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Abstract

Many real-world domains, such as web spam, auction fraud, and counter-terrorism, are

both relational and adversarial. Existing work on adversarial machine learning assumes

that the attributes of each instance can be manipulated independently. Collective clas-

sification violates this assumption, since object labels depend on the labels of related

objects as well as their own attributes. In this paper, we present a novel method for

robustly performing collective classification in the presence of a malicious adversary that

can modify up to a fixed number of binary-valued attributes. Our method is formulated

as a convex quadratic program that guarantees optimal weights against a worst-case

adversary in polynomial time. In addition to increased robustness against active adver-

saries, this kind of adversarial regularization can also lead to improved generalization

even when no adversary is present. In experiments on real and simulated data, our

method consistently outperforms both non-adversarial and non-relational baselines.
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Chapter 1

Introduction

In collective classification [1], we wish to jointly label a set of interconnected objects

using both their attributes and their relationships. For example, linked web pages are

likely to have related topics; friends in a social network are likely to have similar demo-

graphics; and proteins that interact with each other are likely to have similar locations

and related functions. Probabilistic graphical models, such as Markov networks, and

their relational extensions, such as Markov logic networks [2], can handle both uncer-

tainty and complex relationships in a single model, making them well-suited to collective

classification problems.

However, many collective classification models must also cope with test data that is

drawn from a different distribution than the training data. In some cases, this is simply

a matter of concept drift. For example, when classifying blogs, tweets, or news articles,

the topics being discussed will vary over time. In other cases, the change in distribution

can be attributed to one or more adversaries actively modifying their behavior in order

to avoid detection. For example, when search engines began using incoming links to

help rank web pages, spammers began posting comments on unrelated blogs or message

boards with links back to their websites. Since incoming links are used as an indication of

quality, manufacturing incoming links makes a spammy web site appear more legitimate.

In addition to web spam [3, 4], other explicitly adversarial domains include counter-

terrorism, online auction fraud [5], and spam in online social networks.

Rather than simply reacting to an adversary’s actions, recent work in adversarial ma-

chine learning takes the proactive approach of modeling the learner and adversary as

players in a game. The learner selects a function that assigns labels to instances, and the

adversary selects a function that transforms malicious instances in order to avoid detec-

tion. The strategies chosen determine the outcome of the game, such as the success rate

of the adversary and the error rate of the chosen classifier. By analyzing the dynamics
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Chapter 2: Background 2

of this game, we can search for an effective classifier that will be robust to adversarial

manipulation. Even in non-adversarial domains such as blog classification, selecting a

classifier that is robust to a hypothetical adversary may lead to better generalization in

the presence of concept drift or other noise.

Early work in adversarial machine learning included methods for blocking the adversary

by anticipating their next move [6], reverse engineering classifiers [7, 8] (and later: [9]),

and building classifiers robust to feature deletion or other invariants [10, 11]. More

recently, Brückner and Scheffer showed that, under modest assumptions, Nash equilibria

can be found for domains such as spam [12]. However, current adversarial methods

assume that instances are independent, ignoring the relational nature of many domains.

In this project, we present Convex Adversarial Collective Classification (CACC), which

combines the ideas of associative Markov networks [13] (AMNs) and convex learning

with invariants [11]. Unlike previous work in learning graphical models, CACC selects

the most effective weights assuming a worst-case adversary who can modify up to a

fixed number of binary-valued attributes. Unlike previous work in adversarial machine

learning, CACC allows for dependencies among the labels of different objects, as long as

these dependencies are associative. Associativity means that related objects are more

likely to have the same label, which is a reasonable assumption for many collective

classification domains. Surprisingly, all of this can be done in polynomial time using a

convex quadratic program.

In experiments on real and synthetic data, CACC finds much better strategies than both

a näıve AMN that ignores the adversary and a non-relational adversarial baseline. In

some cases, the adversarial regularization employed by CACC helps it generalize better

than AMNs even when the test data is not modified by any adversary.

The rest of our paper is organized as follows. In chapter 2, we present a brief overview

of Markov networks and associative Markov networks as applied to collective classifica-

tion, and adversarial machine learning. We introduce our formulation and algorithm in

chapter 3. chapter 5 contains our experiments on real and synthetic data, discussion

and conclusion as well as ongoing and future work. In appendix A we have a complete

proof of the theorems. Appendix B is a short tutorial on CPLEX.



Chapter 2

Background

2.1 Max-margin relational learning

Markov networks (MNs) represent the joint distribution over a set of random variables

X = {X1, . . . , XN} as a normalized product of factors:

P (X) =
1

Z

∏
i

φi(Di)

where Z is a normalization constant so that the distribution sums to one, φi is the ith

factor, and Di ⊂ X is the scope of the ith factor. Factors are sometimes referred to as

potential functions. For positive distributions, a Markov network can also be represented

as a log-linear model:

P (X) =
1

Z
exp

(∑
i

wifi(Di)

)
where wi is a real-valued weight and fi a real-valued feature function. For the common

case of indicator features, each feature equals 1 when some logical expression over the

variables is satisfied and 0 otherwise.

A factor or potential function is associative if its value is at least as great when the

variables in its scope take on identical values as when they take on different values. For

example, consider a factor φ parameterized by a set of non-negative weights {wk}, so

that φ(yi, yj) = exp(wk) when yi = yj = k and 1 otherwise. φ is clearly associative,

since its value is higher when yi = yj . An associative Markov network (AMN) [13]

is an MN where all factors are associative. Certain learning and inference problems

that are intractable in general MNs have exact polynomial-time solutions in AMNs with

binary-valued variables, as will be discussed later.

3



Chapter 2: Background 4

Table 2.1: MLN formulas for a simple collective classification model.

Weight Formula

wk0 Label(o) = k
wkj Attributej(o)⇒ Label(o) = k

wke Link(o, o′) ∧ (Label(o)=k)⇒ (Label(o′)=k)

Markov logic [2] is a language for conveniently defining Markov networks over relational

domains. A Markov logic network (MLN) is a set of weighted first-order formulas (wi, Fi),

where wi is the weight of formula Fi; the more likely Fi to “true” the larger wi, i.e.

wi = +∞ means Fi has to be true and wi = −∞ means Fi has to be false. As a

corrolary if we have both Fi and ¬Fi we won’t need negative weights. Together with a

set of logical constants representing objects in the domain, an MLN induces a log-linear

model where the features ni are the number of satisfied groundings of the formulas Fi:

P (X) =
1

Z
exp

(∑
i

wini(X)

)

Here, the random variables in X are all the ground atoms that can defined with the

given set of logical constants. For example, if our domain includes a binary predicate

Friends(x, y) and our set of constants is {Anna, Bob}, then the random variables are

given by the ground atoms Friends(Anna,Anna), Friends(Anna,Bob), Friends(Bob,Anna),

and Friends(Bob, Bob). MLNs can also be viewed as templates for creating large MNs,

where each grounding of the formula Fi defines a factor with value ewi when that ground-

ing formula is satisfied and 1 otherwise.

