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ABSTRACT
During recent years, Online Social Networks (OSNs) have
evolved in many ways and attracted millions of users. The
dramatic increase in the popularity of OSNs has encouraged
network researchers to examine their connectivity structure.
The majority of empirical studies for characterizing OSN
connectivity graphs have analyzed snapshots of the system
taken in different times. These snapshots are collected by
measurements that crawl OSN connectivity graphs. How-
ever, OSN owners are often unwilling to expose their user
information due to privacy concerns. On the other hand, be-
cause of large population and dynamics of OSNs, the task of
crawling may result in an incomplete or distorted snapshot
of the system.

These challenges have clearly heightened the urgency for
developing efficient and accurate graph sampling techniques.
Although a couple of techniques, such as Metropolized Ran-
dom Walk (MRW) and Respondent-Driven Sampling (RDS),
have been proposed for P2P systems, little is known about
their accuracy over connectivity graph of OSNs. In this
paper, we focus on MRW and RDS sampling techniques
and thoroughly investigate their performance in sampling
OSN systems. Our main findings can be summarized as fol-
lows: (i) both techniques are sensitive to graph structure, but
RDS exhibits better performance;(ii) heterogeneous degree
distribution and high number ofunbalanced edges in OSN
graphs are the main factors for poor performance of MRW
over such graphs;(iii) RDS is unable to properly sample low
degree nodes which are hard to reach; and(iv) OSN graphs
composes of a dense core in the middle and a large num-
ber of partitions hanging from the core. High internal and
low external connectivity of this core make it almost infea-
sible for sampling techniques to explore all regions of OSN
graphs.

1. INTRODUCTION
Online Social Networks are one of the new trends

in the Internet applications. Typically, an OSN is a
web-based service that allows individuals to (i) build a
public or private profile within a bounded system, (ii)
specify a list of users with whom they have a connec-
tion, and (iii) view and explore their list of connections

and those made by others within the system. A con-
nection between two users implies some kind of relation-
ship or communication such as friendship or interaction
(e.g., commenting in a blog, tagging a photo, subscrib-
ing in one’s videos). However, we use “friendship” as
a general term to refer to these connections. This can
be presented by a graph, called a connectivity graph or
friendship graph, where nodes represent users and edges
represent friendship between users. User attributes such
as name, location, age, education, and shared content
(e.g., video, photo album, blog) can be stored as meta
data in the nodes of the connectivity graph.

The popularity of OSNs has significantly increased in
recent years. There is a wide variety of incentives for
average computer users to join these websites. First,
OSNs establish an effective framework for social activ-
ities. Through OSNs, not only a user can get in touch
with her friends, but also she has a chance to meet
new people with common interests. Second, most OSNs
embed interesting features, such as videos in YouTube,
photos in Flickr, and applications in Facebook. Third,
it is very easy to use and navigate through OSNs with
only a little knowledge of the Internet.

Increasing popularity of OSNs has motivated net-
work research community for characterizing these sys-
tems. Characterizing OSNs will provide a valuable in-
sight about the user participation that would be bene-
ficial for understanding user behaviors, quantifying the
traffic associated with OSNs, realizing performance bot-
tlenecks of the current systems, and leveraging their
characterizations in designing new protocols and appli-
cations [23, 26, 36].

Except in a couple of studies [1,20], OSN owners are
often unwilling to expose their user information to third
parties due to privacy concerns. Therefore, the most
common approach to empirically study such systems is
by analyzing the snapshots of the systems taken in dif-
ferent times. Such snapshots are typically captured by a
crawler that queries a set of known nodes to learn about
their neighbors and progressively discovers the connec-
tivity structure of the graph. Crawling provides global
view of the system to characterize properties of the con-
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nectivity graph and its evolution over time. However,
capturing accurate snapshot of the system is a challeng-
ing task in characterizing large OSNs. Limited rate of
crawling1 along with the OSNs large population make
this task almost impractical. As a result, one would
either capture a complete snapshot which is distorted
due to the dynamics of the system during crawl time,
or rely on a partial snapshot which is likely to be bi-
ased towards certain group of nodes [1, 5, 25]. In ad-
dition, since friendship in most of OSNs is not essen-
tially mutual (i.e., user A is in user B’s friend list, but
not vice versa), OSNs connectivity graphs are basically
directed, and therefore, some nodes in the graph may
not be reachable depending on the starting node of the
crawl [25].

Graph sampling [15,18,28,30,31] is the promising ap-
proach to estimate a particular node property across the
whole graph based on that property of collected sam-
ples. Towards this end, several techniques have been
proposed for P2P systems. Stutzbach et al. [31] and
Rasti et al. [28] introduce Metropolized Random Walk
(MRW) and Respondent-Driven Sampling (RDS) tech-
niques, respectively. Both techniques are implemented
over a widely-deployed P2P network, namely Gnutella,
and show desirable results. However, these two tech-
niques perform inefficiently on connectivity graphs of
OSNs which exhibit different connectivity structure from
P2P networks [25]. Also, due to very large population
of OSNs, in comparison with P2P systems, graph sam-
pling techniques become more important, and hence,
having a promising technique for sampling over these
graphs is even more important.

