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Abstract

The traditional association mining focuses on discovering frequent patterns
from the categorical data, such as the supermarket transaction data. The quanti-
tative association mining (QAM) is a nature extension of the traditional associ-
ation mining. It refers to the task of discovering association rules from quanti-
tative data instead of from categorical data. The discrepancies between the two
types of data lead to different analytical methods and mining algorithms. Several
properties and interestingness measures that play important roles in the traditional
association mining do not apply anymore in the quantitative situation. In this pa-
per, we propose two quantitative association mining algorithms from the bottom
up and heuristic search perspectives respectively. They take two new interesting-
ness measures, density and correlation, which are better fits for the quantitative
situation. The algorithms can find strong correlated intervals in a generally less
correlated environment. Experiment results from neuroscience and health social
network data validate the feasibility of our algorithms.

1 Introduction
The traditional association mining focuses on discovering the interesting patterns or
rules from large categorical datasets. The categorical data is the data type with domain
of limited possible values for each attribute, such as the supermarket transaction data in
Table 1(a). The first association mining algorithm, Apriori algorithm, was proposed in
1993 by Agrawal and Srikant [15] and was later extended by many other researches [8]
[10][11][16][19]. These algorithms dedicate to discover association rules based on user
defined support and confidence thresholds. For categorical data, the association rule is
an expression in the form of X ⇒ Y [s,c], in which X and Y are sets of items. An item
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(a) Categorical Data: Supermarket Transaction Data
hhhhhhhhhhTransaction ID

Item Milk Bread Egg Wine Fish Vegetable

T1 NO NO NO YES NO NO
T2 YES YES NO NO NO NO
T3 YES YES NO NO YES NO
T4 YES YES NO YES YES NO
T5 NO YES YES NO YES YES

(b) Quantitative Data: Temperature
XXXXXXXMonth

City Temperature Hawaii Temperature L.A. Temperature S.D.

Jan 72.9 56.8 57.4
Feb 73.0 58.6 58.6
Mar 74.4 59.6 59.6
Apr 75.8 62.0 62.0
May 77.5 64.1 64.1
Jun 79.4 66.8 66.8
Jul 80.5 71.0 71.0
Aug 81.4 72.6 72.6
Sept 81.0 72.6 71.4
Oct 79.6 71.4 67.7
Nov 77.2 67.7 62.0
Dec 71.4 62.0 57.4

Table 1: Example of Categorical and Quantitative Data

is a possible value in the domain of attribute, such as Milk = YES in Table 1(a) for the
supermarket transaction data. The s and c stand for the support and confidence mea-
sures respectively. The support is a measure of the occurrence frequency of involved
items in the association rule. For association rule X ⇒ Y , the S upport(X ⇒ Y) is
defined as:

S upport(X ⇒ Y) = P(XY) = P(X ∩ Y).

The Confidence is a measure of quality or precision of the association rule. For asso-
ciation rule X ⇒ Y , it represents the probability of set Y given the condition that X
happens. It is defined as

Con f idence(X ⇒ Y) = P(Y |X) = P(X ∩ Y)/P(X).

A concrete example of association rule using the data in Table 1(a) is, Bread = YES ⇒
Milk = YES [60%, 75%] . It indicates the fact that “60% of customers who come to
a supermarket buy both milk and bread, and among all the customers who buy bread,
75% of them also buy milk.” In this example, the 60% and 75% stand for the support
and confidence measures respectively. Following the idea of association mining, quan-
titative association mining (QAM) was proposed by Srikant et al. in 1996 [16]. One
significant difference between QAM and traditional association mining is the output of
QAM is in the form of “frequent” intervals intead of frequent itemsets. For example,
one quantitative association rule for the meteorological data in Table 1(b) is

Temperature Hawaii[70 Fo, 80 Fo]⇒ Temperature S .D.[60 Fo, 70 Fo], [42%, 56%],

in which [70 Fo, 80 Fo] and [60 Fo, 70 Fo] are two intervals defined on the attributes
Temperature Hawaii and Temperature S.D. respectively. This rule shows that “for 42%
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days of a year, the temperatures at Hawaii and S.D. fall into the ranges [70 Fo,80 Fo]
and [60 Fo, 70 Fo] respectively, and while the temperatures of Hawaii belongs to
[70 Fo, 80 Fo], 56% days of the temperatures at San Jose fall into [60 Fo, 70 Fo].
The 42% and 56% in the example above are the support and confidence measures re-
spectively.

Although the results from these two types of association rule mining looks simi-
lar, the problem formulation and data mining process are nevertheless quite different.
Since the domain of attribute in categorical data take only limited number of possible
values, the values repeat themselves constantly in different data tuples. Traditional as-
sociation mining algorithms rely on the repetition of data values in the sense that the
initialization of support and confidence measures is based on a counting process on
those frequently repeated items. This process, however, does not apply anymore in the
quantitative situation since quantitative data seldom or never repeat themselves. For
quantitative data, if we apply the traditional association mining on quantitative data di-
rectly, the counting process will mostly returns items with support counts exactly one;
therefore no meaningful association rules can be discovered. Moreover, in quantitative
association mining the interestingness measures support and confidence do not serve as
useful and accurate measures either. As the output of QAM is in the form of “frequent”
intervals, any set of data values could fall into one interval by a series of consecutive
adjacency. Statistically the larger intervals an association rule have, the larger support
and confidence it will result in. In this situation, the full range association rule, for
example,

Temperature Hawaii[73.0 Fo, 81.4 Fo]
⇒ Temperature S .D.[57.4 Fo, 72.6 Fo], [100%, 100%], (1)

will be the always and only best output. This rule has both the maximum support and
confidence, however, it is trivial and does not convey any useful information.

