
The WOOL Workflow Programming Language
DRP Project

Geoffrey C. Hulette

1 Introduction

There has been a great deal of recent interest in workflows as a tool and paradigm for
scientific computing [13]. Domain-specific scientific computations are relatively easy to
express as workflows because, as a programming model, they closely match scientists’
conceptual level of abstraction. In addition, workflow specifications are artifacts suitable
for reuse and sharing, and they are naturally amenable to the identification and exploitation
of concurrency [8]. Other new and useful features, such as automated generation tools and
runtime support for management of data provenance through the computational process,
are becoming the norm [12].

Workflows are an attractive program design paradigm partly because they reflect an
intuitive approach to program construction similar to the common and intuitive “boxes
and arrows” style of sketching out a program during the conceptual phase of its creation.

However, using lower level languages for workflow programming can obscure the nat-
ural workflow abstraction because developers are forced to work with language primitives
and details unrelated to the domain-specific concerns. On the other hand, programming
languages for describing workflows tend to be highly complex, or specialized towards a
particular domain, or both.

In this paper, we present a language to address the complexity and portability issues
that are found in existing systems. Our solution, called WOOL (for Workflow Language),
preserves the properties of most workflow languages for coordinating activities and data
flow, but places a high priority on independence from specific runtime environments and a
design that emphasizes ease of use and human writability without the need for GUI-based
or other assistive tools.

1.1 Why are workflows useful?

Workflows represent an intuitive and simple design paradigm. The components that are
composed together to form workflows often represent high-level abstractions closely tied
to domain-specific analyses or models. As such, workflow programming gives scientific
users a programmatic analogue to the sorts of diagrams they often sketch on a whiteboard
or in a paper to describe the steps they take in solving their problem.

In most existing workflow systems, however, descriptions are complicated by details
that imply a specific instance or class of runtime systems. This obscures the meaning of
the workflow with implementation details, and reduces the ability of tools to retarget the
abstract workflow to systems that deviate from the assumed model. WOOL avoids this
specificity in the language, allowing the workflow paradigm to be used in constructing
programs that span targets from a single, standalone executable on a laptop to an extensive
grid-based distributed environment. The interesting problem is how to design a language
that covers this range without imposing uncomfortable requirements on either endpoint,
such as requiring a full grid node configuration for a standalone laptop that will never
participate in a grid environment.

Workflows facilitate code reuse by dictating a component-based model for activities
that execute as part of a workflow, and defining workflows themselves in such a way that
allows them to be treated as a component. To make this possible they must have well
defined semantics and types. Without these the meaning of the workflow is unclear and
often relies on implicit assumptions that a specific workflow language or environment
makes. Well-defined semantics and types facilitate retargetability and remove the need for
assumptions that bind a workflow to a specific environment.

1.2 Workflows as a general programming model

Workflows are already important for scientific programming. We believe they have a
role to play in more general purpose programming as well. The emergence of widespread
multi-processing has created a need for languages that can help programmers identify and
exploit parallelism in their programs. Workflows often exhibit natural parallelism in the
form of pipeline and fork-join patterns. Unfortunately, workflow programming languages
tend to be geared toward particular architectures and runtime systems. There is a need for
an abstract workflow programming language that preserves the essential features of the
workflow model while emphasizing retargetability of the actual execution environment.

Workflow programming can also benefit from text-based representations to facilitate
portability, ease of editing, and compilation. While existing workflow languages are of-
ten based on human-readable XML, they are fall short in terms of human-writable syntax.
A simpler representation fits well with standard programming environment tools such as

2

version control systems. Graphical workflow representations can always be generated for
purposes of presentation, and graphical workflow creation tools can also generate text-
based forms. So-called “graphical” languages, however, often must include ancillary in-
formation to support their pictorial representations, such as layouts for components. Such
information is helpful for presentation, but extraneous to the task of representing a work-
flow program.

2 Related Work

There are many existing languages and tools for describing workflows. Most are de-
livered as complete systems that include languages for describing workflows, a way of
programming activities, and a runtime engine for executing a completed workflow.

Many earlier workflow projects were targeted towards the needs of business users, and
employed coordinated web services as a enactment back-end. Examples of this style of
workflow system include BPEL4WS [3] and WSFL [16]. These languages were designed
to support and coordinate activities accessed through XML-based web services, and so
while they are good at describing and enacting workflows in this particular domain, they
are not very useful for abstract workflow representation.

Other workflow systems have focused on scientific workflows (SWFs). These are in-
tended for use by scientists who want to focus on their problem domain and leave the
low-level details to the SWF system. SWF tools delegate to the workflow language and
runtime system the often-tedious programming needed to connect and orchestrate series
of computational steps.

Triana [7][17] uses a visual SWF language that includes both data- and control-flow
constructs. Triana, like other XML web service-oriented workflow systems, has a type
system based on XSD schema datatypes [5]. XSD datatypes are powerful and flexible, but
introduce additional complexity.

Taverna [18], part of the myGrid project, is a SWF system focused on supporting life sci-
ences experiments. Activities are implemented either as web services or Java classes. Tav-
erna relies on an XML-based language called SCUFL for workflow specification. SCUFL
has a type system, but data types are restricted to MIME-types, names from the myGrid
bioinformatics ontology, and free form text.

VisTrails [6] is another SWF system, interesting because it keeps provenance not only
for data, but for workflows themselves. This allows VisTrails to treat the workflow itself
as a kind of scientific notebook, documenting the evolving scientific process. VisTrail
uses a visual workflow language, and is focused on workflows intended to be executed
immediately and interactively.

Kepler [2] inherits a visual environment and the Modeling Markup Language (MoML)

3

from Ptolemy [14], and adds SWF features like the ability to test a workflow without
needing to completely program all its activities, distributed execution with a web-services
framework or Globus grid, database access, and other specialized actors.

Apple’s Quartz Composer [4] is not specifically marketed as a SWF system, but shares
many of the same features. Quartz Composer allows users to build workflows describing
data-flow between activities, and uses an object-oriented type system to validate connec-
tions. A graphical environment makes workflow construction straightforward for non-
programmers. Workflows in Quartz Composer are tied to the software architecture (Cocoa
and Objective-C) of the Mac OS X platform.