In this study, we focus on the connectivity graphs of
three popular OSNs, namely Flickr, LiveJournal, and
YouTube. We consider Metropolized Random walk (MRW)
and Respondent-Driven Sampling (RDS) and examine
their accuracy in estimating node degree (i.e., number
of friends) as the main property of nodes. The main
contributions of this paper are as follows: (i) we ex-
amine MRW and RDS over two synthetic graphs and
connectivity graphs of OSNs; (ii) we identify the main
structural properties of OSN graphs that cause poor
performance of MRW and RDS over OSNs; and finally
(iii) we present a high-level structural view for OSN
graphs.

Our main findings can be summarized as follows: (i)
both techniques are sensitive to graph structure, but
RDS exhibits better performance; (ii) heterogeneous
degree distribution and high number of unbalanced edges
in OSN graphs are the main factors for poor perfor-
mance of MRW over such graphs; (iii) RDS is unable

1Although some OSNs facilitate capturing the information by
providing APIs, limitations on the rate of queries sent to the
server (e.g., 10 queries/second in Flickr and 100 queries/hour for
Twitter) put burdens on the crawling speed.

to properly sample low degree nodes which are hard to
reach; and (iv) OSN graphs composes of a dense core
in the middle and a large number of partitions hanging
from the core. High internal and low external connec-
tivity of this core make it almost infeasible for sampling
technique to explore all regions of OSN graphs.

The rest of this paper is organized as follows: Section
2 reviews some related works in this area. In Section 3,
overviews of both MRW and RDS techniques are pre-
sented, followed by presenting technical isssues in Sec-
tion 4. Then in Section 5, we evaluate performance
of both techniques on OSNs and discuss their limita-
tions. Section 6 explores structural properties of OSN
graphs to provide insights on the root causes of lower
performance of sampling techniques. Finally, Section 7
concludes our study and summarizes our future work.

2. RELATED WORK
In recent years, online social networks have received

significant attention and many studies have been con-
ducted on this topic. In this section, we first discuss
different classes of related work on OSN characteriza-
tion, and then present an overview of the studies on
graph sampling techniques.

2.1 Connectivity Graph and its Evolution
One of the earliest studies on characterizing connec-

tivity graphs of OSNs is done by Ahn et al. [1], in which
they compared the structures of three online social net-
working services: Cyworld, MySpace, and Orkut. They
used Snowball Sampling to collect data from such sys-
tems, which has been shown to overestimate node de-
gree [3]. The authors obtained data directly from Cy-
world operators which enables them to conduct a study
on evolution of the Cyworld. Another large-scale mea-
surement study and analysis of the structure of multi-
ple online social networks is performed by Mislove et
al. [25]. They examined data gathered from four pop-
ular online social networks, namely Flickr, LiveJour-
nal, Orkut, and YouTube. Using 58 parallel crawlers
and Breadth First Search (BFS) technique, they col-
lected the largest weakly connected component (WCC)
of these graphs.

The evolution of Flickr and Yahoo! 360 has been
studied recently to examine how these systems change
over time [20]. Another study on the growth of Flickr
is reported in [24], in which the authors focused on the
dynamics of the friendship graph in Flickr. Creation
rate of the new links and an evolution model are pre-
sented in this paper. Leskovec et al. [21] presents a more
detailed study of network evolution by analyzing four
large online social networks, namely Flickr, LinkedIn,
Answers, and Delicious, with full temporal information
about node and edge arrivals. Their evaluation is done
by using maximum-likelihood principle, and compar-
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ing the graphs generated by their model with the real
graphs. They also show that their microscopic model
maintains macroscopic properties of the graphs.

In our recent work [33], we examined the evolution
of user population in MySpace. While majority of em-
pirical studies on OSNs have focused on the growth of
these systems, we measured the pattern of decline in
user population and their activity in MySpace.

2.2 User Interactions
Characterizing user interaction in online social net-

works is a new topic of research in this domain. The
first attempt to analyze user interactions was by Chun
et al. [8]. They analyzed structural characteristics of
the activity network in Cyworld and compared it with
its connectivity graph to find similar patterns. In an-
other study [17], Krishnamurthy et al. present a de-
tailed characterization of the user behavior in Twitter,
an application that allows users to send short messages.

User interactions in Flickr are investigated by Valafar
et al. [34]. They present a measurement study of the
Flickr showing that a very small fraction of users in the
main component of the friendship graph is responsible
for the vast majority of user interactions in Flickr.

Finally, Cha et al. [6] explain how user activities dis-
seminate in Flickr. They based their work on the hi-
erarchy and order of addition of a photo as favorite in
Flickr and comparison of that with the structure of the
friendship graph.

2.3 OSN Applications
Characterizing online social networks can be lever-

aged in designing new protocols and applications. For
example, Mislove et al. [23] analyzed the differences be-
tween the Web and social networking systems in terms
of the mechanisms they use to publish and locate use-
ful information. They examined the potential for using
online social networks to enhance Internet search.

In an earlier study [36], Yu et al. present an interest-
ing solution to Sybil attacks by incorporating the notion
of friendship and trust of social networks into P2P sys-
tems. The fundamental observation is that in such a
system, attackers will have only a small set of links to
the honest portion of the network.

