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Author’s Summary

In this project, I consider the problem of inferring the ancient evolutionary
history of molecular gene sequences. Given the extreme paucity of molecu-
lar fossils, the history of genes can be difficult to study. However, computa-
tional methods of ancestral sequence reconstruction (ASR) can be used to
statistically infer the sequences of extinct genes; some of these reconstruc-
tions have been chemically synthesized and experimentally tested. Although
ASR allows us to answer previously unknowable questions about evolution-
ary molecular mechanisms, results from ASR-based experiments rely on the
accuracy of their underlying computational reconstruction. In this project,
I investigate one aspect of the ASR algorithm which may impact accuracy:
phylogenetic uncertainty. Most reconstruction algorithms assume the phy-
logeny is known with certainty; in practice, this assumption is rarely valid.
Does ignoring phylogenetic uncertainty affect ASR accuracy?

To answer this question, I proposed an empirical Bayesian algorithm
for integrating phylogenetic uncertainty in ASR. I examined this method in
simulated and real conditions. My results are surprising and nonintuitive:
phylogenetic uncertainty is not correlated with the accuracy of reconstructed
ancestral states. The conditions which produce phylogenetic uncertainty re-
sult in ancestral states on alternate trees which are similar, if not identical,
to the ancestral states on the maximum likelihood tree. Ultimately, inte-
grating phylogenetic uncertainty does not significantly affect the accuracy
of reconstructed ancestral sequences.



1 Introduction

The evolution of life likely started over 3.8 billion years ago [Fenchel, 2002,
Knoll, 2004] (see also [Schopf, 2006]). However, evolutionary processes can
be challenging to directly observe given the relative brevity of a human life-
time. Although biologists have traditionally used fossils to infer evolutionary
history, the fossil record is incomplete and not easily searchable. Simply put,
our knowledge of evolutionary history should not rely on lucky shovels. The
advent of gene sequencing technology provides alternatives to fossil-based
inference: there exists a growing body of algorithms to statistically infer
evolutionary history from observed extant gene sequences. The computa-
tional challenges of phylogenetic inference and ancestral reconstruction are
frontiers in computer science, uniting aspects of biology, chemistry, statis-
tics, and information science. In this paper, I address the specific problem
of phylogenetic uncertainty in ancestral reconstruction. Before discussing
this topic in detail, I want to familiarize the computer science reader with
necessary concepts in evolutionary biology and statistical inference. Thus,
this introduction. . .

Evolutionary forces act on phenotypes: the physical, behavioral, and
biochemical attributes of an organism. The individual organisms in a pop-
ulation vary in their phenotypes. Some individuals have phenotypic vari-
ants which are better adapted to the conditions of life; these individuals are
more likely to survive and reproduce. As an example, consider the peppered
moth Biston betularia [Ridley, 2004]. Before the British industrial revolu-
tion, naturalists observed the majority of individuals within peppered moth
populations had light-colored bodies. The light coloration provided natural
camouflage on lichen and bark. When industrial activity covered the forests
of central Britain with dark soot, the majority of peppered moths were no
longer camouflaged and became easy prey for hungry birds. At the same
time, a curious phenotypic minority of moths had dark coloration. The dark
moths were well-adapted to the sooty forest and were more likely to survive
predation from birds. Over time, evolution selected for the dark phenotype;
the light phenotype declined into minority.

Although evolution acts on phenotypes, the phenotypes themselves are
encoded in genetic material — i.e. DNA. Within each living cell, coding re-
gions of DNA are transcribed into RNA and then translated into proteins.
Individual proteins and networks of proteins are expressed in patterns which
determine an individual’s phenotype. The flow of information from DNA to
RNA to protein is considered to be the central dogma of biology. (As a corol-



lary, the discovery of reverse transcriptase extends and challenges the dogma
[Baltimore, 1970, Temin and Mizutani, 1970]). Individuals which survive
and reproduce pass their genes to future generations; in this way, an indi-
vidual’s phenotype is informed by its ancestors’ phenotype.

Over time, genetic lineages diverge and independent lineages are free to
accumulate unique mutations. A history of evolutionary lineage-splitting
can be expressed as a type of tree graph, called a cladogram. The terminal
nodes of a cladogram correspond to extant taxa ; the internal branching pat-
tern expresses the shared ancestry of the terminal nodes. Some cladograms
are rooted, in which case the root node corresponds to the most-common-
shared ancestor of all taxa on the tree. Figure 1 illustrates a simple rooted
cladogram for the history of the family Hominidae.

the common ancestor

of Hominidae
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Figure 1: The shared evolutionary history of the family Hominidae can be expressed as a
cladogram. Although this cladogram does not measure time, the direction of evolution progresses

from left to the right.

A phylogram is a special type of cladogram in which the branch lengths
(i.e. the edge lengths) correspond to a measure of evolutionary distance.
“Distance” corresponds to the number of observed (or expected) charac-
ter differences between nodes. The problem of phylogenetic inference is to
determine the correct tree topology and branch lengths for a given set of
extant taxa.

Phylogenetic inference occurs in three steps. First, we collect observa-
tions about evolutionary characters for a set of descendant taxa. Second, we
arrange those observations into a sequence alignment. Finally, we use the
sequence alignment to infer a phylogeny. Here I describe these three steps
in detail.



The first step is to select a set of extant taxa and observe evolution-
ary characters for those taxa. These characters can be discrete or continu-
ous. For example, we might consider the character “presence of mammary
glands” (a discrete binary character) to distinguish mammals from non-
mammals. If we are analyzing birds, we might consider the character “beak
length” (a continuous character) to help distinguish among bird species.
Gene sequencing technology allows us to observe evolutionary characters
at the molecular level. Nucleotide sequences (i.e. DNA sequences) include
characters from an alphabet with four possible states: A, C, G, and T.
These characters correspond to the four nucleotides which compromise the
structure of DNA: adenine (A), cytosine (C), guanine (G), and thymine (T).
Nucleotide three-tuples encode for the alphabet of amino acids. For exam-
ple, the nucleotide combinations GCT, GCC, GCA, and GCG all encode
for the amino acid alanine; the combinations TAT and TAC both encode
for tyrosine. There exists 23 possible nucleotide three-tuples, but redundant
coding yields only twenty possible amino acids.

Figure 2 illustrates how a short string of amino acid characters might
evolve over time. This example begins with an ancestral sequence NEDP,
which stands for the amino acids asparagine, glutamic acid, aspartic acid,
and proline. NEDP speciates into two divergent lineages. In one lineage,
the character IV evolves to D and then F, giving rise to the extant descen-
dant FEDP. In the other lineage, the character D evolves to V, giving
rise to the intermediate ancestral sequence NEV P. In this example, the
intermediate ancestor also speciates, leading to extant descendants NQV P
and NQV A. Although figure 2 explicitly shows the evolutionary history of
the three descendant sequences, in practice the history is hidden from us.

The second step in phylogenetic inference is to arrange the character
observations into a matrix called a sequence alignment. Each row in a se-
quence alignment corresponds to a string of character observations from one
taxa. Each column corresponds to a character which may or may not appear
in several taxa. Sequence alignments are critical for phylogenetic inference
because alignments allow us to observe which characters are shared (or not
shared) between extant taxa. For the descendant amino acid sequences in
figure 2, the alignment is trivial:

EEDP
NQVP
NQVA

A more complex example would involve insertion and deletion characters,
otherwise known as indels. Over time, sections of DNA are inserted and
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Figure 2: In this example, an ancestral amino acid sequence N EDP evolves into three descen-

dant sequences.

deleted. Consequently, a particular gene might be encoded with z number
of nucleotides in one species, but z + A number of nucleotides in another
species.

In a practical analysis, one of the challenges of aligning sequences is to de-
termine where the insertion and deletion events occurred. There exist several
algorithms and tools for aligning molecular sequences [Chenna et al., 2003,
Thompson et al., 1994, Cedric Notredame, 2000, Edgar, 2004, O’Sullivan et al., 2004,
Do et al., 2005, Armougom et al., 2006, Subramanian et al., 2008]. Figure
3 shows part of a sequence alignment for mitochondrial primate DNA. The
full alignment is 18,201 characters long; for brevity I’ve shown only sites 3320
to 3345. Figure 3 shows that some characters are well conserved across all
extant taxa, while other characters are wildly divergent. A comprehensive
discussion of alignment algorithms is outside the scope of this paper; for more
information, see Edgar and Batzoglou’s review [Edgar and Batzoglou, 2006].

Given a sequence alignment, the third step of phylogenetic inference
is to actually infer the tree and its branch lengths. Figure 4 shows an
inferred phylogeny for the primate DNA from our previous example. Al-
though numerous approaches have been proposed for inferring phylogenies,
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Figure 3: An alignment of fifteen primate mitochondrial genomes: The full
alignment is 18,201 characters long. For brevity, only the characters in positions 3320 to 3345
are shown. The sequences are identified by their GenBank accession numbers [Burks et al., 1992].
These sequences were aligned using Clustal X [Chenna et al., 2003], and visualized using MacClade
[Maddison and Maddison, 1992]. Each cell is colored according to its nucleotide state. The white

cells indicate indels (i.e. insertions or deletions).

they generally fall into one of four categories: parsimony-based methods,
distance-based methods, maximum likelihood methods, and Bayesian meth-
ods [Felsenstein, 2004]. Sections 1.1 through 1.5 of this manuscript discuss
these approaches.

