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1. INTRODUCTION
A Peer to Peer (P2P) network is one of the most

popular forms of distributed resource sharing. The idea
behind P2P networks is that several users (peers), dis-
tributed globally, share different resources among them-
selves without the presence of a central management
authority. Examples of the resources are files, CPU cy-
cles and network bandwidth. The most common use of
P2P networks is to share files.

P2P networks are divided into 2 major types: un-

structured and structured. In structured networks, a
distributed algorithm ensures that all the peers adhere
to a particular structure. This is similar to an IP net-
work, in which all the routers collectively form a tree
structure. The presence of a structure ensures that 2
peers can contact each other and share resources by sim-
ply following the path dictated by the structure. As a
result, if a resource exists in the network then it will be
found. In an unstructured network, on the other hand,
no such structure exists. Peers join the network by sim-
ply contacting random peers. Peers search for resources
by flooding the network. As a result, even if a given re-
source exists in the network, there is no guarantee that
it will be found.

The most popular form of structured networks is Dis-
tributed Hashtables (DHTs). Just like other P2P sys-
tems, DHTs are mostly used for filesharing. A DHT
imposes a particular structure by assigning unique iden-
tifiers to peers, which define their position in the net-
work. The main challenge is how to find location of
files in the network. This is achieved by cooperation
between peers contributing files (publishers) and peers
searching for files (searchers). A DHT peer publishes a
file by creating a hash of the file. Next, it finds a peer
whose ID is closest to the file hash in the ID space. The
metric for the closeness ranges from arithmetic differ-
ence to pattern matching. Finally, the publisher sends
the file meta-data, such as size, name and type to the
peer closest to the file ID. This meta-data will be used
for future file searches. A DHT peer searches for a file
by finding a peer closest to the file hash and retrieving
the file meta-data. Finally, by using the file meta-data,

the peer searching for file contacts the file publisher and
downloads the file.

The Above discussion indicates that the process of
publishing a file as well as searching a file requires find-
ing a closest node to the file ID. DHT peers achieve this
by maintaining id, ip and port number of neighboring
peers in their routing tables. Each peer finds the clos-
est peer to a particular file id by choosing and querying
the closest peer from its own routing table. The chosen
peer repeats the same process and finds the closest node
from its own routing table for the queried file ID and
informs the request originator. The request originator
then contacts the newly discovered peer. This process
continues until the closest peer to the file ID is found.

DHTs have been an active area of research since 2001.
The idea of DHTs was introduced by near simultane-
ous introduction of 4 core DHTs: CAN [1], Chord [2],
Pastry [3] and Tapestry [4]. Later studies, such as
OpenDHT [15], Accordion [16] and Kademlia [7], im-
proved DHT design for real world deployment. How-
ever, none of these DHTs have been widely deployed
in a real world setting, until recently. As a result,
real world properties of DHTs are not well understood.
Some earlier studies, such as Performance vs. Cost
Framework [17] and Impact of DHT routing [18], an-
alyzed different characteristics of existing DHTs. How-
ever, these studies were based on simulations, which
cannot account for real world conditions.

A real world DHT can be characterized from 2 differ-
ent angles, as follows:

• Usage: It is important to understand how DHTs
are used in real world in order to analyze if the
DHT design actually meets user demands

• Structure: It is important to evaluate the structure
of a real world DHT to see the effect of churn on
DHT performance and design.

Characterizing a DHT is challenging because it re-
quires a global view of the network. In the absence
of a central component, capturing the global view is
difficult. For example, characterizing DHT usage re-
quires the knowledge of exchanged traffic between dif-
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ferent peers and characterizing DHT structure requires
the knowledge of routing tables of DHT peers. One way
to achieve this knowledge is to deploy several instru-
mented peers in the network at random points. This
approach, however, is prone to error. A small number
of peers may not be able to collect a representative view
of traffic. A large number of peers may disrupt system
behavior, thus making the observations unreliable.

In this study, we characterize the usage aspect of a
widely deployed DHT, Kad. Kad is based on Kadem-
lia. Kad is part of eMule file sharing client [6] with
more than 4 million concurrent peers. Our goal is to
understand the following:

• How Kad users use the system i.e. User Behavior

• How the Kad protocol generates traffic i.e. Proto-

col Behavior

• What are the different characteristics of Kad con-
tent

We have developed a technique to capture DHT traf-
fic, without affecting the underlying system. We call
this technique Montra. We deploy one instrumented
Kad peer per regular peer to monitor its traffic. We
limit the visibility of monitors to minimize its impact
on network. We modify the communication patterns
of the monitors such that only the monitored peer is
aware of the existence of the monitor. We also address
the problem of churn and packet loss.

We implemented Montra in the form of a highly par-
allel, scalable python based Kad client. Our implemen-
tation can monitor 40,000 Kad peers on an Intel Core
2 Duo 2.2 GHz machine with 1 GB RAM while drop-
ping very small fraction of packets. Our software is
capable of capturing 50,000 packets per minute at peak
loads. We rigorously evaluate Montra using the actual
Kad network. We found that Montra is capable of ac-
curately capturing 88%-92% of traffic observed by Kad
peers.

Using Montra, we conduct measurements over Kad
to characterize the traffic. The analysis of the captured
traffic reveals the following important characteristics:

• Majority of popular content loses its popularity
within a short period of 2 months.

• As time passes, availability of content decreases.

• 20% of files are searched but never published. 50%
of files are published but never searched. 95% of
keywords are published but never searched.

• Geographic distribution of peers and content show
that peers from all other countries, except China,
contribute and consume their fair share of content.
Peers from China consume more content than their
fair share and contribute lesser content.

• Despite consistent presence of Kad peers from dif-
ferent countries round the clock, traffic rate shows
a time of day effect. Further analysis of aggregate
traffic reveals that traffic rate is actually driven by
European countries

The rest of this report is organized as follows: Section
2 explains the necessary features of Kademlia as well as
Kad. Section 3 presents Montra in detail, Section 4 de-
scribes implementation of Montra, Section 5 describes
our validation approach, Section 7 analyzes character-
istics of captured traffic, Section 8 reviews the related
work and Section 9 concludes the report.

2. BACKGROUND
This section provides further background on DHT,

with focus on Kademlia and Kad.
Scalability of P2P systems comes from the absence

of a central component. The downside of such scalable
systems is that the clients have to go to extra lengths
to locate (search) and contribute (publish) the content.
As a result, routing (either structured or unstructured),
which is a precursor for search and publish operations, is
one of the most important components of a P2P system

Structured Routing approaches came to light with the
advent of Distributed Hashtables (DHTs). The usage of
a structure implies adhering to a specific geometry, just
like IP routing which follows a tree structure. DHTs use
such geometries as Ring [2], Hypercube [1] and Tree [3],
[4]. DHTs use the geometry to dictate a unique path
from one peer to another. It is because of this unique-
ness that DHTs can always find a definite answer to
a query, as opposed to an unstructured approach. An-
other integral component of DHTs is the identity of con-
tent as well as peers. All well known DHTs proposed
up to this point, follow the same approach for this as-
pect of routing. All DHTs use a non-hierarchical, flat
ID space, where each ID comprises varying number of
bits (128 bits is the most common number). Both, con-
tent as well as peers, are assigned IDs from the same ID
space based on a hash function. Content IDs are then
associated with the closest Node IDs, based on different
notions of closeness such as numeric difference [2], pre-
fix matching [3], [4], XOR distance [7]. DHTs are often
used for filesharing systems. Thus the content in that
case is files and keywords.