The failure of support and confidence measures in QAM urges the needs of new
interesting measures. In this paper we introduce two new interestingness measures:
density and correlation that better fit with the QAM problem. The density in our pa-
per is defined as the average number of data instances over unit length interval. This
measure evaluates the occurrence frequency of data values under unit length interval.
It represents the significance of a quantitative association rule in the way of how fre-
quently the data conform with the association rule. For example, considering the two
association rules below from Table 1(a),

Temperature Hawaii[70 Fo, 80 Fo]⇒ Temperature S .D.[55 Fo, 65 Fo],

Temperature Hawaii[80 Fo, 90 Fo]⇒ Temperature S .D.[65 Fo, 75 Fo],

they have intervals with equal length on both attributes. However, there are seven data
instances that conform with the first rule while only three conform with the second one.
This fact implies that data are more likely to fall into the first rule rather than the second
one within unit length of interval. The first rule therefore covers data more efficiently
and represents pattern with better quality. The correlation in this paper is defined by the
Spearman’s rank correlation coefficient [6]. The rules with strong correlated intervals
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reveal useful information from a different perspective. The data in strong correlated
intervals not only happen together, but also associate with unanimous trends of raising
and falling. The association rules with high correlation measure are very useful in
practice. For example, in the stock market, the demand of stocks and bonds generally
raises as the price falls. This market principle of price and demand is the corner stone
of a stable financial market. However, under certain circumstance such as a potential
economic crisis, when the price falls below certain threshold and crash in the stock
market is triggered, the demand would decrease together with the decline of the price
for certain price range. In this example, the association rules from historical transaction
data with either positive or negated correlation on certain price ranges will provide
the investors with useful information on when and how to reduce risk in the financial
investment.

There are various methods to sovlve the QAM problem and they generally fall
into three perspectives, top down, bottom up and heuristic search respectively. In the
top down perspective, domain knowledge or data statistics are used to assist the data
mining process. The domain knowledge and data statistics can be used to simplify
the data mining model or guide the path of the data mining process. In the bottom
up perspective, the data mining problems are initialized as a set of sub problems in
which the interestingness measures are trivially computable from data. The output of
the QAM is then constructed as union of these sub problems by various data mining
algorithms. In the heuristic search perspective, the problem is initialized as a set of
results with inferior or non optimal interestingness measures, then these interestingness
measures are iteratively improved by heuristic search algorithms till global optimal is
reached.

In this paper, we propose two algorithms for the QAM problem from two of these
three perspectives, bottom up and heuristic search, respectively. In the bottom up per-
spective, we propose to model the quantitative data with a hypergraph representation
and use the average commute time distances to approximate the interestingness mea-
sures we used, density and correlation. In the heuristic search perspective, we propose
an iterative crossover schema on genetic algorithm to reduce the heuristic search com-
plexity and an optimization procedure after crossover to increase the accuracy of each
iterative step in the genetic algorithm. We have also designed top down algorithm
which deploys the domain knowledge such as Ontology to enhance QAM process,
however, the experiment results for this perspective are not of satisfactory quality. This
is primarily because we do not have suitable Ontologies in hand which fit with the need
of the QAM problem. The research and discussion from the top down perspective is
left for future work.

The rest of this paper is organized as follows: We give a brief selection of related
works in section 2. We present the problem definition about the data representation and
interestingness measure in section 3. We make a detailed description of our method
from both the bottom up and heuristic search perspective in section 4. We report ex-
periment results in 5. We discuss the future work of QAM in section 6 and conclude
the paper in section 7.
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2 Related work
Quantitative association mining is an intriguing and promising problem since after all
90% of our real life data is quantitative [17] such as the stock market price data, wire-
less sensor data and meteorological data. In previous research, various quantitative
association mining algorithms have been proposed from different perspectives. Fukuda
et al. [19][20] proposed several methods that either maximize the support with prede-
fined confidence or maximize the confidence with predefined support by merging up
adjacent instance buckets. Srikant and Agrawal [16] dealt with quantitative attributes
by discretizing quantitative data into categorical data. From the theoretical perspective,
Aumann and Lindell [21] in 1999 introduced a new definition of quantitative associa-
tion rules based on the distribution of the quantitative data using statistical inference.
Wijsen and Meersman [9] analyzed the computational complexity of mining quantita-
tive association rules. Fuzzy set theory was introduced to the quantitative association
mining problem to deal with the crisp boundary problem. Kuok et al. [13] proposed
a fuzzy quantitative association rule mining algorithm which introduces the fuzzy set
theory and generates fuzzy intervals instead of crisp intervals. Delgado et al. [14] in-
troduced the fuzzy set theory into quantitative data mining by defining fuzzy sets on
the domain of quantitative attributes. In these algorithms above, the algorithms that use
discretization method suffer from information loss during the discretization and usu-
ally suffer from the catch-22 problem [16] and the crisp boundary problem [21] as well.
The algorithms using fuzzy methods can generate rules with fuzzy boundaries but they
also require the help of domain experts to define the fuzzy concepts on the quantitative
intervals, this task could be time consuming and subjective, especially when the set of
attribute is large.

Figure 1: Quantitative Data Representation
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3 Problem Definition

3.1 Data Representation
As illustrated in Figure 1, it shows an example of quantitative data with values sorted
in ascending order on attributes. Let A = {Att1, Att2, ..., AttM} be the set of attributes,
in which M is the number of total attributes. The domains of these attributes are either
numerical or categorical. Let I = {Inst1, Inst2, ..., InstN} be the set of data instances,
in which N is the number of total data instances. The value of the ith attribute Atti on
the jth data instance Inst j is denoted as Di j. The cutting points ci1, ci2, ..., ci(N−1) are
the averages of each two adjacent values on corresponding attribute atti. The interval
boundaries of the QAM rules are defined on these cutting points. The set of attributes,
instances and intervals for an association rule are denoted as S Att, S Inst and S Inter re-
spectively. A QAM association rules R is in the form R = ∪Atti∈S Att Atti[cil, cih], [density
d, correlation c].