Other workflow systems are designed to let users easily harness the power of grid com-
puting [11]. One example is WFEE [20], which uses a relatively simple workflow de-
scription language (called xWFL) with grid-specific constructs. WFEE features support
for workflow parameterization using filenames, ranges of number, and constants, which is
important for scientific workflow applications. Another example is GSFL [15], designed
for Globus OGSA-based grids.

The Abstract Grid Workflow Language (AGWL) [9] is the closest project in spirit to
WOOL. Like WOOL, AGWL was designed to specify workflows in a way that balances
abstract representation with enough information to execute the workflow in a real envi-
ronment. Unlike WOOL, AGWL makes parallelism an explicit construct in the language.
This allows for a high degree of programmer control, but at the expense of the abstract-
ness of the resulting workflow. Explicit parallelism may also increase the required level of
sophistication for workflow programmers. Since parallelism is inherently implicit in data-
flow programming models anyway, WOOL eschews explicit parallel constructs, instead
opting only to have users to explicitly state when parallelism should be avoided.

Unlike WOOL, AGWL does not feature a robust abstract type system for validating con-
nections between activities or identifying instances where implicit iteration or aggregation
over sets of data items should be performed.

AGWL workflows are executed on a portable back-end system called CGWL [10].
CGWL must be ported to a particular platform, and acts as an interface between the plat-
form and the workflow. WOOL could theoretically use either AGWL or CGWL as a target
platform.

3 Language Design

The WOOL programming language was designed to describe workflows, and delib-
erately excludes information related to the runtime system. It has an intentionally simple
syntax and semantic interpretation. WOOL workflows are composed of “activities,” which
are basic units of computation. Each activity has a type which assigns it a set of input and

4

output ports and other properties. Connections between activity ports, from outputs to in-
puts, establish data-flow relationships. WOOL workflows can be composed hierarchically,
with sub-workflows treated as activity types in a higher-level workflow. Activity ports use
a rich type system to describe the primitive data items flowing in or out of the port, check
connections for validity, and define the semantics of valid connections.

3.1 WOOL Syntax

There are two types of files used by the WOOL compiler. The first is called the “target”
file, in which primitive data types and activity types are defined. Typically, target files
are written for a particular domain. The second type of file is the “workflow” file. These
reference a target file for their types, and then instantiate and connect activities to form
workflow graphs. Workflow files may import other workflow files in order to use their
contents as complex activity types, but all the workflow files collected in this way must
share the same target.

Listing 1 shows an example target file. The example declares two primitive types: string
and number. WOOL uses the types to enforce that connections between ports are valid; it
is up to the runtime system to ensure that WOOL’s abstract types are mapped consistently
and correctly.

The example also defines a couple of activity types. The Multiply activity has three
ports. The first two are the inputs, named leftOp and rightOp. Both of the input ports
are designated as having a primitive type of number. The single output port is named
result, and also has the type number. Note that while the intended function of the
Multiply activity is clearly to take two numeric operands and produce their product,
this is not explicitly coded in WOOL. The activity types in WOOL simply specify inputs,
outputs, and some meta-information – the functionality is the responsibility of the runtime
system.

The other activity types in the example follow a similar pattern. Notice that the Split
activity makes use of aggregate types; one of its outputs is declared as a sequence. Also
notice that the activity types in the example are all declared to be stateless. This prop-
erty tells the compiler that the activities carry no stateful information between invocations,
which may be helpful during the compiler’s optimization phase.

5

Listing 1. Example target file
T a r g e t f i l e : example . wf t
De f i ne two p r i m i t i v e t y p e s
t y p e s t r i n g , number ;

M u l t i p l i e s two numbers t o g t h e r
M u l t i p l y {

s t a t e l e s s ;
i n p u t l e f t O p : number ,

r i g h t O p : number ;
o u t p u t r e s u l t : number ;

}

S p l i t a s t r i n g i n t o c h a r a c t e r s
S p l i t {

s t a t e l e s s ;
i n p u t o r i g S t r i n g : s t r i n g ;
o u t p u t c h a r a c t e r s : s t r i n g seq ;

}

Cas t a number t o a s t r i n g
NumberToStr ing {

s t a t e l e s s ;
i n p u t num : number ;
o u t p u t s t r : s t r i n g ;

}

P r i n t o u t a s t r i n g (t o some d e f a u l t o u t p u t d e v i c e)
P r i n t S t r i n g {

s t a t e l e s s ;
i n p u t s t r : s t r i n g ;

}

Now examine the workflow syntax example in Listing 2. First notice that the target
file from Listing 1 is referenced at the top. This imports the types defined in that target
for use in this workflow. Next, a workflow named MultiplyThreeNumbers is de-
clared and defined. The workflow instantiates two activities named mult1 and mult2,
both of which are typed with the Multiply activity from the target. Next, the workflow
publishes three of the four input ports from the two Multiply activity instances, mak-

6

ing them available to the outside world. Notice that the published names need not be the
same as the names of the internal ports (e.g. mult1.leftOp is published under the alias
firstOp). Next, a connection is declared between the output of the first multiplication
and input second. Finally, the workflow publishes the output of the second multiplica-
tion. So, logically the MultiplyThreeNumbers workflow takes three numeric inputs,
multiplies them all together, and pushes the product to its single output. This workflow is
trivial but complete.

Listing 2. Example workflow file
R e f e r e n c e t h e t a r g e t f i l e
t a r g e t example ;

Mul t ip lyThreeNumbers {
mul t1 : M u l t i p l y ;
mul t2 : M u l t i p l y ;

p u b l i s h mul t1 . l e f t O p as f i r s t O p ;
p u b l i s h mul t1 . r i g h t O p as secondOp ;
p u b l i s h mul t2 . r i g h t O p as t h i r d O p ;

mul t1 . r e s u l t −> mul t2 . l e f t O p ;
p u b l i s h mul t2 . r e s u l t a s r e s u l t ;

}

Next, lets examine how workflows can be composed hierarchically. In Listing 3, we
define another workflow file. This workflow uses the import keyword to reference the
workflow MultiplyThreeNumbers from Listing 3. Once imported, a workflow is
available for use as an activity in the new, higher-level workflow, and may be used in the
same way as any other activity. Listing 3 declares a workflow named MySuperWorkflow,
which instantiates an instance of the MultiplyThreeNumbersworkflow named mult.
It also declares two other basic activities that were defined in the target from Listing 1:
num2str is of type NumberToString, while printer is of type PrintString.
MySuperWorkflow publishes the three inputs to the multiplication, but feeds the output
through the other two activities, first converting the numeric output to a string, and then
printing the string.