Trusted relationship is also used to thwart unwanted
communication [26]. They introduced a system, Ostra,
which bounds the total amount of unwanted communi-
cation a user can produce based on the number of trust
relationships the user has, and relies on the fact that
it is difficult for a user to create arbitrarily many trust
relationships.

2.4 Large-Scale Graph Measurements
Large-scale graph measurement has been extensively

the topic of research in recent years. Kleinberg et al. [16]

and Broder et al. [5] study the Web graph and try to
characterize its structure and evolution over time. They
also proposed new algorithms for search mechanism and
community detection on the Web. In the context of P2P
systems, Stutzbach et al. [32], present a detailed charac-
terization of P2P overlay topologies and their dynamics
focusing on Gnutella network.

Graph sampling techniques have introduced as a scal-
able and promising approach for large-scale graph char-
acterizations. These techniques have been used to ex-
tract information about graphs (e.g., selecting repre-
sentative sub-graphs from a large, intractable graph)
while maintaining properties of the original structure
[15, 18, 19, 30]. A couple of sampling methods have
been proposed for using in P2P networks [9, 10, 28, 31].
Among them, we are interested in Metropolized Ran-
dom Walk (MRW) introduced by Stutzbach et al. [31],
and Respondent-Driven Sampling (RDS) by Rasti et
al. [28]. We will fully discuss these two techniques in
Section 3. For a detailed review of related works on
graph sampling techniques, see [31].

3. SAMPLING UNDIRECTED GRAPHS
Online social networks can be represented by a con-

nectivity graph (G), in which nodes (V ) represent users
and edges (E) show relationship between users. Fur-
thermore, user properties such as name, age, location,
and number of friends can be stored as attributes in the
nodes.

The objective of sampling techniques is to select a
minimal fraction of nodes as samples in order to esti-
mate the distribution of a node property with certain
level of accuracy. When the global view of the graph
is not available, the only promising approach is select-
ing nodes by using random walkers. A random walker
starts from a starting node and progressively selects a
random neighbor of the current node as its next step.

In this section, we first introduce basic definitions of
Markov chain and how Markov chain is used to model
random walks, and then discuss MRW and RDS sam-
pling techniques in Section 3.2 and 3.3, respectively.

3.1 Markov Chain and Random Walk
A stochastic process with a set of states is called a

Markov chain if future states of the process are indepen-
dent of the past states and only depend on the current
state. Markov chain is a widely used model for random
walks on graphs which will be discussed later in this
section. Each Markov chain with N states is described
by a transition probability matrix PN×N , in which Pij is
the probability of moving from state i to state j. This
matrix satisfies

• 0 ≤ Pij ≤ 1; i, j = 0, ..., n − 1.

•
∑n−1

j=0 Pij = 1; i = 0, ..., n − 1.
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Let π(t) be the probability distribution of the states at
time t, then the probability distribution at time t + 1
is π(t + 1) = π(t)P and consequently we have π(t) =
π(0)P t. A distribution π is called stationary distribu-
tion if it satisfies π = πP . If a chain has a stationary
distribution it means that it will converge to a station-
ary distribution after sufficient amount of steps and re-
gardless of its starting state.

Markov chains are used to model random walks on
graphs. Consider a graph G = (N, E) with |N | nodes
and |E| edges. A random walk starts from an initial
node (state) and at each step it makes a transition be-
tween two adjacent nodes u and v using edge (u, v).
Each edge in the graph is assigned with a probability
which is considered by random walk on each transition.
Obviously, the sum of probabilities of edges connecting
to a node must be one. It is easily calculated that sta-
tionary distribution for a random walk on a connected

undirected graph is πi = deg(i)
2|E| , where deg(i) is the de-

gree of node i.

3.2 Metropolized Random Walk
A regular random walk works as follows: it starts

from a node A, and chooses a node B among its neigh-
bors with uniform probability. So the transition proba-
bility matrix PN×N is:

Pij =

{ 1
degree(i) j is a neighbor of i,

0 otherwise

Using regular random walk for sampling over a graph
yields to biased samples. As shown in Section 3.1, the
probability of sampling a node is proportional to its
degree, which means that nodes with higher degrees
are more probable to be sampled by the random walk.
In order to have unbiased samples, the probability of
selecting a node should be uniform across the graph;
i.e., π(i) = 1

|V | , where |V | is the number of nodes.

The Metropolis-Hasting technique [7, 13, 22, 28] pro-
vides a way to modify the next-hop selection to pro-
duce any desired stationary distribution, π(j). In [31],
Stutzbach et al. choose the following equation for the
next-hop selection to achieve a uniform distribution:

Q(i, j) =

{

Pij min
(

degree(i)
degree(j) , 1

)

if i 6= j,

1 −
∑

k 6=i Q(i, k) if i = j

Therefore, at each step of random walk, MRW algo-
rithm performs as follows:

• Select a neighbor j of node i uniformly at random.

• Generate a random number, p, between 0 and 1.

• If p ≤ deg(i)
deg(j) , j is the next step.

• Otherwise, stay at i as the next step.

Basically, the bias toward high degree nodes is removed
by reducing the probability of transitioning to such nodes
at each step of Metropolized Random Walk.