An MLN or MN can also represent a conditional distribution, P (Y|X), in which case

the normalization constant becomes a function of the evidence, Z(X).

MLNs make it easy to compactly describe very complex distributions. For example, a

simple collective classification model can be defined using relatively simple formulas, as

shown in Table 2.1. The subscript j and superscript k indicate that different formulas

are defined for each attribute j ∈ {1, . . . ,M} and object label k ∈ {1, . . . ,K}. The

formula from the first line defines features for the prior distribution over labels in the

absence of any attributes or links. The next line relates each object’s attributes to its

label. The third line relates the labels of neighboring objects. Note that the first formula

may be omitted as a special case of the second if we assume that a special bias attribute

Attribute0(o) is true for every object o.
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The MLN from Table 2.1 can be represented as the following log-linear model:

P (y|x) =
1

Z(x)
exp

∑
ijk

wkj xijy
k
i +

∑
(i,j)∈E,k

wkey
k
i y
k
j


where xij represents the value of the jth attribute of the ith object and yki is an indicator

variable which equals 1 when the ith object is assigned the kth label and 0 otherwise.

E denotes the set of pairs (i, j) such that the ith and jth object are linked.

A common inference task is to find the most probable explanation (MPE), the most

likely assignment of the non-evidence variables y given the evidence. This can be done

by maximizing the unnormalized log probability, since log is a monotonic function and

the normalization factor Z is constant over y. For the simple collective classification

model, the MPE task is to find the most likely labeling given the links and attributes:

argmaxy

∑
ijk

wkj xijy
k
i +

∑
(i,j)∈E,k

wkey
k
i y

k
j

In general, inference in graphical models is computationally intractable. However, for

the special case of AMNs with binary-valued variables, MPE inference can be done

in polynomial time by formulating it as a min-cut problem [14]. For wke ≥ 0, our

working example of a collective classification model is an AMN over the labels y given

the links E and attributes x. In general, associative interactions are very common in

collective classification problems since related objects tend to have similar properties, a

phenomenon known as homophily.

Markov networks and MLNs are often learned by maximizing the (conditional) log-

likelihood of the training data (e.g., [15]). An alternative is to maximize the margin

between the correct labeling and all alternative labelings, as done by max-margin Markov

networks (M3Ns) [16] and max-margin Markov logic networks (M3LNs) [17]. Both

approaches are intractable in the general case. For the special case of AMNs, however,

max-margin weight learning can be formulated as a quadratic program which gives

optimal weights in polynomial time as long as the variables are binary-valued [13]. We

now briefly describe the solution of Taskar et al, which will later motivate our adversarial

extension of AMNs. (We use slightly different notation from the original presentation

in order to make the structure of x and y clearer.)

The goal of the AMN optimization problem is to maximize the margin between the

log probability of the true labeling, h(w,x, ŷ) (the scoring function h(.) is defined in

the next paragraph), and any alternative labeling, h(w,x,y). Margin scaling is used

to enforce a wider margin from labelings that are more different, according to some
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difference function ∆(y, ŷ). We thus obtain the following minimization problem with

an exponential number of constraints (one for each y):

min
w,ξ

1

2
‖w‖2 + Cξ

s.t. h(w,x, ŷ)− h(w,x,y) ≥ ∆(y, ŷ)− ξ ∀y ∈ Y

Minimizing the norm of the weight vector is equivalent to maximizing the margin. The

slack variable ξ represents the magnitude of the margin violation, which is scaled by

C and used to penalize the objective function. For our problem, h is defined by the

simple collective classification model Table 1, and ∆ is Hamming distance: h(w,x,y) =∑
i,j,k w

k
j xijy

k
i +

∑
(i,j)∈E,k w

k
ey

k
i y

k
j and ∆(y, ŷ) = N −

∑
i,k y

k
i ŷ

k
i . Where N is the total

number of objects. To transform this into a tractable quadratic program, Taskar et al.

modify it in several ways. First, they replace each product yki y
k
j with a new variable ykij

and add constraints ykij ≤ yki and ykij ≤ ykj . In other words, ykij ≤ min(yki , y
k
j ), which

is equivalent to yki y
k
j for yki , y

k
j ∈ {0, 1}. Second, they replace the exponential number

of constraints with a continuum of constraints over a relaxed set of y ∈ Y ′, where

Y ′ = {y : yki ≥ 0;
∑

k y
k
i = 1; ykij ≤ yki ; ykij ≤ ykj }. Since all constraints share the same

slack variable, ξ, we can take the maximum to summarize the entire set by the most

violated constraint. After applying these modifications, substituting in h and ∆, and

simplifying, we obtain the following optimization problem for our collective classification

task:

min
w,ξ

1

2
‖w‖2 + Cξ

s.t. w ≥ 0;

ξ −N ≥ max
y∈Y′

∑
i,j,k

wkj xij(y
k
i − ŷki )

+
∑

(i,j)∈E,k

wke (ykij − ŷkij)−
∑
i,k

yki · ŷki (2.1)

Finally, since the inner maximization is itself a linear program, we can replace it with

the minimization of its dual to obtain a single quadratic program (not shown). For

the two-class setting, Taskar et al. prove that the inner program always has an integral

solution, which guarantees that the weights found by the outer quadratic program are

always optimal.

For simplicity and clarity of exposition, we have used a very simple collective classifi-

cation model as our working example of an AMN. This model can easily be extended

to allow multiple link types with different weights, link weights that are a function of

the evidence, and higher-order links (hyper-edges), as described by Taskar et al. [13].

Our adversarial variant of AMNs, which will be described in Section 4, supports most

of these extensions as well.
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2.2 Adversarial machine learning

Most classic learning algorithms assume that training and test data are drawn from the

same distributions. However, in many real world applications, an adversary will actively

change its behavior to avoid detection, leading to significantly worse performance in

practice. For example, spammers add and remove words from their email messages in

order to bypass spam filters, and web spammers try to deceive search engines by creating

“link farms” to make a web site seem more important. In computer and network security,

many bots are engineered to attack network computers and change their behavior so that

intrusion detection systems fail to detect them.

Designing machine learning algorithms that are robust to malicious adversaries is an

area of growing interest [18]. One approach is to formulate the problem as a game

between the learner and an adversary, each with its own set of strategies and rewards.

Dalvi et al. [6] note that finding a Nash equilibrium is often intractable and propose

a strategy to anticipate the adversary’s next move instead. Brückner and Scheffer [12]

present a method to find a Nash equilibrium for non-zero sum games that satisfy certain

convexity conditions. In later work, they present results for finding Stackelberg equilibria

as well [19]. One special case of adversarial manipulation is feature deletion, in which

the adversary chooses the features to remove that would most harm the classifier’s

performance. This results in a zero-sum game between the learner and adversary that

can be solved using robust minimax methods as in [10, 20, 21, 22]. Teo et al. [11] is

more general, allowing any set of adversarial actions that afford an efficient numerical

solution to be represented as an invariant while learning.