3.2 Interestingness Measure
As mentioned briefly in section 1, the support and confidence are not proper interest-
ingness measures for the QAM problem. In this paper, we propose two interestingness
measures, density and correlation, to replace the role of support and confidence in
QAM. The goal of our quantitative association mining is therefore to discover both
dense and strongly correlated intervals. The definitions of these two measures are pre-
sented in the current section.

Figure 2: Density Metric

Density The density measure in our paper is defined as the average number of data
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instances over unit length interval, i.e.,

Dens(rule) =

∑
i∈S att

ninst/(cih − cil)
natt

, (2)

in which ninst and natt stand for the number of data instances and number of attributes in
the association rule respectively. The density measures the average distances between
the data values in the association rule or from another perspective the amount of data
values that unit interval contains. It evaluates the significance of an association rule
in the way that how frequently this association rule may apply in future application.
For example, itemsets itemset1 and itemset2 in Figure 2 are of the same support and
confidence measure. The distributions of the data in the two itemsets are nevertheless
different. The data values in itemset2 has higher density and shorter average distances
than the ones in itemset1. Therefore, within the same size of interval, data will be more
likely to fall into itemset2 rather than itemset1 in future application.

The density measure in the QAM replaces the function of support in the traditional
association mining. In categorical data, the distance between each item is either 0 for
the same items or 1 for different items. The support in traditional association mining
algorithms is in essence the statistics of repetition of the same items. The bigger sup-
port value an association rule has, the more frequent and likely this rule is going to
appear in future instance. Different from the categorical data, the values in quantitative
data have very few or no repetition. The counting process for the support measure will
return a support count of exactly one for each data values. Moreover, the distances
between data values in the quantitative data varies depending on the density/sparsity
of the data. These distances contains important information in QAM as the reasons
described above, however, the support measure could not capture this information in
the quantitative situation.

Figure 3: Correlation Metric

Correlation The correlation in this paper is defined by the Spearman’s rank corre-
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lation coefficient [6]:

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2∑
i(yi − ȳ)2

,

in which x̄ and ȳ stand for the average order ranks of attribute x and y respectively. The
value of the Speareman’s rank correlation coefficient is between [-1, 1], in which +1
and -1 indicate the maximum positive and negative correlations respectively. As shown
in Figure 3, the values of attribute 2 in itemset 1 raises strictly along with the values in
attribute 1, the correlation measure is therefore +1. In itemset 2, the values of attribute
2 fall when values of attribute 1 raise, the correlation is -1. Intervals with 1 or -1 are of
strong correlation and the uncorrelated intervals have correlation close to 0.

The correlation is a measure used to evaluate the quality or precision of the associ-
ation rules. It plays a similar role as the confidence measure in the traditional associa-
tion mining. The confidence in the traditional association mining intends to capture the
causality relationship of two itemsets, i.e., under the condition one itemset happens,
the occurrence probability of another itemset. In the quantitative situation, however,
the confidence measure is not accurate enough to measure the precision of association
rule. As the output of QAM is in the form of intervals, the larger interval one rule has,
statistically the more data instances it will contain. Therefore, the increasing in length
of intervals in an association rule will result in an increasing confidence value under the
assumption of similar data distribution. In the extreme case, for association rules with
full right side intervals Atti[minb,maxb], the confidence will always be 100%. This
rule, however, contradicts with the goal of finding the causality relationship between
itemsets, since after all, the rule is trivial and does not convey any useful information.

4 Method

4.1 Bottom Up Perspective
As mentioned in the previous section, the density and correlation are better interest-
ingness measures for the QAM problem. However, to discover the dense and strongly
correlated interval sets from the bottom up perspective is a complex process as the
combination of correlation is not linear and recalculation of it is required each time
the intervals are combined. For association rule with attribute set and interval set
{S att, S inter}, the correlation is defined as the average correlations between each pair
of two intervals in the association rule. The computation of this correlation requires a
complexity of C2

natt
n2

inst = O(N2M2) in which Cn
m stands for the amount of combination.

Using the bottom up merge mining method, for example, if we initialize N intervals
on each attribute and merge the adjacent intervals with the minimum correlations, a
computation of correlation is required for each pair of intervals which are possible to
be merged. This computation requires a complexity of O(NC2

NC2
natt

N2) = O(N5M4). As
the amount of combination of the attribute sets is O(M!), the complexity of bottom up
mining that applied on all combination of attribute sets is then O((M + 4)!N4). There-
fore, to use the straight forward merge mining algorithm for discovering the dense and
strong correlated intervals is a non trackable process. In this section, we present our
hypergraph based method which efficiently solve the QAM problem from the bottom
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up perspective. The density and correlation measure are both taken into consideration
through the hypergraph representation of the data. These measures are captured by the
average commute time distance between vertices in the hypergraph.

4.1.1 Hypergraph representation of quantitative data

Hypergraph is a generalization of regular graph that each edge is able to incident with
more than two vertices. It is usually represented by G = (V, E,W), in which V , E and W
are the set of vertices, edges and weights assigned to corresponding edges respectively.
The incident matrix of a hypergraph G is defined by H in which

H(v, e) =

{
1 i f v ∈ e
0 i f v < e (3)

Figure 4: Hypergraph Representation of Quantitative Data

As shown in Figure 4, each data value Di j corresponds to a vertex in the hyper-
grah. Each pair of vertices with adjacent values, Di j and Di( j+1), are connected through
a hyperedge with weight proportion to the inversion of the distance between them.
The vertices in the same data instance with value Di1, Di2,...,DiM are connected by a
hyperedge as well with user defined weight.