2.1 Kademlia
Kademlia is a DHT, which was introduced in the sec-

ond round of DHT innovation. As a result, Kademlia
improves on some of the weaknesses of earlier work and
in the process makes DHTs a more practical and usable
approach.

Kademlia belongs to the class of prefix matching DHTs,
just like Pastry and Tapestry. In general, prefix match-
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ing naturally maps to a tree structure (e.g. IP ad-
dresses). Because of this inherent mapping, Kademlia’s
routing tables collectively form a binary tree which is
similar to Pastry and Tapestry. But unlike Pastry and
Tapestry, Kademlia uses one uniform routing algorithm
and distance metric from start to end of the search oper-
ation, hence adding simplicity to the design. Kademlia
uses XOR metric to calculate distance between 2 IDs in
ID space, which is simply a form of prefix matching.

The practicality of Kademlia comes from its ample
use of redundancy. The basic idea is that instead of
making one and only one node responsible for a given
ID, Kademlia allows a given key to be stored at multi-
ple nodes. This proactive approach allows Kademlia to
handle churn effectively.

Kademlia comes with built-in fault tolerance, which
is achieved by using k-buckets, where k is the number
of entries in the bucket. Each k-bucket corresponds to
a single row in the routing table of other DHTs. Unlike
earlier prefix matching DHTs, instead of maintaining 1
contact for every prefix in the routing table, Kadem-
lia maintains k contacts. Increasing k increases redun-
dancy in Kademlia and hence improves lookup perfor-
mance at the expense of more bandwidth usage.

Kademlia uses parallel lookups to perform routing,
i.e., instead of picking 1 next hop contact at each hop,
Kademlia picks α contacts. The provision of parallel
lookups prevents request originators from a timeout if
the next hop peer is not available. The value of α will
vary for different implementations of Kademlia. Choos-
ing a high value for α will result in larger bandwidth
consumption and a lower latency. On the other hand, a
smaller value of α will denote a relatively higher latency
threshold. In case of Kad (described next), the value of
α is 3.

Kad is a slightly varied implementation of Kademlia,
which is employed by eMule. In general, prefix match-
ing designs achieve their destination in multiple steps
(e.g. IP routing). In the domain of DHTs, this boils
down to question of how may bits are improved at each
hop. For example, Pastry improves 4 bits per hop and
hence requires fewer hops but larger routing tables. Ba-
sic Kademlia improves 1 bit at each hop whereas Kad
improves b bits. According to [5], for Kad’s eMule im-
plementation b=3.25. As a result Kad requires larger
routing tables. This is the most important difference
between Kad and Kademlia.

2.2 Kad Operation
Kad uses different kinds of messages to perform its

regular operation. A Kad client is mostly involved in
search and publication of content IDs for keywords and
files. It uses a 2 step process for search as well as pub-
lish operations. The first step, which we call lookup

phase, is aimed at finding n closest possible alive nodes

to the target content ID, where n depends on the type
of request. For publish requests n = 10 and for search
requests n = 300. This phase uses REQUEST mes-
sages, which carry the target content ID and requested
number of contacts x. Whenever a peer receives a RE-
QUEST message, it checks its own routing table to find
x closest contacts to target content ID. The peer then
embeds these contacts in a RESPONSE message and
sends the message to the peer which sent REQUEST
message.

Once n alive nodes are found, Kad clients send ei-
ther SEARCH or PUBLISH messages, depending on
the type of request, to these nodes. The structure of
a SEARCH message is same for both keyword as well
as file search. It simply carries the content ID being
searched. The structure of a PUBLISH message, on the
other hand, is different for keywords and files. When
publishing a keyword, the PUBLISH message carries
the content ID of the keyword itself and the content IDs
of the files with which that keyword is associated. This
message also carries different file attributes, such as, file
name, file size and file type. On the other hand, when a
file is published, it carries the content ID of file, IP ad-
dress and port number of file source. The reason that a
Kad client stores content at multiple nodes by sending
multiple PUBLISH messages is to ensure availability by
replication of content. Also, it sends multiple SEARCH
messages to retrieve maximum possible results.

In addition to search and publish operations, a Kad
client must also maintain its routing table. A client’s
routing table is maintained by adding newly discov-
ered alive peers and discarding dead peers. In order
to check if a newly discovered peer is alive or an exist-
ing peer is dead, a Kad client uses heartbeat messages,
called HELLO messages. The client sends a HELLO
REQ message to check if a peer is alive. If it receives
a HELLO RES message then it knows that the peer is
alive. Otherwise the peer is considered dead. Both
HELLO REQ and HELLO RES messages carry the
node ID of the peer that sends the message.

3. METHODOLOGY
This section describes Montra in detail. We first high-

light the challenges in capturing the traffic observed by
DHT peers. Then, we describe our solution to address
these problems, in particular, how our approach deals
with such challenges as churn, packet loss and avoiding
disruption, posed by a large scale real world DHT i.e.
Kad.

3.1 Challenges in Capturing DHT Traffic
A naive approach for capturing DHT traffic is to de-

ploy a few instrumented Kad clients, placed randomly
across Kad network, which passively monitor and log
observed traffic. The problem with this approach is
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how to determine proper number of instrumented Kad
clients. A small number of such clients will not be able
to capture enough traffic samples to draw reliable con-
clusions. On the other hand, a large number of instru-
mented Kad clients will change the system itself. Thus,
the measurement results will be artificial because they
will include the effect of the instrumented Kad clients.

Before proposing a solution to this problem, it is im-
portant to understand the factors, that affect the traffic
observed by individual peers. DHT Traffic can be di-
vided into following two types:

• Destination Traffic: A peer receives this type of
traffic when it is the closest peer or destination

for a particular request. The destination traffic
depends on a peer’s position. As the position of
a peer varies, observed traffic varies as well. This
is because the content IDs, for which the peer is
destination, vary in popularity.

• Routing Traffic: A peer receives this type of traffic
when it is an intermediate hop for a request and
routes the traffic towards destination. The routing
traffic depends upon a peer’s visibility. As a peer
becomes more visible in the network, more peers
use it for routing.

In this study we only focus on destination traffic be-
cause of its consistent nature. Destination traffic ob-
served at given network position stays consistent over
time but varies across different positions. We will show
in Section 7 that most of the traffic characteristics can
be derived by observing destination traffic only.

3.2 Monitoring a Single Peer
We capture the destination traffic observed by a sin-

gle peer, called target peer Pt, by placing a monitor

Pm, adjacent to Pt in the ID space such that no other
peer lies between Pm and Pt. In this scenario, when-
ever Pt receives a destination request, it always informs
the request originator Pr about the existence of Pm,
even if Pt itself is the closest peer to the requested ID.
Pt behaves this way because, in Kad, global decisions
about finding the closest possible node to a requested
ID are made at Pr. Pt is only responsible for making a
local decision to find n closest possible peers to the re-
quested ID based on its own routing table. As a result,
Pt always selects Pm, along-with other peers, for all the
destination requests because according to P ′

t
s routing

table, Pm is the closest peer to the requested ID. Once
Pr learns about Pm then Pr sends the same request to
Pm, which achieves our goal. This process is shown in
Figure 1.

Figure 1 shows the interaction between the request
originator, the target and the monitor as follows:

1. Pr sends a request for a given ID to Pt.

Figure 1: State of ID Space After Addition of

Monitors

2. Pt sends a response to Pr, which contains the con-
tacts of next hop nodes. If Pt is the closest node
to the requested ID then Pt will include the ID of
Pm in its response.

3. Since Pr wants to find n closest nodes to the re-
quested ID, it sends the same request to Pm even
though the closest node to the request has been
found.

