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I. INTRODUCTION

The capability for people to publish their thoughts,
ideas, reasoning, and first-hand accounts are one of the
cornerstones of a democratic society. One of the great
triumphs of the Internet is the powerful ability for indi-
viduals to publish directly. They do not require the con-
sent of an editor or publisher, just the audience. This
is a boon for the unrestricted dissemination of informa-
tion.

However, the publishing capabilities of the Internet
are still limited. It is difficult for individuals or small
organizations to publish to large audiences. The sender
must provide capacity proportional to the audience size,
but the common sender has only a limited budget for
bandwidth. Thus, only large organizations and the
wealthy can afford to publish to large audiences. This
is particularly true for large multimedia files. Over the
past century, audio and video content have developed
an increasingly important role in our society. Afford-
able distribution of audio and video to large audiences
would be a great win for egalitarianism and democracy.

Peer-to-peer provides this capability. By increasing
scalability, it can significantly decrease cost for large
servers. However, it’s true benefit lies in increasing the
capacity of small servers. This will allow small users to
publish content to a much larger set of viewers. Con-
sider the case of a group of musicians or a local news sta-
tion. Currently, they can easily support a small number
of Internet listeners. However, suppose they suddenly
experience a rise in popularity. They will no longer be
able to provide content. They will need to either con-
tract with someone who can, or their content will not
reach the audience. This is a loss both for the content
creator and for the audience. With peer-to-peer, the
system will scale and they will be able to provide the
content.

II. SWARMING

In this paper, we examine a particular peer-to-peer
content distribution system: swarming. Before we can
begin a meaningful discussion of swarming, we must
first precisely define it. Swarming systems are charac-
terized by the combination of four key features:

1. Swarming is a file transfer mechanism.

2. Swarming is peer-to-peer.

3. Swarming peers share partial content.

4. Swarming uses parallel download.

Recently, many researchers have begun to focus on
peer-to-peer techniques for improving scalability. As
the Internet has grown, a gradual shift in resources
has occurred. In the early days, the concentration of
bandwidth, storage, and processing power was near the
center of the network. As consumer devices have be-
come exponentially more powerful, this concentration
has shifted to the edge. Peer-to-peer tries to leverage
this movement by placing a greater burden on user sys-
tems.

Some recent file transfer protocols use the peer-to-
peer paradigm. For example, in CoopNet [1] and Pseu-
doserving [2] the server refers clients to others who have
already downloaded the file. This improves scalability
by growing the system capacity proportionally to the
system load. While this concept is a powerful develop-
ment, swarming takes it even further, by allowing the
transfer of partial content.

With existing peer-to-peer systems, a client must re-
ceive a whole file before re-serving it. This can be prob-
lematic for large files, as it may take a long time for the
whole file to reach a client. Since the performance of
an overloaded server goes to zero, an abrupt increase in
load may cripple a server before the peer-to-peer tech-
niques take effect. In swarming, clients begin sharing
after receiving just a small piece of the whole file. This
is sharing partial content. It allows clients to quickly
contribute to system capacity.

Swarming also uses parallel download. This allows a
client to transfer different parts of the file from different
sources. In some sense, there is a separate distribution
tree for each portion of a file. However, the construction
of these trees is quite distinct from the multicast trees.

Parallel download has several benefits, some of which
have already been demonstrated in the client-server case
[3]. It makes it possible for clients to fully utilize their
local network capacity; if they could be receiving the file
faster, they can simply add more sources. In the event
that a source leaves the network or becomes congested,
the client already has several other active sources. Fi-
nally, parallel download implicitly downloads more of
the file from the fastest sources.



A. Contributions

Swarming is not an idea original to my DRP. In fact,
a few swarming systems have already been developed
and deployed [4,5,6,7]. The most well-known of these
is BitTorrent [4]. While these systems do exist, few
provide a technical description of their swarming pro-
tocol and, more importantly, no formal research studies
have yet been published. Although swarming seems in-
tuitive, the design of a swarming protocol is not trivial
because the design space is large and there are many
dynamics involved.

This paper presents the following contributions.
First, it defines the design space of swarming proto-
cols. Second, it defines a particular swarming protocol
within that design space. Third, it presents the first
performance evaluation of swarming delivery, using a
simulation that examines a variety of workloads and
swarming parameters. Fourth, it discusses details of
the simulator design and implementation, critical infor-
mation for anyone wishing to reproduce or build upon
my work.

The results show that swarming can scalably deliver
content under loads several orders of magnitude beyond
what the client-server architecture can handle. Most
impressively, swarming enables a server to gracefully
cope with a flash crowd, with minimal effect on client
performance. Finally, the results indicate that swarm-
ing spreads the load of content delivery evenly among
the peers. Finally, this paper provides insight concern-
ing the dynamic performance of the system and the
impact of several key swarming parameters. This work
lays the foundation for future research on swarming,.

B. Contents

This report is intended to supplement the conference
paper I wrote with Professor Daniel Zappala and Pro-
fessor Reza Rejaie [8]. That paper includes a list of
related work, the most prominent of my research re-
sults, and a discussion of their significance. This paper
includes the follows details of my project:

o It describes the protocol I implemented in the sim-
ulator.

e It provides an overview of the simulator source
code.

« It describes the data collection tools I created.

e It captures my results.

¢ It includes an extensive list of future research top-
ics.

III. MECHANISMS

Swarming relies on four primary mechanisms:
1. Peer Identification

2. Peer Selection

3. Data Division

4. Data Selection

Peer Identification is the way that peers learn about
one another. Peer Selection is the operation of choos-
ing peers. Data Division is the way a file is broken
into pieces. Data Selection is how pieces are scheduled
for download. The sections that follow discuss how I
implemented these four basic operations.

A. Peer Identification

Peer Identification is the process of learning about ad-
ditional peers. When a client starts up, we must assume
that it knows of some root server that has the entire
file. This could be a conventional web server or a node
located via a peer-to-peer search mechanism. Swarming
clients begin by contacting this root server, so that they
can learn of one another and can begin forming peer re-
lationships. In my system, I use a technique known as
gossiping. Each time two peers exchange a portion
of the file, they also exchange information about other
hosts they know about. This process gradually floods
peer information throughout the system.