We take particular inspiration from Globerson and Roweis [10] and Teo et al. [11],

which take the quadratic program of a max-margin learning problem and substitute in

the adversary’s worst-case modification of the evidence. By formulating the adversary’s

modification as a linear program and taking the dual, the learning problem remains

convex.

However, none of these methods handles collective classification, in which the label of

each object depends on the labels of its neighbors.



Chapter 3

Convex Adversarial Collective

Classification

Collective classification problems are hard because the number of joint label assignments

is exponential in the number of nodes. As discussed in Section 2, if neighboring nodes

are more likely to have the same label, then the collective classification problem can be

represented as an associative Markov network (AMN), in which max-margin learning

and MPE inference are both efficient. To construct an adversarial collective classifier,

we start with the AMN formulation (Eq. 2.1) and incorporate an adversarial invariant,

similar to the approach of Globerson and Roweis [10]. Specifically, we assume that the

adversary may change up to D binary-valued features xij , for some positive integer D

that we select in advance. We use x̂ to indicate the true features and x to indicate the

adversarially modified features. The number of changes can be written as: ∆(x, x̂) =∑
i,j xij + x̂ij − 2xij x̂ij

We define the set of valid x as X ′ = {x : 0 ≤ xij ≤ 1; ∆(x, x̂) ≤ D}. Note that X ′ is

a relaxation that allows fractional values, much like the set Y ′ defined by Taskar et al.

We will later show that there is always an integral solution when both the features and

labels are binary-valued.

In our adversarial formulation, we want the true labeling ŷ to be separated from any

alternate labeling y ∈ Y ′ by a margin of ∆(y, ŷ) given any x ∈ X ′. Rather than including

an exponential number of constraints (one for each x and y), we use a maximization

8
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over x and y to find the most violated constraint:

max
y∈Y ′,x∈X ′

h(w,x,y)− h(w,x, ŷ) + ∆(y, ŷ)

= max
y∈Y ′,x∈X ′

∑
i,j,k

wkj xijy
k
i +

∑
(i,j)∈E,k

wkey
k
ij

−
∑
i,j,k

wkj xij ŷ
k
i −

∑
(i,j)∈E,k

wke ŷ
k
ij

+N −
∑
i,k

yki · ŷki (3.1)

Next, we convert this to a linear program. Since xijy
k
i is bilinear in x and y, we replace

it with the auxiliary variable zkij , satisfying the constraints: zkij ≥ 0; zkij ≤ xij ; and

zkij ≤ yki . The removes the bilinearity and is exactly equivalent as long as xij or yki is

integral.

Putting it all together and removing terms that are constant with respect to x, y, and

z, we obtain the following linear program:

max
x,y,z

∑
i,j,k

wkj (zkij − ŷki xij) +
∑

(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki

s.t. 0 ≤ xij ≤ 1;
∑
i,j

xij + x̂ij − 2xij x̂ij ≤ D

0 ≤ yki ;
∑
k

yki = 1; ykij ≤ yki ; ykij ≤ ykj

zkij ≤ xij ; zkij ≤ yki ∀i, j, k (3.2)

Given the model’s weights, this linear program allows the adversary to change up to

D binary features. Recall that, in the AMN formulation, the exponential number of

constraints separating the true labeling from all alternate labelings are replaced with

a single non-linear constraint that separates the true labeling from the best alternate

labeling (Eq. 2.1). This non-linear constraint contains a nested maximization. We have a

similar scenario, but here the margin can also be altered by changing the binary features,

affecting the probabilities of both the true and alternate labelings. By substituting this

new MPE inference task (Eq. 3.2) into the original AMN’s formulation, the resulting

program’s optimal solution will be robust to the worst manipulation of the input feature

vector:
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min
w,ξ

1

2
‖w‖2 + Cξ s.t. w ≥ 0;

ξ −N ≥ max
x,y,z

∑
i,j,k

wkj (zkij − ŷki xij) +
∑

(i,j)∈E,k

wkey
k
ij

−
∑
i,k

yki · ŷki s.t.

0 ≤ yki ;
∑
k

yki = 1; ykij ≤ yki ; ykij ≤ ykj

0 ≤ xij ≤ 1;
∑
i,j

xij + x̂ij − 2xij x̂ij ≤ D

zkij ≤ xij ; zkij ≤ yki (3.3)

The mathematical program in Eq. (3.3) is not convex because of the bilinear terms and

the nested maximization (similar to solving a bilevel Stackelberg game). Fortunately, we

can use the strong duality property of linear programs to resolve both of these difficulties.

The dual of the maximization linear program is a minimization linear program with

the same optimal value as the primal problem. Therefore, we can replace the inner

maximization with its dual minimization problem to obtain a single convex quadratic

program that minimizes over w, ξ, and the dual variables (not shown). A similar

approach is used by Globerson and Roweis [10]. As long as this relaxed program has

an integral optimum, it is equivalent to maximizing only over integral x and y. Thus,

the overall program will find optimal weights. Taskar et al. [13] prove that the inner

maximization in a 2-class AMN always has an integral solution. We can prove a similar

result for the adversarial AMN:

Theorem 1. Eq. 3.2 has an integral optimum when w ≥ 0 and the number of classes is

2.

Proof Sketch. The structure of our argument is to show that an integral optimum exists

by taking an arbitrary adversarial AMN problem and constructing an equivalent AMN

problem that has an integral solution. Since the two problems are equivalent, the original

adversarial AMN must also have an integral solution. First, we use a Lagrange multiplier

to incorporate the constraint ∆(x, x̂) ≤ D directly into the maximization. The extra

term acts as a “per-change” penalty, which remains linear in x. Minimizing over the

Lagrange multiplier effectively adjusts this per-change penalty until there are at most D

changes between x and x̂, but does not affect the integrality of the inner maximization.

Next, we replace all x variables with equivalent variables v. Assume that either w1
j = 0

or w2
j = 0, for all j. (If both are positive, then we can subtract the smaller value from

both to obtain a new set of weights with the same optimum as before.) We define v as
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follows:

v1ij =

xij if w1
j > 0,

1− xij if w1
j = 0.

v2ij = 1− v1ij

By construction:

∑
i,j,k

wkj xij(y
k
i − ŷki ) =

∑
i,j,k

wkj v
k
ij(y

k
i − ŷki )

Thus, we can replace the x variables with v. Since the connections between the vkij and

corresponding yki variables are all associative, this defines an AMN over variables {y,v},
which is guaranteed to have an integral solution when there are only two classes.

By translating v back into x, we obtain a solution that is integral in both x and y.

Many extensions of our model are possible. One extension is to restrict the adversary to

only changing certain features of certain objects. For example, in a web spam domain,

we might assume that the adversary will only modify spam pages. We could also have

different budgets for different types of changes, such as a separate budget for each web

page, or even separate budgets for changing the title of a web page and changing its body.