This strategy allows us to capture traffic from a sin-
gle point in a DHT. However, we must observe traffic
from several points in the network to capture the global
view. We collect large number of samples without af-
fecting peer population by keeping the monitors min-

imally visible. The basic idea is to make the monitor
visible to the target node only and not any other node
in the network. This enables a monitor to receive all the
destination traffic observed by a target node, without
affecting any other node in the network. A target node
learns about the existence of a monitor when the mon-
itor is added to its routing table. Based on the routing
table of a target node, a monitor is always the closest
peer for a destination request because the target node
does not add itself to its own routing table. Thus, when-
ever a target node observes a destination request, it will
always inform the query originator about the presence
of the monitor. As a result, the query originator will
send a request to the monitor, which accomplishes our
goal. The monitor remains minimally visible by only re-
sponding to heart beat (HELLO REQ) messages from
the target node. All the other messages from any other
node in the network are logged but are not responded
to. As a result, every other node in the network con-
siders the monitor as a dead node. But the target node
considers the monitor to be alive because it receives re-
sponses to heart beat messages.

Such Monitors with Limited Visibility (MLVs) help
us in dealing with abnormalities of a large scale real
world system, such as Kad, as well. Additional advan-
tages of MLVs are as follows:

• Avoiding Traffic Overestimation: MLVs prevent
over estimation of observed destination traffic. A
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request may incorrectly be considered as destina-
tion because of Kad’s use of UDP packets for com-
munication. More specifically, overestimation of
destination traffic can occur in the following sce-
narios:

– When a request message is lost and not re-
ceived by the target node. Specifically, when
message 1, shown in Figure 1, is lost.

– When a response message is lost and not re-
ceived by the request originator. Specifically,
when message 2, shown in Figure 1, is lost.

In both the above mentioned scenarios, even if the
target node is the destination for the request, it
will not be considered as the destination because
the request originator will consider the target node
as dead. An MLV will prevent over estimation of
the requests in both the cases because the target
node will not be able to inform the request origi-
nator about the presence of the monitor. Thus, an
MLV will not receive a request in both the cases.
On the other hand, a regular monitor, which is as
visible as a regular Kad node, would have observed
such a request because the information about the
presence of the monitor is not restricted to the
target node only.

• Minimizing Disruption: MLVs minimize system
disruption because they do not host any pointers
to published content. An MLV must avoid hosting
pointers to published content because most of the
time, all the monitors will leave the network at the
same time, thus resulting in loss of large amount
of hosted content. An MLV solves this problem
because the monitor is considered dead by all the
nodes except the target node, hence it will never
receive any content to be published or searched.

• Coping with Churn: MLVs solve the problem of
churn as well. A single MLV monitors a single tar-
get node. As soon as the target node departs the
system the associated MLV must stop receiving
traffic as well. Otherwise the measurement results
will not be reliable. The design of MLVs solves this
problem without any additional effort. As soon as
a given target node leaves the network, the associ-
ated MLV will stop getting all the requests because
no other node knows about the existence of the
monitor and thus no more traffic can be directed
towards this particular MLV.

3.3 Identification of Destination Traffic
In this subsection, we address the problem of identi-

fication of destination traffic by a given monitor. The
problem is how a given monitor can distinguish between

routing traffic and destination and then filter out the
routing traffic?

One possible solution to this problem is to filter out
the routing requests based on a monitor’s routing table.
The idea is to modify the monitor code such that when-
ever it receives a request, it checks its own routing table
for a contact which is closer to the content ID. If there
exists such a contact, then it considers the request mes-
sage as a routing message. Otherwise it is considered
as a destination message. This solution is faulty be-
cause the contact that is considered to be closer by the
monitor may have departed the system and the request
originator may consider the monitor to be the closest
node. It is also possible that the request message from
request originator to the next hop peer is lost and thus
it may consider that peer is dead and rely on the mon-
itor being the closest peer to the content ID. Thus, in
reality, the destination for a content ID entirely depends
upon the request originator’s view of the interaction.

We solved the problem of distinction between routing
and destination traffic, by monitoring a continuous zone

of ID space. The idea is to monitor all the nodes which
share n high order bits, where n is the size of the zone.
We refer to the n high order bits as zone prefix. For
example, if n = 8 and zone prefix = 0xa4 then then we
monitor all the nodes whose high order 8 bits match
0xa4.

Any request, that matches the zone prefix and en-
ters the monitored zone is bound to have a destination
in that zone. As a result, all the requests, which are
captured by the monitor, must be destination requests.
Some intermediate monitors may observe these requests
as routing requests and one monitor finally observes the
request as destination request. All the monitors, simply
log all the observed requests. When the data collection
phase is complete then all the logs are compared. At
this point, the problem of distinction between routing
traffic and destination traffic is reshaped into finding
duplicate requests. The monitor which is closest to a
given request is considered to be the actual destination
and the requests observed by other monitors are consid-
ered as routing requests and discarded. We note that
the only restriction on the size of a zone is that of CPU
and network resources. We have successfully monitored
6 bit zones on a Core 2 Duo - 2.2 GHz machine with
1 GB RAM, while dropping a very small fraction of
packets.

3.4 Collecting Additional Information
While the above mentioned approach is extremely

lightweight and causes minimal possible disruption, we
can only extract the following information from the ob-
served traffic:

• Type of Request: PUBLISH or SEARCH
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• Requested Content ID

• Destination Node ID i.e. the ID to which the re-
quest was sent

From this data, we cannot distinguish between SEARCH
/ PUBLISH requests for Keywords and Files. Also, we
cannot learn anything about different characteristics of
files that are being searched or published. To address
these limitations, we extend our technique at the cost
of slight disruption to the system.

As mentioned in Section 2, any SEARCH or PUB-
LISH request from a Kad client progresses in 2 phases.
We modified our approach so that when a monitor re-
ceives a request from the first phase, it sends a response.
The response does not carry any next hop contacts but
it informs the request originator that the monitor is
alive and can receive a request during the second phase.
As a result, our monitors receive SEARCH/PUBLISH
requests, which carry additional information about files
and keywords being searched/published.

This extension causes a slight disruption to regular
operation of the system. As a result of this addition,
when content is published, then instead of being pub-
lished at 10 closest possible nodes, it is published at 9
nodes. Our monitors log the published information but
do not maintain it as this will be an additional over-
head. Also, when SEARCH requests are sent to 300
closest possible nodes then 299 nodes will respond to
the query. Since our monitors do not maintain pub-
lished information, it is not possible to send responses
to SEARCH requests. Also, responding to the request
messages results in more visible monitors which leads
to system disruption as well.

To avoid these shortcomings of the extension, we re-
spond to requests for a given content ID only once.
When we receive an actual SEARCH/PUBLISH request
for a given content ID, then we extract the following in-
formation about that ID:

• Type of Content represented by the content ID i.e.
either FILE or KEYWORD

• Size of the File, provided the content ID represents
a FILE.

Once we learn above mentioned information about
a content ID then we stop responding to any requests
for that ID and treat this information as valid for all
further requests.

This extension to our technique is shown in Figure 2,
which augments Figure 1 with additional communica-
tion. The solid arrow lines show the mandatory mes-
sages. If any of these messages is lost then Pm will not
be able to observe the packet. The newly added dotted
arrow lines show optional messages that are necessary
to extract further information.

Figure 2: Extended Montra

All the mandatory message exchanges are already de-
scribed above. Optional message exchanges are as fol-
lows:

4) If Pm has never received any request for this ID
before then it sends a response to Pr. The response
messages do not contain any contacts. It simply
informs Pr that Pm is alive

5) Pr sends actual SEARCH/PUBLISH request for
content to both Pm and Pt.