An alternative approach is to learn about peers ex-
clusively through the root server. This is the approach
taken by BitTorrent; a special tracker program runs
on the server and acts as a meeting point for peers. Its
sole function is to introduce peers to one another.

In gossiping, nodes exchange tuples of peer informa-
tion in between exchanges of file data. These tuples
contain the following information about other peers:

e The address of another peer
o A description of which portions of the file are avail-
able from that peer
o A timestamp indicating how recent this informa-
tion is
Each host maintains a cache of 64 tuples. This is a
fairly small cache due to simulator memory constraints.
Real systems could have much larger caches.

During each gossip, the 10 tuples with the most re-
cent timestamps are exchanged in each direction Ad-
ditionally, each peer sends a tuple about itself. This
self-referential tuple always has a fresh timestamp.

To prevent excessive connection attempts to hosts
that are no longer participating, peers also store and
exchange information about unreachable peers. In par-
ticular, this provides a way for peers to notify the server
when a host is no longer responding. Then, the server
can stop advertising unreachable host to new clients.

When a host is inaccessible, a new tuple is created
with a fresh timestamp and indicates that the host has
no data available. The next time the peer exchanges
tuples with the server, it will let the server know that
the host is no longer providing data. This prevents the
server from continuing to advertise the host.



B. Data Division

One of the trickiest parts of implementing swarming
is keeping track of which blocks have been received.
Many developers of swarming implementations have
opted to split files into atomic, equal-size, independent
blocks. When a client requests data, it requests ex-
actly one block. If a download fails, the client must
begin downloading that block from the beginning. This
greatly simplifies record-keeping, at a slight cost to effi-
ciency. For simplicity, I implemented this scheme, with
a default of 32 blocks per file.

An obvious alternative to block-granularity is byte-
granularity. In this case, the client keeps track of ex-
actly which bytes of the file it has and can request
arbitrary-sized chunks of data. This allows for more
diverse, and more complicated, Data Selection algo-
rithms, and may be a good avenue for future work on
swarming.

Another alternative is to encode the data using For-
ward Error Correction, or FEC. This method was
used by SwarmCast [6], one of the first swarming im-
plementations available. FEC has also been shown to
be useful when using parallel download from mirrored
servers [9]. FEC allows the server to encode k packets
as n packets where n > k. Each client then needs to
receive any € - k packets to reconstruct the file, where
€ > 1. With FEC, if two peers have % packets each, it
is likely they will have enough unique data to exchange
and reconstruct the file. Without FEC, they almost
certainly will have some duplicated data and will there-
fore be unable to reconstruct the file without help from
additional peers. In effect, FEC increases the number of
useful peers available to a client. In exchange for this
advantage, using FEC incurs a cost of k(e — 1) extra
packets. Additionally, there is a computational penalty,
that is often worse with lower e.

Another interesting area of future research is deter-
mining the usefulness of FEC. This may be possible to
do without actually implementing FEC. Examining the
distribution of blocks among the peers would provide in-
sight into how useful FEC could be. Also, it would be
helpful to see how much time is spent looking for peers
with the right blocks, instead of actually downloading.

C. Peer Selection

Once a client knows of several other peers, it must
choose which ones to connect to. In this project, I used
a simple heuristic that should minimize the time spent
connecting to new peers: nodes add the peer with the
largest number of outstanding blocks.

For example, suppose a client is downloading a file
composed of 4 blocks and the it has previously down-
loaded just the 3rd block. It knows about Peer A who
has the 1st and 4th block, and about Peer B who has the
3rd and 4th block. In this case, the client will choose

Peer A since it has two blocks that the client needs,
while Peer B has only one.

Another key aspect of peer selection is choosing how
many peers to connect to. In my implementation, I sim-
ply made each client attempt to maintain 4 downloads
at once. Whenever it has less than 4, it attempts to add
another connection. There is no limit on the number of
uploads a client may have going at once.

In future work, this could be optimized. A client
could adjust the number of simultaneous downloads in
an effort to get the greatest utilization out of its local
pipe. For example, if a client has 1.5M bps of download
capacity, but is only getting 32kbps throughput, it could
increase the number of peers. Unfortunately, measuring
available capacity is complex.

There are many other ways to choose peers, and fu-
ture work on swarming will undoubtedly include adapt-
ing server-selection techniques.

D. Data Selection

The final mechanism of swarming is Data Selection.
When downloading from a peer, the client must choose
which block it wants to receive. I chose to use a simple
random algorithm: create a list of all blocks the peer
has that are still needed, and pick one. This is the
simplest way to create a good mix of blocks within the
network.

Additional research should be conducted to deter-
mine how frequently block-bottlenecks are occurring.
If they are common, more advanced algorithms must
be developed to ensure a better distribution of blocks.
For example, it may be possible to gauge determine
how rare each block is and pro-actively download rare
blocks. Another option is for the server-side of each
connection to suggest blocks to the client. The server-
side knows which blocks it has uploaded, so it could
suggest infrequently uploaded blocks. Again, this may
help to prevent bottlenecks from forming over certain
rare blocks. Finally, FEC could be used to increase the
variety of blocks from which a peer may choose.

IV. ProTOCOL

I implemented swarming as an extension to HTTP.
This allows for incremental deployment of the protocol
via add-ons to existing HTTP servers and clients (i.e.,
web browsers). Of the deployed swarming implemen-
tations, my implementation is most similar to the Par-
tial File Sharing Protocol (PFSP) [10], which is likewise
built over HTTP. While this approach has advantages,
it is problematic for NAT and firewall users. Since these
users cannot receive incoming connections, they cannot
share content in a straightforward way.

Another approach is to build the swarming protocol
independently. This is the approach taken by BitTor-
rent, which uses a custom, bidirectional protocol. By



being bidirectional, BitTorrent allows NAT and firewall
users to share on their outgoing connections. However,
NAT and firewall users still cannot share with each
other; they can only share with users directly on the
Internet.

Note that I do not purport that my swarming pro-
tocol is superior to others; at the time I developed it,
PFSP and BitTorrent were also just ideas on paper.
This report simply documents the protocol for those
interested in the details of my simulations.