3.3 Respondent Driven Sampling
Respondent-Driven Sampling (RDS) is a development

of Snowball Sampling (SBS), a technique used in social
sciences to make estimation of important population pa-
rameters in “hidden” populations2 (e.g., drug users). In
SBS, the number of samples grows like a rolling snow-
ball as it iteratively recruits more samples from referrals
of individuals in the current sample list.

It has been shown that Snowball Sampling techniques
are subject to biases toward respondents with higher
number of referrals [3, 11]. In [14, 29, 35], RDS is intro-
duced as a variant of SBS which incorporates a mathe-
matical model into Snowball Sampling that re-weights
the samples to compensate for the fact that samples
were collected non-uniformly.

Random walk on a graph could be interpreted as a
special case of RDS in which each respondent recruits
exactly one individual. This in turn can be recast as
a Monte Carlo Markov Chain (MCMC) problem [29].
Similar to social sciences, we are interested in estimat-
ing node attributes based on node degrees seen during
the random walk.

We wish to estimate the distribution of a node prop-
erty X ; specifically, consider any partition {R1, . . . , Rm}
of the range of possible values of X . We partition the
node set V accordingly into groups of nodes {V1, . . . , Vm},
i.e., Vi = {v ∈ V : X(v) ∈ Ri}. A simple example is
when X is positive integer value and we group by value:
Vi = {v ∈ V : X(v) = i}.

The RDS approach is to estimate the proportion pi

of nodes that are in group i from observed node de-
gree and group memberships of nodes traversed in the
random walk. Specifically, let the walk comprise of
n steps, visiting a set of nodes T = {t1, t2, . . . , tn}
(note that nodes may be visited more than once). Let
Ti = T ∩ Vi denote the visited nodes that lie in group
i. It is well known that the stationary distribution of
a random walk on a connected graph with node set V
is π(v) = degree(v)/

∑

u∈V degree(u) where degree(v)
is the degree of the node v. Hence, for any node prop-
erty X , the Hansen-Hurwitz [12] estimator Ŝ(X) :=

n−1
∑

v∈T

X(v)
π(v) is an unbiased and consistent estimator

of the sum S(X) :=
∑

v∈V X(v) when T is drawn from
a stationary random walk, i.e., one that evolves from
an initial node that is randomly selected according to
the stationary distribution. Consider the special case;
when X = IVi

is the indicator of a node being in group

2Heckathorn in [14] defines a population as “hidden” if it has the
following two characteristics: first, population size is unknown;
and second, individuals of this population refuse to cooperate in
order to protect their privacy.
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i; i.e., IVi
(v) = 1 if v ∈ Vi and 0 otherwise, then Ŝ(IVi

)
estimates the total number of nodes in Vi. When X = 1
then Ŝ(1) estimates the total number of nodes |V | in the
graph. Thus we can estimate the proportion pi by

p̂i =
Ŝ(IVi

)

Ŝ(1)
=

∑

v∈Ti

1
degree(v)

∑

u∈T
1

degree(u)

p̂i is consistent—it converges to the true value pi—as
the number n of visited nodes grows. The RDS es-
timator can be recognized as an importance sampling
estimator weighted by the stationary distribution π, ap-
plied to the MCMC of the random walk on the vertex
set V .

Although both MRW and RDS use random walks
to collect samples, there is a slight difference in the
way they produce unbiased results. The random walk
in MRW is modified so that the probability of select-
ing a node is uniform. On the other hand, RDS first
selects samples using regular random walk, and then
post-processes the samples to have unbiased results.

4. PRACTICAL ISSUES
Directed Graphs: The focus of our stusy is on undi-
rected graphs. In directed graphs, the probability of
a random walker to land in a node is not only related
to its in-degree, but also is a function of its neighbors’
in-degree. Therefore, calculating the “stationary dis-
tribution” is complicated and needs global view of the
graph, see [4, 27] for more details.
Main Node Property: Moreover, we only consider
those node properties that may interact with the ran-
dom walk; i.e., the degree of an individual node in the
graph determines the probability that a node is visited
by a random walker.
Methodology: We simulate MRW and RDS over snap-
shots of three OSNs, namely Flickr, LiveJournal, and
YouTube, taken by a recent study [25]. Simulations of-
fer opportunities for evaluating the accuracy of these
techniques. Moreover, by comparing our results with
earlier studies [28,31], we identify structural properties
of the graph that closely correlate with the accuracy of
sampling techniques.
Performance Metric: To validate MRW and RDS
sampling techniques, we use the Kolmogorov-Smirnov
test, KS, to quantify the distance between the esti-
mated cumulative distribution function (CDF) of a de-
sired property from collected samples and the CDF from
all nodes. Suppose F̂ (x) is the estimated cumulative
distribution function and F (x) is the true cumulative
distribution function. The KS statistic is formally de-
fined as follows:

KS = sup
x

|F̂ (x) − F (x)|

where sup(S) is the supremum3 of set S. A value of
KS = ǫ means that the error of the estimation is at
least ǫ.