Zhou et al. [4] generalized the random walk model on hypergraph and defined the
average commute time similarity S ct and the Laplacian similarity S L+

. The average
commute time similarity n(i, j) is defined by

n(i, j) = VG(l+ii + l+j j − 2l+i j), (4)

in which l+i j is the ith and jth element of matrix L+, L is the hypergraph Laplacian
defined by

L = Dv −HWD−1
e HT (5)
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, and {.}+ stand for Moore-Penrose pseudoinverse. Dv and Dv denote the diagonal
matrix containing the degree of vertices and edges respectively and VG = tr(Dv) is
the volume of hyper graph. The average commute time distance is defined by the
inversion of normalized average commute time similarity [7]. As mentioned in [12]
the commute-time distance n(i, j) between two node i and j has the desirable property
of decreasing when the number of paths connecting the two nodes increases. This
intuitively satisfies the property of the effective resistance of the equivalent electrical
network [5].

4.1.2 Density, Correlation and Average Commute Time distance

Figure 5: Commute time distance, Density and Correlation

The average commute time distance is a random walk distance. It represents the
average distance one walks through when traversing from one node to another in a
graph though all random paths. The relationship between the random walk average
commute time distance and density and correlation is illustrated as follows. As in
Figure 5, the data instances t1, t2 and t3 are dense and strongly negative correlated and
the data instances t4, t5 and t6 are sparse and not strongly correlated. As mentioned
in the previous section, the weight of the hyperedge between each two adjacent values
is the inversion of their distance in the original data. For the denser data instances set
t1, t2 and t3, the hyperedges between them are with higher weight. The distance of a
random walk through the direct hyperedge is therefore shorter than the edges between
t4, t5 and t6. Moreover, the non direct random walk paths on strong correlated data
instances, for example, N11 → N21 → N22 → N12 is shorter than loosely correlated data
instances, for example, N11 → N21 → N22 → N12 because the corresponding entities
on the other correlated attributes are closer between each other. Therefore, the average
commute time distance between the denser and strongly correlated vertices is relatively
shorter than the sparse and not strongly correlated vertices. For the reason above, the
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average commute time distance from random walk model is capable in capturing both
the density and correlation measures for our quantitative association mining problem.

4.1.3 Algorithm Description

Input: D, ϕ, s, c

Initialize: IS = i1, i2, ..., iN , ik = tk, M, rule = ∅

till: size(M)=1

do: for im, im, dist(im, in)=min(D)

im = Merge(Sm,Sn)

if
max(dist(Sm), dist(Sn))

dist(Smn)
≥ ϕ

rule += get rule(Sm,Sn)

Update(M)

Table 2: Algorithm Description

Figure 6: Algorithm in Bottom Up Perspective

As described in previous section, the average commute time distance on hyper-
graph model is able to capture both the density and correlation measures for the QAM
problem. Based on this fact, we propose a bottom up mining algorithm for discovering
association rules in quantitative data. The pseudo code of our algorithm is shown in
Table 2. With the definition of average commute time similarity in section 4.1.1, we
can update the distances of each adjacent data instances using the average commute
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time distance. The distance between the adjacent data instances are the inversion of the
average commute time similarity. After the update of hypergraph distances, a merge
mining process is applied simultaneously on all the attributes to generate our associ-
ation rules. For each attribute, a distance matrix Mi is maintained for each intervals.
At initialization there are in total N − 1 intervals with each data value corresponding
to one interval. Each row or column in matrix Mi corresponds to one interval in the
attribute and the corresponding entry in matrix contains the distance measure between
two intervals. ϕ is the user defined threshold for the automatic rule generator which
is described in Section 4.1.4. After each merge, the distance of the new interval is
updated based on the previous two intervals.

In every few iterations, for each generated interval, we scan the corresponding in-
tervals on the rest attributes. the distance metrics, density and correlation are calculated
for these pairs of intervals. if the distance metric is above the user predefine threshold
such as the interval a and interval b in figure 6, then the two intervals are combined
into one attribute interval set {S att, S inter} and the following merge mining process con-
tinues on this set. The merge mining process of this interval halts when the interesting
measures of rule generation is satisfied as described in section 4.1.4.

4.1.4 Automatic Rule Generation

Figure 7: Automatic Rule Generation

In most of the previous association mining algorithms, the rule generation and the
frequent itemset discovery are usually two independent phases. As pointed out by
Srikant [16] the algorithms often generate too many rules with similar intervals, support
and confidence. This problem is called the too many rule problem. To solve this
problem, people define different interestingness measures to filter out uninteresting
and similar rules. However, as algorithm may apply on various datasets with different
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characteristic, it is hard to define a universal interestingness measure that satisfies all
the dataset perfectly.

In this paper, we deploy an association rule generation mechanism that works along
with the process of frequent itemset discovery and deploy the nature characteristic of
the data. As show in Figure 7, the process of our merging mining algorithm can be
represented as a binary tree, each node represents an interval set and it might merge
with some other intervals in the merging process. In this process, the association rules
are generated when either the density, confidence or correlation of the new interval set
is lower than some user defined percentage ϕ of the previous set of intervals.

Using this mechanism, the generated association rules has the potential to overlap
with each other. It means in our algorithm there is no “crisp boundary” problem that
similar values were separated into different intervals. Moreover, it deploys the nature
statistic distribution of the dataset that an association rule will always be generated
whenever a good enough interval set was discovered.

4.2 Heuristic Search Perspective
In the present section, we present our metaheuristic search algorithm for the QAM
problem. This algorithm contains an iterative crossover procedure on the genetic algo-
rithm framework and optimization procedure is used after crossover to guide the search
path of the genetic algorithm. In section 4.2.1 we give a short background of the ge-
netic algorithm, then in section 4.2.2 we present the individual representation of the
genetic algorithm. In section 4.2.3 the iterative crossover schema and in section 4.2.4
optimization procedures are introduced.