It is easiest to describe my swarming protocol by first
reviewing HTTP. When an HTTP client connects to an
HTTP server, it begins by issuing a request similar to
the one shown in Listing 1. The first line in an HTTP
request contains a single-word command, the URL, and
the HTTP version. In this example, I show the GET
command, which a client issues to fetch a page. This
line may be followed by headers. After the headers is a
blank line, indicating to the server that the request is
complete.

An example server response is illustrated in Listing 2.
The first line shows the server’s HTTP version and a
response code. After this are a series of headers, a blank
line, and the data satisfying the request, if appropriate.
In this example, the server responds with a minimal
set of headers. In practice, the server uses headers to
provide additional information to the client, such as the
age of the content. Instead of GET, a client may send a
HEAD request to retrieve these headers without actually
retrieving the content.

Listing 1 Client side of Client-Server Protocol

1 GET <URL> HTTP/1.1
2

Listing 2 Server side of Client-Server Protocol

HTTP/1.1 200 OK
Content-Length: <size>

1
2
3
4  <begin binary data>

My swarming protocol operates by defining addi-
tional HTTP headers. These headers are shown in List-
ings 3 and 4. Note that the terms “client” and “server”
are from a TCP perspective; these may actually be any
peers in the system. The first thing to note is that two
exchanges are conducted. This is done to facilitate par-
tial content sharing. In the first exchange, the client
sends a HEAD request. This allows the client to de-
termine precisely which parts of the file the server has.
Once the client has this information, it sends a GET
request for a particular part of the file.

In Listing 3, line 2 indicates that the client is not re-
questing any particular part of the file, and the server
may suggest one. The <URL> on line 3 is a connect-
back URL. This notifies the server where the client will
store the data. The server may connect to the client
there, or advertise the URL to others. Line 4 contains
information about other peers, which parts of the file
they have, and how up-to-date the client’s information
is. This is the gossiping information discussed in Sec-
tion IIT-A. This line may be repeated several times,
to provide information about several peers. Line 5 de-
scribes the parts of the file the client already has. Fi-
nally, line 6 describes the parts of the file the client is
currently receiving. Lines 2 through 6 may occur in any
order. Lines with empty lists are omitted entirely.

After the server responds to the HEAD, the same head-
ers are transmitted in the GET request. The only dif-
ference is in the Range header. During the GET, the
client specifies a particular range for downloading. Note
that while my implementation always transfers com-
plete blocks, the protocol itself supports byte-level gran-
ularity.

In Listing 4, lines 1 through 7 show the server’s re-
sponse to the HEAD request, while lines 815 show the
response to the GET. Lines 5 and 6 contain the gos-
siping information. On line 3, the server uses the
Content-Range field to suggest a block to download.
Currently, this information is not actually used. Line 4
indicates the size of the range being suggested!.

When the client submits the GET, the server responds
with the same headers. However, lines 3 and 4 will
reflect the range the client request, rather than a range
the server suggests.

Note that these connections are persistent. When the
server is nearly done transmitting its binary data, the
client may send another request. My implementation
does not actually implement pipelining. The client does
not send a new request until has completely received the
previous block. Because the client sends a HEAD first,
this means there is a 2- RTT penalty before each block,
plus the transfer time for two sets of headers in each
direction.

V. SIMULATOR IMPLEMENTATION

This section provides a brief overview of the source
code I created. The intent is to provide a high-level
description for anyone interested in looking at the code.
The following subsections provide a general sense of the
flow of execution, the key modules, and how the code
fits together.

I used the doxygen [12] program to create class
diagrams and HTML documentation for the code.
Therefore, comments in the source frequently include

IThis information is redundant, but is called for by the HTTP
specification [11, 14.13]



Listing 3 Client side of Swarming Protocol

=
(=]

1 HEAD <URL> HTTP/1.1

2 Range: choose

3 Swarm-Have: <range>[]...]

4 Swarm-Downloading: <range>[]|...]

5

6 GET <URL> HTTP/1.1

7  Swarm-My-URL: <URL>

8 Swarm-URL: <URL>; <ranges>; <timestamp>[, ...]

9  Swarm-Have: <range>[]|...]
Swarm-Downloading: <range>[]|...]
Range: bytes=<offset>-<offset>

—
N =

Listing 4 Server side of Swarming Protocol

HTTP/1.1 206 Partial Content

Accept-Ranges: bytes, choose

Content-Range: bytes <offset>-<offset>/<size>
Content-Length: <size>

Swarm-URL: <URL>; <ranges>; <timestamp>[, ...]
Swarm-Have: <ranges>

HTTP/1.1 206 Partial Content

Accept-Ranges: bytes, choose

Content-Range: bytes <offset>-<offset>/<size>
Content-Length: <size>

Swarm-URL: <URL>; <ranges>; <timestamp>[, ...]
Swarm-Have: <ranges>

O oo Ut WN -

e e e
i W N H—O

<binary data>

doxygen commands. These commands provide doxygen
with additional semantic information for formatting the
code.

A. Design Goals

Before diving into the details of the simulator im-
plementation, it is worth discussing the initial design
goals. These will assist you in seeing the motivation
for my choices, as well as provide a sense of the overall
structure.

The primary goal, of course, was to simulate swarm-
ing. A secondary goal was to produce a useful packet-
level simulator for application-layer protocols. I chose
to build this over an existing packet level simulator:
ns, the Network Simulator. I hoped to build a gen-
eral application-layer interface over ns-1.4’s TCP. This
interface could be used to implement swarming, but
would also be useful for future simulations of other pro-
tocols. Version 1.4 of ns was selected for its scalability
characteristics. Later version of ns are not as adept at
handling large networks.

To accomplish this, I desired to approximate the
Berkeley Sockets API for TCP. This is a familiar in-
terface for network programming; it, or a close variant,
is found in every major PC operating system. By using
the Berkeley Sockets API, I also hoped to make it easier

to create a true implementation from a simulator im-
plementation. Ideally, the application-layer code would
not include any ns-specific code.

Unfortunately, there were two major difficulties.
First, ns requires heavy use of C++ classes, while the
Berkeley Socket API is a C API. Second, emulating
select requires the ability to block. Since there are
multiple virtual hosts running there within simulator,
this would require multiple threads of execution. How-
ever, ns is not a multi-threaded program.