These are easily expressed by changing the definition of X ′ and adding the appropriate

constraints to the quadratic program. Our model can also support higher-order cliques,

as described by Taskar et al. [13], as long as they are associative. For simplicity, our

exposition and experiments focus on the simpler case described above.

One important limitation of our model is that we do not allow edges to be added or

removed by the adversary. While edges can be encoded as variables in the model, they

result in non-associative potentials, since the presence of an edge is not associated with

either class label. Instead, the presence of an edge increases the probability that the two

linked nodes will have the same label. Handling the adversarial addition and removal

of edges is an important area for future work, but will almost certainly be a non-convex

problem.



Chapter 4

Results and Conclusion

4.1 Experiments

In this section, we describe our experimental evaluation of CACC. Since CACC is both

adversarial and relational, we compared it to four baselines: AMNs, which are relational

but not adversarial; SVMInvar [11], which is adversarial but not relational; and SVMs

with a linear kernel, which are neither. AMNs, SVMInvar, and SVMs can be seen as

special cases of CACC: fixing the adversary’s budget D to zero results in an AMN, fixing

the edge weights wke to zero results in SVMInvar, and doing both results in an SVM.

4.1.1 Datasets

We evaluated our method on three collective classification problems.

Synthetic. To evaluate the effectiveness of our method in a controlled setting where the

distribution is known, we constructed a set of 10 random graphs, each with 100 nodes

and 30 Boolean features. Of the 100 nodes, half had a positive label (‘+’) and half had

a negative label (‘−’). Nodes of the same class were more likely to be linked by an edge

than nodes with different classes. The features were divided evenly into three types:

positive, negative, and neutral. Half of the positive and negative nodes had different

feature distributions based on their class; that is, the positive nodes had more positive

attributes and the negative nodes had more negative attributes, on average. In such

nodes, on average there are 6 words, one of which is of the opposite class’s words, two

words are consistent with the class label and three words are neutral. The other half

of the nodes had an ambiguous distribution consisting mainly of the neutral words (on

average one word is consistent with class label, one word is not consistent and 3 words

are neutral). Therefore, an effective classifier for these graphs must rely on both the

12
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attributes and relations. On average, each node had 8 neighbors, 7 of which had the

same class and 1 of which had a different class.

Political Blogs. Our second domain is based on the Political blogs dataset collected

by Adamic and Glance [23]. The original dataset contains 1490 online blogs captured

during the 2004 election cycle, their political affiliation (liberal or conservative), and their

linking relationships to other blogs. We extended this dataset with word information

from four different crawls at different dates in 2012: early February, late February, early

May and late May. We used mutual information to select the 100 words that best predict

the class label [24], only using blogs from February and half of the blogs in early May,

in order to limit the influence of test labels on our training procedure. We found that

some of the blogs in the original dataset were no longer active, and had been replaced

by empty or spam web pages. We manually removed these from consideration. Finally,

we partitioned the blogs into two disjoint subsets and removed all edges between nodes

in the different subsets.

Reuters. As our third dataset, we prepared a Reuters dataset similar to the one used

by Taskar et al. [13]. We took the ModApte split of the Reuters-21578 corpus and

selected articles from four classes: crude, grain, trade, and money-fx. We used the 200

words with highest mutual information as features. We linked each document to the two

most similar documents based on TF-IDF weighted cosine distance. We split the data

into 7 sets based on time, and performed the tuning and then the training phases based

on this temporal order (as explained in 4.1.3).

4.1.2 Simulating an Adversary

In real world adversarial problems, the adversary does not usually have perfect access

to the model parameters. Researchers have widely studied the different ways that an

adversary can acquire access to the model parameters actively or passively [7, 8]. In

this paper we have examined two extreme cases. In the first, the adversary has perfect

access to the model parameters and manipulates the features in order to maximize

the misclassification rate. Since exactly maximizing the error rate is typically NP-

hard, our intelligent adversary instead maximizes the margin loss by solving the linear

program in Eq. (3.2). The simulation results of such adversarial manipulation is reported

in Fig. 4.1 In the second scenario, the random adversary randomly toggles D binary

features, representing random noise or perhaps a very naive adversary (Fig. 4.2).
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(a) Synthetic dataset: 0%
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(b) Synthetic dataset: 10%
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(c) Synthetic dataset: 20%
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(d) Political blogs: 0%
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(e) Political blogs: 10%
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(f) Political blogs: 20%
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(g) Reuters: 0%
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(h) Reuters: 10%
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(i) Reuters: 20%

Figure 4.1: Accuracy of different classifiers in presence of worst-case adversary. The
number following the dataset name indicates the adversary’s strength at the time of
parameter tuning. The x-axis indicates the adversary’s strength at test time. Smaller

is better.

4.1.3 Methodology and Metrics

In order to evaluate the robustness of these methods to malicious adversaries, we applied

a simulated adversary to both the tuning data and the test data. We assumed the worst-

case scenario, in which the adversary has perfect knowledge of the model parameters

and only wants to maximize the error rate of the classifier. Since exactly maximizing the

error rate is typically NP-hard, our intelligent adversary instead maximizes the margin

loss by solving the linear program in Eq. (3.2) for a fixed budget. Each model was

attacked separately. On the validation data, we used adversarial budgets of 0% (no

adversarial manipulation), 10%, and 20% of the total number of features present in the

data. This allowed us to tune our models to “expect” adversaries of different strengths.

Of course, we rarely know the exact strength of the adversary in advance. Thus, on

the test data, we used budgets that ranged from 0% to 25%, in order to see how well

different models did against adversaries that were weaker and stronger than expected.
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(a) Synthetic dataset: 0%
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(b) Synthetic dataset: 10%
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(c) Synthetic dataset:20%
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(d) Political blogs: 0%
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(e) Political blogs: 10%
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(f) Political blogs: 20%
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(g) Reuters: 0%
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(h) Reuters: 10%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n 
E

rr
or

 (
%

)

 

 

SVM
SVMINV
AMN
CACC

(i) Reuters: 20%

Figure 4.2: Similar experiments as in Fig.4.1, but this time some naive adversary has
randomly changed the features. All other settings are as in the paper.

We used the fraction of misclassified nodes as our primary evaluation criterion. For

all methods, we tuned the regularization parameter C using held-out validation data.

For the adversarial methods (CACC and SVMInvar), we tuned the adversarial training

budget D as well. All parameters were selected to maximize performance on the tuning

set with the given level of adversarial manipulation.

For political blogs, we tuned our parameters using the words from the February crawls,

and then learned models on early May data and evaluated them on late May data. In

this way, our tuning procedure could observe the concept drift within February and

select parameters that would handle the concept drift during May well. For Synthetic

data, we ran 10-fold cross validation. For Reuters, we split the data into 7 sets based

on time. We tuned parameters using articles from time t and t+ 1 and then learned on

articles at time t+ 1 and evaluated on articles from time t+ 2.