7

Listing 3. Example super-workflow file
R e f e r e n c e t h e t a r g e t f i l e
t a r g e t example ;

i m p o r t Mul t ip lyThreeNumbers

MySuperWorkflow {
mul t : Mul t ip lyThreeNumbers ;
num2s t r : NumberToStr ing ;
p r i n t e r : P r i n t S t r i n g ;

p u b l i s h mul t . f i r s t O p as f i r s t O p ;
p u b l i s h mul t . secondOp as secondOp ;
p u b l i s h mul t . t h i r d O p as t h i r d O p ;

mul t . r e s u l t −> num2s t r . num ;
num2s t r . s t r −> p r i n t e r . s t r ;

}

This very simple example is shown to give the flavor of the WOOL language; the full
draft language specification is included in Section 4.

3.2 WOOL’s Type System

WOOL’s type system ensures that it will reject workflow graphs that connect two in-
compatible ports. For example, the type system prevents a programmer from accidentally
connecting a string output to a number input, or an output to another output.

The type system is very simple. Connections may only be established between ports
that share the same primitive type, and are of opposite direction. Implicit casting between
different primitive types is not supported.

It is important to understand that WOOL’s primitive types do not constrain the im-
plementation of the runtime system. Primitive types, such as number and string in
Listing 1, have no explicit meaning outside of the WOOL compiler – they are simply
placeholders for types that exist in a targeted workflow runtime system. So, one runtime
system may map the number type to a 32-bit integer, while another may use a 64-bit dou-
ble or even a higher level type like java.lang.Integer. It is up to the implementer of
the workflow runtime and its associated WOOL generator to ensure that types are mapped
consistently from WOOL, and that the system uses the correct types at runtime. This flex-
ibility ensures that WOOL can target any existing workflow system, while retaining the

8

ability to type-check its abstract workflows.
WOOL has a notion of “published” ports, which are ports that are made available out-

side the workflow in which they are defined. Published ports are simply named aliases
for ports within the workflow, and serve as the interface between the workflow and its
external environment. If a workflow is used within another workflow, the published ports
of the sub-workflow are visible from the super-workflow, and may be connected just like
any other port. Published ports are typed in the same way as the ports they alias. So, a
published input port that is of type string within the workflow will also appear as an
input of type string from outside.

A port may have a wildcard type instead of a primitive type. A wildcard is a way to
tell the compiler that the activity does not care which primitive type is used for that port,
it will work equally well with any of them. These are most often used for control-flow
activities which simply pass through data, such as an aggregator or iterator. A wildcard
type has a name whose scope is the containing activity, and which is used to “bind” the
wildcard. A wildcard name is bound when a port using that wildcard name is connected to
a second port whose type has already been resolved. A port’s type is considered resolved if
either it has a primitive type, or if it has a wildcard type that has already itself been bound.
Once bound to a primitive type, all ports (either inputs or outputs) within the same activity
having the same wildcard name will be bound to that type. A type error is reported if a
conflict is identified during wildcard resolution.

The aggregate types augment the type information provided by either primitives or wild-
cards. The default aggregate type is the unit, meaning only a single data item of the prim-
itive type. WOOL also supports sequences and sets as aggregate types. Sequences imply
a group of primitive data items with a particular order, while sets are a group with no par-
ticular order. In general, connected ports must have the same aggregate type. However,
connecting a set output to a sequence input is allowed, and will induce an order on the
set. The exact ordering is undefined. Connecting a sequence output to a set input is also
allowed, and will simply remove the ordering information from the sequence. Finally,
connecting a sequence or set output to a unit input is allowed. This will cause the group to
be serialized into individual data items. For example, consider a port that outputs a group
of strings to an input that takes unit strings. Writing a single aggregate value with five
elements to the output will cause five individual strings to be pushed into the input queue.
This facilitates implicit iteration in a workflow.

3.3 Basic Runtime Semantics

WOOL is designed to describe abstract workflows, as opposed to workflows tailored
to a particular architecture. As such, it adopts a minimal set of assumptions about the

9

semantics of its data-flow execution model. We believe that this should make WOOL
workflows portable to and executable on almost any workflow execution system.

In WOOL, data is moved from outputs to inputs. Data delivered to an input must be
queued in the order that it was received. Activities must eventually execute once there
is data available on all their inputs. Execution consumes one data item from each of the
activity’s input ports, and produces zero or one data items on each of its output ports.
Aggregate data types generally count as a single data item, with the exceptions outlined
below.

An output can be connected to more than one input, in which case the data written to
the output is copied to each of the connected input queues. Similarly, an input can be
connected to more than one output, in which case both outputs feed their data into the
single input queue. If two inputs arrive at the same input port at the same time, their order
in the input queue is undefined.

Published ports are simply aliases to ports within a sub-workflow. Reading or writ-
ing values to a published port is the same as reading or writing it to the corresponding
underlying port.

The runtime system must respect aggregate types. That is, if a port is marked as having
an aggregate type, then single values written or read from that port are treated as groups.
In the case of sequences, the group must also have an ordering that is maintained between
ports.

Aggregate types count as single values. That is, they occupy one space in input queues,
and must be moved between ports as a group. The only exception is if an output port of
aggregate type (a set or sequence) is connected to a port of unit type. In this case, the
output port writes the group of values as a series of single values. These values will arrive
at the input individually. If they are from a sequence, they will also arrive in the sequence
order.

A more complete discussion of WOOL’s semantics is given in Section 4.

4 The WOOL Language

WOOL is a typed workflow definition language. It allows a programmer to define work-
flows from basic activities, combine workflows to create hierarchical workflows, and to en-
sure that the data flowing between activities is consistently typed. WOOL workflows are
based on data–flow relationships between “activities.” An activity receives a set of inputs,
performs some computation on those inputs, and then writes a set of outputs. Connections
between activities (from outputs to inputs) describe a workflow.

This guide describes the WOOL language, syntax, and type system.

10

4.1 Terminology

The following terms are used throughout this guide. They are presented here to give an
overview, but are defined more completely in later sections.