The select function is one of key functions in the
Berkeley Socket API. It is used to multiplex between
several sockets. With select an application may say
“Please block until one of these streams has data to be
read”. This is particularly important in a peer-to-peer
application, where even a client must communicate with
several other hosts.

B. Application Interface

My code includes four applications:
e An HTTP Server

e An HTTP Client

o A Swarming Root Server

¢ A Swarming Peer

This section describes the interface available to these
applications. Each application is embodied in a class
that derives from class App. The App class is declared in
berkeley.h, which sets up the environment to emulate
the Berkeley Sockets API. Per-node global variables are
stored in arrays, indexed by the node’s number. Macros
are defined so the array is transparent to the applica-
tion. A special global variable, g_app_node, stores the
currently active node.

As an example, each application uses a global variable
called errno. This “variable” is actually a macro which
expands to g_app_errno[g_app node]. The application
need never concern itself with this expansion; it is done
behind the scenes. This approach is necessary to give
each node its own errno variable.

The header berkeley.h declares several other macros
and functions that map the Berkeley Socket functions
onto simulator functions. This includes the functions
listed below:

e Tread

e Write

e socket

e connect

e bind

e listen

e accept

e close

o getsockopt
e getpeername
e getsockname
e perror



e exit

Some of these functions are not part of the Berkeley
Sockets API, strictly speaking. However, they are reg-
ular parts of the C API that need to be emulated so
applications will work in the simulator environment.

Since select cannot be emulated, several other func-
tions are declared to provide equivalent functionality.
Of necessity, these use an event-driven interface. If an
application needs to be notified when a socket becomes
readable or writable, it must declare a AppSocket class
and override the read handler or write_handler mem-
ber functions. The application can then call hook_read
or hook_write to associate an instance with a particular
socket. Similarly, if an application needs to be woken up
after a certain time, it must derive from TimerHandler
and call hook_timer. Additional functions are provided
to remove hooks.

Finally, two functions are defined purely to make the
simulator more efficient: skip and scribble. These
functions work like read and write, but they do not
actually read or write any data to memory. This is
important for a file transfer application like swarming,
where we want to transfer an imaginary file, but don’t
want to bother copying actual bytes around. These
functions provide efficiency by not bothering to copy
imaginary data.

C. Notable Components

In this section, I will discuss the files that I created
or significantly altered to create my simulator.

C.1 Application Interface

The application interface, including the Berkeley
Sockets API emulation, is provide by berkeley.cc,
berkeley.h, berkeley_ internal.h, socket.cc, and
socket.h. These files are also responsible for keeping
track of per-socket state and the per-node list of sockets.

C.2 Data Structures

The files circular.c and circular.h implement a
general-purpose ring buffer.

The files freelist.c and freelist.h implement
efficient allocation and deallocation routines for re-
sources, such as socket descriptors.

The files rangelist.cc and rangelist.h are used
to keep track of blocks. They include a fast block-level
data structure, BlockList, and a slower, more com-
plicated, byte-level data structure, RangeList. The
byte-level granularity is built on R-Trees [13], which
are implemented in rtree.c? and rtree.h. R-Trees
are an efficient data structure for storing intervals with

2Some of the code in rtree.c was written by James Marr to
solve a programming competition problem. I found it useful and
rounded out his implementation which did not include support
for deletions.

attributes. They are overkill for the current implemen-
tation, but may be useful for more complex Data Selec-
tion algorithms.

C.3 Protocols

I heavily modified the fulltcp.cc module that came
with ns. In addition to significant restructuring for
readability, I added support for the following features:

« Placing data inside of the TCP packets
» Closing connections
o Correct handling of dropped SYN packets

The files http.cc and http.h implement an HTTP
client and server. These classes also form the base
classes for the swarming implementation which are in
swarm.gperf and swarm.h.

The files swarm-url.cc and swarm-url.h form sup-
port code for the swarming implementation. They pro-
vide the gossip cache functionality, which keeps track
of other peers in the system. They are also responsible
for choosing the next peer to connect to.

D. Refactoring

As a result of my experiences, I now feel that ns-
1.4 is a poor candidate for application-layer simulation,
even when packet-level detail is desired. It includes too
many features that are not relevant to the task at hand,
such as several TCP variants, a Tcl interface, different
types of router queues, and instrumentation for exam-
ining link and router behavior. In part, the difficulty
is due to the structure of ns; it is often difficult to
tell which modules are orthogonal and which are inter-
twined. Also, ns does not allow for a straightforward
emulation of the Berkeley Socket API.

A better approach would include a tight, finely op-
timized, simulator kernel with a clean TCP implemen-
tation, and a thin Berkeley Sockets API. Implement-
ing user-space threads might be a good way to emulate
select. Due to the nature of a discrete event simulator,
only one thread will ever need to be awake at a time.
Thus, there is no need for a complex task scheduler.

Another candidate for refactoring is the RangeList
and BlockList code which keeps track of bytes and
blocks. This code became a little convoluted as a result
of several rewrites as my project evolved and changed.

VI. DATA MANAGEMENT

This project generated a lot of data: roughly 3 gi-
gabytes in over 500 heavily compressed files. Due to
their scope, some discussion of their organization and
post-processing is warranted.

Each data file contains a list of events in chronological
order, one per line. The first item in the line describes
the nature of the event, the second item is the time
in seconds since the start of the simulation, and any



remaining fields provide additional information about
the event. The captured events are as follows:

o Client-Start is output whenever a new client is
created. It includes an identifier for the client.

« Client-Done is output whenever a client finished
downloading the file. It includes an identifier for
the client and the packet loss rate.

« Connect-Begin indicates that one peer is trying
to contact another. The two peers are identified.

¢ Connect-Done indicates that a Connect-Begin
succeeded. The two peers are identified.

« Close indicates that a client peer is closing its con-
nection to a server. The two peers are identified.

e Timeout-Client indicates that a client has not
received any data from the server and is terminat-
ing the connection. The two peers are identified.

o Timeout-Server indicates that a server has not
received any data from a client and is terminating
the connection. The two peers are identified.