5. EVALUATION
In this section, we examine how connectivity struc-

ture of a graph affects the performance of RDS and
MRW sampling techniques. For this purpose, we use
two synthetic graphs and three OSN snapshots which
are introduced below:
Random graphs (RA): A random graph obtained by
starting with a set of n nodes and adding m edges be-
tween them at random.
Barabási-Albert graphs (BA): The “scale-free” graphs
of the preferential attachment proposed by Barabási et
al. [2] to generate graphs with power-law degree distri-
butions.
OSN snapshots: We use snapshots of three popular
OSNs, namely Flickr, LiveJournal, and YouTube, taken
by Mislove et al. [25]. Although their data sets are
not perfect, we believe that they are the best available
snapshots of real OSNs. These data sets4 contain all
of the user-to-user links captured by their crawlers at
the time. These links are directed since friendship in
Flickr, LiveJournal, and YouTube is not reciprocal. For
the purpose of our study, we assume that all of the links
are bidirectional; i.e., for each link (x, y) in the data set
we added (y, x) link to the connectivity graph. We make
this modification because our focus in this study is on
undirected graphs. This assumption has no significant
effect on the structure of these graphs as [25] reveals
that more than 60% of the links are symmetric in these
OSNs. Moreover, to have a connected component, we
removed all isolated islands of friendship graph.

5.1 Performance of Sampling Techniques
To minimize the effect of randomness in different ex-

periments, we run 10 parallel samplers with a relatively
long walk length of 500K hops, and calculate the cor-
responding KS errors. Figures 1(a) and 1(b) show the
average KS error for degree distribution as a function of
sample size for MRW and RDS techniques, respectively.
Following two main points can be concluded from Fig-
ure 1. (i) The performance of RDS improves with higher
number of samples; i.e., larger walk lengths lead to
lower KS errors. Although the rate of this improve-
ment is almost similar across all graph structures; for a
fixed sample size, RDS performs worse in OSN graphs.
(ii) Comparing Figure 1(a) and Figure 1(b) reveals that
MRW exhibits lower performance than RDS. Especially,
not only performance of MRW is significantly worse over

3Supremum of S is the least element of S that is greater than or
equal to each element of S.
4
http://socialnetworks.mpi-sws.org/data-imc2007.html
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Figure 1: Performance of RDS and MRW in estimating node degree distribution over different graph types.

Graph Type #Nodes #Edges Density Avg. CC Diameter
RA 10,000 50,000 5 0.0009 7
BA 10,000 50,000 5 0.0065 5

Flickr (A) 1,624,992 15,476,835 9.5 0.1892 27
Flickr (C) 280,562 12,210,537 43.5 0.2625 13
Flickr (G) 404,343 514,992 1.3 0.1510 > 40

LiveJournal (A) 5,189,809 48,688,097 9.4 0.2749 20
LiveJournal (C) 2,807,323 41,230,255 14.7 0.2938 13
LiveJournal (G) 62,269 84,334 1.4 0.1981 > 290
YouTube (A) 1,134,890 2,987,624 2.6 0.0808 21
YouTube (C) 306,482 1,707,249 5.6 0.1264 12
YouTube (G) 70,066 76,346 1.1 0.0641 > 80

Table 1: High Level Statistics. A: All Nodes, C: Core, G: Giant Partition, CC: Clustering Coefficient.

OSN graphs, but also the rate of improvement in such
graphs is much slower.

5.2 Identifying Limiting Factors
The question is “Which structural properties of

OSN graphs degrade performance of MRW and
RDS?” To answer this question, we first examine the
macro level properties of such graphs and then focus on
their micro level properties.

Table 1 presents high-level statistics of our graphs.
OSN graph sizes vary by almost a factor of five, while
the number of edges varies by one order of magnitude.
Other metrics such as density and clustering coefficient
are also different across OSN graphs. However, de-
spite these differences, Mislove et al. show that these
graphs share similar structural properties [25]. Struc-
tural properties of connectivity graph of social networks
are totally different from those of random graphs. For
example, OSN graphs show high level of local cluster-
ing [25]. As we can see in Table 1, the clustering coeffi-
cients of social networks are several orders of magnitude
larger than RA and BA graphs.

Figure 2 depicts node degree distributions for OSN
graphs. From one perspective, performance of MRW
and RDS can be attributed to very heterogeneous de-
gree distribution, similar to what we have in online so-
cial networks. In order to examine this hypothesis, we

shuffled (randomly rewired) all edges in YouTube graph
to generate a random graph, labeled as RY, without
changing the degree of individual nodes. Figure 1(c)
plots performance of MRW and RDS over RY. While
edge shuffling does not affect performance of MRW,
it improves performance of RDS5. This result suggests
that heterogeneous degree distribution is not the sole
underlying cause of poor performance of RDS over OSN
graphs, but probably one of the prominent factors to
degrade performance of MRW.

5.2.1 Limiting Factors of MRW

To further explore poor performance of MRW on graphs
with heterogeneous degree distributions, we calculate
the average percentage of unique visited nodes for sam-
ple size of 100K nodes, Table 3. Although RDS visits
the same number of unique nodes, MRW visits much
lower percentage in OSN graphs. The observed over-
all lower performance of MRW can be attributed to the
following phenomenon. In OSN graphs, we have several
clusters of low degree nodes that are connected through
high degree nodes [25]. The only way for an MRW
walker to leave a cluster is via a much higher degree
node that resides outside this cluster. i.e., the walker
has to traverse an edge from a low degree node within

5We obtained the same results over LiveJournal and Flickr after
edge shuffling.
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Figure 2: Node degree distribution. A: All Nodes, C: Core, G: Giant partition.