4. IMPLEMENTATION
In order to implement Montra, we developed our own

highly parallel, scalable python based Kad client, called
Listener, instead of the one commonly used i.e. eMule.
Our approach is lightweight. Also, implementing a cus-
tomized client helped us to support Virtual Nodes. The
idea of virtual nodes is that instead of running a sepa-
rate client to monitor each node, we run only 1 client
that simulates the presence of multiple peers by mon-
itoring each node on a different port number. For ex-
ample, if the client is monitoring a population of 4000
peers then it opens 4000 ports and listens for the mes-
sages related to the target nodes. The idea of virtual
nodes makes the client more scalable because we don’t
have to run a separate process per target node. Also,
virtual nodes make it possible to maintain a global state
that can be shared among monitors. This property is
helpful in ensuring that when duplicate requests are re-
ceived from the same peer for the same content ID at
different monitors then only one monitor answers the
request, which is the requirement for implementing the
enhancement mentioned in Section 3.4

Two important questions that need to be answered
in order to implement Montra, are addressed in the fol-
lowing subsections:
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4.1 Locating all the nodes in a given zone of
ID space

In order to find all the peers in a given zone of the
ID space, we used the crawler developed by Stutzbach
and Rejaie, called Cruiser [13] . Cruiser starts with
a few known contacts in a given zone and downloads
their routing tables. In order to download a routing ta-
ble from a single peer, cruiser generates targeted query
IDs based on target peer ID. Cruiser, then sends re-
quest messages for the generated query IDs to the tar-
get peer. The peer responds to those queries with re-
sponse messages, containing contacts, as it would re-
spond to any request message, thus informing cruiser
about a part of its routing table. By sending such
queries, cruiser can download the entire routing table
of the target peer. Cruiser then repeats the same pro-
cess with every discovered contact in the zone and thus
incrementally learns about all the peers in a given zone.
Cruiser runs on a 6 node cluster.

While crawling, Cruiser must avoid peers behind a
NAT box. Such peers do not participate in routing and,
as a result, do not need to be monitored. These peers
are registered with the Kad network because, just like
any other peer, they respond to all HELLO REQ mes-
sages. However, every message sent by a peer behind
a NAT box is sent from a different port, which is open
only for a small portion of time. As a result, all routing
messages sent towards a peer behind a NAT box are not
delivered.

Given the continuously changing peer population of
a P2P system, crawling a given zone only once is not
adequate. Since our goal is to monitor all the nodes
in a given zone, we must quickly detect arrival of new
peers in the zone. We achieve this by performing back
to back crawls i.e. a new crawl starts as soon as the
current crawl ends. Back to back crawls also help us
to learn about missed contacts. As Kad uses UDP for
almost all the communication except for file transfer,
it is possible that some UDP packets are lost during a
crawl and some contacts are left undiscovered.

We note that our approach works accurately without
detecting departure of individual peers. When a target
node leaves the network, the monitor for that particular
node will stop receiving the traffic because of its limited
visibility. However, in order to save memory and recycle
port numbers, we still detect peer departure by compar-
ing back to back crawls. We discard the departed peers
using the heuristic that if a given peer does not respond
for n consecutive crawls then it is considered dead. In
our experiments we set n = 4.

4.2 Registering a monitor in a target node’s
routing table

In order to add a monitor to the routing table of a
target node, we use Kad’s HELLO REQ and HELLO

RES messages. The HELLO REQ messages are nor-
mally used by a Kad client to check if a new or existing
peer is alive. A HELLO RES message is sent by peer
in response to a HELLO REQ message to confirm its
liveness. We use a combination of HELLO REQ and
HELLO RES messages, depending on the eMule version
used by target nodes, to add our monitors to the rout-
ing tables. We add monitors to clients with versions be-
tween 0.45a (when eMule started supporting Kad) and
0.47a by sending a single HELLO RES. For versions
between 0.47b and 0.48a, we send 2 HELLO REQ mes-
sages to each client. This activity is performed by the
Listener. The Listener detects the software version by
using the information embedded in HELLO REQ and
HELLO RES messages and then adapts the sequence of
registration messages accordingly.

While implementing the Listener, our goal was to
keep it as lightweight as possible, so that it can re-
ceive maximum number of packets without dropping
them. Thus the Listener’s only responsibility is to ef-
ficiently send and receive messages. The Listener does
not maintain any information about target peers, an-
alyze requests, log requests or generate responses. In
order to optimize Listener’s performance, we added an-
other component called the Master. The Master acts as
a coordinator between Listener and Cruiser. The Lis-
tener establishes a TCP connection with the Master and
sends every received packet to the Master. The Master
logs all the packets, generates responses based on peer
information and sends it back to the Listener, which
sends the packet back to the request originator. Cruiser
also establishes a TCP connection with the Master and
informs it about all the newly discovered contacts. The
Master maintains this information and informs the Lis-
tener to monitor new contacts. The Master also keeps
track of those peers which have departed the system.
When a peer departs the system, the Master informs
the Listener to stop monitoring that particular peer.

The complete setup of Montra is depicted in Figure 3

4.3 Implementing the Extension
While implementing the extension mentioned in Sec-

tion 3.4, our major concern was that how responding to
a request message would affect the visibility of a mon-
itor. After carefully examining the eMule code for dif-
ferent versions, we came to following conclusion:

• All the peers with eMule version 0.47a or higher,
do not add a peer to its routing table when they
receive a response to a request message.

• All the peers with eMule version prior to 0.47a
add a peer to its routing table when they receive
a response to a request message.

eMule versions 0.47a and higher support a different
format for request messages as compared to prior ver-
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Figure 3: Montra Architecture

sions. Thus, in order to ensure that a monitor remains
as invisible as possible, our monitors only respond to the
request messages sent by the peers with versions 0.47a
and higher. According to our measurements, 70% of
peers use eMule version 0.47a or higher.

4.4 Evaluating Implementation
We evaluate Montra implementation by using packet

loss rate as a metric. Our goal is to find how big a
zone our software can monitor without losing significant
number of data packets. As the zone prefix length de-
creases, zone size increases, which results in large num-
ber of peers. We evaluate the performance of our soft-
ware by monitoring zones with different prefix lengths
and observing packet loss rate as well as received packet
rate. Next, we plot the ratio of packet loss rate to re-
ceived packet rate against different zone sizes in Fig-
ure 4. Data is also shown in Table 1. Figure 4 shows
that our software drops most packets when a zone with
prefix length 5 is monitored. Figure 4 also shows that
our software drops a very small fraction of packets when
zones with prefix length less than or equal to 6 are mon-
itored. As a result, we choose 6 bit zones for data col-
lection because we want to monitor the maximum pos-
sible number of peers so that we can collect maximum
traffic samples. All the datasets used in this study are
collected from 6 bit zones.

Zone Prefix Length Pkt. Loss Rate/Pkt. Recv Rate

5 0.00364
6 0.00009
7 0.00006
8 0.00005

Table 1: Montra Performance

5. VALIDATION
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Figure 4: Montra Performance

This section describes our technique to assess the ac-
curacy of Montra. We evaluate accuracy of Montra from
two angles:

• Content Accuracy: Accuracy with which Montra
can observe the destination requests.

• Peer Accuracy: Accuracy with which Montra can
identify the accurate recipient of traffic.

