
Improving Dynamic Invariant Saliency with
Static Dataflow Analysis

Daniel Ellsworth
dellswor@cs.uoregon.edu

July 29, 2013

Abstract

Saliency of invariants reported by dynamic detection techniques
tend to be poor. We present a prototype intra-procedural static anal-
ysis and invariant filtering system that improves reported invariant
saliency by applying a data flow based admission criteria. While suc-
cessful at reducing the number of nonsensical invariants reported, the
current prototype is overly aggressive due to the limitations of intra-
procedural data flow. Extension to inter-procedural analysis is non-
trivial. Some of the challenges are discussed.

1 Introduction

Dynamic invariant detection, introduced by Ernst et. al.[1], produces expres-
sions that are true on all observed runs of a program at particular points
in execution. One of the expected uses of dynamic invariant detection is
improving developer understanding of a code base in real-life settings. We
believe that a key barrier to this use of dynamic invariant detection is the
glut of extraneous, true but unrelated, invariants reported. For even simple
functions in object oriented code, dynamic invariant detection often returns
a lengthy list of potential invariants. A Java codebase we analyzed contained
675 lines of code (LOC) and produced over 1200 invariants, most of which
were misleading or irrelevant. The unfavorable balance of invariants to lines
of program text, paired with the low quality of the majority of invariants,

1

are likely contributors to the poor adoption of dynamic invariant detection
for program understanding.

A poor understanding of the existing codebase increases the chance that
errors will be introduced when making modifications. When patching or
enhancing an existing system, there is a risk that the new code will violate a
property that other parts of the code depend upon. Change requests and bug
reports are based on behaviors at the system interface, which is the usability
facade wrapped around the complexities of the underlying system. Under
the best circumstances the system will be well designed with abstractions
and a clear separation of duties that are consistent with the needs of the
change request and the documentation will clearly and accurately represent
the codebase. In practice, documentation is regularly deprioritized by the
customer in favor of earlier delivery or some other project.

Change requests and bug reports tend to flow from differences between
the users’ cognitive model for a task and the model used for software imple-
mentation. Through a parade of patches and incremental changes by different
developers the architecture degrades to a big ball of mud[2]. Even in cases
where an architecture appears to be intact and documentation is present,
there is the nagging concern that some important detail or constraint re-
quired for correct operation was not captured. Salient, programmatically
detected, invariants may help to address this gap.

Invariants are one mechanism to summarize the behavior of a region of
code. A well formed invariant is a statement of the relationship of values
within the program that is true each time a particular location is reached
during execution. To safely make a change, the change must not invalidate
the invariants required by the callers or callees. If an invariant is violated,
then further analysis will be required to assess the changes needed in the
other impacted regions. In systems for which invariants are poorly or not
documented, the lack of information leaves later programmers little choice
aside from guessing the relevant properties and manually assessing impact
after making a code modification.

This work contributes a prototype implementation of a new invariant
filtration technique, preliminary results using the technique, and a framework
for integration of analysis tools. Our filter combines a static data flow analysis
with dynamic invariant detection to suppress invariants that are unlikely to
be intentionally maintained by a function. In the section 2 we present some
background on analysis techniques. Section 3 presents an overview of our
approach to filtering out low value invariants and section 4 discusses our

2

implementation. In section 5 we discuss our results applying the filter. We
conclude with some thoughts regarding next steps in section 6.

2 Background

Software analysis is one mechanism to aide in understanding a program’s
runtime behavior as well as the effects of changes. Analysis techniques have
classically been binned into two categories, static or dynamic. Static anal-
ysis uses program text to prove or extract features of a program’s runtime
behavior. Dynamic analysis monitors a running instance of a program to
record observed runtime behavior and infer likely properties based on the
recorded data. Diduce [3] uses this approach to support detection of runtime
anomalies. In the training mode Diduce maintains and silently modifies a list
of invariants based on values observed. In checking mode Diduce generates
warnings when invariants are violated. In hybrid tools, static and dynamic
analysis are both used to to produce the final analysis result. Static anal-
ysis may be used to focus where and how the dynamic analysis is applied,
is in Saner [4], or dynamic analysis may be used to direct static analysis, as
in TamiFlex [5]. Additional hybrid tools, like CLARA[6], use static analy-
sis to reduce the amount of dynamic instrumentation without compromising
soundness of the runtime instrumentation. Work has also been done on a dy-
namic technique referred to as experimental analysis [7][8]. In experimental
analysis, the analysis tool modifies the software or data between automated
executions to aide in identifying and understanding interesting regions.

The most ambitious goal for static analysis is automating formal ver-
ification of arbitrary properties for arbitrary software. This lofty goal is
unattainable [9]. Producing a result in finite time requires the introduction
of abstractions to address points where multiple execution paths occur, i.e.
loops, branches, and recursion [10]. Typical abstractions produce sound re-
sults that a given property must or may occur at runtime. Soundness in the
analysis guarantees that no possible execution can contradict the analysis.
Completeness in the analysis guarantees that a property actually can occur
at runtime. Completeness is constrained by how well the abstraction mod-
els the underlying system, the precision of the abstraction.The most precise
abstraction would be tight loop or branch invariants impacting the analysis
property. However, static invariant detection has been elusive and developers
are unlikely to reliably generate such documentation manually.

3

Dynamic analysis avoids the precision loss of static analysis by using the
actual execution path of the running program. Monitoring is often done
via instrumentation of the software and increases runtime. The results of
dynamic analysis are complete, the property was observed on an actual run,
but soundness is lost since only observed executions are considered. For
many practical development activities loss of soundness in the analysis is
acceptable due to the similarity of most anticipated executions.

Hamlet discusses how Daikon invariants differ from invariants accord-
ing to Floyd/Hoare proof theory[11]. Floyd/Hoare invariants are first order
formula that if true before execution are true after execution. Using this
definition an invariant can’t be invalidated, it wasn’t ever actually an invari-
ant. Ernst is careful in his early dynamic invariant detection work to refer
to dynamically detected invariants as “likely invariants”. Other work in the
dynamic invariant detection community, including this paper, have been less
careful to maintain the linguistic distinction. Daikon’s invariants capture the
observed relationship between variables at function entrance and exit. Likely
invariants are insufficient for formal proofs of correctness but may be helpful
the construction of proofs of correctness.

Whole program analysis using static and dynamic techniques may not be
practical due to time and memory constraints. Techniques such as summa-
rization [12] allow a pre-computed summary to be used where recomputation
would otherwise be required. Component-Level analysis produces summaries
at the granularity of module boundaries to express whole program analysis
as a composition of component results [13]. For tools implementing whole
program analysis, modularity in the analysis is desirable due to the reduction
in resources required to complete analysis between code iterations.

2.1 Static Dataflow Analysis

Static data flow analysis is well studied and has long had application to com-
pile time optimizations. In order to safely reorder instructions there must
be a guarantee that control flow and data flow side effects match with the
original execution order. Data flow refers to how the variable values are re-
lated during execution. Control flow refers to the order in which instructions
are executed. Control flow and data flow are closely related since the control
flow determines which assignments are made and data flow determines the
effects of branches.