Graph Type
% of unbalanced edges % of self-loops and its breakdown on unbalanced edges

ratio > 100 ratio > 500 ratio > 1000 total ratio > 100 ratio > 500 ratio > 1000
RA - - - 17.6% - - -
BA - - - 40.6% - - -

Flickr 4.9% 1.2% 0.6% 75.1% 21.1% 8.2% 5.4%
LiveJournal 1.2% 0.2% 0.1% 60.8% 7.7% 1.2% 0.3%
YouTube 20.0% 8.5% 5.2% 75.7% 35.4% 20.5% 14.0%

Table 2: Percentage of unbalanced edges and self-loops on them. Balance ratio of an edge (x, y) is degree(x)/degree(y).

such a cluster to a much higher degree node outside this
cluster (We will call these edges unbalanced edges in the
rest of this paper.). As described in Section 3.2, for the
MRW technique, the probability of moving along such
an edge is proportional to the ratio of the (low) degree
of the node within the cluster and the (very high) de-
gree of the node outside this cluster. Therefore, when
a walker ends up in one of these clusters, it will keep
looping among its low degree nodes, thus collecting re-
dundant samples which in turn degrades the accuracy
of sampling.

Graph Type MRW RDS
RA 69.67% 86.30%
BA 69.32% 84.55%

Flickr 10.24% 82.04%
LiveJournal 29.03% 86.37%
YouTube 7.82% 69.53%

Table 3: Avg. percentage of unique samples for sample

size of 100K

Table 2 shows the percentage of unbalanced edges in
different graph types along with the average percentage
of self-loops6 that MRW walkers take because of se-
lecting such edges. Percentage of unbalanced edges and
self-loops on these edges in LiveJournal is less than the
other two OSNs. This is in agreement with our results
in Figure 1(a) where MRW shows better performance
over LiveJournal. Our results so far suggest that the
high number of unbalanced edges in OSN graphs, which
is a side-effect of their heterogeneous degree distribu-

6The state in which MRW walker stays in the same node since
the probability of transitioning to a neighbor is not large enough.

tion, yields to more error in estimation of node proper-
ties in MRW technique.

5.2.2 Limiting Factors of RDS

The performance of MRW is affected by unbalanced
edges in OSN graphs. However, as we can see in Fig-
ure 1(b), even a regular random walk, used in RDS,
shows low performance. Therefore, we need to investi-
gate those structural properties which affect the behav-
ior of regular random walkers in such graphs.

Figure 3, in a finer grain level than Figure 1, presents
those nodes that are not properly sampled by RDS.
Each dot shows the difference between Probability Dis-
tribution Function of node degree, d, in reference graph
and samples; i.e, |PDFOSN (d)−PDFRDS(d)|. We can
see in Figure 3 that RDS technique, most of the time,
is inaccurate in sampling of low degree nodes (i.e., de-
grees less than five) in OSN graphs. We are interested
to find why RDS is unable to sample them properly.

For this purpose, we flood (i.e., BFS crawling) from
the 10 highest degree nodes, as we believe these nodes
are more “central” [25] in the graph, i.e., average short-
est path from these nodes to other nodes is shorter.
Then, we measure the distance of each node in the graph
as the mean shortest path to the starting nodes of our
flooding. We also run 10 random walkers with a very
long walk length of 10M hops, started from the same
starting nodes.

Figure 4 shows the distance distribution of nodes vis-
ited by random walkers and also for all nodes in the
graph. As we can see in this figure, even a very long
random walker cannot discover all parts of the graph.
Although we have some nodes with distance of more
than 10 in OSN graphs, walkers do not go farther than

7



 0

 0.01

 0  5  10  15  20  25  30

D
iff

Degree

diff in PDF

(a) Flickr

 0

 0.01

 0  5  10  15  20  25  30

D
iff

Degree

diff in PDF

(b) LiveJournal

 0

 0.01

 0  5  10  15  20  25  30

D
iff

Degree

diff in PDF

(c) YouTube

Figure 3: RDS error in estimating node degree distribution over OSN graphs; walk length = 100K, repeat = 10.
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Figure 4: Distance distribution of nodes.

nine hops. Even for a distance of four, the gap between
CCDF values of all nodes and samples is 0.11, 0.31, and
0.15 for Flickr, LiveJournal, and YouTube, respectively.
This means that random walkers do not properly sam-
ple nodes with distance of greater than four.

In order to find what type of nodes are located at
far distances, we plot distance distribution for both low
degree nodes and high degree nodes in Figure 4. We
roughly define a node as low degree if it’s degree is less
than 10, and high degree if it’s degree is more than 507.
Interestingly, all high degree nodes have distances less
than four (except for 1% in LiveJournal), while low de-
gree nodes are all over the graph. It is obvious in Figure
4 that in all three OSNs, the line for distance distribu-
tion of samples is above the line for high degree nodes
and below the line for low degree nodes. It means that
random walkers go far enough to sample all nodes with
high degree, but not far enough to sample nodes with
low degree. This confirms our earlier observations in
Figure 3 that low degree nodes are the main contribu-
tors of the KS error.

7We make this assumption based on Figure 2. While portion of
low degree nodes is 15%, 37%, and 7%, the portion of high degree
nodes is 5%, 9%, and 1% in Flickr, LiveJournal, and YouTube,
respectively.