4.2.1 Genetic Algorithm

Figure 8: Genetic Algorithm
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Genetic algorithm is a popular metaheuristic search algorithm that imitates the na-
ture selection process. At the initialization of the algorithm, the population which con-
tains a fix number of individuals is initialized. For our QAM problem, each individual
contains a set of attributes and a set of data instances. These initial individuals can be
generated either randomly or based on domain knowledge and statistics. The algorithm
proceeds through a series of crossover, mutation, selection processes on the population
as shown in Figure 8. In the crossover step a child is generated at added into population
from each pair of individuals which are called the parents. The child will takes part of
data or attributes from both of the two parents through a random selection procedure as
shown in figure 3. The mutation step randomly alters part of the individual so that the
individual has the ability to jump out of a local optimal. The selection process filter out
inferior individuals based on a fitness function. The same number of individuals with
top fitness functions are left for the next round iterative process.

Input: A, B
Execute: for each a in A and b in B

if a == b
add C a

else
if ( rand(0,1) ) add C a
if ( rand(0,1) ) add C b

Output: C

Table 3: Random selection procedure in crossover for both the attribute sets and in-
stance sets

4.2.2 Individual Representation

In our work, each individual is represented as a pair of attribute and instance sets {Att,
Inst}, in which Att ⊆ {att1, att2, ..., attM} and Inst ⊆ {inst1, inst2, ..., instN}. The in-
stances in the individual has the shape constraint of a hyper rectangle. The hyper
rectangle and set of intervals on attributes are in fact equivalent based on the fact that
the space defined by the set of intervals is always a hyper rectangle. At the conver-
gence of the genetic algorithm, association rules are generated from each individual
within constant time. Comparing with the model in section 3, the data of the individual
is modeled by the set of instances instead of the set of intervals. The reason for this
representation is because the interval representation does not fit well with the genetic
algorithm with reasons stated bellow.

With the interval representation, crossover of intervals cannot proceed in some situ-
ations, for example, when the intersection of the parents attribute sets are empty. Even
in the situation when the parents share one or few common attributes, the crossover
can only perform on these few common attributes. The power of crossover is therefore
largely limited. Furthermore, crossing over intervals could readily lead to children that
do not conform with the grounding of crossover. The interval of the children might
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not relate with any of the two parents. For example, two non overlapping intervals on
attribute i that InterA = Atti[al, ah] and InterB = Atti[bl, bh], in which ah ≥ al ≥ bh ≥
bl. The possible child from crossover InterAB = Atti[bh, al] does not include any com-
ponent of the two parents but the unrelated interval in between. This crossover result
contradicts the purpose of using the genetic algorithm, i.e., to borrow superior charac-
teristics from both the parents.

The instance set is a better individual representation in the sense that the crossover
of data instance is not constrained by the set of attributes and vice versa. The crossover
is performed through a random selection procedure as shown in Table 3. With this
representation, the crossover can proceed between any pair of individuals even when
they have empty intersections of attribute set or instance set. Each child individual
borrows part of instances or attributes from both of its parents.

At last, as the goal of our quantitative association mining is to find the dense and
strongly correlated intervals, we should constraint the data instances of each individual
with an hyper rectangle. All instances inside the hyper rectangle are included, while
the ones outside are not. This is because the space of a set of intervals only equivalent
with the set of data inside of a hyper rectangle. The hyper plane of the hyper rectangle
is in fact defined on the boundary of the intervals. The scattered or random shaped
instance set does not conform with the association rule representation.

4.2.3 Iterative Crossover

Figure 9: Genetic Algorithm with Iterative Cross Over and Optimization Procedure

With the individual representation described in the previous section, we propose
an iterative crossover schema as shown in Figure 9. The ability to apply the itera-
tive crossover is one of the advantages of instance attribute representation, {Att, Inst}.
Comparing with other optimization problem, the QAM problem has a special struc-
ture: the solution space is composed by the two mutually dependent sets, attribute set
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and instance set (or interval set). For any quantitative association rule, the set of data
instances is only optimal under this specific attribute set, and vise versa. This structure
results in a catch-22 problem, i.e., for any association rule either one of the attribute
and instance sets cannot be specified before the other.

To deal with this dilemma, an iterative crossover schema was designed in our ge-
netic algorithm. Under this schema, the crossover was performed iteratively on data
instance set and attribute set by fixing the other. For example, the instance crossover
for individual A, {atta, insta} and B, {attb, instb}willwilla generate two children C, {atta,
rand(insta, instb)}, D, {attb, rand(insta, instb)}. And in the attribute crossover step, in-
dividual A, {atta, insta} and B, {attb, instb} will generate C, {rand(atta, attb), insta}, D,
{rand(atta, attb), instb}. The rand( ) function is the random selection procedure defined
as in Table 3.

4.2.4 Optimization Process

Figure 10: Optimization Procedure

Another advantage of the {Att, Inst} individual representation is that an optimiza-
tion procedure can be introduced after crossover. The crossover in genetic algorithm
involves in several randomized procedures. It is expected to generate children which
are similar to both of their parents. However, due to the random process, it might also
generates inferior individuals that are further away from the optimization goal in the
solution space. Introducing optimization process after the crossover is able to guide
the search path of genetic algorithm. Although due to the catch-22 problem described
in the past section, direct optimization is not applicable for QAM problem, a feasible
solution is applicable under our iterative crossover schema. After instance or attribute
crossover step, we proceed to optimize the crossovered instance or attribute set by fix-
ing the other one. Moreover, as described in section 4.2.2, since the instance set is
required to be a set in the shape of hyper rectangle, the instances after crossover is
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constrained into an axis aligned hyper rectangle by our optimization procedure. The
optimization process is described in the following section.