During the tuning procedure, we performed a coarse to fine tuning; For tunung C, we

start with the log space of C ∈ {C1 = 1e − 4, C2 = 1e − 3, ..., C9 = 1e4}, then for the
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best Ci, we expand the logspace of e((logCi−1+logCi)/2) to e((logCi+logCi+1)/2); for the best

Ci, if i = 1 or i = 9, we correspondingly set Ci = Ci/2 or Ci = Ci ∗ 2 and continue the

expansion. The tuning will be continued until C9 − C1 < ε. For the robust methods,

we perform a grid search on the joint space of adversarial budget at train time and C,

where for each budget value we perform the same coarse to fine tuning.

In addition to evaluating on the unmodified test data, we also modified the test data

by applying simulated adversaries of different strengths, in order to see how each model

degraded under direct attack. We ran all experiments in three settings, where in each

setting we used a different adversarial worst-case manipulation on the tuning data;

we used 0%, 10%, and 20% powerful adversaries. These different settings show how

different algorithms behave when being tuned on some data that is not original and

some adversary has already manipulated them.

We used CPLEX to solve all quadratic and linear programming problems (see appendix

B for a short tutorial on CPLEX). Most problems were solved in less than 1 minute on

a single core.

All of our code and datasets are available upon request.

4.1.4 Results and Discussion

Figure 4.1 shows the performance of all four methods on test data manipulated by

rational adversaries of varying strength (0%-25%), after being tuned against adversaries

of different strengths (0%, 10%, and 20%). Lower is better. On the far left of each graph

is performance without an adversary. To the right of each graph, the strength of the

adversary increases.

When a rational adversary is present, CACC clearly and consistently outperforms all

other methods. When there is no adversary, its performance is similar to a regular AMN.

On political blogs, it appears to be slightly better, which may be the result of the large

amount of concept drift in that dataset.

As expected, tuning against stronger adversaries (10% and 20%) makes CACC more

effective against stronger adversaries at test time. Surprisingly, tuning against a stronger

adversary does not significantly reduce performance against weaker adversaries: CACC

remains nearly as effective against no adversary when tuned for a 20% adversary as when

tuned for no adversary. Specifically, when there is no adversary at test time, the increase

in error rate from training against a 20% adversary is less than 1% on Synthetic and

Reuters, and on Political the error rate actually decreases slightly. Thus, this additional

robustness comes at a very small cost.
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In each of the experimental settings with 0%, 10%, and 20% powerful adversaries, we

observe that methods mostly perform slightly better in presence of adversary at test

time if they are tuned with some adversarially manipulated tuning data. In particular,

CACC outperforms other methods at almost every point.

We observe that up to some certain point AMN outperforms SVMInvar, but as the

adversary is allowed to change more features, it will exploit the structure of the graph

to mislead the classifier even more. Therefore, the AMN performs very poorly in the

presence of an active adversary, while CACC is still robust against adversaries of any

strength.

In Figures 4.1(d), 4.1(e), and 4.1(f), the AMN classification error jumps sharply as the

adversary budget increases. This is the point when enough nodes are mis-classified that

links are actively misleading in one or two of the eight cross-validation folds, leading

to worse performance than the SVM for those folds. This demonstrates that relational

classifiers are potentially more vulnerable to adversarial attacks than non-relational clas-

sifiers. A smoother version of this effect can also be observed on both the synthetic

dataset and Reuters.

Another interesting result was that our solutions on Reuters were always integral, even

though the number of classes is 4 and integrality is not guaranteed.

We also performed additional experiments against irrational adversaries that modify

attributes uniformly at random. These random attacks had little effect on the accuracy

of any of the methods; all remained nearly as effective as against no adversary.

We also looked at the distribution of learned weights by naive and adversarial methods.

We observe that adversarial methods distribute the weights over a small range of values

and results in a smooth distribution of model weights, while the naive methods assign

very high weights to some certain features. This is one of the main reasons that naive

methods are vulnerable to feature addition/deletion; adding a good feature that has a

high weight in a naive model, to a bad sample will increase its score, and may lead

to a misclassification. In Fig. 4.3(a) , we are showing the sorted values of 100 of the

weights learned for the Political blogs dataset; one can see that in a naive method like

AMN, the weight values have a high variance, but in an adveresarial method like CACC,

the variance of the weights is much lower. Fig. 4.3(b) show the histogram of the same

weights, where one can see how the adversarial method has changed the distribution of

learned weights.
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Figure 4.3: Distribution and variance of 100 of the weights learned for political blogs
dataset (by AMN and CACC); Note that we have removed weights with zero value for

better readability.

4.2 Conclusion

In this paper we provide a generalization of SVMInvar [11] and AMN [13] which combines

the robustness of SVMInvar with the ability to reason about interrelated objects. Our

approach represents the adversarial learning task as a bilevel quadratic Stackleberg

optimization problem and uses the linear programming relaxation of MPE inference to

convert it into a convex quadratic program with a tractable number of constraints. The

number of constraints is linear in the number of nodes and edges in the graph. This

resulting program can be solved in polynomial time using existing solvers. When there

are only two class labels, the MPE subproblem is guaranteed to have an integral solution,

and the overall learning problem is guaranteed to find optimal weights. In experiments

on real and synthetic data, we find that CACC finds consistently effective and robust

models, even when there are more than two labels.

In future work, we intend to extend our methods to learn adversarially regularized

variants of non-associative relational models and general Markov logic networks, using

approximate inference and constraint generation methods as necessary to cope with the

intractability of inference. We would also like to apply our methods to larger, more

realistic adversarial problems, such as web-spam. In addition to larger size, many of

these problems are semi-supervised and include numeric attributes, which would require

some modifications to CACC.



Appendix A

Proofs of theorems

Lemma 1. For K=2, any fixed j and 0 ≤ xij , yki ≤ 1, ŷki ∈ {0, 1}, ifAkj =
∑N

i=1 min(xij , y
k
i )−

xij ŷ
k
i , then

∑K
k=1A

K
j ≥ 0.

Proof. A1
j + A2

j =
∑N

i=1 min(xij , y
1
i ) − xij ŷ1i + min(xij , y

2
i ) − xij ŷ2i . Since y1i + y2i = 1

and ŷ1i + ŷ2i = 1, we can rewrite it as
∑N

i=1 min(xij , y
1
i )− xij(ŷ1i + ŷ2i ) + min(xij , 1− y1i )

=
∑N

i=1 min(xij , y
1
i ) + min(xij , 1− y1i )− xij . Now three cases can happen:

(a) If xij ≥ max(y1i , 1−y1i ), then min(xij , y
1
i )+min(xij , 1−y1i )−xij = y1i +1−y1i −xij

= 1− xij ≥ 0.

(b) If min(y1i , 1 − y1i ) ≤ xij ≤ max(y1i , 1 − y1i ), then min(xij ,min(y1i , 1 − y1i )) +

min(xij ,max(y1i , 1−y1i ))−xij = min(xij ,min(y1i , 1−y1i ))+xij−xij = min(xij , y
1
i , 1−

y1i ) ≥ 0.

(c) If xij ≤ min(y1i , 1− y1i ), then min(xij , y
1
i ) + min(xij , 1− y1i )− xij = xij + xij − xij

= xij ≥ 0.