Our primary concern is the relationship between scale
and accuracy. The validations will therefore explore
accuracy as a function of zone prefix length. The size
of the zone doubles each time the zone prefix decreases
by one. The approximate number of peers in each zone
is described according to the following formula:

peers in zone =
peers in system

2prefix length

For example, a prefix length of 0 includes the entire sys-
tem. A prefix length of 1 includes half the system. A
prefix length of 2 includes one-quarter of the system,
and so forth. At the time of this writing, we estimate
the size of Kad at around four million simultaneous
peers. Table 2 shows the approximate zone size as a
function of the zone prefix length

Prefix Simultaneous
Length Peers

0 4,000,000
1 2,000,000
2 1,000,000
3 500,000
4 250,000
5 125,000
6 62,500
7 31,250
8 15,625

Table 2: Approximate Zone Sizes

The simplest way to validate our methodology is to
run an eMule based Kad client as a target node, attach
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a monitor to this node and then observe what fraction
of destination traffic, as seen by the target node, is re-
ceived by the monitor as well. This strategy, while sim-
ple, has following flaws:

• Overestimation of Accuracy: When a target node
receives a request then there is no reliable way of
checking if the request is a destination request. If
we naively chose the routing table based approach
for determining the status of a request, described
in Section 3, then we may incorrectly identify some
of the destination traffic, observed at target node,
as routing traffic. Such requests are discarded
when comparing the traffic observed at the moni-
tor and the target node because we only compare
destination requests. This will result in overesti-
mation of accuracy when these requests are not
observed at the monitor.

• Underestimation of Accuracy: If a UDP response
message sent from the target node to the request
originator is lost then the monitor will never re-
ceive that request. When comparing the destina-
tion traffic observed at the target node and the
monitor, we may wrongfully underestimate the per-
formance of monitoring technique because the lim-
ited visibility of the monitors will prevent such re-
quests from being observed at the monitor.

To avoid these problems, we use the following 2 ap-
proaches. These approaches help determine the upper
bound and lower bound on accuracy of Montra:

• Validation using Instrumented Source: In this ap-
proach, we convert a regular Kad client into a ran-
dom request generator, called Instrumented Source.
Instrumented Source targets a given n bit zone and
generates requests for IDs with matching zone pre-
fix and random 128 - n bits. For example, if In-
strumented Source is configured to target the 8 bit
zone 0xa4 then it will generate random IDs start-
ing with 0xa4. Instrumented Source then logs the
node ID which was chosen as destination for the re-
quested ID. While Instrumented Source generates
the random requests, Montra monitors the same
target zone and logs the traffic. Instrumented Source
stops after generating a large number of requests,
2000 in our case. To evaluate Content Accuracy,
we check what fraction of issued requests were cap-
tured by Montra. To evaluate Peer Accuracy, we
check what fraction of captured requests were as-
signed to proper peers by comparing the destina-
tions observed by Instrumented Source with the
destinations observed by Montra.

Introduction of an Instrumented Source solves both
the problems of overestimation and underestima-
tion of accuracy, because we know the view of the

request sender itself. On the other hand, the prob-
lem with this approach is that the generated re-
quests may not reflect the actual pattern of sys-
tem requests or the network conditions seen by
a regular peer. As a result, validation using in-
strumented source gives us an upper bound on the
accuracy of Montra.

• Validation using Instrumented Destination: In this
approach, we convert a regular Kad client into a
passive observer, called Instrumented Destination.
The Instrumented Destination simply serves as a
collector of user generated requests and logs all
the observed requests. While Instrumented Des-
tination observes these requests, we monitor its
corresponding zone for 6 hours in order to collect
sufficient number of request samples. Upon com-
pletion of the experiment, we compare the log col-
lected by Instrumented Destination and Montra.
To evaluate Content Accuracy, we check what frac-
tion of observed requests were captured by Mon-
tra. Evaluation of Peer Accuracy, while limited to
the Instrumented Destination only, is complicated
because identification of the destination requests
at Instrumented Destination is not possible. How-
ever, as we are monitoring the entire zone around
the Instrumented Destination, we can use the fol-
lowing heuristics to minimize the error in determi-
nation of destination requests:

1. For all the requests observed at the Instru-
mented Destination, if Montra finds a better
destination then that request is not consid-
ered for evaluating Peer Accuracy.

2. For all the requests observed at the Instru-
mented Destination, if Montra does not re-
ceive the request at all, then that request is
not considered for evaluating Peer Accuracy
because we are already acknowledging the er-
ror while evaluating Content Accuracy.

3. All the other requests are considered for Peer
Accuracy.

While validation using instrumented destination
does not eliminate the problems caused by accu-
racy overestimation and underestimation completely,
it significantly reduces the resulting error. Thus,
this validation technique helps us determine the
lower bound on the accuracy of Montra. The biggest
advantage of validation using instrumented desti-
nation is its use of real world requests for valida-
tions, which eliminates the possibility of any arti-
ficial inflation of accuracy.

• Content Accuracy: Figure 5 presents the Con-
tent Accuracy of Montra. Each box reflects the
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(b) Instrumented Source Validation

Figure 5: Tool validations; percentage of mes-

sages captured by the monitoring tool

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5  6  7  8

M
es

sa
ge

 C
ap

tu
re

d 
B

y 
M

on
ito

r 
(%

)

Zone Prefix Length (bits)

(a) Instrumented Destination
Validation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5  6  7  8

M
es

sa
ge

s 
C

ap
tu

re
d 

by
 M

on
ito

r 
(%

)

Zone Prefix Length (bits)

(b) Instrumented Source Validation

Figure 6: Tool validations; percentage of cap-

tured messages where the tool correctly identi-

fied the final destination
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Figure 7: Crawl duration as a function of zone

prefix length

95% confidence interval and the line through the
box shows the mean percentage of messages that
were successfully captured by Montra. In the in-
strumented destination experiments, approximately
95% of messages were captured successfully by the
monitor regardless of zone size, as seen in Fig-
ure 5(a).

In the instrumented source experiments, zone size
has an impact, as seen in Figure 5(b). For prefix
lengths of 7 and 8, around 93% of messages were
captured. For a prefix length of 6, around 87% of
messages were captured. For a prefix length of 5,
only around 73% of messages were captured.

The reason for this discrepancy is that the instru-
mented destination experiments artificially elimi-
nate peer churn, since the instrumented destina-
tion is always there. The monitor simply attaches
to the instrumented destination near the beginning
of the experiment. In the instrumented source ex-
periments, the monitoring tool regularly crawls the
network looking for newly arrived peers and iden-
tifying departed peers. Crawling the zone becomes
time consuming as the zone size increases. For ex-
ample, with a prefix length of 8, the crawl takes
around 7 minutes; with a prefix length of 5, the
crawl takes around 26 minutes (see Figure 7). Ef-
fectively, as the crawl duration increases, the num-
ber of peers, which are being monitored, grows.

• Peer Accuracy: Figure 6 presents the fraction of
monitored messages where the monitor correctly
pinpointed the final destination. In most cases,
the monitor correctly identified the destination of
approximately 90% of the messages. However, in
the instrumented source experiment with a pre-
fix length of 5, the monitoring tool correctly pin-
pointed the destination of only around 80% of the
messages. Again, this is attributable to the long
crawl duration of such a large zone.

6. DESCRIPTION OF DATA
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We have collected over 1 TB of data over the past 2
months. Most of data samples are 6 hours long. For
some of the analysis we also collected 24 hour long
data samples. We collected 6 hour samples by divid-
ing the day into 4 parts: Night, Morning, Afternoon
and Evening. We also repeated some of the zones in or-
der to see how the traffic changes over time. Following
is a brief description of the data that we have collected.