1.1 Early Approaches to Infer Phylogenies

Maximum parsimony (MP) is one of the earliest methods for inferring a
phylogeny from a sequence alignment. According to the principle of par-

simony, the explanation which requires the fewest number of ad-hoc hy-

pothesis should be accepted in lieu of more complicated explanations. In

the context of biological evolution, MP seeks the phylogeny which requires

the minimum “evolutionary cost” between ancestral nodes and leaf nodes

[Edwards and Cavalli-Sforza, 1963]. “Evolutionary cost” typically corresponds

to the number and type of character changes. Several parsimony criteria

have been proposed for measuring cost [Camin and Sokal, 1965, Kluge and Farris, 1969,
Farris, 1970, Fitch, 1971, Farris, 1977].

Despite it’s computational simplicity, MP is not statistically consistent
[Felsenstein, 1978]. A method of phylogenetic inference is said to be consis-
tent if, as the length of the observed sequences increases, the method con-
verges on the true phylogeny. Given (impossible) infinite-length sequences,

a consistent method will recover the true phylogeny every time. Incon-
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Figure 4: The primate phylogeny, reconstructed using the nucleotide se-
quences for cytochrome-B (CYTB) and cytochrome oxidase I (COI) genes.
Here, I downloaded fifteen mitochondrial nucleotide genomes and two non-primate outgroup
genomes from GenBank [Burks et al., 1992]. Using ClustalX [Chenna et al., 2003], I aligned
the fifteen genomes using the slow / accurate method. I explored a range of gap opening
costs (2, 10, 15, 20), and a range of gap extension penalties (0.05, 0.1, 0.2), for a total of
twelve unique alignments. Unsure of which alignment is best, I engineered a small software
engine to iteratively infer maximum likelihood phylogenies for each alignment (using PhyML
[Guindon and Gascuel, 2003]) and to find the best-fit model (using AIC [Akaike, 1973]). Surpris-
ingly, all twelve alignments produce the same ML topology and were all best-fit by the GTR
model [Tavare, 1986]. Alternatively, I could have incorporated alignment uncertainty by eliding
the twelve alignments [Wheeler et al., 1995]. The labels for terminal taxa correspond to Gen-
bank accession numbers. The bootstrap and Bayesian support values are listed at each internal
node. The pink branches form a topology which disagrees with Krishnan’s original CYTB/COI

phylogeny [Krishnan et al., 2004].



sistent methods pull us towards an incorrect hypothesis (i.e. an incorrect
phylogeny). Although MP yields the correct tree in many cases, Felsenstein
showed the method can be inconsistent when the true evolutionary history
did not occur according to a fixed evolutionary rate [Felsenstein, 1978].

At roughly the same time that parsimony methods were being developed,
other methods based on distance matrices were proposed [Cavalli-Sforza and Edwards, 1967,
Fitch and Margoliash, 1967]. The key idea of these methods is to construct
an n X n distance matrix, where n is the number of extant taxa in the analy-
sis. Each entry [, j] expresses the fraction of characters in which sequences 4
and j differ. For example, consider the descendant sequences in figure 2. The
descendants NQV P and NQV A differ by one character out of four; their
distance is 0.25. This distance is actually an underestimate of the true evo-
lutionary distance. Although NQV P and NQV A appear to be separated by
0.25 substitutions per site, they are actually separated by 0.75 substitutions
per site: the change F — @ occurred twice and P — A occurred once. The
key idea is that some mutational events are not observable. If all character
states in all lineages changed to all other possible states at the same rate,
then converting observed distances into true evolutionary distances would
be relatively straightforward [Jukes and Cantor, 1969]. In practice, evolu-
tionary rates are not always constant or unbiased, so calculating the correct
distance between two sequences remains problematic.

If we momentarily assume distances are correct, a phylogeny can be
constructed from a distance matrix by considering all possible topologies,
treating branch lengths as a variable parameter, and selecting the tree
which best fits the pairwise distances. In practice, an exhaustive exam-
ination of all possible trees is often computationally intractable. There-
fore, heuristics are used to find the “best” tree in a practical amount of
time. The unweighted pair group method with arithmetic mean (UPGMA)
[Sokal and Sneath, 1963] and the neighbor-joining method [Saitou and Nei, 1987]
are two such heuristics. Once a tree is constructed, its optimality can be
measured using the least-squares [Cavalli-Sforza and Edwards, 1967, Fitch and Margoliash, 1967]
or minimum evolution [Kidd and Sgaramella-Zonta, 1971].

Distance methods have limitations [cite Farris 19827]. As already men-
tioned, converting observed distances into evolutionary distances remains
problematic. Furthermore, we lose information when we convert sequences
into distance matrices. This shortcoming has been explained in terms of
a person arriving in one city from another place [Osborn and Smith, 2005]:
The distance method takes into account only how far the person has trav-
elled, whereas other methods (such as parsimony) attempt to reconstruct
the actual route taken. Finally, Felsenstein observes that distance methods
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are incapable of propagating information across the tree [Felsenstein, 2004].
He explains this limitation in terms of rate variation: if we observe a fast
evolutionary rate in one lineage, we should use this information to affect
our interpretation of evolutionary rates in other lineages. Distance methods
cannot do this.

In the remainder of this introduction, I turn our attention away from
parsimony and distance methods and focus on probabilistic methods. These
methods rely on explicit models of character substitution. As we shall see,
one of the challenges of probabilistic methods is to design evolutionary mod-
els which combine realism with computational tractability.

1.2 Markov Models

By treating molecules as character sequences, molecular evolution can be
understood within an information theoretic framework. To motivate this
view, let’s begin with the the simplest case: a sequence with one character x.
The evolution of a single ancestral amino acid « into some descendant amino
acid ' can be modeled as the transmission of data over a discrete memoryless
channel. Evolutionary mutations introduce noise into this channel: in other
words, 2’ might not equal x.

Because our channel is memoryless, we can model the evolution of x — '
as a continuous-time Markov process. A Markov process describes a system
evolving according to the Markov property: the conditional probability of
the system’s future state depends only on the present state and not on past
states. As a demonstration of the Markov property, suppose the ith site
in some ancestral protein sequence is asparagine (represented as 'N’). After
some time, suppose N mutates into aspartic acid ('D’). After more time,
suppose D mutates into glutamic acid ("E’). The mutation D — E occurs
independently of the previous mutation N — D. The inverse is also true:
the mutation N — D occurs independently of the future mutation D — E.
In this way, the channel is memoryless: the path N — D — E is forgotten
and we observe only the present state E.

Although we could apply any number of alternate models, the Markov
model provides an acceptable trade-off between biological realism and com-
putational tractability. That said, the basic Markov process for molecular
evolution makes a key assumption: each site within a sequence evolves in-
dependently of other sites. As an example, suppose an ancestral sequence
with two characters x; and x; evolves into a sequence with characters
and . The basic Markov model assumes the evolution of x; — ] occurs

independently of z; — 7.
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Here I discuss how to calculate the probability of ancestral state x evolv-
ing into descendant state z’ over time ¢. Typically, the timing and quantity
of mutation events over some time t is unknown. However, we can use a
Poisson distribution as an approximation. Given a mutation rate p, the
probability of £ mutations over time ¢ is:

k_—ut

(ke = P )
Let £ be the set of all possible states in our character alphabet. For
DNA sequences, ¢ = {A,C, G, T}; for protein sequences, ¢ equals the set of
twenty amino acids. Let () be the instantaneous substitution rate matrix.
Q;j expresses the relative rate at which character ¢ mutates to character j
at a differential moment in time, where i, j € €. We combine the matrix @
with the Poisson distribution (from equation 1) to calculate the probability
of specific character changes over time t. Before describing that process, I

will discuss some properties of the matrix Q).
() matrices are specified by one or more parameters. For example, the )
matrix for the JC69 model of evolution is specified in terms of a single pa-

rameter p, representing the overall mutation rate [Jukes and Cantor, 1969].
Thus:

3 L I I
M g Z Z
w3 “ “
Q= Z H g i
o g _3 u
1 Z M g
I I a3
1 ] ] aH

A more complex example, the general time reversible (GTR) model, is spec-
ified in terms of six rate parameters {a, b, ¢, d, e, f} and four base frequencies
{7a, e, mg, m¢} [Tavare, 1986]. Thus:

—p(ame + brg + cmy) pame pbmg pemy

Q= pamg —u(amg + dmg + emy) pdmg pemy

- pubmg pdme —u(brg + dme + ft) pfme
pema peme iy —p(ema + eme + fmg)

In addition to JC69 and GTR, there exist several other nucleotide mod-
els of varying complexity. To name a few: K80 [Kimura, 1980], HKY85
[Hasegawa et al., 1985], and F81 [Felsenstein, 1981].
Unlike nucleotide models, substitution matrices for amino acid models
are often derived empirically from large databases of sequences [Dayhoff et al., 1978,
Jones et al., 1991, Adachi and Hasegawa, 1996]. This approach occurs in
three steps. First, all the amino acid sequences in a database are phylogeneti-
cally arranged. For instance, we could build a distance-based tree for all the
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sequences in the SWISS-PROT database [Bairoch and Boeckmann, 1992].
Second, pairs of sequences with similarity greater than some cutoff are
identified. For example, the process for building the JTT model finds
pairs of sequences with >85% similarity. Finally, for all amino acids i
and j, the proportion of each substitution ¢ — j is counted in all se-
quence pairs. These counts are converted into overall proportions and ex-
pressed as a substitution matrix. The approach I just described is essen-
tially a distance method, and has been shown to underestimate the true
number of character changes [cite Goldman? 1990]. Several likelihood-
based approaches have been proposed to overcome distance underestima-
tion [Adachi and Hasegawa, 1996, Adachi et al., 2000]. Whelan and Gold-
man proposed the WAG model, which combines attributes of the counting
methods and the likehood-based methods [Whelan and Goldman, 2001].