+ Block-Begin indicates that one peer has begun
downloading a block from another. The peers are
identified, and the block is specified.

e Block-Done indicates that one peer has finished
downloading a block from another. The peers are
identified, and the block is specified.

e Drop-In indicates that a packet was lost on a
peer’s incoming link. The peer is identified.

Prior to my DRP, I had written a Python module
called “psim” for farming simulation jobs out to a set
of computers. T used and enhanced this module to man-
age my simulations. The module is fairly simple and is
not too hard to adapt to other tasks. It assumes each
machine has a similar directory structure, with the sim-
ulator installed in the same place. The psim module is
run on one machine that accumulates the result. As
input, it takes a list of simulations to run and a list of
machines. It connects to the machines via ssh3, and
runs one job at a time per CPU. The simulator must
print results on standard output so that psim can re-
ceive them and store them.

The psim module has room for improvement. Cur-
rently, it is not possible to add or remove jobs from the
queue without restarting psim. Since restarting psim
also restarts any running simulations, this is wasteful
when there are long-running simulations. Ideally, psim
would use a client-server architecture. The server would
be along-running process which executes jobs, while the
client would send the server commands to manipulate
the job queue. This would also allow a multi-user psim
to be developed, so that users can prioritize the use of
resources.

The results of each experiment are stored in a direc-
tory called “results”, in a file named after the simula-

3Cryptographic ssh keys must be setup in advance to allow login
without a password.

tion parameters. The random number seed is included
as one of the parameters, so any result file can be ex-
actly reproduced by running the simulation again with
the same parameters. The data is compressed before
storage, to curb disk usage. By using ordinary files,
the results may conveniently be examined with conven-
tional command line tools.

I processed the results using Python scripts, divided
into three stages. The first stage computes a particu-
lar measurement from a results file. T wrote scripts to
compute the following measurements:

« Blocks served by each peer

« Download time for each peer

o Percentage of transfer time spent on the Last
Block Problem

o Packet loss for each peer

o Number of active peers over time

e Unique peers from which a download was at-
tempted, for each peer

o Time-averaged number of parallel downloads for
each peer

e Number of unique peers downloaded from, for each
peer

e Number of unique peers uploaded to, for each peer

o The mean over all peers, of any of the above mea-
surements

The second stage organizes the measurements into a
graph. It supports four types of graphs:

« Histogram

¢ Two-Dimensional

e Three-Dimensional

o Cumulative Distribution Function (CDF)

These generators are extremely flexible. As input,
they take a pointer to one or more measurement func-
tions. Additionally, they take a list of simulation pa-
rameters which are used as inputs to the measurement
functions. In addition to the fixed values, these param-
eters may be z or functions in terms of x. Stage two
will look for all sets of simulations results that match
the fixed parameters, compute their measurements, and
plot them with z on the z-axis and the results on the
y-axis. This provides a powerful mechanism for creat-
ing a variety of graphs. Naturally, the histogram and
CDF graphs cannot use x, while the three-dimensional
plot uses both z and y.

The first stage is quite slow. Therefore, the output
of the first stage is cached in a Python “pickle” file.
Pickled data is a way of storing Python objects as a
stream of bytes. It is similar to Java’s “serialization”
feature. By using the cache, the scripts can avoid com-
puting the same measurement for the same data. This
code could be further optimized by including more fine-
grained caching. Currently, each measurement needs to
parse the entire results file. Since each results file is
quite large, it would be much faster to scan each file



only once.

Finally, another Python script generates the actual
figures. It calls the second stage, sets up any relevant
Gnuplot parameters, and runs Gnuplot. Each figure is
generated by a single function written in Python. By
default the script runs all of these functions. Alter-
nately, it will run only the functions named via com-
mand line parameters. This provides a simple mech-
anism for making slight changes to individual figures.
The script uses the python-gnuplot package to call Gnu-
plot and generates figures using the eepic format.

VII. RESULTS

The presentation of my results is divided into three
main sections:

o Methodology, which describes how I acquired my
results

o Performance, which describes broadly how swarm-
ing performs

e Depth, which explores how swarming behaves in
detail

A. Methodology

To study swarming, I chose simple scenarios that
would allow me to isolate and examine particular char-
acteristics. The number of possible scenarios is enor-
mous, therefore the best approach is to alter one vari-
able at a time and observe the response.

I performed my simulations using a single-router In-
ternet model. In this model, the Internet cloud is ap-
proximated by a single router. Each client or server is
connected directly to this router. This is a common
model for application-layer, end-to-end protocols, since
the interesting bottlenecks are at the edge of the net-
work.

Initially, I used homogeneous peers modeled after ca-
ble modem users. Each user has 1536kbps of download
capacity and 128kbps of upload capacity. I opted to
model the root server as a high-end DSL user, with
1Mbps in each direction. To focus on transmission de-
lay, I set the latency to just 1ms. As a workload, I
used a file size of 1 Megabyte. These characteristics are
summarized in Table L.

TABLE I Basic Swarming Scenario

Parameter Value
File Size 1 Megabyte
Server capacity 1 Mbps
Client capacity (down/up) | 1536kbps/ 128kbps

Pessimisticly, each client exits the system once it has
downloaded the file. It closes any open connections and
refuses new requests for downloads. This is a conserva-
tive approach. In the real world, many clients remain up

after completing their download, adding more capacity
to the system.

I generated workloads by having new clients enter the
system at a give rate. This rate is an average; the clients
actually arrive using an exponential distribution. This
distribution is used to prevent synchronization and to
more closely approximate the real world. A higher rate
represents a higher load. Another component of load is
the file size.

I run each simulation until 6000 download comple-
tions have occurred. I treat the time before the 500"
completion as a warm-up, allowing the system to reach
steady-state. I found this value by examining graphs of
worst-case scenarios to see where steady-state began,
and rounding off conservatively.

Iran each simulation with 3 different random number
seeds. For my results, I compute the mean for each
run, then take the mean of the means. This yields an
accurate measurement of the mean. I compute the 95%
confidence interval for each mean. The intervals are
all quite small, and will get no further mention. The
measurements are computed by the scripts described in
Section VI.

The primary performance metric is the download du-
ration. This is the time delta between when a client en-
ters the system and when the client acquires the whole
file.