Let us denote the set of instances in individual by I and the set of instances that
are not in individual by O. They are denoted by squares and circles in Figure 10
respectively. As described in section 4.2.2 we constraint our data instances as by
axis aligned hyper rectangles. The optimization goal is therefore to find a axis aligned
hyper rectangle with as many squares and as less circles as possible. For each hyper
rectangle selected, two types of errors are defined. Type A error indicates the error
when a data instance is inside the hyper rectangle but not a selected instance and type
B error indicates that when a selected data instance is outside the hyper rectangle. The
two types of errors are represented in the following formulas by y and z respectively.

yik = max{wkIi − rk, 0}
z jk = max{−wkO j + rk, 0}
i = 1, 2...na,

j = 1, 2...nb,

k = 1, ... , 2natt

(6)

in which k is the number of hyper plane of the hyper rectangle, wk is a vector in the
form of (0, 0, ..., ± 1, 0, 0, ...) which corresponds to one of the hyperplanes of, in
which natt is the dimension of the hyper rectangle, i.e., the number of attributes for
this individual. The hyper plane is represented by {wk x = ck, k = 1, ... , 2natt}. The
problem is therefore can be formulated as a mathematic programming problem with
error function represented as bellow:

min
w,γ,y,z,r

na∑
i=1

min
k∈K

yik +

mb∑
j=1

∑
k∈K

z jk

s.t. Iiwk − γk ≥ yik

O jwk − γk ≤ zik

(7)

Unfortunately, this mathematic programming problem is neither convex nor linear. It
is therefore hard to find the solution which corresponds to the optimal hyper rectangle.
To solve this problem, we approximate the objective function using an linear lower
bound with methods similar in [18]. Let uik = yik xi, i = 1, ..., na and

∑na
i=1 = 1 where

xi ∈ {0, 1}, i = 1, ..., na. Then the uik is bounded by its piecewise linear and convex
envelope

uik ≥ max {yik − Mxi − M, 0}

where M is the upper bound on yik. By applying this under estimation, the optimization
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problem is converted to a mix integer linear programming problem

min
w,γ,y,z,r

na∑
i=1

∑
k∈K

uik +

mb∑
j=1

∑
k∈K

z jk

s.t. Oiwk − γk ≥ yik

O jwk − γk ≤ zik∑
k∈K

xik = 1

uik − yik − Mxik + M ≥ 0

(8)

Then the IBM CPLEX/MILP [1] tool is used to solve this mix integer linear program-
ming problem.

5 Experiment Result
To validate the feasibility of our algorithm, we test both our two algorithms on the data
from the NEMO [2] and SMASH [3] projects. The experiment results for the NEMO
data and the SMASH data are presented in section 5.1 and 5.2 respectively.

5.1 Experiment on the NEMO data
NEMO [2] is the abbreviation of the Neural ElectroMagnetic Ontologies system. It is
designed for the purpose of neuro science data sharing and analysis. The data used from
NEMO system is the event-related potentials (ERP) or the ”brainwave” data. In the past
decades, the studies on ERP data have resulted in many complex neural patterns that
can be used to predict human behavior cognition, and neural function. The ERP data is
measured through the electro encephalography, i.e., the measure of electrical activity
on the scalp using electrodes. The values of ERP data are therefore all quantitative.
Each tuple in the data represents the activities in various parts of the cortical network
at some specific time. The study of density and correlation of the ERP data has the
potential to reveal the connection and function pattern in the cortical network.

In Table 4 we list the top association rules by our algorithm from the NEMO data
from the bottom up perspective. The rules are selected by weighted sum of correlation
and density and ranked by correlation. Each attribute reflexes the activities measured in
certain part of the cortical network at some specific time. For example, the attribute IN-
LOCC stands for left occipital lobe which is in charge of the visual spacial processing,
color discrimination, and motion perception of human being. The association rules
discovered by our algorithm show high interestingness measures and reveal interesting
patterns. For example, the first rule in Table 3(a), IN-LOCC [ -1.90 , -0.14 ] ⇒ IN-
ROCC [ -1.92 , -1.15 ] has a fairly high density value 5.77 and maximum correlation
1.00. This rule reveals a correlation between left occipital lobe and the right occipital
lobe. The left occipital lobe in human brain is response for the vision and eye control
functions while the right occipital lobe is in charge of reading and writing skills. The
relation between IN-LOCC and IN-ROCC implies the potential connection between
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(a) Top Ten Rules with Ranked by Density and Correlation
attribute2 range attribute2 range density correlation corr gain
IN-LOCC [-1.90,-0.14] IN-ROCC [-1.92,-1.15] 5.77 1.00 1.00

IN-LPTEM [-0.88,-0.33] IN-RFRON [-3.66,-1.38] 3.53 1.00 1.20
IN-RATEM [0.87,2.52] IN-RFRON [-3.86,-1.33] 3.10 -1.00 12.08
IN-LATEM [3.45,1.31] IN-LFRON [-5.48,-1.89] 3.02 -1.00 27.21
IN-RPTEM [-0.95,6.45] IN-LPTEM [-0.88,6.35] 2.39 0.99 0.99
IN-LATEM [-0.58,1.75] IN-RFRON [-5.14,-0.28] 2.33 -0.99 11.31
IN-RORB [-1.05,-0.07] IN-LPTEM [0.22,3.34] 2.12 -1.00 12.25

IN-LPTEM [-0.88,5.49] IN-LPAR [-5.88,14.67] 1.45 -0.99 1.62
IN-RPTEM [-0.95,5.58] IN-LPAR [-5.88,14.67] 1.44 -0.98 1.61
IN-ROCC [-1.92,12.01] IN-LOCC [-1.89,12.10] 1.02 0.99 1.00

(b) Top Ten Rules Ranked by Correlation Gain
attribute1 range attribute2 range density correlation cor gain
TI-max [236.00,308.00] IN-RFRON [-39.26,-0.34] 0.58 0.90 66.89

IN-LFRON [0.99,7.11] IN-RATEM [2.41,17.28] 2.02 1.00 32.95
IN-LATEM [0.45,1.31] IN-LFRON [-5.48,-1.89] 3.02 -1.00 27.21
IN-LFRON [0.99,7.11] IN-LATEM [2.43,17.38] 1.94 1.00 27.21
IN-RORB [-1.05,-0.07] IN-LPTEM [0.22,3.34] 2.12 -1.00 12.25
IN-RORB [-9.08,-0.49] IN-LPTEM [-0.88,0.20] 1.20 0.99 12.25

IN-RATEM [0.87,2.52] IN-RFRON [-3.86,-1.33] 3.10 -1.00 12.08
IN-LATEM [-0.58,1.75] IN-RFRON [-5.14,-0.28] 2.33 -0.99 11.31
IN-RPTEM [0.16,2.69] IN-RORB [-7.88,-0.49] 1.03 -0.99 8.20

TI-max [236.00,308.00] IN-LORB [-20.24,-0.34] 0.73 0.96 7.45

Table 4: Quantitative Association Mining Results From The Neuro Science Data From
The Bottom Up Perspective

the left and right lobe in the cortical network. It also reveals the possible affiliation of
functions between the vision and reading, writing skills.