Regardless of which model we choose, the algorithm for calculating the
probability of state change over a phylogenetic branch of length ¢ is the
same for nucleotide and amino acid data. Let R be the matrix satisfying
the expression ) = R — I, where [ is the identity matrix. (Nucleotide
models are often specified in terms of (), whereas protein models are often
specified in terms of R.) Let P(t) be a matrix where P(t);; expresses the
probability of mutating from state ¢ to state j over time t. We construct
P(t) by combining the the Poisson distribution (from equation 1) with an
exponentiated form of the matrix R. Thus:

0o kot
p(t) =y (e 2
k=0 ’

And with a rearrangement, we get:

o0 k
P = S g ©

The summation in equation 3 has the same form as a matrix exponent series:

eRut — i(Rk) (Mt)k (4)

!
b k!

Therefore, equation 3 can be simplified to:

P(t) = e Htelint (5)

If we introduce the identity matrix and rearrange, we get:

13



P(t) = e Kl o Rut (6)
P(t) = elB=nt (7)

P(t) = e (8)

Although equation 8 gives a compact and direct expression of P(t), the
formula is not practical for software implementation. Equation 8 is typically
computed using Eigen decomposition as follows:

et — AePrtp=1 (9)

where D is the diagonal matrix of Eigenvalues and A are the Eigenvectors. A
full treatment of Eigen decomposition is outside the scope of our discussion;
a comprehensive description is found at [Golub and Loan, 1996].

1.3 Likelihoods on Trees

In section 1.2, I introduced the matrix P(t), which expresses the probabil-
ity of any given state mutating to another state over a single phylogenetic
branch of length ¢. In this section, I extend our discussion to consider the
probability of character mutations on multiple branches in a phylogenetic
tree.

Consider a sequence alignment with N sites (i.e. columns) and M taxa
(i.e. rows). For now, assume the tree and its branch lengths are given. Also
assume the model of evolution and the parameters for it’s () matrix are
given. Let 6 be the vector containing the model parameters and the branch
lengths. If we assume each site evolves independently, then the probability
of the alignment is the product of probabilities for each site. In other words:

N
P(alignment|tree,0) = H P(site;|tree, ) (10)
i=1
The conditional probability P(alignment|tree, 8) is also known as the likeli-
hood of the tree and 6. There exists a dynamic downpass algorithm to calcu-
late P(alignment|tree, ). For the sake of brevity, I describe this algorithm
for DNA data (with four possible states). This algorithm can be trivially
extended to accommodate protein data (with twenty possible states). The
algorithm follows:

14



For each tree node p, we initialize the vector G, = { gpA, gpc , ng , gg }. Each
element of G, expresses the conditional probability of the subtree rooted at
p, assuming the particular state was assigned to p. For the terminal nodes,
we set g}, = 1 if we observe state i; we set gg; = 0 for all other states.
We proceed from the tips to the interior nodes, according to a postorder
traversal. At each internal node p, we update G). For an internal node p,
with two descendant branches of length r; and ry leading to nodes u; and
uo, we calculate gfgas follows:

‘ je{ACGT} ‘ je{ACGT} '
gh=3_ Plr)yg, x Y. P(ra)igl, (11)
J J

In other words, the conditional probability of state ¢ at node p is the sum of
probabilities that i changes to any state j (where we allow for j = i) along
branch r1 and ro.

Eventually the downpass algorithm will calculate G, for the root node,
after which the total probability of the tree for site 7 is calculated by summing
over all possible states, each weighted by its stationary state frequency:

je{acery
P(site;|tree, ) = Z i) oot (12)
J
Putting everything together, we calculate the likelihood of a tree in two
steps:

1. Use Eigen decomposition to calculate e?#, as shown in equation 9.

2. Perform a post-order traversal of the tree, applying equation 11 for
every state and every site.

The first step is much more computationally demanding than the second.
If we have N sites, M taxa, and C possible states, step one takes O(MC?)
time, and step two takes O(M NC?) time [Bryant et al., 2005]

1.4 Maximum Likelihood

Until now, our discussion assumed the phylogeny and its branch lengths were
known. In practice, the phylogeny (and its branch lengths) are typically un-
known. The challenge of finding the best phylogeny can be computationally
nontrivial, especially when dealing with large taxa sets. In this section,
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I discuss how to use maximum likelihood (ML) to infer phylogenies from
sequence alignments.

Maximum likelihood starts with a model of evolution, which explains
how the observed data arose. Given a set of input parameter values, the
model gives the probability of observing the data. The basic idea of ML is
to select parameter values that maximize the probability of observing the
data. In the context of phylogenetic inference, the model parameters include
the values of the substitution matrix, the topology of the tree, and the tree’s
branch lengths.

ML was originally developed by Fisher [Fischer, 1922] (see also [Aldrich, 2007]).
Felsenstein introduced ML to the problem of phylogenetic inference; he
showed that ML is consistent for selecting an evolutionary model and for
estimating branch lengths [Felsenstein, 1981]. However, Felsenstein’s proof
falls short of showing that ML is consistent for selecting tree topologies.
In response, Yang articulated a proof that ML is consistent for selecting
topologies [Yang, 1994], and Rogers found a stronger proof [Rogers, 1997].

The problem of finding the maximum likelihood phylogeny is an opti-
mization problem, where we seek the optimal combination of tree topol-
ogy, branch lengths, and model parameters. The space of possible trees
can be immense. For n extant taxa, there exist 2(71(,2%72:):2)' possible un-
rooted topologies, each with 2n — 2 branches. For a small dataset, with
only twenty taxa, there exist 2.22 x 103 possible unrooted topologies, each
with 40 branches. Each topology has an infinite number of branch lengths
and model parameters. For most practical analyses, an exact exhaustive
search through the space of possible topologies, branch lengths, and model
parameters is computationally intractable. Consequently, a large number of
heuristic solutions have been proposed and implemented. In general, these
solutions construct an initial tree and then use hill-climbing algorithms to
optimize the topology, branch lengths, and model parameters.

Swofford reviews five methods for constructing initial trees [Swofford et al., 1996]:
the distance method, random trees, sequential insertion, star decomposition,
or approximate likelihood. Of these options, the software package PhyML
uses the distance method [Guindon and Gascuel, 2003]; the software pack-
age PAML uses sequential insertion [Yang, 1997]; and the package PAUP
implements all five methods [Swofford, 2003].

After constructing an initial tree, hill-climbing algorithms can be used
to optimize the topology, branch lengths, and model parameters. Broadly
speaking, optimization algorithms seek to optimize either one dimension or
multiple dimensions at each iterative step. PAML uses the one-dimension
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Newton-Raphson method [van der Vaart, 2000] to independently optimize
tree topology and branch lengths, whereas PhyML uses a multidimensional
variant of this method [Guindon and Gascuel, 2003]. PAUP implements
four optimization methods: the single-dimension Newton-Raphson method,
Brent’s one-dimension algorithm [Brent, 1972], a multi-dimensional variant
of the Newton-Raphson method [Brent, 1972], and a multi-dimensional vari-
ant of the Simplex method [Dantzig, 1963]. The question of single versus
multi-dimensional optimization appears unaddressed in phylogenetic litera-
ture; this might be a fruitful area of future research.

In addition to the aforementioned ML algorithms, several computa-
tional strategies are being investigated. Matsuda introduced a genetic algo-
rithm for inferring maximum likelihood phylogenies from protein sequences
[Matsuda, 1996]; Lewis introduced a similar method for nucleotide sequences
[Lewis, 1998] and implemented the method in the software package named
GAML. Later, Zwickl reimplemented GAML into a software package named
GARLI; the reimplementation uses the general-time reversible model (and
all its subsets), in addition to using a more efficient genetic selection process.
Genetic algorithms aside, Kolaczkowsi and Thornton introduced a simulated
annealing algorithm to estimate ML tree topologies, model parameters, and
the number of branch length categories [Kolaczkowski and Thornton, 2008];
Kolaczkowski’s algorithm is prototypically implemented in the software pack-
age SAML.

ML phylogenetic inference can be computationally demanding, espe-
cially when using genetic algorithms or simulated annealing approaches.
These demands are being addressed by software parallelization and advances
in multiprocessor architectures. Stamatakis ported his software package
RaxML [Stamatakis et al., 2005] to the IBM BlueGene/L [Ott et al., 2007]
and the IBM Cell processor [Stamatakis et al., 2007]. Depending on the
parallelization strategy (fine-grained versus coarse-grained) the parallelized
version of RaxML achieved between logarithmic and linear speedup. Ge-
netic algorithms have also been parallelized; in fact, genetic algorithms lend
themselves to so-called embarrassing parallelization. Lewis’ GAML soft-
ware was parallelized with nearly linear speedup [Brauer et al., 2002], and
later GARLI was parallelized to obtain significantly more optimal phyloge-
nies than the serial implementation. Unlike genetic algorithms, simulated
annealing algorithms do not lend themselves to easy parallelization. That
said, approaches have been proposed for the general non-phylogenetic case
[Azencott, 1992]. Given that simulated annealing was only recently applied
to the problem of inferring phylogenies, much work remains to implement
computational optimality.
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1.5 Bayesian Methods

In recent years, Bayesian methods have been proposed as an alternative to
maximum likelihood methods. As with ML, Bayesian methods use a model
of evolution to explain how the observed data arose. In other regards, ML
and Bayesian methods are philosophically different. Unlike ML, Bayesian
methods require us to incorporate prior beliefs about the model’s parameter
values. Whereas ML calculates point estimates of the model parameters,
Bayesian methods calculate integrated estimates. Finally, ML yields likeli-
hoods, while Bayesian methods yield posterior probabilities.