B. Performance

Except where otherwise stated, all simulations use
the configuration given in Table I. The parameters of
the swarming mechanisms from Section III are summa-
rized in Table II.

TABLE II Swarming Parameters

Parameters Value
Concurrent downloads 4
Size of gossip cache 64
Tuples in gossip message 10
Block Size 32KB

B.1 Scalability

The most interesting results for any file transfer pro-
tocol are tests of scalability. Figure 1 shows the time
required to download a file versus the client arrival rate.
For comparison, the figure also shows the results for a
traditional client-server transfer. The download time
for swarming increases linearly with the rate, while
the download time for client-server increases super-
exponentially! In fact, client-server exhibits a vertical
asymptote at around 7 clients per minute. Beyond that
point, clients arrive faster than the server can transfer
the file. The queue of outstanding clients increases in-
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definitely and the system never reaches steady-state.*
Naturally, the point at which the client-server protocol
is unable to respond will depend on server capacity, file
size, and arrival rate.

Although a linear increase is shown in Figure 1,
swarming must also have some asymptote. Inevitably,
at some point the load will be large enough to prevent
the root server from providing referrals. A back-of-the-
envelope calculation suggests this will not occur for at
least an order of magnitude further increase in arrival
rate.?Unfortunately, memory limitations prevent simu-
lation of arrival rates higher than those shown.

This asymptote exists for any scheme that relies on
contacting a known, central point to initiate a down-
load. At extremely high loads, swarming can incorpo-
rate a decentralized method for locating peers, such as
the Gnutella search mechanism or PROOFS [14]. The
decentralized search can locate peers who have already
downloaded the whole file. As far as swarming is con-
cerned, there is no difference between a peer with the
whole file and the true root server.

These results show that swarming scales significantly
better than client-server. Serving 192 clients per minute
means serving the one megabyte file to more than a
quarter million people per day. This is an impressive
feat for a 1Mbps access link. To serve an equivalent

4In my simulations, clients never give up. They continue to
retry the download until it succeeds.

5 Assuming a single 1500-byte packet is used to transmit the
referral information, the 1Mbps server can transmit 220 /(1500-8)
of these per second, or 5242 per minute.
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load using a client-server protocol would require, at a
bare minimum, 28 Mbps. This would cost thousands,
perhaps tens of thousands, of dollars per month!®

My simple implementation of swarming does impose
a slight performance penalty under light load. When
there are not many peers to share with, the client ends
up getting most blocks from the root server, but with
the added overhead of gossip messages. This seems a
small price to pay for such a significant increase in ca-
pacity during high loads. Moreover, it is likely fine-
tuning will eliminate the problem. For example, a server
could dynamically initiate swarming only when needed.
Also, pipelining could be implemented.

Another component of load is filesize. Figure 2 shows
the effects of filesize on performance, using a constant
arrival rate of 4 clients per minute. It has the same basic
shape as Figure 1. Swarming experiences linear growth,
while client-server has a vertical asymptote near a file-
size of 2 Megabytes.”

The slight overhead of gossiping is more pronounced
in Figure 2. In these simulations, I use a fixed number
of blocks, 32, regardless of filesize. Thus, the gossip
overhead is constant regardless of the filesize. Thus,
as the file size decreases, the gossip message becomes

Shttp:/ /www.bandwidthsavings.com /servicesdetail.cfm

"The asymptotes for client-server can easily be calculated. The
arrival rate times the filesize must be less than the server’s capac-
ity. For example, with a 1Mbps server and 1 one Megabyte file,
the asymptote should be at 7.5 client arrivals per minute. With
a 1Mbps server and an arrival rate of 4 clients per minute, the
asymptote should be at a filesize of 1.9M B. This matches the
empirical evidence I present in Figures 1 and 2.
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relatively large. This is why the mean download time
in Figure 2 never goes below 4 seconds. Despite this
overhead, swarming will eventually outperform client-
server for smaller files as the arrival rate increases.?

B.2 Flash Crowd

I have shown that swarming scales excellently in
steady-state. = However, equally important is how
quickly swarming reaches steady-state when abruptly
presented with a large load. This is an important con-
cern for a file transfer scheme, as abrupt surges in re-
quests, called flash crowds, are a major concern. I
simulate the effect of a flash crowd by abruptly increas-
ing the arrival rate for a fixed period of time. The sim-
ulation begin with one hour of clients arriving at 6 per
minute. The load increase for one hour, then returns to
6 per minute for the rest of the simulation.

Figure 3 shows the results for the client-server model,
with a logarithmic y-axis. Each data point represents
a single client. The z-axis shows the time the client ar-
rived, while the y-axis shows the time it took the client
to download the file.

Under the increased load, the crowd swells and down-
load time grows due to an inability to service the re-
quests. The server does not recover until long after the
arrival rate decreases.

Figure 4 shows the results for swarming. It enables
a web server to smoothly handle larger flash crowds

80f course, the files need to be at least as big as a single gossip
message. Swarming is of no help for tiny files.
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that would otherwise bring content delivery to a crawl.
It maintains reasonable response times as the crowd
arrives and dissipates the crowd quickly.

However, this figure is slightly misleading. For client-
server, the arrival rate doubled to 12 clients per minute.
For swarming, the arrival rate increased an additional
order of magnitude to 120 clients per minute. There are
actually twice as many points on the swarming graph.

C. Depth

Now that I have examined swarming’s scalability, it
is time to explore the dynamics of how it distributes
load, how peers interact, and how swarming’s behavior
is affected by certain parameters.

C.1 High Load

To examine how swarming distributes load, I examine
in detail one of the simulation runs with 192 client ar-
rivals per minute. Under this heavy load, packet loss at
the root server is severe. However, it is still better than
client-server, which cannot handle the load at all! Im-
pressively, swarming still manages to get the file deliv-
ered to clients. The congestion at the root server might
be relieved by adapting swarming to limit the number
of concurrent uploads a server will allow. For example,
it would make sense for the root server to only send data
blocks to 7 clients per minute. Any additional clients
would need to get blocks from peers. While this is triv-
ial to compute when the server’s capacity is known, it
becomes difficult in a dynamic environment. Choosing
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the right number of clients to serve is an area for future
research.