Therefore min(xij , y
1
i ) + min(xij , y

2
i )− xij is always nonnegative and consequently A1

j +

A2
j =

∑N
i=1 min(xij , y

1
i )− xij ŷ1i + min(xij , y

2
i )− xij ŷ2i is always nonnegative.

Lemma 2. For K = 2, in the optimal solution of the final quadratic program , W ∗

satisfies the following property: min(w1
j , w

2
j ) = 0 ∀j = 1 . . .m.

Proof. Let θj = min(w1
j , w

2
j ), we define u1j = w1

j − θj and u2j = w2
j − θj , by substitution

the objective of the constraint’s linear program will be:

19
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∑
i,j,k

(ukj + θj)z
k
ij − (ukj + θj)xij ŷ

k
i +

∑
(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki +
∑
i,j

δij(1− 2x̂ij)xij︸ ︷︷ ︸
B

=
∑
j

∑
i

u1jz
1
ij − u1jxij ŷ1i + u2jz

2
ij − u2jxij ŷ2i + θj(z

1
ij − xij ŷ1i + z2ij − xij ŷ2i ) +B

=
∑
j


∑
i

Fij + θj
∑
i

Hij︸ ︷︷ ︸
≥0

+B

In which Fij and Hij are:

Fij = u1jz
1
ij − u1jxij ŷ1i + u2jz

2
ij − u2jxij ŷ2i

Hij = z1ij − xij ŷ1i + z2ij − xij ŷ2i

According to Lemma 1,
∑

i(z
1
ij − xij ŷ1i + z2ij − xij ŷ2i ) ≥ 0, therefore the coefficient of

each θj is non-negative. Since θj = min(w1
j , w

1
j ) ≥ 0, thus:

i. If optimization algorithm chooses smaller value for θj , the relaxed inequality con-

straint will not be violated, and also smaller θj will not imply larger ξ.

ii. Smaller θj will directly reduce the objective value.

Therefore, the optimization algorithm chooses the smallest possible θj , which is θj =

0 ∀j. So min(w1
j , w

2
j ) = 0 or equivalently w1

jw
2
j = 0 ∀j = 1 . . .m.

Theorem 2. Adversary’s problem in Eq. (3), has integral solution for both X and Y .

Proof. According to Lemma 2, we know that min(w1
j , w

2
j ) = 0 for all j. So we can

rewrite Eq. (3) as:

max
y∈Y ′,0≤x≤1

∑
i,j

Dij +
∑

(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki +
∑
i,j

δij(1− 2x̂ij)xij (A.1)

Where Dij = w1
j z

1
ij − w1

jxij ŷ
1
i + w2

j z
2
ij − w2

jxij ŷ
2
i . Here we assume that one the w1

j or

w2
j is not zero because this the interesting case otherwise the proof is trivial, therefore

since either w1
j or w2

j is zero, we have:



Proofs of Theorems 21

Dij = w1
j min(xij , y

1
i )− w1

jxij ŷ
1
i + w2

j min(xij , y
2
i )− w2

jxij ŷ
2
i

= I(w1
j = 0)

[
w1
j min(1− xij , y1i )− w1

j (1− xij)ŷ1i + w2
j min(xij , y

2
i )− w2

jxij ŷ
2
i

]
+

I(w2
j = 0)

[
w1
j min(xij , y

1
i )− w1

jxij ŷ
1
i + w2

j min(1− xij , y2i )− w2
j (1− xij)ŷ2i

]
Let vkij = xijI(wkj > 0) + (1− xij)I(wkj = 0), where I(.) is the indicator function, then:

Dij = I(w1
j = 0)

[
w1
j min(v1ij , y

1
i )− w1

j v
1
ij ŷ

1
i + w2

j min(v2ij , y
2
i )− w2

j v
2
ij ŷ

2
i

]
+

I(w2
j = 0)

[
w1
j min(v1ij , y

1
i )− w1

j v
1
ij ŷ

1
i + w2

j min(v2ij , y
2
i )− w2

j v
2
ij ŷ

2
i

]
=

(
I(w1

j = 0) + I(w2
j = 0)

) [
w1
j min(v1ij , y

1
i )− w1

j v
1
ij ŷ

1
i + w2

j min(v2ij , y
2
i )− w2

j v
2
ij ŷ

2
i

]
= w1

j min(v1ij , y
1
i )− w1

j v
1
ij ŷ

1
i + w2

j min(v2ij , y
2
i )− w2

j v
2
ij ŷ

2
i (A.2)

Clearly, we v1ij + v2ij = 1, because:

v1ij + v2ij = xijI(w1
j > 0) + (1− xij)I(w1

j = 0) + xijI(w2
j > 0) + (1− xij)I(w2

j = 0)

= xij
[
I(w1

j > 0) + I(w2
j > 0)

]︸ ︷︷ ︸
=1

+(1− xij)
[
I(w1

j = 0) + I(w2
j = 0)

]︸ ︷︷ ︸
=1

= xij + 1− xij = 1.

Obviously, as a result we will have zkij = min(vkij , y
k
i ), because otherwise increasing zkij

can increase the objective, so the solver program will choose the maximum possible value

for zkij . By lemma 3, and reformulation of suggested Dij in Eq. (A.2), we conclude that

Eq. (A.1) has integral solution for yki and vkij for all i, j and k = 1, 2. Since inetgrality

of vkij implies integrality of xij , proof is complete.

Lemma 3. If K=2, for any W = [W 1,W 2], W k = [wk1 , . . . , w
k
m]T , linear program in

Eq. (A.1), has an integral solution.

Proof. Here, our argument is similar to the proof of the theorem 3.1 of [13]. We show

that for any fractional solution X (and respectively V) and Y of Eq. (A.1), we can

construct a new feasible integral assignment X′ and Y ′, that increases the objective or

does not change it.
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Since all wke ’s and wkj ’s are positive, therefore, ykij = min(yki , y
k
j ) and zkij = min(yki , xij);

this means that the slack variables corresponding to zkij ≤ yki ,zkij ≤ xij and ykij ≤ yki ,ykij ≤
ykj are zero, because otherwise by increasing ykij or zkij , the objective could be increased.