• Total Snapshots: 6 “24 hour” snapshots and 47
“6 hour” snapshots

• Total Zones Covered: 44

• Duplicate Zones: 5

– 0x1c (2 snapshots 6 hours each): 03/30/2008
3:00 AM, 04/10/2008 3:00 AM

– 0x4c (4 snapshots 6 hours each): 03/30/2008
3:00 PM, 03/31/2008 3:00 PM, 04/2/2008 3:00
AM, 04/3/2008 3:00 AM

– 0x5c (4 snapshots 6 hours each): 03/30/2008
9:00 PM, 03/31/2008 9:00 PM, 04/1/2008 9:00
AM, 04/2/2008 9:00 AM

– 0x84 (2 snapshots 6 hours each): 03/12/2008
9:00 PM, 04/09/2008 9:00 PM

– 0xa4 (2 snapshots 24 hours each): 04/12/2008
3:00 AM, 04/13/2008 3:00 PM

• Non Duplicate Zones (6 hours each):

– Night (3:00 AM - 9:00 AM): 10 snapshots

– Morning (9:00 AM - 3:00 PM): 15 snapshots

– Afternoon (3:00 PM - 9:00 PM): 11 snapshots

– Evening (9:00 PM - 3:00 AM): 11 snapshots

7. TRAFFIC CHARACTERISTICS
This section describes the important characteristics

derived from the captured Kad traffic. Our goal is to
understand the traffic properties related to 3 broad cat-
egories, as follows:

• Effect of User Behavior on Traffic

• Effect of Client (Kad Protocol) Behavior on Traffic

• Content

We first describe the challenges we faced while de-
riving traffic characteristics and our solutions to these
challenges. Next, we describe different request seman-
tics i.e. what different request types mean when deriv-
ing traffic characteristics. After that, we observe the
effect of user and client behavior from 2 different an-
gles of Request Target and Request Source. Finally, we
describe traffic characteristics based on Content.

For most of this section we use the ”Morning” dataset,
which we refer to as Candidate Dataset. For those dis-
tributions of characteristics which need to be compared
across different zones, we use zone envelopes. The idea
is to calculate min and max y values for each x value
across all compared distributions and then plot 2 lines
denoting the min and max for all zones, thus forming an
envelope on zone distributions. The characteristics for
which we note that min and max lines are significantly
apart, we also mention the Kolmogorov-Smirnov(KS)
values, which show the maximum vertical distance be-
tween min and max lines. For some characteristics,
which cannot be analyzed using 6 hour traffic samples,
we use multiple 24 hour traffic samples.

7.1 Request Semantics
As mentioned in Section 2, Kad peers send and re-

ceive 4 different types of requests i.e. Publish File, Pub-
lish Keyword, Search Keyword and Search File. In this
subsection we explain how these request types help us
in understanding user behavior and client behavior.

• PUBLISH FILE: These requests are always sent
by the client and thus help us in understanding
the client behavior. These requests also signify
availability of files.

• PUBLISH KEYWORD: These requests are always
sent by the client and thus play a key role in un-
derstanding the client behavior. These request,
however, have no effect on availability of content
because users are interested in downloading files
and not keywords.

• SEARCH FILE: These requests are sent by users
as well as clients. A user first selects the file to
be downloaded, which demonstrates the user be-
havior. As the download progresses, the client
sends more SEARCH FILE requests to find more
file sources, which demonstrates client behavior.
These requests showcase the popularity for a given
file.

• SEARCH KEYWORD: These requests are always
sent by the user and thus demonstrate pure user
behavior. These requests also signify the popular-
ity of a particular keyword.

7.2 Challenges
This subsection describes the challenges we faced while

deriving traffic characteristics.

7.2.1 Effect of NAT

We explore the the effect of NAT because it is likely
to affect our ability to separate the user behavior from
the client behavior. In order to identify the user behav-
ior, we must identify the users. As Kad uses UDP for
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all communication, except for actual file transfer, clients
behind a NAT box may send each request from a dif-
ferent port. This makes it impossible to identify a user
by its IP, port combination. For example, SEARCH
FILE messages are sent by users as well as clients. If
the user is behind a NAT box then the client may send
repeated SEARCH FILE requests from different ports.
If we use IP, port combination as a way to identify users
then we may conclude that different users are request-
ing the same file. But, in reality, we are mixing the user
behavior with the client behavior.

PUBLISH requests (both keywords as well as files)
are exempt from the anomaly caused by NAT. PUB-
LISH requests are only sent by peers which are not be-
hind a NAT box. This is because if a peer behind a
NAT box publishes a file or keyword then that partic-
ular content will not be reachable. As a result when
peers behind NAT want to publish some content, they
do it through a buddy, which is a peer not behind a
NAT box. Thus we only examine the effect of NAT for
SEARCH requests.

To identify the extent of the NAT effect for SEARCH
requests, we examine the following two metrics:

• Ports per IP address: This metric shows the num-
ber of different IP port combinations, for a given
IP address, from which we received SEARCH re-
quests. This reveals if a single host behind a NAT
box sends requests from multiple ports.

• Requests per IP address: This metric shows how
many SEARCH requests were received from a sin-
gle IP address. This is a complimentary sanity
check for the first metric. Specifically, we want
to observe those instances in which an IP address
sent multiple requests and then examine if those
requests were sent from different ports.

Figure 8(a) and 8(b) show the CDF for both the met-
rics for SEARCH KEYWORD requests. Figure 8(b)
shows that 18% of IP addresses send 2 or more re-
quests. These are the requests, which we want to ex-
amine for NAT effect. Figure 8(a) shows that only 5%
of IP addresses, which sent SEARCH KEYWORD re-
quests, were sent from 2 or more ports. Thus the NAT
effect appears to be insignificant for SEARCH keyword
requests.

Figure 9(a) and 9(b) show CDF for both the met-
rics for SEARCH FILE requests. Figure 9(b) shows
that 45% of IP addresses sent 2 or more requests. This
is probably because of repeated requests sent by the
clients to discover more file sources. Figure 9(a) shows
that inspite of a large number of duplicate requests from
a given IP address, only 8% of requests are sent from
2 or more ports. As a result, the NAT effect does not
exist for SEARCH FILE requests as well.

7.3 Target of Requests
In this subsection we analyze user and client behavior

from the perspective of those peers which receive the
traffic.

7.3.1 Request Rate

Request Rate is the key characteristic that can be
driven from DHT Traffic. The rate of requests for a
given content ID is calculated by dividing the total re-
quests of a given request type by measurement length,
with the exception of SEARCH FILE requests. SEARCH
FILE requests show user as well as client behavior, as
mentioned in Section 7.1. To separate user behavior
from client behavior, we index SEARCH FILE requests
by requested file ID and IP, port of the request sender.
Using this index, we disregard all duplicate messages.
The remaining unique messages give us SEARCH FILE
request rate based on pure user behavior. Request Rate
helps us to answer following questions:

• Spatial Properties: How is the traffic distributed
across different IDs for different request types?
The answer to this question reveals whether all the
IDs (and all the target peers for those IDs) observe
same request rate or there exist some Hot IDs. We
define Hot IDs as those content IDs that observe
significantly higher traffic rate than others.

• Temporal Properties: How does the request rate
for a given ID and request type change over time?
The answer to this question helps us to understand
how the popularity of a given content ID for a
given request type changes over time.

Spatial Effect.
In order to examine spatial effect we consider each re-

quest type separately because the request rate for each
request type may follow a different distribution. Fig-
ure 11(a) - 11(c) show CCDF of request rate for differ-
ent request types on log-log scale.