The Bayesian posterior probability of a tree, branch lengths, and model
parameters is calculated according to Bayes’ theorem. Let D be a set of
observed data (i.e. a sequence alignment), let T" be a given tree topology,
let M be a model of evolution, and let 8 be the vector containing the model
parameters. The posterior probability of T, M, and 0, given D, is

P(T, M,0)L(D|T, M,0)
P(D)

In the numerator, P(T, M, ) specifies the prior probability of the tree topol-
ogy, model, and model parameters. L(D|T, M, 0) is the likelihood function:
the likelihood of observing the data, given the topology, model, and model
parameters. In the denominator, P(D) is the total probability of the data
summed and integrated over all tree topologies, models, and model param-
eters. Thus:

P(T, M,6|D) = (13)

P(D) = /T _P(T.M.O)P(DIT, M, 0)d{T. M, 6} (14)

For the purposes of unraveling evolutionary history, we are concerned
with finding the best topology given all possible models and sets of model
parameters. In other words, the Bayesian approach to finding the best
topology is to integrate over uncertainty about the model and the model
parameters. Consequently, equation 15 is recapitulated in these terms:

P(T)L(DM,0|T)
P(D)
Although Bayes’ theorem was introduced in the 18th century, Bayesian
phylogenetic inference was adopted only recently due to the difficulty of ana-
lytically integrating posterior probabilities. A solution to this problem came
by way of Stanislaw Ulam, John von Neumann, and Nicholas Metropolis: in
the 1940’s they developed the so-called “Monte Carlo” algorithm as a means

P(T'|M,0|D) =

(15)
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to numerically approximate solutions to differential equations on the ENIAC
machine [Metropolis, 1949, Metropolis, 1987]. Metropolis et al. later artic-
ulated the Monte Carlo algorithm in the context of a Markov chain, thus
inventing the Monte Carlo Markov Chain (MCMC) [Metropolis et al., 1953].
Several groups worked to developed MCMC methods for Bayesian phyloge-
netic inference [Rannala and Yang, 1996, Mau, 1996, Mau and Newton, 1997,
Mau et al., 1999, Li, 1996, Larget and Simon, 1999, Yang and Rannala, 1997,
Newton et al., 1999]. The summation of most this work is implemented in
the popular software package MrBayes [Ronquist and Huelsenbeck, 2003].

The key idea of MCMC is to use a very large statistical sample to ap-
proximate a multidimensional integral. We can estimate the posterior dis-
tribution using a sequence {si, s9,...,s,} of independently and identically
distributed samples. The MCMC algorithm begins with a random sample
s1. The algorithm proposes the next sample so based on a transition ker-
nel q(s;+1]s;). In some literature, this is called the jumping kernel or the
proposal density. Given s;, the transition kernel selects the next sample
si+1 based on a sliding window w around the current sample s;. For exam-
ple, in one implementation, s;11 is a random value drawn from the interval
[s — 9,5+ 4]. The key idea of the value w is to control the size of steps
taken during the MCMC run.

If the probability of the new proposal is greater than the probability
of the old proposal — i.e. if P(s;y1|D) > P(s;|D) — the MCMC algorithm
accepts the new proposal. Otherwise, the new proposal s;11 is accepted with
probability «, where

a = min (1, W) (16)

We can visualize the MCMC algorithm traversing a topographic landscape.
The peaks correspond to values for s which yield large posterior probabilities.
The transition kernel will propose samples which sometimes lead uphill, and
other times lead downhill. If the number of samples n is sufficiently large,
then the MCMC algorithm will spend time at each sample s in proportion
to its posterior probability.

Three requirements must be satisfied for the MCMC algorithm to work:

1. Irreducibility: the Markov chain must be able to reach all parts of the
posterior distribution.

2. Recurrence: if the chain is run for infinite samples, then all parts of
the posterior distribution must be reached infinitely often.
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3. Convergence: the sample mean of the estimated posterior distribution
should converge to the expected mean.

If a chain meets these requirements, then it will converge on a stationary
distribution (i.e. the MCMC estimate of the true distribution). A chain is
said to have good mixing time if it converges on its stationary distribution
after a relatively short number of samples.

The basic MCMC assumes the transition kernel is symmetric. In other
words, MCMC assumes ¢(s;+1]si) = q(si|si+1). Hastings extended MCMC
to use non-symmetric kernels [Hastings, 1970]. Geyer proposed another
improvement: running several parallel MCMC chains with different sizes
of sampling windows [Geyer, 1991]. Geyer’s so-called Metropolis-coupled
MCMC (or MC3?) gives better mixing time than standard MCMC. In ad-
dition to Geyer’s approach, simulated annealing algorithms have also been
used to improve MCMC mixing time [Marinari and Parisi, 1992, Geyer and Thompson, 1995].
Like MC3, the simulated annealing approach runs several parallel chains.
Unlike MC3, simulated annealing MCMC randomly interchanges the chains.

1.6 Phylogenetic Uncertainty

If our phylogenetic inference method is statistically consistent and we have
infinite data, then our maximum likelihood phylogeny is guaranteed to be
the true phylogeny. In practice, our datasets are finite and we cannot be
sure our best inferred phylogeny is indeed correct. It is therefore desirable
to have some metric of statistical confidence in the accuracy of an inferred
tree. Here we discuss two such measures: the maximum likelihood bootstrap
proportion (BP), and the Bayesian posterior probability (PP).

We can formally think of the BP and the PP as testing the limit on accu-
racy of the claim that a given clade is nonmonophyletic [Alfaro and Holder, 2006].
In theory, a high BP or PP value is intended to be interpreted as a strongly-
supported rejection of nonmonophyly. Although it is tempting to think of
these values as probabilities that a clade is a real historic taxonomic group-
ing, Hillis and Bull observe that the BP (and by extension, the PP) do not ac-
count for biases in the method or the prior probabilities [Hillis and Bull, 1993].

The bootstrap method works by resampling with replacement a set of
sites in the original sequence alignment. Each sample is used to construct
a phylogeny. For x samples, we construct x phylogenies. The bootstrap
proportion for a given clade is the fraction of the x phylogenies in which
the clade appears. Efron and Gong introduced the boostrap [Efron, 1979,
Efron and Gong, 1983] (see also [Diaconis and Efron, 1983]), and Felsen-
stein later popularized the BP for use with phylogenetic inference [Felsenstein, 1985].
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Hillis and Bull used computational simulations and laboratory-generated
phylogenies to asses the accuracy of the BP [Hillis and Bull, 1993]. Their
results show BPs consistently underestimate the accuracy of clades.

In response to the bootstrap’s conservative estimates, several corrected
boostrap methods have been introduced: Rodrigo’s calibrated bootstrap
[Rodrigo, 1993], the complete-and-partial bootstrap [Zharkikh and Li, 1995],
and a two-level bootstrap [Efron et al., 1996]. Efron observes that BPs pro-
vides “first-order” confidence limits on the accuracy of the clade, whereas
corrected BPs provide “second-order” limits [Efron et al., 1996]. Corrected
BPs are rarely used in published literature, which might be attributed their
difficult software implementation and their slow runtimes. If we have n sites,
m taxa, and c possible states, the uncorrected bootstrap is O(mn?c?), while
the corrected bootstrap is O(mn3c?). If we ignore computational limita-
tions, we could theoretically calculate a more accurate third, fourth, or n-th
order approximation [Efron et al., 1996].

Whereas the boostrap method samples the original alignment to gen-
erate new data sets, Bayesian MCMC (as described in section 1.5 of this
manuscript) keeps the alignment static and samples variants of parameter-
space [Alfaro and Holder, 2006]. Although previous analyses claim the Bayesian
PP overestimates the probability that a particular clade is correct [Simmons et al., 2004],
recent analysis shows that Bayesian PPs can overestimate or underesti-
mate the probability, depending on the branching patterns of the true tree
[Kolaczkowski and Thornton, 2007].

Should evolutionary biologists use the BP or the PP? Simmons et al.
describe a three-way split among phylogeneticists [Simmons et al., 2004]:

Thus far, conclusions are split among the view that Bayesian
support values are more reliable than the bootstrap as indica-
tors that clades are correctly resolved (Wilcox et al. 2002; Alfaro,
Zoller, and Lutzoni 2003), the opposite view (Suzuki, Glazko,
and Nei 2002; Cummings et al. 2003), and the view that Bayesian
values may form a reliable upper bound, whereas bootstrap val-
ues may form a more valid lower bound (Douady et al. 2003).

In fact, all three of these viewpoints are incorrect. Neither the BP or the
PP is accurate, and the BP is not necessarily the upper bound on accu-
racy. Although the problem of measuring statistical confidence is unsolved,
Kolaczkowski and Thornton assert that the best approach is to carefully
apply several methods and then evaluate results in light of each method’s
statistical properties [Kolaczkowski and Thornton, 2007]. According to this
sensible advice, the results of the BP and PP should be compared to each
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other and to other methods, such as the approximate-likelihood ratio test
[Anisimova and Gascuel, 2006].

Even if our measures of clade support were accurate, we face the problem
of accommodating phylogenetic uncertainty in downstream analyses. Con-
sider the following scenario. Suppose we have an aligned set of amino acid
sequences. After running a Bayesian MCMC, our posterior distribution con-
tains a tree t; with PP 0.6, another tree t3 with PP 0.3, and trees t3 through
t, whose PPs sum to 0.1. We know that evolution unfolded according to
a single history, but here we observe a distribution of possible histories.
Which phylogeny should we select as the “best?” According to a maxi-
mum likelihood framework, ¢; is the highest point estimate of the phylogeny
and should therefore be selected. According to a Bayesian framework, the
choice of t; ignores the 40% uncertainty embedded in the alternate trees.
A true Bayesian would recommend an approach which somehow integrates
this uncertainty.