Let λk = min(mini,yki >0 y
k
i ,minij,vkij>0 v

k
ij) and λ = λ1 or λ = −λ2. We propose a new

construction of solution, that either increases the objective or does not change it, and

at the same time reduces the number of fractional values in the solution.

v
′1
ij = v1ij − λI(0 < v1ij < 1), v

′2
ij = v2ij + λI(0 < v2ij < 1)

z
′1
ij = z1ij − λI(0 < z1ij < 1), z

′2
ij = z2ij + λI(0 < z2ij < 1)

y
′1
i = y1i − λI(0 < y1i < 1), y

′2
i = y2i + λI(0 < y2i < 1)

y
′1
ij = y1ij − λI(0 < y1ij < 1), y

′2
ij = y2ij + λI(< 0y2ij < 1)

It is obvious that by this update, at least two of the fractional values become inte-

gral. First, we show that in this new construction, values remain feasible. So we need

to show that v
′1
ij + v

′2
ij = 1,y

′1
i + y

′2
i = 1, v

′k
ij ≥ 0, y

′k
i ≥ 0, y

′k
ij = min(y

′k
i , y

′k
j ) and

z
′k
ij = min(v

′k
ij , y

′k
i ). In the following we show that all of the feasibility requirements are

satisfied.

v
′1
ij + v

′2
ij = v1ij − λI(0 < v1ij < 1) + v2ij + λI(0 < v2ij < 1 = v1ij + v2ij = 1.

y
′1
i + y

′2
i = y1i − λI(0 < y1i < 1) + y2i + λI(0 < y2i < 1) = y1i + y2i = 1.

Above we used the fact that if v1ij is fractional then v2ij will also be fractional, and

similarly if y1i is fractional then y2i will also be fractional, since v1ij+v2ij = 1 and y1i +y2i =

1. To show v
′k
ij ≥ 0 and y

′k
i ≥ 0, we prove that minij v

′k
ij ≥ 0 and mini y

′k
i ≥ 0.

min
ij

v
′k
ij = min

ij
(vkij − (min( min

i,yki >0
yki , min

ij,vkij>0
vkij))I(0 < vkij < 1))

= min

(
min
ij

vkij ,min
ij

[
vkij − (min( min

i,yki >0
yki , min

ij,vkij>0
vkij))

])

≥ min

(
min
ij

vkij ,min
ij

[
vkij − ( min

ij,vkij>0
vkij)

])

≥ min
ij

[
vkij − ( min

ij,vkij>0
vkij)

]
= 0.
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min
i

y
′k
i = min

i
(yki − (min( min

i,yki >0
yki , min

ij,vkij>0
vkij))I(0 < yki < 1))

= min

(
min
i

yki ,min
i

[
yki − (min( min

i,yki >0
yki , min

ij,vkij>0
vkij))

])

≥ min

(
min
i

yki ,min
i

[
yki − ( min

i,yki >0
yki )

])

≥ min
i

[
yki − ( min

i,yki >0
yki )

]
= 0.

The last step in showing that the proposed construction is feasible is showing that

y
′k
ij = min(y

′k
i , y

′k
j ) and z

′k
ij = min(v

′k
ij , y

′k
i ).

y
′1
ij = y1ij − λI(0 < y1ij < 1)

= min(y1i , y
1
j )− λI(0 < min(y1i , y

1
j ) < 1)

= min(y1i − λI(0 < y1i < 1), y1j − λI(0 < y1j < 1))

= min(y
′1
i , y

′1
j ).

y
′2
ij = y2ij + λI(0 < y2ij < 1)

= min(y2i , y
2
j ) + λI(0 < min(y2i , y

2
j ) < 1)

= min(y2i + λI(0 < y2i < 1), y2j + λI(0 < y2j < 1))

= min(y
′2
i , y

′2
j ).

z
′1
ij = z1ij − λI(0 < z1ij < 1)

= min(v1ij , y
1
i )− λI(0 < min(v1ij , y

1
i ) < 1)

= min(v1ij − λI(0 < v1ij < 1), y1i − λI(0 < y1i < 1))

= min(v
′1
ij , y

′1
i ).
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z
′2
ij = z2ij + λI(0 < z2ij < 1)

= min(v2ij , y
2
i ) + λI(0 < min(v2ij , y

2
i ) < 1)

= min(v2ij + λI(0 < v2ij < 1), y2i + λI(0 < y2i < 1))

= min(v
′2
ij , y

′2
i ).

So far we have shown that the new variable construction is feasible, and it remains to

show that we can increase the objective. We substitute the newly constructed feasible

values in Eq. (A.1) and subtract the objective with unchanged values from it. Then we

show that with proper choice of λ = λ1 or of λ = −λ2, we can improve the objective.

Vold =
∑
i,j

Dij +
∑

(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki +
∑
i,j

δij(1− 2x̂ij)xij

=
∑
i,j

w1
j z

1
ij − w1

j v
1
ij ŷ

1
i + w2

j z
2
ij − w2

j v
2
ij ŷ

2
i

+
∑

(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki +
∑
i,j

δij(1− 2x̂ij)xij

=
∑
i,j

w1
j z

1
ij − w1

j v
1
ij ŷ

1
i + w2

j z
2
ij − w2

j v
2
ij ŷ

2
i

+
∑

(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki

+
∑
i,j

δij(1− 2x̂ij)
[(
I(w1

j > 0)− I(w1
j = 0)

)
v1ij + I(w1

j = 0)
]

=
∑
i,j

w1
j z

1
ij − w1

j v
1
ij ŷ

1
i + w2

j z
2
ij − w2

j v
2
ij ŷ

2
i

+
∑

(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki

+
∑
i,j

[
δij(1− 2x̂ij)

(
I(w1

j > 0)− I(w1
j = 0)

)]
v1ij + C.

Above we have used the fact that xij = I(w
′k
j > 0)v

′k
ij + I(w

′k
j = 0)(1− v′kij ) = I(w

′1
j >

0)v
′1
ij + I(w

′1
j = 0)(1− v′1ij ) =

(
I(w

′1
j > 0)− I(w

′1
j = 0)

)
v
′1
ij + I(w

′1
j = 0).
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Vnew =
∑
i,j

w1
j z
′1
ij − w1

j v
′1
ij ŷ

1
i + w2

j z
′2
ij − w2

j v
′2
ij ŷ

2
i

+
∑

(i,j)∈E,k

wkey
′k
ij −

∑
i,k

y
′k
i · ŷki

+
∑
i,j

[
δij(1− 2x̂ij)

(
I(w1

j > 0)− I(w1
j = 0)

)]
v
′1
ij + C

=
∑
i,j

[w1
j (z

1
ij − λI(0 < z1ij < 1))− w1

j ŷ
1
i (v

1
ij − λI(0 < v1ij < 1))

+ w2
j (z

2
ij + λI(0 < z2ij < 1))− w2

j ŷ
2
i (v

2
ij + λI(0 < v2ij < 1))]

+
∑

(i,j)∈E

[
w1
e(y

1
ij − λI(0 < y1ij < 1)) + w2

e(y
2
ij + λI(0 < y2ij < 1))

]
−
∑
i

ŷ1i · (y1i − λI(0 < y1i < 1)) + ŷ2i · (y2i + λI(0 < y2i < 1))

+
∑
i,j

[
δij(1− 2x̂ij)

(
I(w1

j > 0)− I(w1
j = 0)

)]
(v1ij − λI(0 < v1ij < 1)) + C

= Vold +
∑
i,j

[w1
j (−λI(0 < z1ij < 1))− w1

j ŷ
1
i (−λI(0 < v1ij < 1))

+ w2
j (λI(0 < z2ij < 1))− w2

j ŷ
2
i (λI(0 < v2ij < 1))]

+
∑

(i,j)∈E

[
w1
e(−λI(0 < y1ij < 1)) + w2

e(λI(0 < y2ij < 1))
]

−
∑
i

ŷ1i · (−λI(0 < y1i < 1)) + ŷ2i · (+λI(0 < y2i < 1))

+
∑
i,j

[
δij(1− 2x̂ij)

(
I(w1

j > 0)− I(w1
j = 0)

)]
(−λI(0 < v1ij < 1)).