A common transformation to simplify reasoning about data flow is known

4

as single static assignment (SSA). In SSA form each variable takes on only
one value. In many programs, a variable V will take on many values. SSA
introduces a unique name, such as Vx, for each location where the value of
V may be changed. At points in the code where control flow merges and
two unique names for the same variable in the source text are present, such
as V1 and V2, SSA will add another unique name to represent the value V1

or V2. Cytron describes how to, given program text, efficiently compute an
SSA form[14].

The full control flow graph represents all paths through a program. Many
times a programmer is interested in only the subset of paths having to do with
a feature being implemented or debugged. Program slicing is a technique
for selecting only the part of the control flow graph related to a specific
instruction and discarding the rest. Efficient computation of slices is well
studied[15].

Most static data flow analyses make use of abstract and symbolic execu-
tion. The program state is modeled as a set of symbolic formulas that capture
the range of values that might occur. During the analysis each instruction is
abstractly executed, the effects of the concrete instruction are applied to the
symbolic representation based on a model of how the concrete instruction
effects the state of the property being analyzed. Loops are typically handled
by abstract execution of the loop until a fixpoint is reached.

As object oriented programming has become more prevalent, analysis
tools that are unable to handle indirection become less useful. In procedu-
ral languages, there is little indirection. Cytron alludes to the difficulty of
handling arrays, structs, and heap memory when discussing the conversion
from program text to SSA[14]. Virtual function dispatch complicates static
construction of a sound and complete call graph since the concrete function
called depends on the current heap instance referenced by a variable at exe-
cution time. Bodden sidesteps this complexity by monitoring runtime types
and feeding the results back into SOOT’s static analysis[5].

2.2 Dynamic Invariant Detection

Dynamic invariant detection uses invariant templates and runtime obser-
vations to attempt to determine likely invariants at instrumented program
points[1]. A target application is instrumented and run to generate a trace,
capturing the values of all visible variables at particular program points. The
variables at a program point are then arranged into expressions that can be

5

tested, and the dynamic invariant detector tries the candidate invariant with
all values observed. Candidate invariants that are not falsified by data in the
trace are likely invariants.

Daikon provides a few optimizations to improve upon the basic strategy[16].
The basic strategy results in many invariants to test at each program point,
the majority of which will be untrue. Daikon improves runtime performance
by removing invariants from consideration after the first observed contradic-
tion. Some invariants may not be well supported due to few observations.
Daikon employs some analysis to produce a confidence metric based on the
number of times the invariant was evaluated and suppresses invariants be-
neath a confidence threshold. For program points where one or more variables
are observed to always have the same value, Daikon generates invariants us-
ing only one of the variables. Additionally, Daikon suppresses invariants for
a program point that can be logically inferred from other invariants reported
for the point.

Kuzmina extends Daikon to consider polymorphism. Kuzmina’s exten-
sion, Turnip[17], can provide more precise post-condition invariants on meth-
ods where different subtypes, with different method implementations, are
used. Balint[18] improves upon Turnip by mapping invariant names to those
in a JML specification for the software under analysis. In DySy, Csallner
uses symbolic execution during concrete execution to determine a program’s
likely invariants[19]. DySy invariants are built by tracking branches taken
to reach instrumented program points and abstracting the values controlling
the branches. These systems improve the quality of returned invariants by
more carefully constructing invariants than Daikon’s default approach and
require significant integration with the internal behavior of the invariant de-
tector. In contrast, our tool operates as a post processing step and requires
no changes to the detection process.

DynComp is the most closely related tool we are aware of [20] and can
be used with our filter. DynComp uses dynamic analysis to infer abstract
types; these can be thought of as extending base types with some dimension
(eg. dollars, miles). The dimensions can be used to constrain the invariant
templates Daikon instantiates to templates where all variables have matching
dimensions. DynComp applies a dynamic data flow analysis, by tagging and
monitoring values in the runtime, to generate the comparability classes to
feed into the invariant generation process.

Our work differs from DynComp in a few significant ways.

6

• DynComp reduces the amount of work done by Daikon by removing
invariant templates from consideration before their first application.
Our tool does not become involved until after Daikon has completed
invariant computation.

• DynComp uses dynamic analysis, requiring the test suite be run once
to generate the comparability classes before Daikon can be run. Our
data flow analysis can be run in parallel with Daikon.

• DynComp is a path sensitive whole program analysis that produces
a flow insensitive result. Variables determined to have the same ab-
stract type at any time during the observed execution will be allowed
together in Daikon templates at all program points. Our analysis is
intra-procedural and sensitive to data flow within functions.

2.3 Hybrid Filtering

Our proposed filter uses static analysis to filter the output of dynamic anal-
ysis; we are aware of work that uses dynamic analysis to filter static analysis
results. FindBugs analysis is different from many of the other static analysis
in the literature; FindBugs does not attempt to be sound or precise [21]. The
FindBugs tool analyzes source code and reports on statically detected pat-
terns in the program text that may indicate unsafe usage or non-conformance
with language conventions. FindBugs does not make any attempt to prove
that the detected pattern may actually leads to incorrect execution, so it may
over report the defects present. FindBugs has become an integrated part of
Google’s business processes to improve overall software quality[22]. More
recent work has looked at adding residual testing to help filter extraneous
FindBugs output based on observed executions[23], using dynamic analysis
to filter static analysis.

3 Approach

Recall that Daikon produces likely invariants at method entrance and exit
points (pre- and post- conditions for execution of the function) based on the
set of all visible variables at the instrumented points. In object oriented
programs the visible set includes all fields of argument variables. Our work

7

is motivated by the observation that a large number of extraneous post-
condition invariants included variables that were never used in the function’s
control or data flow. Such invariants are very unlikely to be salient. Further,
invariants with this property are easy for a programmer to identify as unlikely
and as such have a larger negative impact on user trust of the invariants
reported than more difficult to invalidate invariants [24].

Variables that are never referenced or set within a region of code are
unlikely to be affected by that region. Clearly, if a particular variable and
its aliases are never used within a function, the variable neither impacts or is
impacted by the execution of the function. The condition in our prototype
is slightly stronger: Invariants involving variables in fully independent slices,
slices for which there is no intersection, represent isolated and separable
computations. We state our filter criteria as: admissible invariants are only
those where all variables participating in the invariant share at least one
common ancestor in the variable dependency graph. By limiting the reported
invariants to only those matching our filter criteria, we increase the saliency
of the invariants reported to the user.

Since Daikon invariants are produced at the granularity of functions,
intra-procedural analysis seems appropriate. Each pre- or post-condition
invariant reported by Daikon expresses the behavior of a function indepen-
dent of all other functions based on observed values. Intra-procedural static
analysis confines the abstract and symbolic execution to the facts available
within a single function, which appears to match the level of isolation pro-
vided by Daikon invariants. Our filtering criteria also seems to naturally fit
at the level of intra-procedural analysis; only variables used in the function
should be allowed to participate in invariants. As the project progressed
we realized intra-procedural analysis is insufficient and will discuss why our
intuition fails in subsection 4.4.