1.7 Ancestral Reconstruction

Thus far, our discussion focused on phylogenetic inference. Here, 1 turn
to the downstream topic of ancestral sequence reconstruction (ASR). Given
an alignment of sequences, a phylogeny of those sequences, and a model
of evolution, we would like to computationally infer ancestral sequences
for internal nodes in the tree. Using the reconstructed sequences, we can
chemically synthesize the ancestral molecules and then experimentally in-
vestigate their function. Pauling and Zuckerkandl originally proposed the
idea of “resurrecting” ancestral molecules to test hypotheses about evolu-
tionary history [Pauling and Zuckerkandl, 1963]. In the last decade, ASR
has been used to investigate the evolution of elongation-factor proteins
[Gaucher et al., 2003], steroid hormone receptors [Bridgham et al., 2006],
and vertebrate rhodopsins [Chang et al., 2002] to name a few examples. For
an introduction to ASR history and methods, see [Thornton, 2004].

In the early days of ASR, maximum-parsimony (MP) was the method
du jour for reconstructing ancestral states: paleobiologists assigned states
to ancestral nodes so as to minimize the number of state changes along the
branches of the tree. Fitch developed the original MP ASR algorithm for
rooted bifurcating trees [Fitch, 1971]; Hartigan later extended this algorithm
for general trees [Hartigan, 1973]. (See also [Swofford and Maddison, 1987,
Swofford and Maddison, 1992, Maddison and Maddison, 1992].) Among many
examples, the MP method was used to reconstruct ancestral lysozymes
[Malcolm et al., 1990], the mouse L1 protein [Adey et al., 1994], the bovid
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ribonuclease [Stackhouse et al., 1990], and the artiodactyl ribonuclease [Jermann et al., 1995].

In the context of ASR, MP poses several problems. First, MP can yield
several equally-best ancestral states at a given site, but provides no method
for choosing the single-best state. This is troublesome if we are interested in
chemically synthesizing ancestral molecules: the cost of manufacturing and
investigating all the equally-best ancestral combinations can be prohibitively
expensive. Second, when there exists asymmetry in transformation proba-
bilities, MP can be systematically biased against changes from ancestral
rare states to common extant states [Collins et al., 1994]. Third, MP can
produce biased reconstructions when the rate of evolution is not constant
across the phylogeny [Cunningham et al., 1998]. Finally, MP methods for
ASR fail to incorporate information about branch lengths, mutation rates,
or substitution rates. This means that a mutation from some state x to
another state 2’ is equally likely over branch lengths of 0.01, 1.0, and 100.0
substitutions per site.

As an alternative to parsimony, Yang et al. proposed a likelihood-based
ASR method which uses the same Markov models discussed in section 1.2 of
this manuscript [Yang et al., 1995]. The likelihood-based algorithm makes
two important assumptions. First, the evolutionary model is assumed to be
symmetric, i.e. the probability of observing some state ¢ mutate j is the same
as observing state j mutate to . Symmetric models makes the location of
the tree’s root unimportant and we can therefore perform ASR on unrooted
trees. Second, we assume that each site evolves independently. With this
assumption, the probability of observing an entire sequence alignment can
be calculated as the product of probabilities for each site.

For simplicity, I begin by describing the ML. ASR algorithm in terms of
a single site. Let d be the observed data: the states for a single sequence site
from several taxa. Let y be the vector of state assignments for all interior
nodes of the phylogeny. Let T be the maximum likelihood phylogeny, and
let M be our evolutionary model. Let 6 be the vector of maximum likelihood
model parameters and branch lengths. Let P(y|d, M, T, ) be the conditional
probability of assigning the state vector y to all interior nodes, given the
data, the ML tree, the model, and the ML model parameters; P(...) can be
calculated as follows:

L(d|y, M, T, 0)

P(y|d, M, T,0) = i

(17)

where L(d|y, M, T, é) is the likelihood of observing the data, given the set
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of ancestral states specified by y, the model, the tree topology, and the
model parameters. The denominator is the likelihood of the data summed
over all possible ancestral state assignments. Whereas equation 17 considers
only a single site, we now consider an alignment with n sites. The poste-
rior probability of ancestral assignments for all internal nodes at all sites
is calculated by multiplying the posterior probability of the ML ancestral
assignment from each site, as follows:

n A A L(ds|ys, M, T"é
11 P(slds, M, T, 0) = (dsly )
= > Li(dslys;, M. T.,9)

(18)

The likelihood-based ASR method articulated by Yang et al. is an em-
prical Bayesian (EB) approach; informally, EB methods are hybrids between
maximum likelihood and Bayesian methods [Maritz, 1970]. EB methods are
Bayesian because they include priors and calculate posterior probabilities.
However, unlike a true Bayesian method, EB approaches fix some param-
eters at their maximum likelihood estimate. The EB method proposed by
Yang et al. fixes the tree topology, branch lengths, and model parameters.

There exist two primary variants of ASR: marginal reconstructions and
joint reconstructions. A marginal reconstruction estimates the state at a
single ancestral node, integrating over all possible ancestral states at other
nodes. A joint reconstruction (as shown in equation 18) estimates the states
for all ancestral nodes in the tree. Koshi and Goldstein introduced a dynamic
algorithm for marginal ancestral reconstruction [Koshi and Goldstein, 1996],
and Pupko et al. introduced a dynamic algorithm for joint reconstruction
[Pupko et al., 2000]. The dynamic versions of the joint and marginal recon-
structions perform with equivalent computational complexity, scaling lin-
early with the number of taxa. Yang implemented both variants in the
software package PAML [Yang, 1997, Yang, 2007].

Marginal and joint reconstructions can yield disagreeing ancestral re-
constructions. Which method to use depends on the specific phylogenetic
question being asked. For example, if we want to know about the variation
of character state frequencies across the tree, then the joint reconstruction is
appropriate. On the other hand, if we want to resurrect a specific ancestor,
then a marginal reconstruction should be employed. Pupko et al. point out
that “discrepancies [between the two types of ASR reconstructions] origi-
nate not from misuse of information, but from the difference in the nature
of the probabilistic questions asked” [Pupko et al., 2000].
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1.8 Uncertainty and Ancestral Reconstruction

Critics of maximum likelihood and emprical Bayesian methods assert that
ML and EB approaches fail to account for uncertainty in the parameters
which are estimated from the data. In response to this shortcoming, new
ASR methods have been introduced to integrate uncertainty about the tree,
the branch lengths, and the model parameters. Schultz and Churchill pro-
posed a fully Bayesian (FB) method [Schultz and Churchill, 1999]; Huelsen-
beck and Bollback proposed a hierarchial Bayesian (HB) method [Huelsenbeck and Bollback, 2001].
The respective analysis of FB and HB show that these methods — in some
cases — yield posterior probability estimates which differ from previous ASR
methods. That said, little (or nothing) has been published about their ac-
curacy of FB or HB.

Whereas the FB and HB methods simultaneously consider uncertainty
from several sources (the tree, the branch lengths, and the model param-
eters), a more desirable analysis would consider these sources individually
and therefore isolate their effect on ASR. For each source of uncertainty,
it would be useful to compare the accuracy of an ASR method which inte-
grates that source of uncertainty to a method which uses the maximum like-
lihood estimate for that source. In this manuscript, I consider uncertainty
about one such source: the phylogeny. Specifically, I address the following
question: does integrating phylogenetic uncertainty affect the accuracy of
reconstructed ancestral sequences?

In response to this question, the HB method provides one approach to
integrate phylogenetic uncertainty into ASR, but only considers cases where
the desired ancestor is clearly identifiable. The HB method assumes an
a priori outgroup and ingroup for the desired ancestor; on each alternate
tree, the set of terminal taxa in the outgroup is assumed to be completely
disjoint from the set of terminal taxa in the ingroup. The HB method
does not consider alternate phylogenies which violate the assumptions about
outgroup and ingroup classification. Essentially, the HB approach assumes
the desired ancestor exists, and only considers alternate trees in which this
assumption is valid.

Pagel et al. critique the HB method and show that rejecting seemingly
irrelevant trees introduces an ASR bias [Pagel et al., 2004]. Instead, Pagel
et al. propose a most-recent-common-ancestor approach to select ancestral
nodes from alternate trees:

Given a set of species whose common ancestor’s ancestral state
is of interest, it is straightforward to find a node on each tree in
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the MCMC sample that includes those species. In some trees the
node will include only the species of interest, whereas in others
it will include these species and others; but there will be a node
to reconstruct in every tree.

In section 2 of this manuscript, I describe an ASR method which inte-
grates phylogenetic uncertainty, based on the most-recent-common-ancestor
approach. I use computational simulations to analyze the accuracy of this
ASR method, and present results in section 3.
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2 Methods

To investigate the effect of phylogenetic uncertainty on the accuracy of an-
cestral sequence reconstruction, I developed an empirical Bayesian method
which integrates tree uncertainty (with much help from Joe Thornton and
Bryan Kolaczkowski). Our method uses a most-recent-common-ancestor
strategy [Pagel et al., 2004], in which we do not assume a priori the ex-
istence of the desired ancestor on every topology in a distribution of trees.

2.1 An Algorithm to Integrate Phylogenetic Uncertainty

Our method begins with a sequence alignment, a distribution of putative
trees, and a model of character substitution. The distribution of trees can
be inferred using MCMC, MC3, or some other approach, but each tree must
have an associated posterior probability. We use the substitution model and
the PAML software suite to calculate the marginal ancestral reconstruction
for all internal nodes on each tree. Given the output from PAML, the
algorithm for integrating phylogenetic uncertainty follows:

1. Initialization

Let T be a set of putative trees {t1,to,...,t,}. Let PP(t) be the pos-
terior probability of some tree ¢, where t € T. Let D;, be the ingroup:
the set of descendants for which we desire the most-recent-common-
shared ancestral sequence. It should be obvious that D, is a subset
of the taxa in the sequence alignment. Let D,,; be the proposed out-
group: a set of descendants we think evolved from lineages more basil
than the desired ancestor. Let m be the number of sites in the align-
ment. Finally, let € be the set of characters in our state-alphabet (i.e.
nucleotides or amino acids).