Therefore, we can write Vnew − Vold as:

Vnew − Vold = λ[
∑
i,j

[−w1
j I(0 < z1ij < 1) + w1

j ŷ
1
i I(0 < v1ij < 1)

+w2
j I(0 < z2ij < 1)− w2

j ŷ
2
i I(0 < v2ij < 1)]

+
∑

(i,j)∈E

[
−w1

eI(0 < y1ij < 1) + w2
eI(0 < y2ij < 1)

]
−
∑
i

ŷ1i · (−I(0 < y1i < 1)) + ŷ2i · (+I(0 < y2i < 1))

+
∑
i,j

−δij(1− 2x̂ij)
(
I(w1

j > 0)− I(w1
j = 0)

)
I(0 < v1ij < 1)]

= λD.

The change in objective is λD, and since D is constant with respect to λ, by choosing

λ = −λ2 for negative D, or λ = λ1 for positive D, we can always have positive or zero
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λD.It means that the integral solution will increase the objective or will not change it,

while leaving fewer fractional values.



Appendix B

Quick CPLEX Tutorial

This appendix is partially (including the example) taken from http://pic.dhe.ibm.

com/infocenter/cplexzos/v12r4/index.jsp?topic=%2Fcom.ibm.cplex.zos.help%2FGettingStarted%

2Ftopics%2Ftutorials%2Fataglance%2FInteractive_Optimizer.html.

B.1 Linear and Quadratic programming

ILOG CPLEX is a tool for solving linear/quadratic optimization problems, commonly

referred to as Linear/Quadratic Programming (LP/QP) problems, of the form:

Maximize (or Minimize)
∑

i,j cij ∗ xi ∗ xj +
∑

i di ∗ xi
subject to

a11x1 + a1212x2 + . . .+ a1nxn ∼ b1
a21x1 + a2212x2 + . . .+ a2nxn ∼ b2
. . .

am1x1 + am212x2 + . . .+ amnxn ∼ bm

with these bounds

l1 ≤ x1 ≤ u1
. . .

ln ≤ xn ≤ un
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where ∼ can be ≤ , ≥ , or =, and the upper bounds ui and lower bounds li may be any

real number.

Given the following coefficients: Objective function coefficients c1,1, c1,2, . . . , cn,n, d1, . . . , dn

Constraint coefficients:a11, a12, . . . , a1n, . . . , am1, am2, . . . , amn

Right-hand sides b1, b2, . . . , bm Upper and lower bounds u1, u2, . . . , un and l1, l2, . . . , ln ,

the optimal solution that ILOG CPLEX computes and returns is: Variables x1, x2, . . . , xn

ILOG CPLEX also can solve several extensions to LP:

1. Network flow problem, which can be formulated as linear program; CPLEX ex-

ploits the problem structure and solves the network flow problems faster..

2. CPLEX can solve mixed Integer Programming (MIP) problems, where integrality

constraint is imposed on some of the variables.

B.2 ILOG CPLEX Components

CPLEX can be used in three ways:

1. The CPLEX Interactive Optimizer is an executable program that can read a prob-

lem interactively or from files in certain standard syntax, solve the problem, and

deliver the solution interactively or into XML files. The program file is cplex.exe

for Windows and cplex for UNIX platforms.

2. Concert Technology is a set of C++, Java, and .NET class libraries offering an

API that includes modeling facilities to allow the programmer to embed CPLEX

optimizers in C++, Java, or .NET applications.

3. The CPLEX Callable Library is a C library that allows the programmer to embed

ILOG CPLEX optimizer in applications written in C, Visual Basic, FORTRAN,

or any other language that can call C functions. The library is provided in files

cplex.lib and cplex.dll on Windows platforms, and in libcplex.a, libcplex.so, and

libcplex.sl on UNIX platforms.

B.3 Solving an LP with ILOG CPLEX

In the following example, I explain the syntax of cplex. The problem to be solved

is:
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Maximize x1 + 2x2 + 3x3

subject to

−x1 + x2 + x3 ≤ 20

x1 − 3x2 + x3 ≤ 30

with these bounds

0 ≤ x1 ≤ 40

0 ≤ x2
0 ≤ x3

Using the Interactive Optimizer The following sample is screen output from a

CPLEX Interactive Optimizer session where the model of an example is entered

and solved. CPLEX> indicates the CPLEX prompt, and text following this

prompt is user input.

Welcome to CPLEX Interactive Optimizer 9.0.0

with Simplex, Mixed Integer & Barrier Optimizers

Copyright (c) ILOG 1997-2003

CPLEX is a registered trademark of ILOG

Type ’help’ for a list of available commands.

Type ’help’ followed by a command name for more

information on commands.

CPLEX> enter example

Enter new problem [’end’ on a separate line terminates]:

maximize x1 + 2 x2 + 3 x3

subject to

-x1 + x2 + x3 <= 20

x1 - 3 x2 + x3 <=30

bounds

0 <= x1 <= 40

0 <= x2

0 <= x3

end

CPLEX> optimize

Tried aggregator 1 time.

No LP presolve or aggregator reductions.

Presolve time = 0.00 sec.

Iteration log . . .

Iteration: 1 Dual infeasibility = 0.000000

Iteration: 2 Dual objective = 202.500000
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Dual simplex - Optimal: Objective = 2.0250000000e+002

Solution time = 0.01 sec. Iterations = 2 (1)

CPLEX> display solution variables x1-x3

Variable Name Solution Value

x1 40.000000

x2 17.500000

x3 42.500000

CPLEX> quit

You can also enter the program by first writing it into a text file with “.lp” exten-

sion, and then loading into the CPLEX environment by using the ’read’ command:

CPLEX> read filename.lp

B.4 Using CPLEX in batch mode

In this project, I have used the interactive optimizer in batch mode; I write the

whole optimization program in the cplex syntax into a file, and generate a com-

mand file. Then use the “cat” command (“type” in windows) to pass the com-

mands to cplex on aciss cluster machines (or cplex.exe on a windows machine) to

solve the program and save the results. The command file (say “program.cmd” for

solving the problem which is written in “program.lp”) should have the following

lines:

read program.lp

opt

write solution.xml sol

y

quit

which reads the problem (“read” command), optimizes the objective (“opt” com-

mand), writes the solution into an XML file, confirms overwriting if needed (y for

yes), and quits cplex. In a unix machine the following command is executed by a

system call:

system("cat program.cmd | cplex ")

After cplex solves the problem, it generates an XML solution file. The main

program then will access the solution by parsing the XML file.
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