To align with the Daikon output, the filter must be able to map from the
variable names used by Daikon to their data and control dependence from
function exits towards the function entrance. We independently invented a
variable dependence graph (VDG) representation very close to that discussed
by Jackson[25] to capture the relations between variables during abstract
execution. Each variable is represented as a node with edges to the variables
that contributed to the current value. The debugging symbols within the java
bytecode allow mapping between Daikon variable names and the variables in
the VDG at function entrance and exit.

8

4 Implementation

In the remainder of this paper we present our prototype invariant filter. The
filter is a hybrid analysis built atop Daikon and a static data flow analysis
implemented in our Relational Abstraction For Targeted Exploration of Code
(RAFTEC). Daikon is the leading academic dynamic invariant detector with
more than a decade of active development and research. Daikon has also
inspired Agitator, a commercial product supporting testing activities [26].
RAFTEC was built as a framework for assisting in the development of mod-
ular integrated software analysis[27]. The design is informed by extract, load,
transform (ELT) systems used in industry to support business intelligence.

In RAFTEC intermediate and final representations are kept within a
relational database. The relational database provides a natural integration
point to incrementally add additional analysis and some capabilities to easily
record relations between processing phases as the representation is processed.
Modularity in analysis can also be provided for low cost as tables and schemas
provide a transparent boundaries between analysis tools and their underlying
intermediate representations. The relational database also provides a concise
interface for the developer to query for answers, audit results, and use results
from other analysis.

RDBMS have been rejected in the 1980s and 1990s for program analy-
sis due to poor performance[28]. However there is a growing body of work
relying on datalog as a core technology for static analysis. In 2005, Lam pub-
lished work on context sensitive analysis using datalog[29]. In 2011, Smarag-
dakis published work on a high performance points to analysis for Java atop
datalog[30]. Ali presents an application-only call graph construction, using
datalog, that uses less time and space than Smaragdakis work[31].

We elected to use an RDBMS over datalog primarily due to familiarity
and the diversity of tools for working with SQL data stores. One of the con-
cerns we’ve seen reported in other work is SOOT memory consumption when
performing analysis since all of the data must be keep in memory for the du-
ration of the run[32]. Using an RDBMS avoids this limitation by allowing
the RDBMS to manage efficient caching to disk during execution. The rela-
tional database provided some additional advantages during development for
auditing the implementation. Queries to match records between transforma-
tion source and sinks are relatively easy to write and provide a programmatic
way to verify that transformation coverage matches with expectations.

RAFTEC, for analyzing modestly sized programs, was reasonably perfor-

9

mant on low-end consumer grade desktop without performance tuning. At
one point, we loaded the complete Java 1.6 standard library (10s of billions
of control flow nodes and edges) in roughly a week on low-end hardware; the
majority of time was spent waiting on IO due to the slow storage. Whole pro-
gram transformations, aside from a non-terminating recursive query used for
line numbering, were reasonably performant on the hardware configuration.
Environmental improvements such as access to high speed storage, migra-
tion to a threaded RDBMS, access to kernel memory configuration, and bulk
rather than row insertion are all changes we would expect to significantly
improve RAFTEC performance.

Three RAFTEC components were built to support the work in this pa-
per: Java Bytecode Recorder (JBR), Intraprocedural Variable Dependency
Grapher (IVDG), and Daikon Invariant Recorder (DIR). JBR and DIR han-
dle intake from the base data sources, java class files and daikon invariant
files respectively. IVDG performs abstract execution against the data from
the JBR to generate the VDG needed to filter the Daikon invariants.

4.1 Java Bytecode Recorder

The Java Bytecode Reader is responsible for decompilation and loading the
target class file into the RAFTEC database. Consistent with the ELT phi-
losophy, the data is loaded with minimal transformation. Once the data
is loaded, stored procedures are used within the database to complete con-
struction of the control flow graph and various simple analyses and produce
derived facts. An entity relationship diagram for the JBR tables is shown in
figure 4.1.

Bytecode decompilation is performed using ASM. The information pro-
vided is loaded with minimal modification into the backing datastore. ASM
was selected since it appeared to be the only high quality free Java disassem-
bler under active development. BCEL and Jasmin appeared to have been
effectively abandoned based on age of the latest releases at the time we made
the decompiler selection. Two APIs are provided by ASM for accessing the
byte code: a tree based representation that supports queries against the byte
code and a streaming visitor based API. The ASM documentation recom-
mends using the visitor based API, so our solution does so.

As each byte code entity is visited, it is written to the backing database.
Initially only an ASM InstructionAdapter was implemented, this is the vis-
itor responsible for byte code instructions. Our ASM InstructionAdapter

10

classfields classes classattributes

ctlgraphs ctlgraphattributes

ctlnodes ctlnodeattributes

ctledges ctledgeattributes

Figure 4.1: Entity Relationship Diagram for the JBR tables

(MethodControlFlowVisitor) stores the details of each byte code instruction
to the RAFTEC datastore on visit. Later an ASM ClassVisitor (ClassCon-
trolFlowVisitor) was implemented to support direct collection of class mem-
ber fields and computation of class hierarchies within the RAFTEC. The
tables packed by the respective visitors are listed in table 4.1.

After the raw data is loaded, a series of transformations and basic analyses
are executed. First the data is cleaned by transforming the ASM metadata
into node attributes. ASM Metadata includes jump target labels, variable
declarations, and source code line numbers. Following cleaning, the edges of
the control flow graph are constructed by linking jumps and removing un-
used serial edges. At this point the data is considered scrubbed and the basic
analysis begins. Basic analysis includes adding an over-approximation of the
call graph based on variable types and the class hierarchy, performing classifi-
cation of some basic method properties, construction of the intra-procedural
pre- and post-dominator sets, as well as computing the intra-procedural con-
trol dependency.

JBR forgoes converting the raw control flow graph into one based on
basic blocks. This is consistent with Fosdick and Osterweil’s observation that
“...it is not clear that a significant advantage can be obtained by this initial
preprocessing of basic blocks and reduction of the graph.” [33]. For abstract
execution every raw node will need to be visited, effectively bypassing any
value the basic blocks might provide for automated analysis. Construction
of a basic block representation within RAFTEC should be trivial and could

11

Vistor Tables

MethodControlFlowVistior
classfields

classes
classattributes

ClassControlFlowVisitor

ctlgraphs
ctlgraphattributes

ctlnodes
ctlnodeattributes

ctledges
ctledgeattributes

Table 4.1: Table showing the visitor responsible for packing the tables.

likely be handled efficiently by introducing a new table relating the ctlnode
rows for block entrance and exit nodes to a unique block number.

Intra-procedural control dependence is computed using dominator sets.
Goergiadis presents several efficient methods for computation of dominators[34].
We selected a simple iterative algorithm, based on the formal definition, for
ease of expression in SQL. Control dependence is used by IVDG to add in
variable dependencies that are the result of control flow.