Note that even if the correlation for some rules is high enough in Table 4, the cor-
relation gain is relatively low. The correlation gain is defined as the ratio between the
correlation of the rule and the correlation of the attributes involved. High correlation
gain implies that even though the two attributes are largely uncorrelated most of time,
strong correlation might still be found under some intervals. The rule with high cor-
relation gain is valuable in the sense that it reveals the pattern that does not show up
under a general picture, i.e., the hidden pattern. On the other hand, for the rules with
low correlation measure, most of the contribution of the correlation comes from the at-
tributes but not the interval itself. For example, for the rule IN-RPTEM [ -0.95, 6.45 ] ∪
IN-LPTEM [ -0.88, 6.35 ], even if it has a near full correlation 0.99, the correlation gain
is 0.99 which means correlation for these two intervals is even lower than the overall
correlation between these two attributes. These rules are therefore not useful since the
correlation between the two attributes gives us all the information that we need already.
This correlation gain measure provides us another perspective to evaluate the precision
of an association rule.

In Table 5(a) and 5(b) we list the experiment results from the heuristic search per-
spective. Comparing with Table 4, the result from the bottom up perspective and
heuristic perspective share some similarities. For example, both tables contain rules
associated with IN-LOCC, IN-ROCC and IN-LATEM, IN-RATEM. Specificlly, note
that the first two rules in 5(b) indicate high correlation gain from IN-RATEM and IN-
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(a) Top Five Rules with Ranked by Density and Correlation
attribute1 range attribute2 range density corr corr gain

IN-LATEM [-2.16,1.75] IN-RATEM [-2.22,3.36] 5.6 1.00 4.34
IN-LFRON [-0.43,7.11] IN-RFRON [-0.44,6.51] 5.86 1.00 1.01
IN-LORB [-2.14,12.65] IN-RFRON [-2.16,6.51] 4.81 1.00 1.06
IN-RORB [-0.44,20.83] IN-LFRON [-3.06,7.11] 3.53 1.00 4.76
IN-LPAR [-0.18,14.67] IN-RPAR [-0.19,14.56] 3.14 1.00 1.03

(b) Top Five Rules with Ranked by Correlation Gain
attribute1 range attribute2 range density corr corr gain

IN-RATEM [1.90,17.28] IN-LFRON [-4.13,7.11] 2.67 0.99 33.00
IN-LATEM [0.99,17.38] IN-LFRON [-4.13,7.11] 2.86 1.00 27.21
IN-LPTEM [0.20,14.56] IN-RORB [-9.08,-0.56] 3.34 0.98 12.26
IN-RATEM [-0.43,17.28] IN-RFRON [-0.44,6.51] 3.72 0.89 11.32
IN-LATEM [-0.42,17.38] IN-RFRON [-0.44,6.51] 3.15 0.88 11.31

Table 5: Quantitative Association Mining On Neuro Science Data From The Heuristic
Search Perspective

LATEM both to IN-LFRON[-4.13, 7.11]. These two rules together reveal a potential
high correlation between IN-RATEM and IN-LATEM. This guess is in fact validated
by the first rule in Table 5(a) that IN-LATEM [ -2.16 , 1.75 ]⇒ IN-RATEM [ -2.22 ,
3.36 ] with 1.00 correlation.

5.2 Experiment on the SMASH data
SMASH [3] is the abbreviation of Semantic Mining of Activity, Social, and Health
Project. It was designed for the purpose of learning the key factors that spread the
healthy behaviors in social network. It consists of distributed personnel device and
web-based platform that collect data from both social and physical activity. The data
collected in this project include social connections and relations, physical activities and
biometric metrics from the subjects. After preprocessing, the input data in our exper-
iment have the following indicators for the physical activities and biomedic metrics.
The physical activity indicator “Ratio No.Steps” is the change ratio of steps that the
subjects walked through in two consecutive periods of time. Three biomedical metrics
HDL, LDL and BMI are used for the health indicators. The HDL and LDL stand for
the high density lipoprotein and low density lipoprotein respectively. The rate of HDL
usually relates with decreasing rate of heart related disease and the reverse case for
LDL. The BMI stands for body mass index which is a common indicator of the obesity
level. The study of this data set dedicates to discover the relations between physical
activities and rate of heart disease conditions.

In Table 6 we list our experiment results from the SMASH system in the bottom
up perspective. The association rules in Table 6(a) and 6(b) are ranked by correlation
and correlation gain respectively. The second and third rule in Table 6(b) Ratio HDL
[ 0.79 , 0.91 ], Ratio No.Steps [ 0.78 , 3.94 ] and Ratio LDL [ 1.00 , 1.02 ] Ratio
No.Steps [ 0.39 , 3.82 ] demonstrate two origins of the high correlation gain. Although
the correlation for the second rule is only 0.56, it results in an even higher correlation
gain than the third rule. For the third rule, although the correlation is maximum which
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(a) Top Five Rules with Ranked by Density and Correlation
attribute1 range attribute2 range density correlation corr gain