Primitive Data Type The type of a value that can be sent to an output or read from an
input. Examples of primitive data types include numbers and text strings. In WOOL,
instances of primitive data are not represented - only the types are important.

Activity Type An abstract representation of a particular computation. Activity types de-
fine a set of ports for input and output, as well as properties that can help the WOOL
compiler during optimization. Addition is a trivial example of an activity type - the
computation has two numeric input ports (the operands) and one numeric output port
(the sum). Activity types are sometimes called “basic” activity types to distinguish
them from complex activity types (described below).

Complex Activity Type An activity type where the computation is not abstract, but in-
stead is defined by a workflow. Using complex activity types allows the programmer
to build workflows hierarchically, composing simple workflows into larger ones.

Activity Type Property A descriptive tag that may be applied to a basic activity type.
Properties are intended to inform the WOOL compiler about an activity so that it
can properly optimize the workflow. For example, the “stateless” property tells the
compiler that an activity carries no state from one invocation to the next, and this
trait may allow the activity to be parallelized.

Activity An instance of an activity type that can be connected into a workflow. There may
be zero, one, or many activities that share a single activity type. Each activity has its
own set of input and output ports, which do not share state with other instances of
the same activity type. We say an activity is “invoked” when it is caused to execute
its computation, consuming a set of inputs and producing a set of outputs.

Port Describes an input or output of an activity. Ports have names and are typed as either
a “wildcard” (described below) or with a primitive data type. Port types may also
specify that they output a single piece of data or a collection (see “Aggregate Port
Type” below). Instantiating an activity will also instantiate its corresponding set of
ports, as defined by its activity type. The output from a port may only be connected
to an input port with a matching type. The type system is described more fully later
in this guide.

11

Aggregate Port Type Usually, a port’s type indicates that it will read or write a single
unit of that primitive type. It is also possible to specify that an aggregate group
of data items will be output, instead of just one. Groups may be either unordered
sets or ordered sequences. Generally, the port grouping type (either unit, set, or
sequence) must match for two ports to be connected, but it is permitted to connect
an output port that writes a group (of some primitive type) to an input that accepts
only a singleton (of that same type). This causes the group to be “serialized,” or
written one at a time, to the input.

Wildcard Port Type Instead of specifying a particular primitive type, a port can accept
a “wildcard,” or any type. This is useful for activities that implement control-flow
constructs, such as loops and conditional branches. Wildcards must be named, and
the type system ensures that if an activity has a wildcard input port named “alpha”
that is connected to a concrete type (e.g. a string), then the all other wildcard ports
named “alpha” for that activity must be connected to the same concrete type. We
say that connecting a concrete type to a wildcard “binds” the type of the wildcard.

Connection An edge in a workflow graph between the output port of one activity and the
input port of another. Connections are established when the workflow is created,
and cannot be changed at runtime. Connections must be between ports that have
compatible types, as described later in this guide.

Published Port Exposes a port inside a workflow to the environment outside the work-
flow. Generally, the activities and ports within a workflow are concealed, known
only to the workflow itself. Publishing a port allows either the runtime system or
another workflow can push data in and get data out.

Map Connection A map connection takes an aggregate output (a set or sequence of some
type) from a particular port, and runs each element through a “filter” or transforma-
tion. Then, the transformed elements are assembled back into an aggregate group
and output to the next activity in the data–flow graph. Map connections are interest-
ing because they provide a way to specify implicitly parallel operations, and because
they can be implemented using a graph transformation (see Section 7.2).

4.2 Semantics of a WOOL Program

WOOL is designed to describe abstract workflows, as opposed to workflows tailored to
a particular architecture. As such, it tries to assume very little about the workflow runtime
system. Nevertheless, there are some (hopefully minimal) features that must be provided
by the runtime.

12

1. The runtime must provide a way to push data into a workflow’s published inputs,
and to retrieve it from published outputs.

2. Data delivered to an input that is not immediately processed must be queued, in the
order that it was received.

3. Activities will eventually execute once there is data available on all their inputs.

4. When an activity executes, one data item is removed from each of its input queues.
These values are passed to the activity and consumed during execution.

5. After execution, an activity will write zero or one values to each of its output ports
(aggregate groups count as one value).

6. If, after executing (and consuming a set of input values), an activity still has values
in all its input queues, it must eventually be scheduled for execution again.

7. A value written to an output port must eventually be moved out of the output port
and into input ports that are connected to it.

8. An output can be connected to more than one input ports, in which case the data is
copied to both input queues.

9. An input can be connected to more than one output ports, in which case both outputs
feed their data into the single input queue. If two inputs arrive at the same time, their
order in the input queue is undefined.

10. Published ports are simply aliases for the ports they connect to. Reading or writing
values to a published port is the same as reading or writing it to the underlying,
internal port.

11. The runtime system must respect aggregate types. That is, if a port is marked as
having an aggregate type, then single values written or read from that port are really
groups. In the case of sequences, the group must also have an ordering.

12. Aggregate types count as single values. That is, they occupy one space in input
queues, and must be propagated as a group. The only exception is if an output port
of aggregate type is connected to a port of unit type. In this case, the output port
writes the group of values as a series of single values. These values will arrive at the
input individually, in order if they are from a sequence.

13

4.3 Type System

WOOL’s type system ensures that it will reject workflow graphs that connect two in-
compatible ports. For example, the type system prevents a programmer from accidentally
connecting a string output to a number input, or an output to another output.

The basic type system is very simple. Connections may only be established between
ports that share the same primitive type, and are of opposite direction. For example, an
output port with a string primitive type may be connected to an input port of a string
primitive type, but not to an output port (of string or otherwise), and not to an input port
of numbers (or of any primitive type other than string).

Published ports are typed in the same way as the ports they alias. So, a published input
port of type string will also appear to the external environment as an input of type string.

A port may be of a wildcard type instead of a primitive type. A wildcard is a way
to tell the compiler that the activity does not care which primitive type is used for that
port, it will work equally well with any of them. A wildcard type has a name, which is
used to “bind” the wildcard. A wildcard name is bound when a port using that wildcard
name is connected to a second port whose type has already been resolved. A port’s type
is considered resolved if either it has a primitive type, or if it has a wildcard type that has
already itself been bound. Once bound to a primitive type, all ports (either input or output)
of the same activity that share the wildcard name will be bound to that type as well.