Basic method property classification is done because it was cheap to im-
plement and allows some additional insight into the qualities of our tar-
get code bases. The classification adds attributes to the each method in
RAFTEC: Does the method accesses the heap, make any method calls, con-
tain loops, call itself directly, or call itself indirectly. Indirect recursion uses
the call graph produced using variable type at call sites and the possible
method implementations given the captured class hierarchy, potentially pro-
ducing an over approximation. Loop and indirect recursion is done using
Tarjan’s algorithm for detecting strongly connected components in a directed
graph since we were unable to find a suitable algorithm that could take ad-
vantage of potential parallelism available in our representation[35].

4.2 Intraprocedural Variable Dependency Grapher

The Intra-procedural Variable Dependency Grapher is responsible for com-
putation of the statically determined variable dependency graph. Compu-
tation of the VDG is done by abstract execution of each method contained

12

heapentry

pointer

ptralias

context var entanglement

frameentry stackentry

Figure 4.2: Entity Relationship Diagram for the IVDG tables

in RAFTEC. At each step of the abstract execution information is added to
the symbolic representation regarding data dependence. Abstract execution
is handled by Java code while the symbolic representation is stored and ma-
nipulated in the database. The IVDG entity relationship diagram is shown
in figure 4.2. Once the graph has been generated, determining that one vari-
able is dependent on another can done by searching for a path connecting
the variables.

Our construction algorithm executes each instruction only once. Each
instruction in the control flow graph has two associated contexts: A con-
text immediately prior to instruction execution, in-context, and a context
immediately following execution, out-context. Each context contains all of
the live variables in the context as individual nodes. Data dependency edges
are added between variable nodes in the in-context and variable nodes in the
out-context based on the effect of the instruction. Data dependences between
instructions are handled by connecting variables in the same locations from
the preceding instruction’s out-context to the current instruction’s in-context
via a stored procedure. The strategy avoids needing to handle branch and
join points in the control flow as special cases. Conditional branch instruc-
tions have an attribute added to the control node identifying the variables
from the in context used to make the branch decision; the attribute is used
in post-processing to capture control dependencies in the VDG. Our VDG is
very similar to one described by Jackson[25].

Abstract execution models the operand stack, stack frame, and heap as
they evolve during method execution. The size and composition of these
regions of memory on instruction exit are propagated to the entrance of the

13

immediately following functions. The operand stack and stack frame are
modeled as lists. When merging an out-context to an in-context, variables
at corresponding list indices are marked as dependent. Abstract execution
of multiple methods could be done in parallel, but that feature has not been
implemented. We can also envision the ability to perform abstract execution
in parallel at the instruction level since the operand stack and stack frame
composition are statically known and provided in the byte code.

Storing complete memory context for each instruction has the potential
to consume a large amount of memory. Each context is used few times during
abstract execution, keeping all contexts in main memory throughout abstract
execution is unnecessary. Designing a performant strategy for writing and
retrieving contexts from disk within our code would be difficult and might
introduce errors. Instead, we use the RDBMS a bit like virtual memory. All
of the contexts are stored in the database and, as instructions are executed,
the database is queried for the correct context. We take advantage of op-
timizations within the database to handle when and how data is written to
disk as well as how and when to efficiently retrieve data from disk. Storing
all of the contexts in the database provided additional benefits during im-
plementation since they provided a complete and easily queried log for the
effects of the abstract execution code.

4.3 Daikon Invariant Recorder

The Daikon Invariant Recorder (DIR) is primarily responsible for reading
Daikon invariant files and loading the contents into the appropriate tables.
Like the JBR, invariants are written to the datastore as they are read from the
serialized invariant file produced by Daikon. DIR uses Daikon’s file reader
class to read the invariants file from disk and then parses and stores the
invariant data in the RAFTEC database. An entity relationship diagram
for the DIR tables is shown in figure 4.3. Mapping between variables in the
IVDG and Daikon will also be discussed in this section.

Invariants provided by Daikon are stored in the database with very little
processing. The API provided by Daikon’s invariant file reader provides
invariants by program point, where each program point has some number of
associated invariants. The program points are recorded in RAFTEC with
their respective class and method strings. The API for invariant objects in
Daikon does not provide a list of variable-like objects to work with, but it
does expose a string representation of all of the Daikon variable names. DIR

14

program_points

invariants

var_to_ppt

var_to_inv

variables

Figure 4.3: Entity Relationship Diagram for the DIR tables

parses that string when recording the invariant and the variables used by the
invariant.

Matching between Daikon and IVDG is non-trivial. The strings Daikon
uses when expressing method signatures and variable names are just enough
different to make directly matching with the ASM strings unreliable. Ad-
ditional complications come from the meta variables Daikon uses, such as
variables for array size and original value. Stored procedures are used to
normalize the method names and signatures when building the view to map
Daikon program points to instructions. Daikon variables must be interpreted
based on the program point in which they occur and the composition of the
stack frame at the point. The interpretation is done via stored procedure
during construction of the final filter reporting table. The ability to use the
RDBMS to quickly audit that all program points and variables were matched
as well as the ability to query for additional details regarding those that were
unmatched was extremely helpful when working through mapping between
the representations.

4.4 Analysis Limitations

The call graph currently stored in RAFTEC is a large over estimation. Han-
dling virtual dispatch in a static analysis tool is difficult, since the runtime
types that might inhabit a variable must be known. For most non-trivial pro-
grams, heap objects are passed as parameters. To determine the type of an
object at a call site, so that a precise call graph can be computed, requires
a precise call graph to determine the types of parameters. Emami et. al.

15

mention this recursive problem when discussing an static inter-procedural
points-to technique[36] that does not handle function pointers in the heap.
Lattner et. al. present a solution involving indirection via the heap based on
producing and efficiently updating partial solutions[37].

Generics in Java provide some extra resolution regarding the return type
of methods. Type erasure during compilation removes this information from
the byte code, so it is unavailable to our tool to aid in analysis. Gener-
ics would help in call graph construction and improving variable typing;
changing JBR to augment the ASM output using source code analysis (when
available) would likely improve the possible results.

Reflection is impossible to support in general during static analysis since
the runtime behavior is not defined until runtime. There are some uses of
reflection, such as calls with static strings, that may be possible to support
during static analysis. We have made no attempt to support reflection with
our tool.

Exceptions are not currently represented in the control flow graph and
therefore not considered during abstract execution. Additional control flow
edges could be introduced from instructions raising exceptions to the first
instruction handling the exception. Introduction of these edges becomes
difficult without a precise call graph since an exception thrown in one method
may be caught by a caller several stack frames earlier. If exception edges were
added, the abstract execution code would need to be modified to handle
jumping between operand stack and stack frame compositions.

Variables referencing objects in the heap carry a list of pointers, rep-
resenting the objects the variable may point to based on the control flow
abstractly executed. While the pointer lists are merged at join points, newly
added pointers are not propagated along already executed paths. The ef-
fect of instructions following the join point may not be applied to the newly
added instance. Instance variables for objects created or assigned within a
method may not have accurate dependencies. Only the heap pointers carried
by the instance variable at the time of abstract instruction execution will be
present in the generated dependencies. One strategy to address the missing
dependencies would be to continue execution with the updated pointer list
until a fixpoint is reached regarding variable dependencies.