Figure 11 shows that different request types have dif-
ferent range of request rates. Figure 11(a) shows that
publish keyword request rate has the largest range i.e.
some keywords are published at a rate of more than 100
requests per minute. When a file is published, the soft-
ware automatically publishes all the words in the file-
name as keywords. Thus Figure 11(a) shows that some
keywords are common in large number of file-names and
are published at a much higher rate. Second largest
range of request rates is attributed to publish file re-
quest rate and is shown in Figure 11(b). Some files
are published at 30 requests per minute. Figure 11(c)
and Figure 11(d) show that search keyword request rate
and search file request rate has the lowest range. Both,
publish file and publish keyword requests, have much
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Figure 8: Assessment of NAT Effect on Search Keyword Requests using Candidate Dataset
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Figure 9: Assessment of NAT Effect on Search File Requests using Candidate Dataset

higher request rate than search keyword and search file
requests because publish requests show client behavior
and search requests show user behavior. Whenever a
user connects to Kad network, the client automatically
publishes all shared files and then repeat the process at
regular intervals. Search requests, on the other hand,
are not automatic.

Figure 11(a), Figure 11(b) and Figure 11(d) show
that all the zones in the candidate dataset follow same
traffic pattern i.e. majority of content IDs are requested
at lower rate while some content IDs are requested at
much higher rate. Figure 11(c) shows that traffic rate
across different zones vary for search keyword request
rate. This is because some zones possess more popular
keywords than others.

Figure 11 in general and Figure 11(a) in particular
shows that Hot IDs do exist. The largest impact of
Hot IDs is observed by the destination peer for a given
Hot ID. In addition, peers close to destination peer are
also affected by the Hot ID because those peers route
the traffic towards the destination peer. We define this
impact region surrounding a Hot ID as radius of Hot

ID. We measure 4 different radii of 4 most popularly
published keywords from 4 different zones. We choose
popularly published keywords because publish keyword
requests are largest source of traffic. We measure the
radius of Hot IDs by placing 9 instrumented Kad clients
at varying distances from the Hot ID. An instrumented

client is a regular Kad client which is modified to log
all incoming request messages. We place the first in-
strumented client at a distance of 104 bits. A distance
of 104 bits means that the instrumented client has 24
high order bits in common with the Hot ID (104 + 24
= 128, where 128 is the total number of bits used by
Kad for peer and content IDs). We pick 104 bits as the
initial distance because we have seen from our earlier
experiments that a destination peer for any content ID
shares 21-24 high order bits with the content ID. We
place the remaining 8 clients at increasing distances.
Figure 10 shows the radii for 4 measured Hot IDs. The
graph legend shows the zone prefix from which the Hot
ID was chosen. The x-axis shows the increasing dis-
tance of instrumented client from Hot ID. y-axis shows
packets/minute observed by instrumented client for Hot
ID. Figure 10 shows that most peers observe almost the
same request rate as the destination peer upto the dis-
tance of 107 bits.

Temporal Effect.
We measure temporal effect to understand how the

availability and popularity of content changes over time.
We evaluate temporal effect by using two 24 hour long
snapshots of same zone. The first snapshot was cap-
tured on 04/30/2008 and the second snapshot was cap-
tured on 06/30/2008, which allows us to study evolution
of popularity over 2 month period. Using this data, we
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Figure 11: Request Rate based on Candidate Dataset
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Figure 10: Radius of Hot ID

try to answer following questions:

• What is the life of most available and most

popular content? We answer this question by
comparing top 10 most published and most searched
files from 1st snapshot against top 10 most pub-
lished and most searched files from 2nd snapshot
to see how much common content exists between
the 2 snapshots. We also repeat the same mea-
surement for top 100 most published and most
searched files from both snapshots. The results are
shown in Table 3. Table 3 shows that only 2 of the
top 10 most published files from 1st snapshot are
in top 10 most published files from 2nd snapshot
and 58 of the top 100 most published files from
1st snapshot are in top 100 most published files
from 2nd snapshot. Intuitively, availability of files
should increase with time because as time passes
more and more users download the same file. But

the results show that availability of files decreases
over time. This is either because the users who
downloaded the file deleted the file or they stopped
connecting to the network. Table 3 also shows that
only 4 of top 10 most searched files from 1st snap-
shot are in top 10 most searched files from 2nd

snapshot and 44 of the top 100 most searched files
from 1st snapshot are in top 100 most searched
files from 2nd snapshot. The results show that in
a short period of 2 months, majority of most pop-
ular files lost their popularity.

Top 10 Top 100
Most Published 2 of 10 58 of 100
Most Searched 4 of 10 44 of 100

Table 3: Common Data Between 2 Snapshots

• How old is most popular content? We want
to understand if the most popular files are recently
injected in the system or files gradually become
popular over time. To achieve this, we use the
same 24 hour snapshots from the last experiment.
We check what fraction of newly popular files are
genuinely new. We consider those files to be newly
popular which exist in top 10 or top 100 most
searched files in the 2nd snapshot but do not exist
in the top 10 or top 100 most searched files from
1st snapshot. We call a given newly popular file to
be genuinely new if the file is not searched at all in
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the 1st snapshot. We found that 3 of 6 files (Ta-
ble 3 shows that 6 of 10 files are newly popular)
and 19 of 56 files (Table 3 shows that 56 of 100
files are newly popular) are genuinely new. While
these results show that most of the files become
popular over time and are not recently injected in
the system, Gummadi et. al [12] show that most
popular files tend to be recently injected in the
system. Gummadi et. al [12] drew this conclusion
based on a 6 month long measurement trace. We
are in the process of collecting more data to see
if our observation continues to hold over a longer
period of time.

7.3.2 Relation Between Publish and Search Requests

We examine the relationship between PUBLISH and
SEARCH requests for files as well as keywords. We
explore this relationship because we want to evaluate
how evenly supply and demand is matched. If supply
is more than demand i.e. more files or keywords are
published than searched then clearly resources are be-
ing wasted on publishing those files. If demand is more
than supply then users of the system will not be sat-
isfied and thus will eventually leave the system. We
calculate the relationship using the formula P/(S + P )
for each content ID, where P is No. of Publish Re-
quests and S is No. of Search Requests observed during
a measurement window. In order to calibrate availabil-
ity properly, we identify content contributors by using
IP, port combination and count duplicate publish mes-
sages from a single client only once. We use the same
filter for SEARCH FILE requests. We do not take any
such precautions for SEARCH KEYWORD messages
because these messages genuinely show demand.

Figure 12(a) and 12(b) show CDF of P/(S + P ) per
content ID for files and keywords, respectively. Fig-
ure 12(a) shows that 20% of files are searched but not
published during our measurement window. Figure 12(a)
also shows that 50% of published files are never searched
during our measurement window. Figure 12(b) shows
95% of keywords are published but never searched dur-
ing our measurement window.

7.4 Origin of Requests
In this subsection we analyze user and client behavior

from the perspective of the peers, which send requests.

7.4.1 Geography

We explore geographic origin of request senders in
order to answer following questions:

• Which countries around the world are using the
Kad network.

• Is the traffic generated by a given country pro-
portional to its peer population. This will help

us understand if users are using their fair share of
system resources.

• Do the peers from a given country contribute as
much content as they consume?

We achieve this goal by choosing top 5 traffic con-
tributing countries from each zone in the candidate dataset.
We then calculate average and standard deviation of
percentage of total traffic contributed by each of the
top 5 countries. Figure 13(a) - 13(d) show the results
for each of the 4 request types respectively i.e. PUB-
LISH FILE, PUBLISH KEYWORD, SEARCH FILE
and SEARCH KEYWORD. The top and bottom lines
of the box plot show standard deviation. The middle
line shows the mean. Figure 13(a) and 13(b) show that
Italy is the biggest contributor of content, i.e. Files as
well as Keywords. On the other hand, Figure 13(c)
and 13(d) show that China is the biggest consumer
of content. This disparity is interesting because the
biggest consumers of content should also be biggest con-
tributors of content. This intuition comes from the fact
that whenever a client completes downloading a file, it
automatically publishes the file back. Thus, this dis-
crepancy demonstrates that either Chinese users manu-
ally turn off the automatic upload feature or that a lot
of Chinese users are behind NAT boxes and as a result
use peers from other countries as buddies.

