/#intro

[63] R. Rabenseifner, A. Koniges, J.-p. Prost, and R. Hedges, “The parallel
effective i/o bandwidth benchmark: b-eff-io,” 12 2001.

[64] S. Saini, D. Talcott, R. Thakur, P. Adamidis, R. Rabenseifner, and
B. Ciotti, “Parallel i/o performance characterization of columbia and
nec sx-8 superclusters,” Parallel and Distributed Processing Sympo-
sium, International, vol. 0, p. 99, 03 2007.

[65] “Virtual institute for i/o.” [Online]. Available: https://www.vi4io.org/
tools/benchmarks/netcdf-bench

[66] O. Mordvinova, D. Runz, J. M. Kunkel, and T. Ludwig,
“I/o performance evaluation with parabench — programmable
i/o benchmark,” Procedia Computer Science, vol. 1, no. 1,
pp. 2125–2134, 2010, iCCS 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050910002395

[67] S. Neuwirth and A. K. Paul, “Parallel i/o evaluation techniques and
emerging hpc workloads: A perspective,” in 2021 IEEE International
Conference on Cluster Computing (CLUSTER), 2021, pp. 671–679.

[68] “Virtual institute for i/o.” [Online]. Available: https://www.vi4io.org/
tools/benchmarks/start

[69] “I/o benchmarks, applications, traces.” [Online]. Available: https:
//web.cels.anl.gov/~thakur/pio-benchmarks.html

[70] O. B. Messer, E. D’Azevedo, J. Hill, W. Joubert, M. Berrill, and
C. Zimmer, “Miniapps derived from production hpc applications
using multiple programing models,” Int. J. High Perform. Comput.
Appl., vol. 32, no. 4, p. 582–593, jul 2018. [Online]. Available:
https://doi.org/10.1177/1094342016668241

[71] J. Dickson, S. A. Wright, S. Maheswaran, J. A. Herdman, D. Harris,
M. C. Miller, and S. A. Jarvis, “Enabling portable i/o analysis of
commercially sensitive hpc applications through workload replication,”
2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:
37609466

[72] “Virtual institute for i/o.” [Online]. Available: https://www.vi4io.org/
tools/benchmarks/macsio

[73] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley,
“24/7 characterization of petascale i/o workloads,” in 2009 IEEE
International Conference on Cluster Computing and Workshops
(CLUSTER). Los Alamitos, CA, USA: IEEE Computer Society, sep
2009, pp. 1–10. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/CLUSTR.2009.5289150

[74] C. D. Carothers, J. S. Meredith, M. P. Blanco, J. S. Vetter,
M. Mubarak, J. LaPre, and S. Moore, “Durango: Scalable synthetic
workload generation for extreme-scale application performance
modeling and simulation,” ser. SIGSIM-PADS ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 97–108.
[Online]. Available: https://doi.org/10.1145/3064911.3064923

[75] S. Snyder, P. Carns, R. Latham, M. Mubarak, R. Ross, C. Carothers,
B. Behzad, H. V. T. Luu, S. Byna, and Prabhat, “Techniques for
modeling large-scale hpc i/o workloads,” ser. PMBS ’15. New York,
NY, USA: Association for Computing Machinery, 2015. [Online].
Available: https://doi.org/10.1145/2832087.2832091

[76] J. Dickson, S. Wright, S. Maheswaran, A. Herdman, M. C. Miller, and
S. Jarvis, “Replicating hpc i/o workloads with proxy applications,” in
2016 1st Joint International Workshop on Parallel Data Storage and
data Intensive Scalable Computing Systems (PDSW-DISCS), 2016, pp.
13–18.

21

[77] S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood, and N. J.
Wright, “Modular hpc i/o characterization with darshan,” in 2016 5th
Workshop on Extreme-Scale Programming Tools (ESPT), 2016, pp. 9–
17.

[78] C. Xu, S. Snyder, O. Kulkarni, V. Venkatesan, P. Carns, S. Byna,
R. Sisneros, and K. Chadalavada, “Dxt: Darshan extended tracing.”
[Online]. Available: https://www.osti.gov/biblio/1490709

[79] H. Luu, B. Behzad, R. Aydt, and M. Winslett, “A multi-level approach
for understanding i/o activity in hpc applications,” in 2013 IEEE
International Conference on Cluster Computing (CLUSTER), 2013, pp.
1–5.

[80] C. Wang, J. Sun, M. Snir, K. Mohror, and E. Gonsiorowski, “Recorder
2.0: Efficient parallel i/o tracing and analysis,” in 2020 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2020, pp. 1–8.

[81] S. J. Kim, S. W. Son, W.-k. Liao, M. Kandemir, R. Thakur, and
A. Choudhary, “Iopin: Runtime profiling of parallel i/o in hpc systems,”
in 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, 2012, pp. 18–23.