Abstract execution of cast instructions is not very robust. Casts are
treated as a function call that returns an object of the cast type. We would
prefer a strategy that would better protect the data dependencies of instance
fields across during down casts and map back to the original instance during

16

upcasts.
Debugging symbols are currently required in the Java byte code. Enabling

the debugging symbols during compilation is simple, only a single flag is
required, and avoids needing to compute gen and kill sets during abstract
execution. Debugging symbols also help improve the readability of Daikon
invariants.

Object construction is handled as two separate byte code instructions in
the Java virtual machine (JVM). The first instruction allocates the memory
space for the instance and the second calls the constructor. IVDG processes
the JVM byte code looking at only a single byte code instruction at a time.
Since the existing analysis is intra-procedural only, the parameters sent to
the initializer do not become dependencies for the variables within the in-
stance. A quick way to address this deficiency would be to handle initializers
differently than other method calls. However, other mutator functions would
retain their existing behavior. We have decided to leave this unaddressed un-
til we have a strategy for handling the heap during inter-procedural analysis.
solving the issue for both initializers and mutators.

Object instances may represent recursive data structures. When object
instances are spawned during abstract execution, only the object instance and
its member variables are initialized. Daikon invariants do not go deeper than
one level, so this is satisfactory for our invariant filter. For inter-procedural
analysis, deeper modeling of object instances may be required.

Class instances and object instances are kept separately in IVDG; the
class instances end up as anonymous heap objects in the database represen-
tation. The Daikon invariant representation does not distinguish between
class and instance variables. Adherence to the Java naming conventions is
the extent of the differentiation in the naming between class and instance
variables. Due to the potential ambiguity, the filter does not attempt to
handle invariants involving class variables.

5 Evaluation

The filter performance was evaluated by a manual review of the invariants
returned by Daikon, Daikon with DynComp, and Daikon with our filter.
Daikon and Daikon with DynComp executions used the default settings.
One of Daikon’s optimizations maintains sets of equivalent variables and
reports invariants using only one member of the equivalency set. Since our

17

public int getBlasterDamage () {
return rand . next Int (maxBlaster) ;

}

Figure 5.1: Code listing for getBlasterDamage

Invariant
this.maxhp > return

this.turnsToZombie < return
Alien.rand == orig(Alien.rand)
this.name == orig(this.name)

this.name.toString == orig(this.name.toString)
this.maxhp == orig(this.maxhp)
this.maxhp == orig(this.curhp)

this.maxhp == orig(this.maxBlaster)
this.turnsToZombie == orig(this.turnsToZombie)

Table 5.1: Invariants reported by Daikon with leader election for getBlaster-
Damage().

filter needs the specific variable name to map correctly, we disabled this
optimization when generating invariants for use with our filter. Initially we
had planned to use invariant counts as our primary evaluation criteria. While
writing this paper we discovered a behavior, that we believe to be an error
in Daikon, making raw invariant counts incomparable.

In some cases, many variables may have the same value each time a
program point is visited. Such instances can result in numerous similar in-
variants based on permutations of the variable names. By default, Daikon
selects only one of the variables (the leader) to represent all of the variables
having equal value when generating invariants. Since our filter uses the vari-
able names within the invariant to map to nodes in the variable dependency
graph, a poorly selected leader can result in missing a salient invariant.

Figure 5.1 and table 5.1 show a sample of code and the invariants re-
ported with leader election. One of the invariants that we would expect to
see relates the return value of getBlasterDamage to the value of maxBlaster
since maxBlaster sets the upper bound for the call to nextInt. The invariant
provided by Daikon relates the return value to maxhp, which is never refer-

18

Class Methods
with with accesses makes

recursive
loops branches heap calls

tcas 11 0 3 10 5 0

AlienAI 3 1 1 2 3 0

Alien 8 0 6 8 4 0

Point 10 1 7 9 6 0

Wall 1 0 1 0 1 0

DirectedMoveAction 4 0 4 2 2 0

Simulation 5 3 2 2 4 0

SimulationBoard 16 8 2 14 16 0

SimulationAction 1 0 1 0 1 0

EmptySpace 1 0 1 0 1 0

RandomMoveAction 4 0 4 2 2 0

BiteAction 4 0 4 2 2 0

Zombie 7 0 6 6 5 0

ShootAction 4 0 4 2 2 0

ZombieAI 7 5 1 2 7 1

SimulationObject 6 0 6 2 1 0

Table 5.2: Properties of the methods for each class detected by the JBR
analysis. JTCAS contains only one class: tcas. All other classes listed are
part of ZAS.

enced in the method. Using the shown Daikon output, our filter will not be
able to identify any salient invariants for getBlasterDamage.

We applied our static analysis and filtering technique to two sample ap-
plications; JTCAS and Zombies vs Aliens Simulator (ZAS). JTCAS is a
commonly cited program from the Sieman’s Suite[38] for exploring software
analysis[39][40]. ZAS was written to support labs for first year computer
science majors; the program exercises inheritance in addition to loops, ob-
jects, and recursive features of Java. After producing our preliminary results
with JTCAS, we realized that the JTCAS code is not representative of most
programs. Table 5.2 presents the classes and count of methods within each
class exhibiting features RAFTEC classifies. The discussion in this section
will focus primarily on analysis of ZAS due to the limited range of language
features exercised by JTCAS.

Before beginning work on the prototype presented in this paper, we con-
ducted preliminary investigation on our intended technique. JTCAS was the

19

LOC Daikon DynComp With out Leader
ZAS 675 1042/32 1171/34 1336/22
JTCAS 155 853/0 442/0 6414/0

Table 5.3: Count of invariants reported by Daikon, Daikon+DynComp,
Daikon without leader election. The raw invariant count is followed by the
number of invariants admitted by our filter. Daikon without the leader elec-
tion optimization generated 1336 invariants, only 25 of which were admitted
by our filter.

target of investigation during our preliminary work due to its use in other
related work we were reviewing at the time. Our preliminary filter was built
by extending a simple inter-procedural static taint checker, from a course
project, to interact with a Daikon invariant file. The base code did not sup-
port any information stored in the heap and we extended the code to handle
object fields by adding them just in time to the symbolic representation.
Early results looked promising with respect to the number of invariants fil-
tered though, on manual review, there was some question as to wether any
of the invariants produced by Daikon or admitted by our filter for JTCAS
were useful to program understanding. The code was unable to be applied
reliably to other code bases we tried. Upon investigation we discovered that
the preliminary implementation could not handle recursion or loops due to
the heap model used and was therefore unsuitable for analyzing the majority
of interesting Java applications.

To generate the invariants for JTCAS, we collected traces for all 1608 test
cases provided for Daikon, Daikon+DynComp and Daikon-equiv+RAFTEC;
generation of the trace data and invariants took roughly 3 hours for each
target. To generate the invariants for ZAS, we collected trace data from
a single execution of the simulator per target. Trace data and invariant
generation for ZAS took roughly 6 hours. Once the datasets were produced
by Daikon, we loaded the related byte code, performed the static analysis,
loaded the invariants, then generated the report; these steps were done in
serial and took roughly 20 minutes. The time required to identify salient
invariants with our technique is clearly dominated by the time spent on the
dynamic analysis.