Construct a two-dimensional matrix M with dimensions m X |e]. In
other words: add one column for each site in the sequence alignment
and one row for each character in the state-alphabet. For all sites i
and states j, where 1 < i < m and 1 < j < |¢|, initialize M[i, j] to
ZEro.

Construct a three-dimensional matrix A with dimensions |T'| x m X |¢]
(i.e. the number of putative trees, the number of sites in the alignment,
the number of characters in the state-alphabet).

2. For each t € T', find the most-common-shared-ancestor of the taxa in
D;,,. For each site s and each state ¢, assign to A[t, s, c] the posterior
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Figure 5: Figure A shows two putative phylogenies for three ingroup taza (blue
dots) and two outgroup tazxa (red dots). Although there exist fifteen possible unrooted
phylogenies for five taza, only two are shown here (for the sake of simplicity). On
tree #1, the ingroup taxa form a monophyletic split and the most-common-shared-
ancestor of the ingroup is easily identified as node b. On tree #2, the ingroup is
non-monophyletic and this raises a phylogenetic dillema: the most-common-shared-
ancestor of the ingroup is ambiguous. The algorithm presented in section 2.1 of
this manuscript proposes a method to help select the ancestor. In figure B, tree #2

is decomposed into the minimum-spanning tree (MST) containing the ingroup and
the MST containing the outgroup.

probability of observing character ¢ at site s on the most-common-
shared ancestor on t. Because we are dealing with unrooted trees, it
is possible that the most-common-shared-ancestor will be ambiguous.
See figure 5 for an example. In case of ancestral ambiguity, do the
following;:

a. Find the minimum-spanning tree mst;, containing the nodes
in D;,. Also find the minimum-spanning tree mstyy,; containing the
nodes in D,;.

b. If mst;, and msty,: contain completely disjoint sets of nodes,
then find the edge e which connects the two subtrees. The most-
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common-shared-ancestor of D;;, on t is the node which is directly con-
nected to e and which is contained in the set D,,.

c. If mst;, and mst,y,: contain overlapping sets of nodes, then find
the set of internal nodes N which are contained in the graph-union of
msty, and msty. Any node in N can plausibly be the most-common-
shared-ancestor of D;,. This is an unresolvable ambiguity. In this
case, my implementation randomly selects a node from N to be the
most-common-shared ancestor on t.

3. Reduce the matrix A into the matrix M as follows. For each tree
t € T, for each site s (1 < s <m), and for each state c € e:
Mis,c] = M([s,c] + PP(t) x Alt, s, c|.

In other words, weight the posterior probability of observing each state
by the posterior probability of its tree. Sum the weighted state PPs.

4. Termination

At this point, M contains the mazximum a posteriori state distribu-
tion for the most-common-shared-ancestor of the taxa in D;,. Each
column corresponds to a site, and each row corresponds to a possible
character assignment. To retrieve the consensus ancestral sequence
from M, select the character in each column with the highest poste-
rior probability. In other words, for each site s, find the character ¢
with the maximum value of M|s, c|.

I implemented the aforementioned algorithm using the languages Python
and C, with MPI parallelization. The resultant software package is called
Lazarus (formally known as ART).

Figure 6 illustrates a very simple demonstration of my algorithm. Here
we observe four extant taxa, with amino acid sequences DD, NN, EN, and
EE. We used the JTT model [Jones et al., 1991] and PAML [Yang, 2007]
to score the likelihood of all fifteen possible phylogenies. We scaled the
resultant likelihood scores into posterior probability values. Thirteen of the
trees (not shown) have PPs near zero. Two of the trees (shown) have PPs
0.501 and 0.499. The two highest scoring trees tell conflicting evolutionary
stories: tree #1 groups taxonB and taxonA as sister lineages, whereas tree
#2 groups taxonC and taxonA as sisters. Suppose we want to reconstruct
the most-common-shared ancestor of taxonA, taxonB, and taxonC. On tree
#1, the ancestral sequence is uncertain: at both sites in the ancestor, the
amino acids F and N are inferred with 0.375 posterior probability. On the
other hand, the ancestor on tree #2 is inferred with overwhelming support
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for £ at site 1 and N at site 2. Using our experimental EB algorithm,
we integrate the ancestral state distributions from the two trees and thus
create a mazrimum a posteriori: ancestral sequence. For example, the PP
of assigning state F to the MAP ancestral site 1 is calculated as follows:
0.688 = [0.501 x 0.375] + [0.499 x 1.0].

The example in figure 6 demonstrates how integrating phylogenetic un-
certainty can potentially influence ancestral reconstruction. Before the in-
tegration, we're forced to choose between two conflicting reconstructions.
With phylogenetic integration, much of the previous ambiguity and un-
certainty disappears. In this case, the MAP ancestor is EN, albeit not
strongly-supported.

tree #1, PP = 0.501 l tree #2, PP = 0.499
taxonD DD taxonD 'DD'
h— [ taxonC ! N N ! — taxonB 1 EN 1
/// L taxonB EN // taxonC |NN|
1 1 /
( taxonA EE l\ taxonA IEEI
\ \
N
site 1: (E 0.375) (N 0.375) (D 0.250) Lsite 1: (E 1.0)
site 2: (E 0.375) (N 0.375) (D 0.250) site 2: (N 1.0)

MAP ancestral sequence:

site 1: (E 0.688) (N 0.187) (D 0.125)
site 2: (N 0.688) (E 0.187) (D 0.125)

For example:
(E 0.688) = [0.501 x 0.375] + [0.499 x 1.0]
(N 0.187) = [0.501 x 0.375] + [0.499 x 0.0]

Figure 6: Using two trees, with four extant taxza each, suppose we want to find the
most-common-shared ancestral sequence for taxonA, taxonB, and tazonC. In this
example, we calculate the maximum a posteriori (MAP) ancestral sequence as the
weighted average of sequences from each tree. See the text in section 2.1 for further
explanation.
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2.2 Simulations

I used simulations to compare the accuracy of our ASR method to the accu-
racy of a method which uses the ML estimate for the phylogeny. Simulations
are necessary for measuring accuracy because we need experimental condi-
tions in which the true phylogeny and the ancestral states on that phylogeny
are known. My simulations follow these general steps:

1. Generate a rooted phylogeny t. Remember ¢ as the true tree.
2. Generate a random ancestral sequence at the root of t.

3. Using a model of evolution, simulate the random ancestral sequence
evolving down the branches of t into a set of terminal sequences.
Record these intermediate ancestral sequences.

4. Collect the terminal sequences and arrange them into a sequence align-
ment.

5. Using MCMC, MC3, or some other method, infer a distribution of
putative phylogenies T from the sequence alignment. Let the tree  be
the phylogeny with the largest posterior probability.

6. Identify a subset of terminal nodes — an ingroup — for which we would
like to infer the most-common-shared-ancestor.

7. Using the algorithm described in section 2.1, reconstruct the mazimum
a posteriori ancestral sequence on the distribution of trees 7.

8. Using an ASR algorithm which does not integrate phylogenetic uncer-
tainty, reconstruct the ancestral sequence on tree {.

9. Using the recorded ancestral sequences (i.e. the true sequences) from
step 3, compare the accuracy of the mazimum a posteriori ancestral
sequence to the accuracy of the ancestral sequence on t.

For simplicity of notation, I will refer to my experimental ASR method as
the EB method; 1 will refer to the method of Yang et al. (which ignores
phylogenetic uncertainty) as the ML method [Yang et al., 1995].

My first set of simulations addresses the question, “how does the accu-
racy of the EB and ML methods compare as we vary the amount of phylo-
genetic uncertainty?” In general, phylogenies with short internal branches
are more difficult to accurately infer than phylogenies with longer internal
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branches [citation]. Therefore, the internal branch length of a tree is a proxy
for its phylogenetic uncertainty.

In the first simulation, I evolved an amino acid sequence over a four-taxa
phylogeny of variable height and variable internal branch length as shown
in figure 7. The topology includes two evolutionary forks, yielding a total of
four descendant sequences. Although I could have considered a tree with a
single fork (and therefore three descendants), the resultant tree-space would
include a single topology; a comparison of the ML and EB methods would
be futile because the EB method would not have a distribution of trees over
which to integrate.

Using the tree in figure 7, my experimental strategy was to vary the
amount of phylogenetic uncertainty in the clade formed by taxon A, B, and
C. I varied uncertainty using a combination of two factors, the length of
r and the length of h. The true phylogeny is more difficult to infer when
the internal branch length r is short, or when the distance h between the
ancestral and descendant sequences increases. Thus, I varied the branch
length r from 0.01 to 0.200 substitutions per site and I varied the branch
length labeled h from 0.250 to 0.750 substitutions per site. I fixed taxon D
as an outgroup with branch length 0.75 substitutions per site.

0.75
taxonD
seeded h
ancestral = taxonC
sequence 0.2
h-r
t taxonB
h-r
taxonA

Figure 7: The four-taza simulation uses a phylogeny with variable branch lengths
h and r. The true phylogeny is more difficult to infer when (1) r is short, (2) h is
long, or a combination of (1) and (2).

At each combination of r and h, I simulated 100 replicates (where each
replicate is a set of descendants). To simulate a replicate, I seeded the most-
common-shared ancestor of the entire rooted tree with a randomally gen-
erated 400 amino acid sequence. This ancestor is labeled seeded ancestral se-
quence in figure 7. Using the Seq-Gen software suite [Rambaut and Grassly, 1997]
and the JTT model of evolution [Jones et al., 1991], I simulated the seeded
sequence evolving into four terminal sequences: taxon A, B, C, and D.
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tree #1 tree #2 tree #3

taxonD taxonD taxonD
taxonC taxonB taxonA
taxonB taxonC taxonC
— taxonA — taxonA — taxonB

Figure 8: After simulating descendant sequences on the tree shown in figure 7, I
fixed taxon D as the outgroup and considered three possible phylogenies shown here.