6. OSN GRAPH STRUCTURE
Our results are in agreement with [25] in which Mis-

love et al. show that OSN graphs have a dense “core”
of very well-connected high degree nodes in the middle.
This core plays a “central” role in connectivity of the
graph and removing nodes from the core will yield to
graph partitioning. Several other partitions are hanging
from the core and forming the shell of the graph. Each
of these partitions are connected to the core through a
relatively small number of gateway edges, see Figure 6.
Also, external connectivity of the core is less than its
internal connectivity, while this is reverse for the shell
(see Section 6.1 for more details on external and internal
connectivity). Because of this fact, random walkers are
absorbed to the core and tend to remain there. This,
in turn, results in improperly sampling of nodes in the
shell.

In this section, we first focus on the core in Section
6.1, and then we move on characterizing the shell in
Section 6.2.

6.1 Characterzing Core Component
We loosely define a core of a network as any (mini-

mal) set of nodes that satisfies three properties: First,
its internal connectivity must be much larger than its
external connectivity [32]. Second, the core must be
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Figure 5: Number of unique nodes visited by 10 random walkers with length of 10M started from 10 random nodes.

Core

Giant Partition

Singletons

Mid. Size Partitions

Gateway Edge

Figure 6: High level view of OSN graph structure: A

core in the middle and several partitions hanging from

the core via gateway edges.

connected with a relatively small diameter. Third, the
core is essential for the connectivity of the graph and its
removal will break the graph into many node islands.

This definition along with our results in previous sec-
tions imply that a random walker is more likely to visit
the nodes in the core than other parts of the network.
We use this indication to identify the core of these
graphs by running 10 long random walkers from 10 ran-
dom starting points. Each walker explores a region of
the graph and we expect that nodes located in the core
will be discovered by all walkers. Therefore, the in-
tersection set of the visited nodes by all walkers grows
with longer walk lengths as walkers visit more nodes.
We consider this set as the core, once its size equals
the size of union set of visited nodes (i.e., those nodes
that have been visited at least by a walker). This is a
reasonable approach since when random walkers do not
explore new regions, it means that they keep hitting
nodes in the core.

Figure 5 illustrates our methodology for core detec-
tion. We can see six knee points in Figure 5 where there
is an obvious slow down in growth of both union and

intersection sets. This is due to the fact that after some
number of steps, union and intersection sets become
saturated and since then proceed with a slow growth.
Interestingly, in all three OSNs, when intersection sets
become saturated, their size is very close to the size of
union sets. When union and intersection sets are al-
most equal, it implies that our walkers are trapped in
the core, and subsequently, we can consider the inter-
section set as the core of the graph. Although this set
of nodes is loosely specified as the core, we claim that
it satisfies our criteria for the core definition. In this
section, we focus on the first two properties of the core
(based on our definition at the beginning of this section)
and leave the third property for Section 6.2.
Internal Connectivity: To quantify the connectivity
between the core and the shell, we examined whether
nodes inside the core have a higher tendency to connect
to each other rather than nodes outside the core [32].
For this purpose, we calculate the ratio (R) of internal
edges to the total number of edges for four sets of nodes
and present it in Table 4. First, we divide the graph to
two sets, core and shell. As we see, OSN graphs show
different R values for core and shell which means they
have different internal (and external) connectivity. In
other words, while nodes in the core have more inclina-
tion to connect to each other (more than 79% internal
edges in contrast with less than 21% external edges),
nodes in the shell behave reversely. These unbalanced
values of R verify our approach to identify the core.

High degree nodes in the core of OSN graphs are re-
sponsible for large values of R. However, there is also
another factor which contributes to large internal con-
nectivity of the core of such graphs. Most of high de-
gree nodes residing in the core are very well-connected
to each other. To focus on the latter issue, we ran-
domly rewire the edges in OSN graphs to destroy the
well-formed connection between high degree nodes of
the core. We then calculate the R values for the yielded
graphs. Crnd column in Table 4 denotes R values for
randomized OSN graphs and we can see an obvious de-
crease in internal connectivity of their core. In conclu-
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Graph Type
Internal Connectivity [32]

C Crnd S G C1 C2

Flickr 0.935 0.853 0.521 0.642 0.497 0.503
LiveJournal 0.930 0.883 0.285 0.439 0.500 0.499
YouTube 0.786 0.628 0.427 0.716 0.497 0.504

Table 4: Internal Connectivity. C: Core, Crnd: randomized graph, G: Giant Partition, S: Shell, C1: Core Subset 1,

C2: Core Subset 2.

Graph Type #Total #Giant & Size #Singletons #Mid. Size #Trees
Flickr 509,770 1 & 404,343 428,678 81,091 66,812

LiveJuornal 1,510,696 1 & 62,269 1,268,216 242,479 201,476
YouTube 500,810 1 & 70,066 423,328 77,481 71,294

Table 5: High Level Statistics of Partitions

sion, both high degree nodes and their internal connec-
tion are responsible for large R values for the core of
OSN graphs.