Of the 1336 invariants detected with leader election disabled, 41 were
class or object invariants. Our filter is unable to process class and object
invariants because they are inter-procedural in nature and do not map to

20

method entrances or exits. Of the remaining 1295 invariants, 336 were en-
trance invariants which are filtered out because there is no intra-procedural
data flow available at method entrance to use as a basis for admission and 47
were not evaluated due to a gap mapping constructor method names between
ASM and Daikon. Upon manual inspection of the 912 invariants that are
within our filter’s capability, the filter results match with expectations given
the filter limitations and program text.

In manually reviewing the invariants, some invariants were identified that
might have been useful but are admissible. An example of such invariants
can be seen with the directionTowardsInv method shown in figure 5.2. The
method returns an integer value based on the relation between o.x and this.x.
There is no control or data dependence between o.x and this.x so these invari-
ants are dropped. If the invariants relating o.x and this.x were present with
the constant return values, it would be possible to determine the directional
meaning of each of the return values. Admitting all invariants involving vari-
ables in involved in the control dependence for the return instruction may be
able to capture these invariants. Sadly, the invariant reporting the constant
return value was also dropped by the filter. Dropping constant returns is a
side effect of the return variable not having data dependencies on any other
variable within the method, the return variable is indistinguishable from an
unused variable when traversing the variable dependency graph. Keeping
constant return invariants could be handled in the future as a special case.

5.1 Daikon Incomparability

The results presented in table 5.3 are surprising. DynComp is a preprocessing
filter that constrains the variables that may appear together in detected
invariants. One would expect that reducing the pool of instantiated invariant
templates would reduce the number of reported invariants; when the opposite
appears to have happened. Additionally, turning off leader should generate
a strict super set of the invariants generated with leader election turned on.
Every invariant reported with leader election should produce one or more
invariants without leader election; each invariant containing the leader can
be written as an invariant containing another variable in the set. When
Daikon without leader election is used our filter admits less invariants than
when Daikon is used with the default configuration.

The RAFTEC database was used to investigate the results of Daikon with
and without leader election; we ran out of time to investigate the DynComp

21

public int direct ionTowards (Point o) {
i f (x>o . getX ()) {

// 5 6 7
i f (y<o . getY ()) {

return 7 ;
}
i f (y>o . getY ()) {

return 5 ;
}
return 6 ;

}
i f (x<o . getX ()) {

// 1 2 3
i f (y<o . getY ()) {

return 1 ;
}
i f (y>o . getY ()) {

return 3 ;
}
return 2 ;

}
// 0 4
i f (y<o . getY ()) {

return 0 ;
}
return 4 ;

}

Figure 5.2: Code listing for directionTowards

22

line invariant
49 orig(this.y) < orig(o.y)
49 orig(this.x) < orig(o.x)
49 return == 1
54 orig(this.x) < orig(o.x)
54 orig(this.y) == orig(o.y)
54 return == 2
39 orig(this.y) < orig(o.y)
39 orig(this.x) > orig(o.x)
39 return == 7
52 orig(this.y) > orig(o.y)
52 orig(this.x) < orig(o.x)
52 return == 3
42 orig(this.x) > orig(o.x)
42 orig(this.y) > orig(o.y)
42 return == 5
58 orig(this.x) == orig(o.x)
58 orig(this.y) < orig(o.y)
58 return == 0
44 orig(this.x) > orig(o.x)
44 orig(this.y) == orig(o.y)
44 return == 6
60 orig(this.x) == orig(o.x)
60 orig(this.y) > orig(o.y)
60 return == 4

Table 5.4: Desirable invariants for directionTowards that Daikon produced
that were filtered out.

23

invariant discrepancy. Having the data in the relational database made com-
parison much easier than working directly with Daikon’s textual output. Our
first step was an inner join to verify that the 1042 invariants generated with
leader election were a strict a subset of the 1336 invariants generated without
leader election. We discovered only 678 invariants were present in both data
sets; 364 invariants are generated with leader election that are not generated
without leader election. Using a left join we were able to quickly compute
the missing and matched invariants for inspection. Missing invariants are all
for exit and sub exit program points. We suspect that there is a defect in
Daikon having to do with the interaction between exit invariant generation
and the equivalence optimization that causes invariants to be missed when
the equivalence optimization is turned off.

6 Future Work

One of our early realizations as we looked through the filter results in the con-
text of the programs was the failure to account for delegated computations.
This is a common pattern for testing nontrivial conditions. A function is
made to encapsulate the condition and then called to cause the correct path
to execute. When a call is made, such as a boolean function used as a branch
condition, we lose visibility into the fields used to compute the return value
and may incorrectly suppress salient invariants. Getter and setter methods
similarly hide useful invariants from our filter. Improving heap modeling and
adding inter-procedural analysis are important steps for continued work on
this invariant filtering technique.

We are not aware of a precise way to extend the technique we are using
for VDG construction to correctly handle aliased values. Jackson [25] did
not address this issue and we are not aware of other work using a similar
representation that address pointers into the heap. Jackson mentions mod-
ular incorporation of aliasing as a current challenge but does not suggest in
any detail how the challenge might be solved. A simple approach sets the
variable node associated with a read to depend on the values of all heap
object fields that the read may have targeted by traversing the pointer set.
Incorrect dependencies may be collected since the variable resulting from the
read becomes a join point for otherwise unrelated variables. D’Silva remarks
that dynamically allocated data structures are a challenge when modeling
program properties and that none of the tools he surveyed could assert even

24

trivial properties[41].
Inter-procedural analysis for object oriented languages is non-trivial. As

mentioned earlier in 4.4, virtual dispatch complicates generation of a pre-
cise call graph since the concrete method used often depends on the heap.
Uses of design patterns, such as the observer pattern, further obscure the
call graph by placing a second layer of indirection in the heap. Horwitz
describes inter-procedural dependency graph construction for slicing using
conversion to an alias free representation, by cloning functions, to address
the challenge of references[15]. We have some reservation regarding applying
Horwitz technique to modern object orient code since aliasing is so prevalent
and may result in exponential growth in the size of the graph. TAJ use one
level of context sensitivity when performing points-to analysis and on-the-fly
call graph construction[42]. The strategy used in TAJ may be a reasonable
starting point for call graph construction but we ran out of time to implement
it.

Indirection is a known issue for static analysis and is at the core of the
issues with virtual dispatch. Calling an instance method, in Java, requires
the runtime to lookup the implementing method based on the runtime type.
Potentially, the matching method of any class that extends or implements
the variable type could be the one used at runtime. For instance, a variable
of type Iterator has over 500 possible method bodies available from the stan-
dard library; clearly the variable type is insufficient. Points-to analysis is a
static technique to determine which instances a particular variable may point
to at runtime. Sound points-to analysis requires sound dataflow analysis; the
recursive challenge here is self evident. Bodden side steps this problem in
TamiFlex by using runtime monitoring rather than static techniques to de-
termine the method invoked at runtime[5].