The aggregate types augment the type information provided by either primitives or wild-
cards. The default aggregate type is a single unit, meaning only a single data item of the
port’s primitive type. WOOL also supports sequences and sets as aggregate types. Se-
quences imply a group of primitive data items with a particular order, while sets are a
group with no particular order. In general, connected ports must have the same aggregate
type. However, the following connections are also permissible:

1. Connecting a set output to a sequence input is allowed, and will induce an order on
the set. The exact ordering is undefined (or, defined by the runtime).

2. Connecting a sequence output to a set input is allowed, and will simply remove the
ordering information from the sequence.

3. Connecting a sequence or set output to a unit input is allowed. This will cause
the group to be serialized into individual data items. For example, consider a port
that outputs a group of strings to an input that takes unit strings. Writing a single
(grouped) value with five elements to the output will cause five individual strings to
be pushed into the input queue.

14

All ports have a concrete aggregate type, either the default unit type or one of the types
set or sequence.

4.4 WOOL Syntax

This section explains the syntax and file types involved in creating a WOOL workflow.

4.4.1 File Types

There are two types of files used by the WOOL compiler. The first is called the “target”
file, in which primitive data types and activity types are defined. Target files are typically
constructed so as to cover the needs of a particular domain. The second type of file is
the “workflow” file. These reference a target file for their types, and then instantiate and
connect activities to form workflow graphs. Workflow files may import other workflow
files in order to use their contents as complex activity types, but all the workflow files
collected in this way must share the same target.

4.4.2 Basic Syntax

Both target and workflow files share the following syntax:

1. Comments start with a # and continue to end of line, and can be placed anywhere.

2. Identifiers must start with an alpha, and contain only alphas, numbers, and under-
scores.

3. Whitespace is ignored.

4.4.3 Target File Syntax

Target files define the primitive data and activity types that are used and shared by a work-
flow or set of workflows. Target filenames must use the suffix “.wft”.

Target files are divided into two parts. The first part declares the primitive data types,
and the second part declares the activity types. Formally, target files have the following
syntax:

TARGET_FILE ::= TYPE_DECLS ACTIVITY+

The formal syntax for TYPE DECLS and ACTIVITY are given below.
Primitive types declarations have the following syntax:

15

TYPE_DECLS ::= TYPE_DECL*
TYPE_DECL ::= ’type’ ID (’,’ ID)* ’;’

where ID is a valid identifier, and each ID declares a primitive type with that identifier
as its name. It is an error to declare a primitive type more than once.

After the primitive types, the target file contains one or more activity type definitions.
An activity type definition has the following syntax:

ACTIVITY ::= ACTIVITY_ID ’{’ DECLARATION* ’}’
DECLARATION ::= (INPUT | OUTPUT | PROPERTY) ’;’
INPUT ::= ’input’ PORT (’,’ PORT)*
OUTPUT ::= ’output’ PORT (’,’ PORT)*
PORT ::= PORT_ID ’:’ AGGREGATE_PORT_TYPE
AGGREGATE_PORT_TYPE ::= PORT_TYPE | (PORT_TYPE (’seq’ | ’set’))
PORT_TYPE ::= PRIM_PORT_TYPE | WILDCARD_PORT_TYPE
PRIM_PORT_TYPE ::= ID
WILDCARD_PORT_TYPE ::= ’*’ ID
PROPERTY ::= ’stateless’

where ACTIVITY ID is an identifier denoting the name of the activity type, and PORT ID
is the name of an input or output port. It is an error to declare more than one activity type
of the same name in the same target file, and an error to declare more than one port of
the same name in a single activity type. PRIM PORT TYPE denotes that the port is of
a primitive data type, and must be an identifier matching one of the primitive types de-
fined at the top of the target file. WILDCARD PORT TYPE denotes a wildcard type name.
AGGREGATE PORT TYPE specifies the aggregate type by using the keyword seq for a
sequence, set for a set. If neither of those two aggregate types is specified, the unit
aggregate type is used.

Note that the only property currently supported is statelessness, which is specified with
the stateless keyword.

4.4.4 Workflow File Syntax

A workflow file defines one or more workflows based on a set of types in a target file. A
single workflow consists of a set of activities (basic or complex), and connections between
the ports of those activities. A workflow also declares a set of published ports for moving
data in and out, and also possibly a set of properties.

The syntax for a workflow file is:

16

WORKFLOW_FILE ::= TARGET IMPORTS WORKFLOW*
TARGET ::= ’target’ TARGET_ID ’;’

where TARGET ID is an identifier referencing a target file. Target files are referenced
by their filename, minus the “.wft” suffix. The target file must be in the same directory as
the workflow file, or in a user-defined search path.

Workflow files may import other workflow files, which can be helpful for modularizing
code. Imported workflow files must have the same target as the original workflow file. The
syntax is:

IMPORTS ::= IMPORT*
IMPORT ::= ’import’ ID (’,’ ID)* ’;’

where ID is an identifier referencing a workflow file. The rules for locating imported
workflow files are the same as for target files. Imported workflows are in the same names-
pace as the workflows defined in the original file.

Workflows have the following syntax:

WORKFLOW ::= (WORKFLOW_ID ’{’ STATEMENT* ’}’)*
STATEMENT ::= (DEFINITION | CONNECTION | PUBLISH) ’;’
DEFINITION ::= ACT_ID (’,’ ACT_ID)* ’:’ ACT_TYPE_ID
CONNECTION ::= PORT ’->’ PORT (’,’ PORT)*
PUBLISH ::= ’publish’ PORT ’as’ ID
PORT ::= ID ’.’ ID

where WORKFLOW ID is a unique identifier for the complex activity type defined by
the workflow. Definitions instantiate activities, with the locally scoped names given by
ACT ID and the activity type by ACT TYPE ID.

Connections are defined from a source port (on the left hand side) to one or more sink
ports (the right hand side). Ports can be either regular ports, which are specified with two
IDs - the first identifies the activity instance, which must have been defined previously
in the workflow, and the second identifies the port within that activity. The port name be
valid (i.e. specified by the activity type), and the connection is subject to the typing rules.

Ports can be published, in which case the published name can be any valid identifier
(that has not already been used as a published port name). A port within a workflow can
only be published under a single name.