[82] N. Chachmon, D. Richins, R. Cohn, M. Christensson, W. Cui, and V. J.
Reddi, “Simulation and analysis engine for scale-out workloads,” ser.
ICS ’16. New York, NY, USA: Association for Computing Machinery,
2016. [Online]. Available: https://doi.org/10.1145/2925426.2926293

[83] S. S. Shende and A. D. Malony, “The tau parallel performance
system,” vol. 20, no. 2, p. 287–311, may 2006. [Online]. Available:
https://doi.org/10.1177/1094342006064482

[84] S. S. Shende, A. D. Malony, W. Spear, and K. Schuchardt,
“Characterizing i/o performance using the tau performance system,”
in International Conference on Parallel Computing, 2011. [Online].
Available: https://api.semanticscholar.org/CorpusID:361834

[85] A. Knüpfer, C. Rössel, D. a. Mey, S. Biersdorff, K. Diethelm,
D. Eschweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E.
Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende,
R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf, “Score-p: A joint per-
formance measurement run-time infrastructure for periscope,scalasca,
tau, and vampir,” in Tools for High Performance Computing 2011,
H. Brunst, M. S. Müller, W. E. Nagel, and M. M. Resch, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 79–91.

[86] [Online]. Available: https://altair.com/mistral
[87] S. J. Kim, Y. Zhang, S. W. Son, M. Kandemir, W.-K. Liao,

R. Thakur, and A. Choudhary, “Iopro: A parallel i/o profiling and
visualization framework for high-performance storage systems,” J.
Supercomput., vol. 71, no. 3, p. 840–870, mar 2015. [Online].
Available: https://doi.org/10.1007/s11227-014-1329-0

[88] N. J. Wright, W. Pfeiffer, and A. Snavely, “Characterizing parallel
scaling of scientific applications using ipm,” 2009. [Online]. Available:
https://api.semanticscholar.org/CorpusID:16489254

[89] S. Wright, S. Hammond, J. Pennycook, R. Bird, A. Herdman, I. Miller,
A. Vadgama, A. Bhalerao, and S. Jarvis, “Parallel file system analysis
through application i/o tracing,” The Computer Journal, vol. 56, pp.
141–155, 02 2013.

[90] A. Saif, L. Nussbaum, and Y.-Q. Song, “Ioscope: A flexible i/o
tracer for workloads’ i/o pattern characterization,” in High Performance
Computing, R. Yokota, M. Weiland, J. Shalf, and S. Alam, Eds. Cham:
Springer International Publishing, 2018, pp. 103–116.

[91] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth, “Scalable
i/o tracing and analysis,” ser. PDSW ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 26–31. [Online].
Available: https://doi.org/10.1145/1713072.1713080

[92] J. M. Kunkel, E. Betke, M. Bryson, P. Carns, R. Francis, W. Frings,
R. Laifer, and S. Mendez, “Tools for analyzing parallel i/o,” in High
Performance Computing, R. Yokota, M. Weiland, J. Shalf, and S. Alam,
Eds. Cham: Springer International Publishing, 2018, pp. 49–70.

[93] [Online]. Available: https://www.fz-juelich.de/en/ias/jsc/
services/user-support/software-tools/llview?expand=translations%
2Cfzjsettings%2Cnearest-institut

[94] S. S. Vazhkudai, R. Miller, D. Tiwari, C. Zimmer, F. Wang, S. Oral,
R. Gunasekaran, and D. Steinert, “Guide: A scalable information
directory service to collect, federate, and analyze logs for operational
insights into a leadership hpc facility,” in SC17: International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, 2017, pp. 1–12.

[95] [Online]. Available: https://wiki.lustre.org/Lustre_Monitoring_Tool

[96] G. K. Lockwood, N. J. Wright, S. Snyder, P. Carns, G. Brown,
and K. Harms, “Tokio on clusterstor: Connecting standard tools
to enable holistic i/o performance analysis.” [Online]. Available:
https://www.osti.gov/biblio/1632125

[97] G. K. Lockwood, W. Yoo, S. Byna, N. J. Wright, S. Snyder, K. Harms,
Z. Nault, and P. Carns, “Umami: a recipe for generating meaningful
metrics through holistic i/o performance analysis,” in Proceedings of
the 2nd Joint International Workshop on Parallel Data Storage &
Data Intensive Scalable Computing Systems, ser. PDSW-DISCS ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
55–60. [Online]. Available: https://doi.org/10.1145/3149393.3149395

[98] B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed,
H. Lan, Y. Yang, J. Zhai, W. Liu, and W. Xue, “End-to-end I/O
monitoring on a leading supercomputer,” in 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19).
Boston, MA: USENIX Association, Feb. 2019, pp. 379–394. [Online].
Available: https://www.usenix.org/conference/nsdi19/presentation/yang

[99] O. Yildiz, M. Dorier, S. Ibrahim, R. B. Ross, and G. Antoniu,
“On the root causes of cross-application i/o interference in hpc
storage systems,” 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 750–759, 2016. [Online].
Available: https://api.semanticscholar.org/CorpusID:17570971

[100] G. K. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. J.
Wright, “A year in the life of a parallel file system,” in SC18: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, 2018, pp. 931–943.