7 Conclusion

Our experience indicates using data dependance as a criterion for invariant
saliency is a promising direction for further investigation. For many interest-
ing cases, intra-procedural analysis appears insufficient since called functions
hide relevant dependencies. Further work is needed to understand how to
expand the scope to include inter-procedural analysis; which may involve
solving several other hard problems in static analysis to produce precise re-
sults.

25

Additionally, we have had a positive experience using a relational database
to support our analysis. The relational database provided several unexpected
gains with respect to development, debugging, and auditing the behavior of
our system.

References

[1] Ernst MD, Cockrell J, Griswold WG, Notkin D. Dynamically discovering
likely program invariants to support program evolution. In: Proceedings
of the 21st international conference on Software engineering. ICSE ’99.
New York, NY, USA: ACM; 1999. p. 213–224. Available from: http:

//doi.acm.org/10.1145/302405.302467.

[2] Foote B, Yoder J. Big ball of mud. Pattern languages of program design.
1997;4:654–692.

[3] Hangal S, Lam MS. Tracking down software bugs using automatic
anomaly detection. In: Proceedings of the 24th International Conference
on Software Engineering. ICSE ’02. New York, NY, USA: ACM; 2002.
p. 291–301. Available from: http://doi.acm.org/10.1145/581339.

581377.

[4] Balzarotti D, Cova M, Felmetsger V, Jovanovic N, Kirda E, Kruegel
C, et al. Saner: Composing Static and Dynamic Analysis to Validate
Sanitization in Web Applications. In: Security and Privacy, 2008. SP
2008. IEEE Symposium on; 2008. p. 387 –401.

[5] Bodden E, Sewe A, Sinschek J, Oueslati H, Mezini M. Taming reflection:
Aiding static analysis in the presence of reflection and custom class load-
ers. In: Proceedings of the 33rd International Conference on Software
Engineering. ICSE ’11. New York, NY, USA: ACM; 2011. p. 241–250.
Available from: http://doi.acm.org/10.1145/1985793.1985827.

[6] Bodden E, Lam P, Hendren L. Partially Evaluating Finite-State Run-
time Monitors Ahead of Time. ACM Trans Program Lang Syst. 2012
Jun;34(2):7:1–7:52. Available from: http://doi.acm.org/10.1145/

2220365.2220366.

26

http://doi.acm.org/10.1145/302405.302467
http://doi.acm.org/10.1145/302405.302467
http://doi.acm.org/10.1145/581339.581377
http://doi.acm.org/10.1145/581339.581377
http://doi.acm.org/10.1145/1985793.1985827
http://doi.acm.org/10.1145/2220365.2220366
http://doi.acm.org/10.1145/2220365.2220366

[7] Zeller A. Yesterday, my Program Worked. Today, it Does Not. Why?
In: Software Engineering — ESEC/FSE ’99. vol. 1687 of Lecture Notes
in Computer Science; 1999. p. 253–267.

[8] Ruthruff JR, Elbaum S, Rothermel G. Experimental program analy-
sis: a new program analysis paradigm. In: Proceedings of the 2006
international symposium on Software testing and analysis. ISSTA ’06.
New York, NY, USA: ACM; 2006. p. 49–60. Available from: http:

//doi.acm.org/10.1145/1146238.1146245.

[9] Turing AM. On Computable Numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical So-
ciety. 1936;42:230–265.

[10] Hantler SL, King JC. An introduction to proving the correctness of
programs. ACM Computing Surveys (CSUR). 1976;8(3):331–353.

[11] Hamlet D. Invariants and state in testing and formal methods. SIG-
SOFT Softw Eng Notes. 2005 Sep;31(1):48–51. Available from: http:

//doi.acm.org/10.1145/1108768.1108806.

[12] Yan D, Xu G, Rountev A. Rethinking Soot for summary-based whole-
program analysis. In: Proceedings of the ACM SIGPLAN International
Workshop on State of the Art in Java Program analysis. SOAP ’12.
New York, NY, USA: ACM; 2012. p. 9–14. Available from: http:

//doi.acm.org/10.1145/2259051.2259053.

[13] Rountev A. Component-Level Dataflow Analysis. In: Heineman G,
Crnkovic I, Schmidt H, Stafford J, Szyperski C, Wallnau K, editors.
Component-Based Software Engineering. vol. 3489 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg; 2005. p. 21–23. Avail-
able from: http://dx.doi.org/10.1007/11424529_6.

[14] Cytron R, Ferrante J, Rosen BK, Wegman MN, Zadeck FK. Efficiently
computing static single assignment form and the control dependence
graph. ACM Trans Program Lang Syst. 1991 Oct;13(4):451–490. Avail-
able from: http://doi.acm.org/10.1145/115372.115320.

[15] Horwitz S, Reps T, Binkley D. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems
(TOPLAS). 1990;12(1):26–60.

27

http://doi.acm.org/10.1145/1146238.1146245
http://doi.acm.org/10.1145/1146238.1146245
http://doi.acm.org/10.1145/1108768.1108806
http://doi.acm.org/10.1145/1108768.1108806
http://doi.acm.org/10.1145/2259051.2259053
http://doi.acm.org/10.1145/2259051.2259053
http://dx.doi.org/10.1007/11424529_6
http://doi.acm.org/10.1145/115372.115320

[16] Ernst MD, Czeisler A, Griswold WG, Notkin D. Quickly detecting rel-
evant program invariants. In: Proceedings of the 22nd international
conference on Software engineering. ICSE ’00. New York, NY, USA:
ACM; 2000. p. 449–458. Available from: http://doi.acm.org/10.

1145/337180.337240.

[17] Kuzmina N, Gamboa R. Extending dynamic constraint detection with
polymorphic analysis. In: Proceedings of the 5th International Work-
shop on Dynamic Analysis. IEEE Computer Society; 2007. p. 1.

[18] Balint M, Minea M. Automatic inference of model fields and their rep-
resentation. In: Proceedings of the 13th Workshop on Formal Techniues
for Java-Like Programs. FTfJP ’11. New York, NY, USA: ACM; 2011.
p. 9:1–9:6. Available from: http://doi.acm.org/10.1145/2076674.

2076683.

[19] Csallner C, Tillmann N, Smaragdakis Y. DySy. In: Software Engi-
neering, 2008. ICSE’08. ACM/IEEE 30th International Conference on.
IEEE; 2008. p. 281–290.

[20] Guo PJ, Perkins JH, McCamant S, Ernst MD. Dynamic inference of
abstract types. In: Proceedings of the 2006 international symposium
on Software testing and analysis. ISSTA ’06. New York, NY, USA:
ACM; 2006. p. 255–265. Available from: http://doi.acm.org/10.

1145/1146238.1146268.

[21] Hovemeyer D, Spacco J, Pugh W. Evaluating and tuning a static analy-
sis to find null pointer bugs. In: Proceedings of the 6th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engi-
neering. PASTE ’05. New York, NY, USA: ACM; 2005. p. 13–19. Avail-
able from: http://doi.acm.org/10.1145/1108792.1108798.