17

5 Implementation

WOOL is implemented as a two-stage compiler. The first stage transforms a set of
text files containing valid WOOL syntax into a Java object-based intermediate graph rep-
resentation. The intermediate representation is either stored in memory for immediate
processing, or written out to disk using Java’s standard object serialization protocol. Ad-
ditionally, in this stage the WOOL program is validated for syntax and semantics, and the
graph is passed through an optimizer. This phase includes routines for static type-checking
of connections between activities.

The second compiler stage transforms the in-memory graph into a form that may be
executed by a workflow runtime system. Naturally, the exact nature of the output depends
on the system being targeted, and so our system places no restrictions on what may be
output. The transformation code must be implemented as a Java object conforming to the
Generator interface, which accepts as input the graph generated in the first stage. The
user may indicate which generator object to use at runtime by passing its class name as a
command-line option to the WOOL compiler.

The complete documentation for the APIs discussed in this section may be found online
in Javadoc format 1.

5.1 Lexer and Parser

WOOL’s grammar and tokenizing code are described using ANTLR [19]. ANTLR
was chosen for use in WOOL over several alternatives because of its clean syntax and
integration of lexer and parser grammar specification. ANTLR also supports generation
parsers that are easily callable from Java, a feature that we considered essential since the
rest of WOOL is written in Java.

The lexer and parser together produce an Environment object (see Section 5.3) repre-
senting workflows and metadata from the source code. This object is then passed through a
type-checking phase, which validates each connection within the workflow by its declared
types. Next, this complete, valid Environment object is passed to the optimizing phase.

5.2 Optimizer

At the time of this writing, the optimizer phase does not do anything with the Environment
object – it simply passes the object through unchanged. We are currently working, how-
ever, on a number of graph optimizations (see Section 7.3) that will be implemented as
modular Optimization objects. These objects can be plugged into the optimizer phase

1https://trac.nic.uoregon.edu/wool

18

in any order. Each Optimization object is nothing more than a graph transformation,
i.e. an Environment object is passed to the optimization, which transforms it in place.
Each optimization is executed in a serial fashion, and the types and order of optimizations
may be set by the user.

The optimized graph is typically written out as a binary object using Java’s standard
java.io.Serializable interface, although our current front-end also keeps the graph
in memory for use by a Generator (see Section 5.4).

5.3 Intermediate Representation

WOOL’s intermediate workflow representation consists of a set of Java interfaces that
allow a programmer to query the structure of the workflow graph. Note that, for the time
being, the interfaces do not specify methods to modify the graph – it is assumed that the IR
is to be used primarily to generate code for a runtime system, a task for which read-only
access should be sufficient.

The result of a successful WOOL compilation is a single Environment object. From
this single object, the attributes of the compiled WOOL program can be accessed. An
Environment provides access to a single Target object, which in turn provides access
to the available primitive and complex types. The Environment also contains a list of
named Workflow objects. Each Workflow object is a graph representation of activities,
ports, and connecting edges. Since WOOL workflows may be hierarchical, a (higher-level)
workflow in an Environment may refer to another workflow by using an activity with
a complex type. The complex type name will correspond to the lower-level workflow.
Starting from the Environment, the complete graph of any hierarchical workflow in the
WOOL program may be traversed.

5.4 Generator

Once the WOOL compiler has transformed the source code into the intermediate graph
representation, the next step is to traverse the graph in order to generate an executable
workflow. Since WOOL does not assume any particular runtime system, the exact form
of the executable is not be coded into the compiler. Instead, WOOL provides a modular
system for transforming the graph IR into an executable, via its Generator interface.
This Java interface provides a single method that takes a graph in WOOL’s IR form (an
Environment object, to be precise), and also an optional string parameter indicating the
“primary” workflow that should be generated. To target a particular runtime system, an
object conforming to the Generator interface is created that traverses and outputs the
IR graph in an appropriate executable form.

19

5.5 Example Runtime and Generator

For testing and demonstration purposes, we implemented a simple, Java-based workflow
execution engine and a corresponding Generator object. The runtime engine is quite
simple. Workflow execution is single-threaded, and there is no runtime type-checking.
Workflow components (i.e. WOOL’s “activities”) are simple Java objects that conform
to an Activity interface. This interface provides a single method, called execute,
that is called when the runtime executes the activity. The method takes two standard Java
HashMap objects as parameters – the first represents the objects arriving on the activities
input ports, and the second represents the set of data leaving via the output ports. The
output data are initially empty, but filled during the course of the execute method. The
runtime manages details such as queuing inputs, moving data from output ports to input
ports, and semantics for sets and lists.

The runtime system requires a way to map WOOL activities to their corresponding Java
objects. This is currently accomplished via a simple HashMap that is passed into the
runtime system when it is instantiated.

To target this runtime, we created a Generator-conforming object. This object takes
the WOOL intermediate graph representation and produces sub-classes of certain generic
objects from the runtime system. These sub-classes are specialized so that they instantiate
the appropriate activities and move data according to the compiled graph.

Implementing the Generator object for our example runtime was a valuable experi-
ence. In particular, we found that it was difficult to traverse hierarchical workflow graphs
using just the information in the intermediate graph representation. WOOL’s graph IR
treats sub-workflows as complex activities; that is, just like a simple activity, but with
the implementation given by a named sub-workflow rather than an atomic computation.
Traversal of such a graph requires that the Generator implement data structures to keep
track of which level of the workflow it is currently in. Worse, since port names are only
unique within a single level of a hierarchical workflow, the Generator must keep track
of the local namespace. This proved to be quite a burden. We are currently working to
improve WOOL’s graph representation by incorporating the data structures and methods
for hierarchical traversal into the WOOL API.

6 Application

The application of WOOL demonstrated for this paper was made in the context of med-
ical image processing. Image processing workflows commonly take the form of pipelined
processes, in which images flow through a sequence of operations that transform, identify,
and measure features of interest. It is natural to define a workflow for a specific imaging

20

mismatch:MismatchCalcer

reader:ImageReader

set:Segmenter

agg:Aggregator

size:GroupSize

pars:AllPairs

diff:PixelMisMatchseg:KMeansSegmentation size:GroupSize

rep:Repeater

agg:Aggregator

Figure 1. Segmentation parameter study workflow and sub-workflows.

problem that can be reused over time as new images are produced, and embedded in other
workflows when more complex processing is desired. In this application we consider a
simple workflow in which segmentation is performed based on the classical k-means clus-
tering algorithm. This workflow will be embedded in a larger workflow to measure the
variation in segmentation output as parameters on the k-means algorithm are varied. Fig-
ure 1 shows the overall workflow (center) and the two sub-workflows (left, right). The
shaded components are user-defined, while the unshaded ones are built in.