For each replicate, I used Lazarus (which uses PAML) to reconstruct the
marginal posterior distribution of ancestral states at every internal node on
each of the three trees shown in figure 8. I also used Lazarus to reconstruct
the EB ancestral sequence — integrating over all three trees — for the most-
common-shared ancestor of taxa {A, B, C}, of taxa {A, B}, of taxa {4, C},
and of {B,C}. Depending on the tree, some of these ancestors are the
same. For example, on the tree #1 in figure 8, the most-common-shared
ancestor of {B,C} is equivalent to the most-common-shared ancestor of
{A,B,C}. For another example, consider the incorrect topology on tree
#2: the most-common-shared ancestor of {A, C'} incorrectly excludes taxon
B. Conversely, the most-common-shared ancestor of {A, B} on tree #2
spuriously includes taxon C.

My second set of simulations compared the accuracy of the ML and EB
methods in more realistic — empirically derived — phylogenetic conditions.
Here, I used a phylogeny inferred from an alignment of alcohol dehydroge-
nase sequences [Thomson et al., 2005]. Using the tree shown in figure 9, I
seeded 100 random ancestral sequences at the root node. Each random se-
quence was 400 amino acids long. T used Seq-Gen [Rambaut and Grassly, 1997]
and the JTT model [Jones et al., 1991] to simulate the seeded ancestors
evolving across the tree into descendant sequences. Using a technique de-
scribed by Kolaczkowski et al. [citation for Bryan’s EB method?], I used
Bayesian Markov Chains to discover a distribution of putative phylogenies
and to estimate the posterior probability of each internal node. 1 used
Lazarus to reconstruct the ML and EB ancestral sequences for a large col-
lection of internal nodes, including a mix of uncertain nodes (with PP <
1.0) and certain nodes (with PP = 1.0). Figure 9 shows the reconstructed
nodes in relation to the overall phylogeny.
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2.3 Ciriteria for Grouping the Results

I grouped all ancestral inferences from the four-taxon simulation according
to two criteria. First, I sorted according to the descendant state pattern
of taxa A, B, and C on the phylogeny shown in figure 7. Patterns here
include zzy, zyz, zzz, etc. For example if taxa A and B have the state
'p’ for the amino acid proline, and taxa C has the state I’ for leucine,
then we observe pattern zzy. I sorted according to this criteria because the
difficulty of inferring an ancestral state depends on how well the state has
been conserved over evolutionary time.

The second grouping criteria sorts replicates according to the descendant
membership of the ancestor. Here I group ancestral inferences into three
bins: (i) the membership is correct, (ii) the membership spuriously includes
an extra taxon, and (iii) the membership incorrectly excludes a taxon. As
an example, consider the case where the true tree is (((A,B),C),D), but the
maximum likelihood tree is (((B,C),A),D). Using the ML tree, our inference
of the most-common-shared-ancestor of taxa { B, C'} will incorrectly exclude
taxon A (bin iii). Furthermore, our inference of the last-shared ancestor of
{A, B} will spuriously include taxon C (bin ii).
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Figure 9: A phylogeny of alcohol dehydrogenases. The terminal labels correspond
to the published tazon labels [Thomson et al., 2005]. I used this tree to simulate the
evolution of 400 amino acid sequences. I used the resultant descendants to infer a
distribution of putative trees and reconstruct the ancestors labeled in red.
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3 Results

3.1 The ML and EB methods infer the same state at almost
all ancestral sites

In both my simulations, the ML and EB methods reconstructed the same
state at more than 99% of sites (see Table 1). This observation appears
to be true regardless of the descendant state pattern and the membership
of the descendant clade. The ML and EB reconstructions are especially
similar in situations when the ancestral state is well conserved (such as state
pattern xzx), and also when the taxa membership of the descendant clade
is correct. On the other hand, the ML and EB reconstructions are slightly
more divergent in situations when the membership of the descendant clade
spuriously contains an extra taxon, and also when the ancestral state is not
well conserved.

Indeed, a method for ASR which integrates phylogenetic uncertainty
rarely reveals a novel ancestral state which was not already revealed as a
plausible state by the ML distribution. In the four-taxon simulation, the EB
state assignment appears as a plausible state within the ML distribution —
with posterior probability greater than 0.2 — at more than 99.8% of sites
(see table 2).
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extant state pattern | clade correct | mem. + | mem. - all
all 0.9968 0.9933 0.9951 | 0.9961
XXX 0.9975 0.9949 0.9960 | 0.9969
XXy 0.9971 0.9940 0.9951 | 0.9964
Xyx 0.9960 0.9939 0.9950 | 0.9955
YXX 0.9961 0.9936 0.9953 | 0.9955
XyZ 0.9952 0.9926 0.9943 | 0.9946

Table 1: The proportion of ancestral sites at which the EB and ML meth-
ods assigned the same state. For every replicate, I sorted the ancestral state
inferences according to two criteria: (1) the descendant state pattern of taza A,
B, and C (where patterns include zxy, xyz, etc.) and (2) the membership of the
descendant clade (where clade correct means that the ancestor was inferred using
all the correct ingroup taxa, mem + indicates the descendant membership spuri-
ously included an extra taxon; mem - means the membership omitted a taxon that
should have been included). FEach cell reports the proportion of ancestral sites at
which the EB and ML methods assigned the same state. Each row corresponds to a
unique state pattern; the top row expresses data counted over all descendant state
patterns. Fach column corresponds to a membership pattern; the right-most column
corresponds to data counted over across all membership patterns.

extant state pattern | clade correct | mem. + | mem. - all
all 0.0010 0.0011 0.0019 | 0.0011
XXX 0.0006 0.0008 0.0007 | 0.0007
XXy 0.0009 0.0012 0.0013 | 0.0010
Xyx 0.0011 0.0011 0.0011 | 0.0011
YXX 0.0012 0.0012 0.0011 | 0.0012
XyZ 0.0016 0.0016 0.0015 | 0.0016

Table 2: The proportion of ancestral sites at which the maximum a posteri-
ori EB state is different from the ML state and is not found as an alternate
(with PP > 0.2) within the ML state distribution. I sorted the ancestral state
inferences from every replicate according to the same criteria in table 1. Each cell
reports the proportion of ancestral sites at which the most likely EB state assign-
ment is not found within the ML distribution of state assignments (with posterior
probability greater than 0.2). The top row expresses the proportion across all de-
scendant state patterns. The right-most column express the proportion across all
membership patterns.
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3.2 The ML and EB methods infer disagreeing states at
poorly-supported sites on poorly-supported trees.

Although the ML and EB methods infer the same state at more than 99.8%
of sites, I wanted to determine what conditions cause the methods to disagree
at the remaining 0.2% of sites.

The ML and EB reconstructions disagree only at sites which are already
ambiguous (see figure 10). In other words, the two methods agree about
ancestral states with strong support. On the four-taxon simulation, the ML
and EB reconstructions agree at sites with posterior probability greater than
70%. On the ADH simulation, two methods agree at sites with PP greater
than 76%.

The ML and EB reconstructions disagree more often in phylogenetically
uncertain situations (see figure 11). When the posterior distribution of trees
is peaked — such that the ML tree has posterior probability 1.0 — the ML
and EB reconstructions do not differ because there is no phylogenetic un-
certainty over which to integrate. On the other hand, when the posterior
distribution of trees is less-peaked, the ML and EB methods are able to re-
construct different states because there exists more phylogenetic uncertainty
over which to integrate.
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Figure 10: How similar are the EB and ML reconstructions? I plotted the ML
posterior probability of every reconstructed ancestral site versus its corresponding
EB posterior probability; figure A shows results from the four-tazon simulation,
figure C' shows results from the ADH simulation. Sites at which ML and EB yield
disagreeing states are highlighted in green. I also plotted the frequency of sites at
which the ML and EB reconstructions disagree — i.e., the number of green points;
figure B shows results from the four-taxon simulation, figure D shows results form
the ADH simulation. In B and D, each ASR inference was binned into 5% groups
according to its posterior probability.
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Figure 11: The proportion of sites where the ML reconstruction is different
from the EB reconstruction. Here, each red point represents a group of replicates
with the same r and h value (see figure 7 in the methods section for a description
of r and h). The horizontal position of each point represents the average posterior
probability of the replicates’ ML trees; the vertical position represents the fraction
of ancestral sites with disagreeing ML and EB state assignments.
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3.3 When ML and EB reconstructions differ, EB is usually
less accurate

Although the ML and EB reconstructions are rarely different, the ML method
is overall more accurate than the EB method (see table 3.3). ML is espe-
cially more accurate than EB when the membership of the descendant clade
is correct. In this case, the ML tree is the true tree: integrating phylogenetic
uncertainty only serves to introduce error.