[22] Ayewah N, Pugh W. The Google FindBugs fixit. In: Proceedings of the
19th international symposium on Software testing and analysis. ISSTA
’10. New York, NY, USA: ACM; 2010. p. 241–252. Available from:
http://doi.acm.org/10.1145/1831708.1831738.

[23] Li K, Reichenbach C, Csallner C, Smaragdakis Y. Residual investiga-
tion: predictive and precise bug detection. In: Proceedings of the 2012

28

http://doi.acm.org/10.1145/337180.337240
http://doi.acm.org/10.1145/337180.337240
http://doi.acm.org/10.1145/2076674.2076683
http://doi.acm.org/10.1145/2076674.2076683
http://doi.acm.org/10.1145/1146238.1146268
http://doi.acm.org/10.1145/1146238.1146268
http://doi.acm.org/10.1145/1108792.1108798
http://doi.acm.org/10.1145/1831708.1831738

International Symposium on Software Testing and Analysis. ACM; 2012.
p. 298–308.

[24] Madhavan P, Wiegmann DA, Lacson FC. Automation failures on tasks
easily performed by operators undermine trust in automated aids. Hu-
man Factors: The Journal of the Human Factors and Ergonomics Soci-
ety. 2006;48(2):241–256.

[25] Jackson D, Rollins EJ. A new model of program dependences for reverse
engineering. SIGSOFT Softw Eng Notes. 1994 Dec;19(5):2–10. Available
from: http://doi.acm.org/10.1145/195274.195281.

[26] Boshernitsan M, Doong R, Savoia A. From Daikon to Agitator: lessons
and challenges in building a commercial tool for developer testing. In:
Proceedings of the 2006 international symposium on Software testing
and analysis. ACM; 2006. p. 169–180.

[27] Zeller A. The Future of Programming Environments: Integration, Syn-
ergy, and Assistance. In: Future of Software Engineering, 2007. FOSE
’07; 2007. p. 316 –325.

[28] Linton MA. Implementing relational views of programs. ACM SIG-
PLAN Notices. 1984;19(5):132–140.

[29] Lam MS, Whaley J, Livshits VB, Martin MC, Avots D, Carbin M,
et al. Context-sensitive program analysis as database queries. In: Pro-
ceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems. PODS ’05. New York, NY,
USA: ACM; 2005. p. 1–12. Available from: http://doi.acm.org/10.

1145/1065167.1065169.

[30] Smaragdakis Y, Bravenboer M. Using Datalog for Fast and Easy Pro-
gram Analysis. In: de Moor O, Gottlob G, Furche T, Sellers A, ed-
itors. Datalog Reloaded. vol. 6702 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg; 2011. p. 245–251. Available from:
http://dx.doi.org/10.1007/978-3-642-24206-9_14.

[31] Ali K, Lhoták O. Application-Only Call Graph Construction. In:
Noble J, editor. ECOOP 2012 – Object-Oriented Programming. vol.

29

http://doi.acm.org/10.1145/195274.195281
http://doi.acm.org/10.1145/1065167.1065169
http://doi.acm.org/10.1145/1065167.1065169
http://dx.doi.org/10.1007/978-3-642-24206-9_14

7313 of Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg; 2012. p. 688–712. Available from: http://dx.doi.org/10.1007/
978-3-642-31057-7_30.

[32] Ramachandra K, Guravannavar R, Sudarshan S. Program analysis and
transformation for holistic optimization of database applications. In:
Proceedings of the ACM SIGPLAN International Workshop on State
of the Art in Java Program analysis. SOAP ’12. New York, NY, USA:
ACM; 2012. p. 39–44. Available from: http://doi.acm.org/10.1145/
2259051.2259057.

[33] Fosdick LD, Osterweil LJ. Data flow analysis in software reliability.
ACM Computing Surveys. 1976;8:305–330.

[34] Georgiadis L, Tarjan RE, Werneck RFF. Finding Dominators in Prac-
tice. J Graph Algorithms Appl. 2006;10(1):69–94.

[35] Mclendon Iii W, Hendrickson B, Plimpton SJ, Rauchwerger L. Finding
strongly connected components in distributed graphs. Journal of Parallel
and Distributed Computing. 2005;65(8):901–910.

[36] Emami M, Ghiya R, Hendren LJ. Context-sensitive interprocedural
points-to analysis in the presence of function pointers. SIGPLAN Not.
1994 Jun;29(6):242–256. Available from: http://doi.acm.org/10.

1145/773473.178264.

[37] Lattner C, Lenharth A, Adve V. Making context-sensitive points-to
analysis with heap cloning practical for the real world. In: Proceedings
of the 2007 ACM SIGPLAN conference on Programming language de-
sign and implementation. PLDI ’07. New York, NY, USA: ACM; 2007.
p. 278–289. Available from: http://doi.acm.org/10.1145/1250734.

1250766.

[38] Laboratory E. SIR Usage Information;. Available from: http://sir.

unl.edu/portal/usage.php.

[39] Pytlik B, Renieris M, Krishnamurthi S, Reiss SP. Automated Fault
Localization Using Potential Invariants. CoRR. 2003;cs.SE/0310040.

30

http://dx.doi.org/10.1007/978-3-642-31057-7_30
http://dx.doi.org/10.1007/978-3-642-31057-7_30
http://doi.acm.org/10.1145/2259051.2259057
http://doi.acm.org/10.1145/2259051.2259057
http://doi.acm.org/10.1145/773473.178264
http://doi.acm.org/10.1145/773473.178264
http://doi.acm.org/10.1145/1250734.1250766
http://doi.acm.org/10.1145/1250734.1250766
http://sir.unl.edu/portal/usage.php
http://sir.unl.edu/portal/usage.php

[40] Abreu R, González A, Zoeteweij P, van Gemund AJC. Automatic
software fault localization using generic program invariants. In: Pro-
ceedings of the 2008 ACM symposium on Applied computing. SAC
’08. New York, NY, USA: ACM; 2008. p. 712–717. Available from:
http://doi.acm.org/10.1145/1363686.1363855.

[41] D’Silva V, Kroening D, Weissenbacher G. A survey of automated tech-
niques for formal software verification. Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on. 2008;27(7):1165–
1178.

[42] Tripp O, Pistoia M, Fink SJ, Sridharan M, Weisman O. TAJ: effective
taint analysis of web applications. In: Proceedings of the 2009 ACM
SIGPLAN conference on Programming language design and implemen-
tation. PLDI ’09. New York, NY, USA: ACM; 2009. p. 87–97. Available
from: http://doi.acm.org/10.1145/1542476.1542486.

31

http://doi.acm.org/10.1145/1363686.1363855
http://doi.acm.org/10.1145/1542476.1542486

	Introduction
	Background
	Static Dataflow Analysis
	Dynamic Invariant Detection
	Hybrid Filtering

	Approach
	Implementation
	Java Bytecode Recorder
	Intraprocedural Variable Dependency Grapher
	Daikon Invariant Recorder
	Analysis Limitations

	Evaluation
	Daikon Incomparability

	Future Work
	Conclusion