Unlike the server, peers experience little packet loss,
even at high load. This is illustrated by the histogram
of peer packet loss rates shown in Figure 5, using a
logarithmic scale.’

The low packet loss rates at the peers is due to the
burden of content delivery being spread evenly among
the peers. In this same high load scenario, roughly 60%
of the clients serve less than one megabyte. Nearly all of
the clients upload less than two megabytes. Re-serving
the file once or twice is fair, so this behavior is quite
good. This result is shown in Figure 6, which plots the
cumulative distribution function (CDF) of megabytes
served. Even if a peer has served a whole megabyte, it
may not have served the whole file. It may have simply
served the same block many times. This is one of the
strengths of swarming; even a peer with a small portion
of the file can be quite helpful.

The time for a client to complete its download is
less evenly distributed. For the high load scenario, the
download times are spread mostly between 1 minute
and 5 minutes. However, more notably, a dispropor-
tionate number of download times are close to exact
multiples of 1 minute. This is shown as a histogram
in Figure 7. This behavior did not manifest at lower

90nly outbound packet loss is shown in the figure; negligible
inbound packet losses occurred. This is not surprising given the
highly asymmetric capacities of the peers.
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loads such as 16 clients per minute. It is important to
note that the download times are measured individually
from the start of each client; thus, this pattern does not
indicate synchronization of flows within the network.
After some investigation, I was able to confirm that the
uneven distribution is caused by the use of a 60 sec-
ond timeout to detect dead connections. Undoubtedly,
these timeouts are occurring due to the severe conges-
tion at the server. This suggests that alleviating the
server congestion will also result in significant improve-
ments for the peers.

Figure 8 shows the number of active peers over the
course of the simulation. It shows the peers accumulat-
ing near the beginning, until the peers provide enough
capacity to meet their own demand. Then the system
enters steady-state.

C.2 Peer Dynamics

To better understand swarming’s behavior, I now ex-
amine several peer-related metrics under various loads.
Figure 9 plots the mean values of four per-peer metrics,:

Peers Attempted The number of unique peers con-
tacted

Peers Downloaded From The number of unique
peers from which at least one whole block was re-
ceived

Peers Uploaded To The number of unique peers to
which at least one whole block was sent

Concurrent Downloads The time-averaged number
of parallel downloads
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When examining this figure, please note the logarith-
mic scale on the x-axis: even where the lines appear
steep, the increase is quite gradual. All four metrics
exhibit a rapid growth between 1 and 16 arrivals per
minute, then slow. Before this interval, there is typ-
ically only one active peer at a time. However, the
number of peers a client attempts to contact increases
above 64 arrivals per minute. There are more active
peers in the system, but each peer is downloading at a
slower rate. This means that a client is contacting more
peers to find the blocks it needs.

Once the arrival rate reaches 8 clients per minute, the
pool of active clients is large enough that the average
number of concurrent downloads for a client is close to
the maximum of 4. This metric is time-average, so for
example if a client spends half the simulation download-
ing from 3 peers and half it downloading from 4, then
the time-average for the peer is 3.5.

Figure 10 plots the time-averaged count of active
clients versus the arrival rate. Active clients are those
that are trying to download the file, but have not yet
finished doing so. Since we are looking at the steady-
state behavior, this tells us how many peers must be in
the system to provide the necessary capacity for that
arrival rate.

C.3 Concurrent Downloads

One interesting question for swarming is whether
clients are able to improve their performance by in-
creasing the number of concurrent downloads. This is
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explored in Figure 12 by plotting the mean download
time as a function of the maximum concurrent down-
loads. The swarming scenario is otherwise the default
given in Tables I and II.

Under high load, Figure 12 shows a noticeable perfor-
mance improvement for when increasing the concurrent
downloads from 2 to 4. Just as importantly, there is
no adverse impact under lower loads. Note that the
increase in download time due to the change in arrival
rate is consistent with Figure 1.

To explore this issue in more depth, Figure 12 plots
peer dynamics versus concurrent downloads, using an
arrival rate of 8 per minute. Clients are able to down-
load from a maximum of about 8 peers at a time, even
when the limit is raised to 32. Clients do in fact down-
load from a greater number of peers as the concurrency
limit increased. However, as FigurelO shows, there are
only about 20 active peers at a time. Thus, clients are
unable to find enough active peers with their desired
blocks. It would be interesting to conduct additional
simulations, varying the maximum concurrency under
heavier load.

C.4 Block Size

A key parameter for swarming is block size. To fully
explore the effect of block size on swarming performance
I conducted a series of simulations with varying block,
using an arrival rate of 16 clients per minute. Other
than the block size, the rest of the scenario is again the
same as shown in Tables I and II. Figure 13 shows the
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results of these simulations.

From these results, two trends are apparent. First,
download efficiency decreases as the block size de-
creases. Recall that gossiping occurs before each trans-
fer of a block. As the block size becomes smaller,
the gossip consumes a larger percentage of the total
throughput.

The second trend is as the block size becomes large,
the download time increases slightly. This is a result of
the “last block problem”, which occurs when the last
block to be downloaded is coming from a slow source.
This causes the download to take a long time to fully
complete, even if the most of the file was transferred
quickly. Figure 14 illustrates the effects of the last
block problem, using a one megabyte file with vari-
ous block sizes. The y-axis displays the percentage of
time transferring only the last block. In other words,
this is the time spent waiting for the last block after
all other blocks are transferred. My results indicate
that for a 1M B file and a 256 K B block size, the last
block consumes 35% of the download time. BitTorrent
[4] solves this problem by simultaneously downloading
the last block from multiple sources. While this results
in redundant data transmission, it potentially improves
download times.

C.5 Client Distribution

With swarming, as with any peer-to-peer system, it
is important to investigate the impact of low-capacity
users on client performance. Some peer-to-peer proto-

13

1000

100

10

Active Peers, Time-Averaged

0.1 T T T T ]

4 16 64 256

N
—

Mean Arrival Rate (clients/minute)

Fig. 10
ACTIVE PEERS VERSUS ARRIVAL RATE

cols collapse when too many low-capacity users enter
the system. For example, the original Gnutella proto-
col had this flaw. To address this concern, I conducted a
variety of simulations using different mixtures of clients
drawn from three classes: modem, broadband, and of-
fice. Table III lists the capacity of each class of users.