Moreover, as another confirmation, we divided the
core to two random sets of nodes with the same num-
ber of nodes and calculated R values for them. As we
can see in Table 4, the core is homogeneous in terms of
internal connectivity since for all three OSNs, (i) nei-
ther of the sets show any tendency towards connecting
to either internal or external nodes (R = 0.5), and (ii)
both sets present similar connectivity behavior (same
values of R).
Small Diameter: For the second property of the core,
we calculated its diameter and compared it with that of
the entire graph. The results are presented in Table 1.
Relatively smaller diameter of the core is mainly due to
the fact that density and portion of high degree nodes
inside the core are larger than those of the entire graph,
see Figure 2 for degree distribution of the core.

Our study for core detection of OSN graphs indicates
a denser core for Flickr and a looser core for YouTube.
The core of Flickr shows more internal connectivity, and
much more density, see Tables 1 and 4. For Flickr, only
17% of the nodes reside in its core, while this value for
LiveJournal and YouTube is 54% and 22%, respectively.
On the other side, density and internal connectivity of
YouTube core are lower than the other two.

6.2 Characterizing Shell Component
Removing the core of OSN graphs breaks it into so

many disconnected partitions. Table 5 presents a high
level statistics of these partitions. Interestingly, we found
three types of partitions: singletons, middle-sized par-
titions, and giant partition.
Singletons and Middle-Sized Partitions: More than
80% of partitions are singletons; i.e., single nodes hang-
ing from the core. Middle-sized partitions are islands of
nodes with a population less than 2000 nodes. Figure
7(a) plots power-law population distribution of these

partitions. The majority of middle-sized partitions have
small number of nodes (90% less than 10 nodes), and
a few of them have higher populations. Figure 7(b)
shows the diameter of middle-sized partitions. We can
see some partitions with much larger diameter than the
entire graph, especially in LiveJournal. As we men-
tioned in Section 6.1, the core plays a central role in the
OSN graph connectivity. Since many shortest paths be-
tween pairs of nodes go through the core, removing the
core will increase the average shortest path length be-
tween nodes of a partition, and subsequently, increase
its diameter. Since diameter distribution of middle-
sized partitions for LiveJournal is above Flickr, and that
of Flickr is above YouTube in Figure 7(b), we can derive
that connectivity graph of LiveJournal is more stretched
than that of Flickr, and connectivity graph of Flickr is
more stretched than that of YouTube.
Trees: More than 80% of middle-sized partitions are
forming a tree. Figure 7(c) plots diameter distribution
for trees. Although more than 90% of these trees have
a diameter of less than two, there are some trees with
diameters greater than five. Larger diameters for tree-
like partitions makes it less probable for random walkers
to reach leaves of the trees in order to sample them.
Giant Partition: Finally, the shells of these OSNs
have a giant partition with a several orders of magni-
tude larger population than other partitions. High level
statistics for the giant partition is presented in Tables 1
and 4. Structural properties of this partition is signifi-
cantly different from the core. In contrast with the core,
it has lower density, clustering coefficient, and internal
connectivity and dramatically larger diameter. Also, it
shows different degree distribution as we can see in Fig-
ure 2, which differs from power-law degree distribution
of the core and the entire graph.

7. CONCLUSION AND FUTURE WORK
In this paper, we articulated an extensive analysis of

RDS and MRW sampling techniques over connectivity
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Figure 7: Size and diameter distribution of partitions. Giant partition and singletons are removed.

graphs of online social networks. This study provides
essential insights for the behavior of MRW and RDS
over OSNs and investigates the underlying causes of
their poor performance on such graphs.

We found that in OSN graphs, as a result of their
heterogeneous degree distribution, most of low degree
nodes connect to nodes with much higher degrees; and
thus, we have a large number of unbalanced edges in
such graphs. This phenomenon degrades performance
of MRW in estimating node properties.

Moreover, the existence of a very dense core in the
middle of OSN graphs with high internal connectivity
and low external connectivity, along with a sparse and
deep shell around the core, do not allow random walkers
to properly explore all regions in such graphs. This, in
turn, will result in over-sampling of the core and under-
sampling of the nodes in the shell, and subsequently,
larger errors in estimation of node properties of the en-
tire graph.

We are continuing to focus exclusively on improving
MRW and RDS sampling techniques to perform effi-
ciently and in a topology-agnostic way in all graph struc-
tures. Once we achieve the desirable level of accuracy,
we can furnish OSN researchers with our tool to be em-
pirically used for unbiased data collection from popular
OSNs. We believe this is a venue of high demand in
OSN research community since in each characterization
study based on measurement, representative data is the
king.

While unbiased sampling over undirected graphs has
been largely explored during these years, no significant
study has been done on directed graphs. In directed
graphs, the probability of a random walker to land in
a node is not only related to its in-degree, but also is
a function of its neighbors’ in-degree. Therefore, calcu-
lating the “stationary distribution” is complicated and
needs global view of the graph, see [4, 27] for more de-
tails. The main question here is whether it is possible
to address challenges of directed graphs in an extension
of MRW and RDS.

Another direction for characterizing OSNs is looking

into their dynamic aspects. We have recently embarked
on analyzing and modeling macro-level dynamic behav-
ior of a couple of popular systems, such as MySpace [33],
in terms of their change and evolution over time. For
this purpose, access to promising sampling techniques
which can deal with unknown nature of dynamics and
churn in OSNs is required.
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