The ML reconstruction is slightly less accurate than the EB reconstruc-
tion in the rare case that the descendant membership spuriously includes an
extra taxon and the ancestral state is poorly conserved among the terminal
branches (state pattern xyz). In this case, we have very little information
from which to make an accurate ancestral reconstruction; the ML method
uses the branch lengths and the model to essentially guess between states
x, y, and z. On the other hand, the EB method integrates reconstructions
from alternate trees which do not necessarily include the spurious terminal
branch with state z. Therefore, the EB method is slightly more accurate in
this tough situation because integrating over trees helps to eliminate state
z from the set of possible ancestral states.

extant state pattern | clade correct | mem. + | mem. - all
all: ML 0.871 0.804 0.800 | 0.854
all: EB 0.859 0.807 0.798 | 0.845
xxx: ML 0.990 0.996 0.996 | 0.991
xxx: EB 0.990 0.996 0.996 | 0.991
xxy: ML 0.852 0.877 0.823 | 0.852
xxy: EB 0.809 0.877 0.823 | 0.818
xyx: ML 0.889 0.898 0.898 | 0.892
xyx: EB 0.889 0.898 0.898 | 0.892
yxx: ML 0.902 0.840 0.849 | 0.886
yxx: EB 0.900 0.840 0.849 | 0.885
xyz: ML 0.619 0.564 0.574 | 0.602
xyz: EB 0.596 0.574 0.567 | 0.588

Table 3: The proportion of accurately reconstructed sites. I sorted the an-
cestral state inferences from every replicate according to the same criteria in table
1. Here, each cell reports two values: (top) the proportion of sites accurately recon-
structed by the ML method and (bottom) the proportion accurately reconstructed by
the EB method.
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3.4 The ML and EB methods yield slightly different poste-
rior probability values, but the overall accuracy of those
values is nearly the same

Although the ML and EB methods usually infer the same ancestral state,
the two methods do not necessarily support those states with the same pos-
terior probability support values. Overall, EB posterior probabilities are are
slightly less accurate than ML support values. On the four-taxon simula-
tion, EB PPs are slightly inflated for PPs greater than 0.5 (see plot 12A).
On the ADH simulation, the ML and EB methods appear to produce PPs
with similar — if not identical — average accuracy (see plot 12B). According
to a chi-square test, there is a small advantage to EB PPs when the ML
tree is incorrect; there is a bigger advantage to ML PPs when the ML tree
is correct (see table 4). The latter case is more frequent, and the ML PPs
are therefore overall more accurate than EB PPs. This observation is cor-
roborated by the ADH simulation: the ML PPs are more accurate than EB
PPs on nodes which are strongly-supported to be true (see table 5).
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Figure 12: The accuracy of ASR posterior probability values. I grouped all
ancestral state inferences — according to their posterior probability support value —
into 5%-sized bins. Specifically, all sites with PP ranging from 0.00% to 4.99% were
grouped into one bin, all inferences with support ranging from 5.00% to 9.99% were
grouped into another bin, and so on. I excluded bins with fewer than fifty members.
Within each bin, I kept the ML inferences segregated from the EB inferences. I
counted the fraction of inferences which correctly inferred the true state. If PP
was a perfect measure of accuracy proportions, then we would expect the fraction of
correct inferences in each bin to equal the mean PP of the inferences in that bin. For
example, in our four-taxon simulation, the average ML inference in the bin ranging
from 0.900% to 0.949% has posterior probability 0.927. Therefore, we expect 92.7%
of the ML state inferences within this bin to be accurate. However, we observe
that 92.6% of sites in this bin are correct, indicating that the ML method is slightly
overconfident with support values in this range from 0.900 to 0.949. The proportion
of correct inferences was counted for each bin. Figure A plots the proportion of
correct inferences for the four-taxza simulation; figure B plots these proportions for
the ADH simulation.
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extant state pattern | clade correct | mem. + | mem. - all
all: ML 10.201 4.823 3.344 | 9.439
all: EB 17.762 2.191 2.532 | 14.896
xxx: ML 0.051 0.002 0.001 | 0.037
xxx: EB 0.275 0.001 0.001 | 0.141
xxy: ML 2.014 0.081 0.081 | 3.022
xxy: EB 14.210 0.013 0.024 | 17.835
xyx: ML 1.809 0.209 0.464 | 1.676
xyx: EB 1.565 0.464 0.274 | 2.109
yxx: ML 2.645 0.062 0.214 | 4.766
yxx: EB 2.630 0.081 0.205 | 5.355
xyz: ML 10.347 4.475 2.333 | 7.839
xyz: EB 19.703 1.597 2.568 | 15.317

Table 4: y? statistics for the four-taxon simulation. I calculated a weighted
chi-square statistic to measure the fit between the function f(x) =y and the points
in figure 12. The chi-square calculation is weighted because the bins (along the X
azis) each contain different numbers of inferences; some bins contain more than
10,000 state predictions, while other bins contain less than 100 predictions. I cal-

" B;(0; — E;)?
culated the weighted chi-square statistic as follows: x* = Z ZZEiZ

i=1 i
n is the number of bins, B; is the number of inferences within bin i, O; is the ob-

, where

served proportion of correct inferences for bin i, and E; is the expected proportion
of correct inferences for bin i. Lower x? scores correspond to more accurate pos-
terior probability values. In this table, I sorted the ancestral state inferences from
every replicate according to the same criteria in table 1. The top row expresses
x? wvalues across all descendant state patterns. The right-most column express x>
values across all membership patterns.
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ADH node x? | PP(node)
33: ML 6.939 0.86
33: EB 2.989
36: ML 2.536 0.61
36: EB 3.463
38: ML 2477 0.74
38: EB 2.063
39: ML 2.827 0.87
39: EB 2.921
40: ML 1.909 0.76
40: EB 1.385
47: ML 6.129 0.83
47: EB 6.137
48: ML 4.496 0.55
48: EB 3.377
37: ML 7.682 1.00
37: EB 8.871
41: ML 3.606 1.00
41: EB 3.725
42: ML 3.989 1.00
42: EB 4.281
52: ML 7.255 1.00
52: EB 7.644

Table 5: x? statistics for the ADH simulation. I calculated x* values — as
described for table 4 — for the state assignments at ancestral nodes in the ADH
phylogeny. Lower x? scores correspond to more accurate ASR posterior probability
values. Unlike previous tables in this manuscript, the x* values reported here are for
all descendant state patterns and descendant membership patterns. The left-most
column lists node numbers corresponding to phylogenetic labels in figure 9. The
right-most column lists the posterior probability (PP) of the corresponding node.
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3.5 Phylogenetic uncertainty is not correlated with ASR ac-
curacy

It might seem paradoxical that integrating phylogenetic uncertainty yields
an ancestral reconstruction which is nearly identical to the ML reconstruc-
tion. Here, I explain this nonintuitive result.

Phylogenetic uncertainty correlates with internal branch length (see fig-
ure 13A), but internal branch length does not correlate with ASR accu-
racy (see figure 13B). Therefore, phylogenetic uncertainty does not corre-
late with ASR accuracy. This result can be understood in light of previ-
ous results which show that ASR is more accurate on star-like trees (i.e.
trees with short or zero-length internal branches) [Blanchette et al., 2004,
Lucena and Haussler, 2005]. Although ASR is more accurate on star-like
trees, star-like trees are less accurately inferred (see figure 13A). It seems
that a trade-off exists between phylogenetic accuracy and ASR accuracy.
In my four-taxon simulation, as I increased the internal branch length, I
created a situation in which we more easily identified the true phylogeny
but less easily identified the true ancestral state. Conversely, as I decreased
the internal branch length, I created a situation where we can less easily
identified the true phylogeny but more easily identified the ancestral state.

The conditions that produce phylogenetic uncertainty result in ancestral
states on the alternate trees which are very similar — and often identical —
to the ancestral states on the most probable tree. When the internal branch
is short, the evolutionary distance between the true ancestor and the in-
correctly inferred ancestor is small. As an illustration of this phenomenon,
consider figure 14. Suppose we want to infer the last-shared ancestor of taxa
A and B. On the true tree, taxa A and B are sisters, neighbored with the
lineage to taxon C. However, in this example, the shortness of the branch
connecting the most-common-shared-ancestor (MCSA) of {AB} to the an-
cestor of {ABC'} causes uncertainty in our phylogenetic inference. Con-
sequently, our maximum likelihood tree incorrectly joins taxa B and C as
sisters. Although our ML reconstruction of MCSA(AB) spuriously includes
taxon C, the accuracy of the reconstruction will not suffer for this error: the
distance between the true ancestor and our incorrect ancestor is short. This
example is relevant to our four-taxa simulation, where the distance between
MCSA(AB) and MCSA(ABC) is exactly r. The resultant error from includ-
ing taxon C will be proportional to . When r is very short (for instance,
0.01 substitutions per site) and our ancestral sequence is only 400 sites long,
it is possible that MCSA(AB) will be identical to the MCSA(ABC).
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Figure 13: Phylogenetic uncertainty is not correlated with ASR accuracy.
Each point represents replicates from our four-taxon simulation, grouped according
to the length of their internal branch. Figure A plots the Bayesian PP of the true
phylogeny as a proxy for phylogenetic certainty. Figure B plots the fraction of sites
which were correctly inferred for all ancestral reconstructions for replicates with the
given internal branch length.
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Figure 14: An example in which phylogenetic error is not significantly dele-
terious to ASR accuracy. In this example, suppose we want the most-common-
shared ancestor of taxonA and tazonB. Also suppose our ML tree is incorrect, and
consequently we spuriously include taxon C in our reconstruction. The distance
between our incorrect ancestor and the true ancestor is short. Therefore, our phy-
logenetic error will not seriously z'mpact4t§ze accuracy of the reconstruction.



4 Conclusions

In many cases, there exists uncertainty about the true phylogeny for an
alignment of molecular sequences. In this project, my analysis showed phy-
logenetic uncertainty is not correlated with the accuracy of reconstructed
ancestral sequences. The conditions which produce phylogenetic uncertainty
result in ancestral sequences on alternate trees which are similar (and often
identical) to the ancestral sequence on the maximum likelihood tree. Conse-
quently, I claim integrating phylogenetic uncertainty does not significantly
affect the accuracy of reconstructed ancestral sequences.

My result should not be interpreted as an endorsement for sloppy phylo-
genetics. ASR practitioners should continue to use rigorous statistical prac-
tices, including model-fitting methods, to infer the best possible phylogeny
for their data. That said, integrating phylogenetic uncertainty into recon-
structed ancestral sequences is computationally demanding and statistically
unnecessary.
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