[101] T. Wang, S. Snyder, G. Lockwood, P. Carns, N. Wright, and S. Byna,
“Iominer: Large-scale analytics framework for gaining knowledge from
i/o logs,” in 2018 IEEE International Conference on Cluster Computing
(CLUSTER), 2018, pp. 466–476.

[102] L. Wan, M. Wolf, F. Wang, J. Y. Choi, G. Ostrouchov, and S. Klasky,
“Comprehensive measurement and analysis of the user-perceived i/o
performance in a production leadership-class storage system,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), 2017, pp. 1022–1031.

[103] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Omnisc’io: A
grammar-based approach to spatial and temporal i/o patterns predic-
tion,” in SC ’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2014, pp.
623–634.

[104] J. Sun, G. Sun, S. Zhan, J. Zhang, and Y. Chen, “Automated perfor-
mance modeling of hpc applications using machine learning,” IEEE
Transactions on Computers, vol. 69, no. 5, pp. 749–763, 2020.

[105] J. F. Schmid and J. M. Kunkel, “Predicting i/o performance in
hpc using artificial neural networks,” Supercomputing Frontiers and
Innovations, vol. 3, no. 3, p. 19–33, Sep. 2016. [Online]. Available:
https://superfri.org/index.php/superfri/article/view/105

[106] D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, and
A. Cristal, “A machine learning approach for performance prediction
and scheduling on heterogeneous cpus,” in 2017 29th International
Symposium on Computer Architecture and High Performance Comput-
ing (SBAC-PAD), 2017, pp. 121–128.

[107] J. Kunkel, M. Zimmer, and E. Betke, “Predicting performance of non-
contiguous i/o with machine learning,” in High Performance Comput-
ing, J. M. Kunkel and T. Ludwig, Eds. Cham: Springer International
Publishing, 2015, pp. 257–273.

[108] F. Isaila, P. Balaprakash, S. M. Wild, D. Kimpe, R. Latham, R. Ross,
and P. Hovland, “Collective i/o tuning using analytical and machine
learning models,” in 2015 IEEE International Conference on Cluster
Computing, 2015, pp. 128–137.

[109] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt,
Q. Koziol, and M. Snir, “Taming parallel i/o complexity with auto-
tuning,” Proceedings of the ACM/IEEE Supercomputing Conference.
[Online]. Available: https://www.osti.gov/biblio/1311633

[110] A. Bağbaba, “Improving collective i/o performance with machine
learning supported auto-tuning,” in 2020 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2020,
pp. 814–821.

[111] S. Kim, A. Sim, K. Wu, S. Byna, and Y. Son, “Design and implemen-
tation of i/o performance prediction scheme on hpc systems through
large-scale log analysis,” Journal of Big Data, vol. 10, 05 2023.

[112] C. Nevill-Manning and I. Witten, “Identifying hierarchical strcture in
sequences: A linear-time algorithm.” J. Artif. Intell. Res. (JAIR), vol. 7,
pp. 67–82, 09 1997.

22

[113] M. Hao, W. Zhang, Y. Zhang, M. Snir, and L. T. Yang, “Automatic
generation of benchmarks for i/o-intensive parallel applications,”
Journal of Parallel and Distributed Computing, vol. 124, pp. 1–
13, 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S074373151830738X

[114] X. Luo, F. Mueller, P. Carns, J. Jenkins, R. Latham, R. Ross, and
S. Snyder, “Hpc i/o trace extrapolation,” in Proceedings of the 4th
Workshop on Extreme Scale Programming Tools, ser. ESPT ’15.
New York, NY, USA: Association for Computing Machinery, 2015.
[Online]. Available: https://doi.org/10.1145/2832106.2832108

[115] K. Sangaiah, M. Lui, R. Jagtap, S. Diestelhorst, S. Nilakantan, A. More,
B. Taskin, and M. Hempstead, “Synchrotrace: Synchronization-aware
architecture-agnostic traces for lightweight multicore simulation of
cmp and hpc workloads,” ACM Trans. Archit. Code Optim., vol. 15,
no. 1, mar 2018. [Online]. Available: https://doi.org/10.1145/3158642

[116] H. Ather, J. L. Bez, B. Norris, and S. Byna, “Illuminating the i/o
optimization path of scientific applications,” in High Performance
Computing, A. Bhatele, J. Hammond, M. Baboulin, and C. Kruse, Eds.
Cham: Springer Nature Switzerland, 2023, pp. 22–41.

23