TABLE III Classes of Users

Type Downstream Upstream
Office 43Mbps 43 M bps
Broadband 1536kbps 128kbps
Modem 56kbps 33kbps

As parameters to the simulation, each class is as-
signed a probability. When a new client is created, it
is given a class randomly, based on these probabilities.
Other than the client capacities, the scenario is just like
that described in Tables I and II. The arrival rate is 16
clients per minute.

Swarming appears to behave well when low-capacity
clients interact with higher speed clients. Figure 15
shows the effects of modem users on broadband users.
In this figure, only broadband and modem users are
represented; thus, as the percentage of broadband users
goes down, the percentage of modem users goes up.
This figure shows that broadband users continue to ob-
tain reasonable performance even as the mix of users is
adjusted. As the percentage of modem users increases
from 10% to 99%, the download time for broadband
users increase by roughly a factor of two. While this
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is a significant increase, the system clearly continues to
function well despite an overwhelming number of low-
capacity users. The performance of modem users is un-
changed by large numbers of higher-speed users as their
access link remains the bottleneck.

While I did get some results for office users, I did not
run enough simulations with them to get a strong feel
for the effect on them. However, my results show that
inserting a small percentage of office users does not sig-
nificantly improve the performance for broadband users.
This is a side-effect of three aspects of my implementa-
tion. First, I conservatively assume that clients do not
linger after completing the download. Thus, high capac-
ity users do not stay around for long periods, helping
slower users. Second, the last block problem described
in Section VII-C.4 will limit gains from a small popula-
tion of fast users. Finally, clients are not doing any kind
of capacity-based peer selection. Introducing this mech-
anism could enable clients to take better advantage of
friendly office users.

However, one open problem in peer-to-peer systems is
preventing high-speed users from shouldering an unfair
burden. Many deployed peer-to-peer applications allow
end users to place a cap on the amount of capacity they
dedicate to sharing. Relying on end users to allocate
network capacity is not a good long-term solution.

VIII. FUTURE WORK

Swarming has excellent potential for future research.
My research has demonstrated swarming’s excellent
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scalability and flash crowd response. It has also be-
gun to explore how and why swarming behaves as it
does. Although conceptually simple, significant addi-
tional research will be needed to fully understand all of
swarming’s dynamics.

The next logical step is a systematic study explor-
ing the importance of the four primary mechanisms of
swarming, described in Section III:

o Peer Identification
o Peer Selection
« Data Division
o Data Selection

The goal of this study would be to gauge the effects
of each mechanism. It should answer questions such as
“What is the effect of a good Peer Selection algorithm
versus a bad one?” This will help focus later studies on
the areas with the largest delta.

For Peer Identification, the study would compare
the performance of gossiping versus a centralized peer
cache.!0 Intuitively, gossiping should do better under
high load while a centralized peer cache would perform
better under light load. However, the key questions
remain “How high is high?” and “How much better is
better?”. Additionally, it would be worthwhile to study
the effects of altering the contents of the tuples that are
gossiped. For example, how would performance be af-
fected if the block information was removed?!!

10BitTorrent uses a centralized peer cache. [4]
11 The Partial File Sharing Protocol used by Gnutella does this.
[10].
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For Peer Selection, my current implementation
chooses the peer with the largest number of useful
blocks. The systematic study would compare this with
a completely random algorithm. It would also include
more intelligent algorithms, such as picking the least
loaded peer. To simplify the task of building the sim-
ulator, some algorithms can take shortcuts by making
use of global knowledge. In areal implementation, peers
would need some way to transfer load information. In
the simulator, it suffices to answer the question, “If we
could do this, would it be useful?” In studying Peer Se-
lection, the effects of the maximum concurrent peers'2
would also be studied under higher load.

The flip side of Peer Selection is deciding how many
requests to accept. The study would explore limiting
the number of concurrent uploads. In particular, this
may reduce the heavy congestion at the server under
high load. By adjusting this setting and treating the
whole file as one block, it will be possible to roughly
compare swarming with Pseudoserving [2] and CoopNet
[1]. It would be interesting to see how this affects the
flash crowd response.

For Data Division, the study would more closely ex-
amine the effects of altering the block size. In particu-
lar, it would include a graph similar to Figure 13, but
with constant load. This would be done by decreas-
ing the arrival rate as the filesize increases. Instead of
using blocks, Data Division could be done with byte-
granularity. This prevents unnecessary retransmissions

123ee Section VII-C.3
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when a connection is dropped part-way through a block.
Rather than implementing byte-granularity, the study
would simply measure how much retransmission occurs
and compare it to the total amount of traffic. Finally,
the study would examine the amount of time peers
waste because they cannot find peers with useful blocks
to serve. If this is significant, it would suggest that
Forward Error Correction (FEC) might be useful.!?

For Data Selection, the study would examine solu-
tions to the last block problem, discussed in Section VII-
C.4. This would include downloading the last block in
parallel from multiple sources.

This project might also explore the effects of fire-
walled and non-participating users, depending on time
constraints. It might also further explore the effects of
different peer capacities.

A. Smaller Studies

There are a number of smaller studies that could be
conducted. These might not be large enough for a paper
of their own, but they would increase our understanding
and might turn a good paper into a great paper.

One task is to gather measurements from real swarm-
ing implementations under heavy load conditions. This
might be done using an artificial load using PlanetLab
nodes [15], or it might be possible to collaborate with
Bram Cohen, author of BitTorrent [4].

Another task is to create a high-level simulator for

13This was used in SwarmCast [6]. Researchers have also used
it in the client-server setting [9].
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visually observing the movement of blocks through the
system. Using only a few blocks per file, it is easy to
represent the blocks using colors. Consider a simple
case of just 3 blocks in the file. If a peer has the first
block, it will be red; if it has the second block, it will
be green; if it has the third block, it will be blue. If a
peer has the whole file, it is white. To simplify the sim-
ulation, all transfers of blocks are assumed to take unit
time. It would be possible to simulate large networks
using this system. Gossiping may have the flaw that
popular blocks tend to become more popular, making
some blocks difficult to find. This sort of problem would
show up quickly with this visual simulator. In theory,
it is simple to write.
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