Ratio LDL [1.00,1.02] Ratio No.Steps [0.39,3.82] 245.39 1.00 22.11
Ratio BMI [0.97,1.12] Ratio LDL [0.82,1.17] 118.22 0.99 3.55
Ratio LDL [0.97,1.26] Ratio BMI [0.89,1.00] 70.14 0.94 45.22
Ratio HDL [0.79,0.95] Ratio BMI [0.94,1.03] 83.87 0.89 9.41
Ratio BMI [0.98,1.14] Ratio No.Steps [0.27,1.66] 120.77 0.82 5.13

(b) Top Five Rules Ranked by Correlation Gain
attribute2 range attribute2 range density correlation corr gain

Ratio HDL [0.97,1.26] Ratio BMI [0.89,1.00] 70.14 0.94 45.22
Ratio HDL [0.79,0.91] Ratio No.Steps [0.78,3.94] 53.34 0.57 28.15
Ratio LDL [1.00,1.02] Ratio No.Steps [0.39,3.82] 245.39 1.00 22.11
Ratio HDL [0.78,1.25] Ratio No.Steps [0.27,3.96] 255.20 0.37 18.41
Ratio LDL [0.88,1.02] Ratio No.Steps [0.01,3.82] 305.55 0.72 16.12

Table 6: Quantitative Association Mining On Social Health Network Data From Bot-
tom Up Perspective

is 1.00, part of the high correlation in it comes from more of the two attributes rather
than from the interval.

Comparing these two tables, the results in Table 5(b) contain more rules related
with No.Steps than the ones in Table 5(a). The reason is possibly because the corre-
lation between biomarkers are more regular and stable in the general picture than the
correlation between physical activities and biomarkers. For example, the level of HDL
and LDL are both in someway related with the cholesterol level in human body. In
most cases high HDL level couples with low cholesterol level and the reverse case for
LDL. The situation for physical activity is nevertheless different. Research indicates
that physic activities have various impacts on the obeisity status respect to the short
term and long term effects. The human subjects might carry out more activities for
various even contradicting reasons. For example, people might increase the amount of
physical activities due to an increasing of BMI in previous period, however, some other
subjects who wants to build up their body might work out more due to the decreasing
of weight. Moreover, increasing amount of physical activities might lead to increase in
food intaking which results in higher cholesterol level in the following period.

In table 7(a) and 7(b), we list the top five rules from our heuristic search algorithm.
The results are roughly similar with the ones in table 6.

6 Discussion and Future Work
Our experiment results validate the feasibility of our algorithm. They show that our
algorithms are capable in finding the set of intervals with both high density and corre-
lation gains. Nevertheless, some improvements are still needed for our methods.

In section 4.2.4, an optimization procedure is introduced after the crossover to
guide the search path of the genetic algorithm. After the crossover of instances, the
instances in the child individual is optimized into an axis aligned hyper rectangle. All
the data instances for the individual reside inside the hyper rectangle while the rest
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(a) Top Ten Rules with Ranked by Density and Correlation
attribute1 range attribute2 range density correlation corr gain

Ratio LDL [0.96,1.00] Ratio HDL [0.94,1.00] 322.75 0.88 3.22
Ratio LDL [0.86,0.94] Ratio HDL [0.86,1.04] 387.50 -0.70 2.55
Ratio BMI [1.00,1.02] Ratio No.Steps [0.73,3.80] 155.75 0.68 4.15
Ratio LDL [1.07,1.15] Ratio No.Steps [0.83,1.17] 221.85 0.66 11.44
Ratio LDL [0.77,1.14] Ratio No.Steps [1.04,1.12] 160.50 0.58 10.04

(b) Top Ten Rules Ranked by Correlation Gain
attribute2 range attribute2 range density correlation corr gain

Ratio HDL [0.94,1.04] Ratio NO.Steps [0.98,1.16] 287.50 0.57 56.10
Ratio HDL [0.90,1.25] Ratio NO.Steps [0.90,0.99] 172.44 0.55 53.50
Ratio LDL [0.65,0.90] Ratio BMI [0.97,0.99] 151.46 0.60 25.12
Ratio LDL [1.07,1.15] Ratio No.Steps [0.83,1.17] 221.42 0.66 11.44
Ratio LDL [0.90,1.05] Ratio No.Steps [0.75,0.98] 147.13 0.59 10.11

Table 7: Quantitative Association Mining On Social Health Network Data From
Heuristic Perspective

instances are not. This procedure tries to make the instances in the children individ-
uals as dense as possible and make the calculation of correlation a feasible procedure
as well. However, the optimization algorithm after the crossover of attributes is not
established yet. Although there are various feature selection algorithms that select the
optimal subset of attributes. None of them could select the feature based on the corre-
lation of attributes. This part of selecting the subset of attributes after crossover is left
for future work.

Moreover, note that the optimization in section 4.2.4 uses the IBM CPLEX/MILP
tool to find the optimal hyper rectangle that maximize the selected and minimize the
non selected instances in hyper rectangle. The complexity of the mix integer optimiza-
tion process varies depending on the structure of data and individuals. In practice,
the result of the optimization result might not be the optimum output as well. With
the power of evolution and selection, the optimization process in the evolution pro-
cess might not need to generate an optimal result based on the current dual set. One
possible way of the agile optimization procedure could start from either of the two
parents which are already an individual with good fitness function after several itera-
tions. Another way is to run the optimization process only in a few iterations. Then the
marginal improvement of the interestingness measure is judged that optimization halts
if it barely improves or be discarded if deteriorated.

7 Conclusions
In this paper, we present our two algorithms in terms of the quantitative association
mining problem. Although the QAM seems like a nature extension of the traditional
association mining, the mining process for it is quite different. We propose to use two
new interestingness measures, density and correlation, that better fit with the QAM
problem since the support and confidence measures from the traditional association
mining do not fit with the QAM anymore. Further more, we design two algorithms that
can discover association rules with both high density and correlations measures from
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the quantitative data. Experiment results validate both our algorithms from the bottom
up and heuristic search perspective.
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