The images used for this demonstration are histology slides related to the study of acute
inflammation of placental tissue during fetal development2. Segmentation is used to com-
pute geometric properties of the images that are indicators of infection, and a common
question to ask is what variation is expected in the segment assignment as parameters are
varied in order to quantify uncertainty due to algorithmic side effects.

6.1 Segmentation of a single image

The base workflow that we will embed in a larger context is that of simple image seg-
mentation (Figure 1 left). The k-means segmentation algorithm takes two parameters: the
segment count k, and the number of refinement iterations that it performs, i. This work-

2The images were provided by Dr. Carolyn Salafia of Placental Analytics, LLC. and NYU School of
Medicine.

21

flow takes as input an image filename and segmentation parameter, invokes the k-means
algorithm, and produces the resulting segmented image as its output.

6.2 Parameter study

The larger workflow in which the segmentation workflow is embedded (Figure 1 center)
explores the effect of changes to a segmentation parameter on the stability of the resulting
image. We are interested in the effect of fixing k and varying i over a small range, such
as i = {5, ..., 15}, and determining the number of pixels that change segment membership
between subsequent iteration counts. An example image and two such parameterizations
of the segmentation algorithm are shown in figure 6.2.

This workflow will take a set of parameters as input, and invoke the segmentation work-
flow which executes the segmentation component repeatedly, once for each parameter.
The result will be a set of segmented images. A second sub-workflow is provided that
takes a set of segmented images, and computes the mismatch in segment assignment for
each pixel over the entire image for two different parameter choices (Figure 1 right). The
full set of mismatch counts between all combinations of iteration counts is shown as the
right output of the main workflow. A plot of how mismatches change between iteration
counts of i and i + 1 is shown in left output.

WOOL enables the use of sub-workflows to partition the domain functions (k-means
segmentation and pixel mismatch) from the overall pipeline. Note that the Aggregator,
Repeater, GroupSize, and AllPairs activity types are drawn from WOOL’s stan-
dard library. These activities exist in the workflow to implement common control flow
idioms, and can be introduced with the transformation syntax described in Section 7.2.

(a) Original (b) i = 5 (c) i = 14

Figure 2. Sample image and results.

7 Future Directions

Research and development on the WOOL language and tools are ongoing. There are
several areas that we would like to investigate further.

22

(a) All pairs (b) i vs i + 1 pairs

Figure 3. Pixel mismatches vs. iteration count.

7.1 Standard Types and Activities

Currently, WOOL is complete agnostic as to how primitive and activity types get mapped
into a particular runtime system. In a WOOL program there may be a number type,
but it is completely up to the user-defined generator phase and the targeted runtime as to
whether it equates to a C++ int, or a Java java.lang.Number, or something else
entirely. While this arrangement allows WOOL a very high level of flexibility, it comes at
the cost of not having the most basic types that users expect from a programming language
available.

One advantage of adding basic primitive types to WOOL is that we could then add a
standard library of activities that act on these types. For example, we could add a stan-
dard activity that converts an integer into a string, or vice-versa, or common arithmetic
activities. Or, going even further, we could include certain control-flow constructs that
are currently difficult to express in WOOL. These standard activities would make WOOL
much more usable “out of the box,” and should be trivial to implement in almost any
workflow runtime system.

The idea of adding standard types and activities has been driven by our experience in
developing the image processing workflow described in Section 6.

In adding standard types, we want to achieve a balance between ease-of-use for work-
flow programmers and amount of support that WOOL requires from a targeted runtime.
We are currently investigating how much flexibility WOOL would lose if we were to add
basic integer, floating-point, boolean, and string types to the language, along with a com-
plementary basic set of standard activities. It is our feeling that this fairly minimal set
of fundamental types and activities would be sufficient for this purpose, and enable more
complex workflows to be built much more quickly.

7.2 Transformations

We are investigating ways to have WOOL support special syntactic constructs that en-
able transformations on the final workflow graph. Transformations would use a set of

23

language primitives to help users build common, idiomatic graph structures. Addition-
ally, semantic information available from these primitives may be used to normalize the
resulting workflow graph. Transformations, perhaps combined with the standard types
discussed in Section 7.1, could provide a very simple and flexible syntax for common
control-flow idioms.

Map connections are an example of a transformation that might be useful in WOOL. In
a map connection, a subgraph that implements a unit-to-unit filter (i.e. an activity or sub-
workflow that takes a unit input and produces a unit output) is rewired into an equivalent
group-to-group filter. Map connections would be implemented as a graph transformation
— the incoming group is serialized, filtered individually, and then aggregated back into a
group using activities from WOOL’s standard library. This is analogous to the map or fold
primitives available in most functional languages. Figure 4 shows how the map connection
syntax alters the workflow.

A B
unit unit

A B
setunit

Serializer Aggregator
set/unit unit

set

unit
(set length)

A.out -> map(B.in B.out)A.out -> B.in

set/unit

a b

Figure 4. Example of a map connection (a) A connection is established from activity
A to activity B, where the output from A is a set, and the input to B is a unit. The
connection is valid, and the set will be serialized as it is delivered to B. The output
from B is a unit. (b) The same activities (A and B) are used, but the connection is a
map. This causes the connection to be transformed with the addition of the Serializer
and Aggregator activities. Note that the final output from the subgraph is a set.

We envision that transformations of this kind would function as WOOL’s approach to
control-flow constructs. Rather than rely on special language extensions, simple syntax
combined with graph transformations would allow for powerful and customizable control-
flow expressions.

7.3 Optimizations

Graph optimizations are another interesting kind of graph transformation that we are
currently investigating. In particular, it is possible to identify regions of the graph that
can be executed in parallel. These arise in areas of the graph where activities are marked

24

with the stateless keyword and there are no loops. How and under what conditions to
transform the graph to facilitate these parallel regions is a topic of continuing research.