In order to determine if each of the top 5 traffic gener-
ating countries contribute and consume their fair share
of content, we use following formula:

Avg. Percentage of Total Traffic Generated by the Country

Avg. Percentage of Total Peers Originating from the Country

Figure 14 shows the results of above mentioned for-
mula for each request type for top 5 traffic generating
countries. The horizontal line at 1 shows the perfect ra-
tio of traffic to population. Any requests (either search
or publish) above the horizontal line show that peers
from a given country are consuming/contributing more
content than their fair share. On the other hand, any
requests below the horizontal line show that peers from
a given country are consuming/contributing lesser con-
tent than their fair share. Figure 14 shows that Italy,
Spain, France and Brazil publish more content and con-
sume lesser content than their fair share whereas China
is the exact opposite.

7.4.2 Time of Day Effect

We examine time of day effect to understand if the
aggregate rate of traffic changes during different times
of day. According to [14], a sizable population of Kad
peers from different geographical location is on-line round
the clock. As a result, time of day effect on traffic should
not exist. However, we show in Figure 15 that such a
pattern does exist.

15



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.2  0.4  0.6  0.8  1

C
D

F(
%

 o
f 

C
on

te
nt

 I
D

s)

Times Published/(Times Searched+Times Published)

Max
Min

(a) Publish vs Search Requests for
Files

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.2  0.4  0.6  0.8  1

C
D

F(
%

 o
f 

C
on

te
nt

 I
D

s)

Times Published/(Times Searched+Times Published)

Max
Min

(b) Publish vs Search Requests for
Keywords

Figure 12: Relationship between Publish and Search Requests based on Candidate Dataset
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Figure 13: Countries of Origin of Different Requests based on Candidate Dataset
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Figure 15: Effect of Time of Day on Different Request Types using 24 hour logs from zone 0x68

Figure 15(a) shows aggregate request rate of publish
requests for a 6 bit zone, which was observed over 24
hours. x-axis shows pacific time in hours and minutes.
y-axis shows number of packets received per minute.
Traffic starts decreasing around noon and starts increas-
ing around 11:00 PM.

In order to understand why such a pattern of traf-
fic exists, we look at the publish traffic originating from
top 5 countries, namely, China, Italy, France, Spain and
Brazil. Figure 16(a) shows that the peek traffic from
Italy, France and Spain is observed around noon pacific
time, which is 9 PM Rome, Paris and Madrid time re-
spectively. This finding perfectly coincides with [14],
which shows that peak population from Rome, Paris
and Madrid is observed at 9 PM local time. The fig-
ure also shows that peek traffic from China is observed
slightly after 6 AM pacific time, which is close to 9:30
PM Shanghai time. This finding is also aligned with
results reported in [14]. We conclude from Figure 16(a)
that publish traffic is mostly shaped by European coun-
tries.

Figure 15(b) shows aggregate request rate of search
requests for the same 6 bit zone observed over 24 hours.
The shape of the graph, while on a different scale, is
similar to Figure 15(a), except that the traffic starts
decreasing before noon and there is a slight increase in
traffic around 6:00 PM. Also, there is a sharp increase
in traffic after 9:00 PM. We know from Figure 13(c)
and 13(d) that search requests from China dominate
the search traffic. Thus, the similarity between shape
of search and publish request rates is surprising.

In order to understand why such a daily pattern of
search requests exist, we look at the search traffic origi-
nating from top 5 countries, namely, China, Italy, France,
Spain and Brazil. Figure 16(b) confirms our earlier find-
ing from Figure 13(c) and 13(d) that China is the lead-
ing generator of search requests. However, the aggre-
gate effect of European countries still shapes the ag-
gregate search request rate. We note that the shape
of Figure 15(b) is slightly different from Figure 15(a).
This is because the decline in aggregate search request

rate is dominated by China.

7.5 Content

7.5.1 File Size

We examine size of files that are being searched as
well as files that are being published. Size of searched
files gives us an important insight into user behavior. If
the users search (which leads to downloading the file)
large files then that means following:

• Kad users are patient: P2P systems usually have
no guarantees about file delivery. As a result large
files take more time to download.

• Kad users use the system in batch mode: Here,
by batch mode we mean that a user issues the
command to download the file and then at some
point in future the download will be completed. If
Kad users are patient then that would imply that
Kad users use the system in batch mode.

File Sizes of published files is important to consider so
that we can understand if users choose to download files
of bigger size because of lack of choice or that they have
an option to download files of small size.

Figure 17 shows all the zones included in candidate
dataset follow same distribution of file sizes for both
types of requests. Figure 17(a) shows that 60% of searched
files were larger than 100 MB. This is in contrast with
[12], which showed that 90% of files were less than or
equal to 10 MB.

Figure 17(b) shows that almost 50% of published files
are less than or equal to 10 MB. This shows that while
a lot of small files are available, the users prefer large
files over small files.

8. RELATED WORK
The most closely related work to our approach is Mis-

tral [19]. Our approach is similar to Mistral with regard
to the basic mechanism of monitoring the system i.e. a
crawler is used to discover the non NAT peers and then
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Figure 16: Geographic Distribution of Requests using 24 hour logs from zone 0x68
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Figure 17: Distribution of File Size based on Candidate Dataset

the protocol features are used to add the monitors to
the routing tables of the existing peers. But the focus
of our approach is different from Mistral. Our goal is to
capture representative traffic samples from the system
without disrupting the system. The goal of Mistral is
to prove that a DHT can be disrupted by strategic po-
sitioning of the malicious peers. The contributions of
our methodology, however, are:

• Capture Representative Samples of Traffic.

• Introduction of the notion of distinction between
destination and routing traffic.

• Avoid disruption to the system by maintaining ab-
solutely low visibility.

• Gracefully cope with churn.

• Avoid over-estimation of traffic.

The realization that DHT traffic can be divided into
destination and routing traffic helps us to group queries
for same content ID from same peer into one user re-
quest. Thus we can tell, based on user behavior, how
frequently a file or keyword is published or searched.
Mistral, on the other hand, takes into account all the
messages observed and thus the resulting statistics are
inflated.

The difference in focus led Mistral to place 216 peers
in an 8 bit zone and thus attract a lot more traffic than

necessary. Our approach and validation demonstrates
that if placement of monitors is strategically chosen
then similar traffic characteristics can be driven with
much smaller number of monitors. As a result we are
able to monitor 6 bit zones instead of 8 bit zones. Our
validation results also show that we can assign requests
to final destination peers with sufficient accuracy. This
is the result of careful placement monitors in the sys-
tem. Mistral’s equi-distant placement of peers across
the ID space makes it harder to achieve this goal.

9. CONCLUSION AND FUTURE WORK
This study presented Montra, a novel technique to

capture destination traffic from Kad, without disrupt-
ing the system. We discussed the challenges and the
solutions for achieving this goal. We implemented our
technique in the form of a heavily parallel and scalable
python based Kad client. Using this client we validated
our approach over the actual Kad network. Finally, we
characterized the captured traffic from 3 different angles
of User Behavior, Client Behavior and Content.

We plan on collecting more data so that we can derive
more statistically sound conclusions about the temporal
characteristics of DHT traffic. We are also working on
publishing a paper based on this work that will also
require making our collected data public. Finally, we
plan on developing a P2P traffic simulator based on
collected traffic samples.
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