7.4 Testing with Other Runtime Systems

WOOL is intended to be abstract, in the sense that it can be targeted to multiple different
workflow runtimes while retaining the same data-flow semantics for a particular workflow.
To date, however, we have only tested WOOL with our simple, single-threaded runtime
system. To demonstrate that WOOL is effectively abstract, we would like to implement
runtime generators capable of transforming WOOL workflows to other runtime systems.
One candidate for a target is another abstract workflow language, such as AGWL [9]. We
would also like to try a mainstream scientific workflow system, such as VisTrails [6] or
Kepler [2].

In addition, we have begun work on a new distributed workflow system that moves
data between activities using tuple spaces [1]. It uses a scheme, similar to the example
runtime in Section 6, to encode activities based on Java objects and HashMaps for inputs
and outputs. This workflow runtime system promises to be fast and easy to install and run
either on a single processor, or in parallel on a multicore processor or a group of networked
machines. We anticipate that it will also make an interesting target for WOOL.

7.5 User-defined Runtime Semantics

Activities in WOOL should allow modification of aspects of their input and output se-
mantics. For example, what happens to inputs as they arrive at a port? Currently they
are queued in the order received, but alternatives might be to discard messages or to have
some kind of priority queue. Another example is an output that is connected to multi-
ple inputs. Data written to that output could be broadcast to each input (as it is now) or
distributed in a round-robin or randomized fashion. Providing workflow designers with
choices for activity semantics might enable very concise and powerful specifications for
complex workflows.

7.6 Other Enhancements

WOOL does not currently support workflow parameterization, but this feature is impor-
tant for scientific of workflows. Scientists often must specify that a workflow is to run
over a range of numbers or files, or uses constants on some of inputs, and so on. But, pa-
rameters are usually specified as concrete data, and WOOL is intended to be abstract and
independent of particular data types. How to reconcile these goals is a topic of continuing

25

work. One idea is to introduce a language mechanism to specify that a port will be a pa-
rameter without specifying the exact data. This approach might facilitate some interesting
optimizations, as well as enabling passing better information to the runtime.

The application example demonstrated in this paper targets a very minimal, single-
threaded workflow runtime. Another area for future work will be to target different kinds
of runtime systems. For example, we are currently working on a parallel workflow system
based on tuple spaces. It should be possible to leverage WOOL’s unique type system to
aggressively optimize workflows targeted to such a system for very high performance.

Finally, we note that exceptions are hugely important in workflow systems, particularly
for complex scientific codes that run for very long periods of time. We are looking at ways
to introduce robust exception handling into the WOOL language, while still maintaining
runtime independence.

8 Conclusion

The WOOL system provides a simple but effective abstract workflow language with
human-readable syntax and intuitive semantics. It is general enough to specify workflows
targeted to almost any workflow runtime. The language includes a type system that allows
workflows to be verified independent of a particular runtime. We implemented a compiler
and sample generator. Finally, we have shown that WOOL is a viable and useful language
for structuring a relatively involved image-processing workflow.

References

[1] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. Computer, 19(8):26–34, 1986.
[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock. Kepler: an extensible

system for design and execution of scientific workflows. In Proceedings of the 16th Interna-
tional Conference on Scientific and Statistical Database Management 2004, pages 423–424,
2004.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language
for web services version 1.1. http://www.ibm.com/developerworks/library/specification/ws-
bpel/, May 2003.

[4] Apple Inc. Quartz Composer Programming Guide, 2007.
[5] P. V. Biron and A. Malhotra. XML schema part 2: Datatypes second edition. W3C recom-

mendation, World Wide Web Consortium, October 2004.
[6] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo. Managing the

evolution of dataflows with VisTrails. In 22nd International Conference on Data Engineer-
ing Workshops (ICDEW’06), pages 71–75, Los Alamitos, CA, USA, 2006. IEEE Computer
Society.

26

[7] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields, I. Taylor, and
I. Wang. Programming scientific and distributed workflow with Triana services. Concurrency
and Computation: Practice and Experience, 18(10):1021–1037, 2006.

[8] E. Deelman and Y. Gil. Final report of NSF workshop on challenges of scientific workflows.
http://vtcpc.isi.edu/wiki/images/b/bf/NSFWorkflow-Final.pdf, May 2006.

[9] T. Fahringer, S. Pllana, and A. Villazon. A-GWL: Abstract Grid Workflow Language. In 4th
International Conference on Computational Science (ICCS 2004), Lecture Notes in Com-
puter Science, pages 42–49. Springer Berlin / Heidelberg, June 2004.

[10] T. Fahringer, J. Qin, and S. Hainzer. Specification of grid workflow applications with AGWL:
an abstract grid workflow language. In CCGRID ’05: Proceedings of the Fifth IEEE Inter-
national Symposium on Cluster Computing and the Grid (CCGrid’05) - Volume 2, pages
676–685, Washington, DC, USA, 2005. IEEE Computer Society.

[11] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for distributed system
integration. Computer, 35(6):37–46, June 2002.

[12] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computational tasks: A survey.
Computing in Science and Engineering, 10(3):11–21, May–June 2008.

[13] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble, M. Livny,
L. Moreau, and J. Myers. Examining the challenges of scientific workflows. Computer,
40(12):24–32, December 2007.

[14] C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, Y. Zhao, and H. Zheng.
Overview of the Ptolemy project. Technical report, University of California Berkeley, 2003.

[15] S. Krishnan, P. Wagstrom, and G. von Laszewski. GSFL: A workflow framework for grid
services, 2002.

[16] F. Leymann. Web Services Flow Language (WSFL 1.0). Technical report, IBM, May 2001.
[17] S. Majithia, M. Shields, I. Taylor, and I. Wang. Triana: A graphical web service composition

and execution toolkit. In Proceedings of the IEEE International Conference on Web Ser-
vices (ICWS’04), volume 0, pages 514–522, Los Alamitos, CA, USA, 2004. IEEE Computer
Society.

[18] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover,
M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and enactment of
bioinformatics workflows. Bioinformatics, 20(17):3045–3054, November 2004.

[19] T. J. Parr and R. W. Quong. Antlr: a predicated-ll(k) parser generator. Software – Practice &
Experience, 25(7):789–810, 1995.

[20] J. Yu and R. Buyya. A novel architecture for realizing grid workflow using tuple spaces. In
GRID ’04: Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing,
pages 119–128, Washington, DC, USA, 2004. IEEE Computer Society.

27

