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Abstract

Considerable computational resources are available on GPUs and other ac-
celerator devices, the use of which can offer dramatic increases in performance
over traditional CPUs. However, programming such devices can be difhcult,
especially given considerable architectural differences between different mod-
els of accelerators. The OpenCL language provides portable code, but does not
provide performance-portability: code which is optimized to run well on one
device will run poorly on others. As a solution to this problem, we have devel-
oped OrCL, an autotuning system which generates OpenCL kernels from a sub-
set of C, searching a space of variant implementations for the best-performing
version for a particular problem and device. We instrument the resulting im-
plementations in order to measure the performance of variants across the search
space for NVIDIA GPUs, AMD GPUs, and Intel Xeon Phi accelerators for a set
of numerical kernels used in sparse linear system solvers, as well as computations
from a radiation transport simulation code.

1 Introduction

Achieving optimal performance of numerical code requires optimizations which
vary with the input code, the environment in which the code will be executed, and
the input dataset. Performing these optimizations manually is time-consuming and
is outside the area of expertise of many domain scientists. Carrying out an optimiza-
tion for one particular computer architecture renders the code more difhcult to read
and less portable to other architectures. This is a problem in a heterogenous envi-
ronment, in which a single application may run across multiple architecture types,
as well as in cloud computing, where the architectures on which the code may ulti-
mately run are not necessarily known until they are run [19]. Empirical autotuning
is the process of automatically generating code variants to which various transfor-
mations have been applied and measuring their performance, searching for the set
of transformations which yields the greatest performance improvement. Through
autotuning, general-purpose code can be automatically adapted to new execution
environments and input datasets.
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We have previously [9] worked to integrate the TAU Performance System [34]
with existing autotuning frameworks. The first such framework [37] combines
CHILL [10], a polyhedral-model code variant generator, and Active Harmony [38],
a parallel search engine which directs the generation of variants by CHiLL. The sec-
ond is Orio [20], an annotation-based combination variant generator and search en-
gine. In the integrated systems, TAU is used to instrument generated code variants
[26], with performance profiles being stored in the TAUdb performance database.
Profiles are annotated with a description of the transformations applied to produce
the tested variant and metadata describing the execution environment and proper-
ties of the input data. We then use decision tree learning over performance data
gathered over multiple autotuning sessions in different environments, generating a
classifier which can be used at runtime to select from among a library of variants a
variant expected to perform well.

The search space of possible transformation parameters is very large [3], so au-
totuning can be very time consuming. If autotuning is to be widely adopted, it
should not take too much time to carry out the process. The time required to carry
out autotuning is a function of the number of evaluations needed during search
and the time to carry out each evaluation. Since the objective function essentially
is the amount of time needed to carry out evaluation, the autotuning process will,
given the same number of evaluations, nonetheless complete more quickly if fewer
of those evaluations are of poorly-performing variants.

Evaluation of the performance of different search algorithms [2] over a set of
linear algebra and stencil kernels [4] shows that the selection of search algorithm
has an effect on both the performance of the best variant found during search and
on the amount of time needed to carry out the search (see Figure 1). Which search
algorithm results in finding the best variant, and which completes the fastest, varies
with the particular code being autotuned.

That work shows variation in the search space across codes, but did not evaluate
variation across architectures or languages. In order to more enable a more thor-
ough evaluation of the effect of architectural features on the performance of codes,
we have implemented OpenCL code generation and OpenCL-specific optimiza-
tions in the Orio autotuning framework. We then hold input code constant while
varying the generated language (CUDA vs. OpenCL) and, for OpenCL, the target
architectures (two AMD Radeon GPUs, three NVIDIA GPUs, and the Intel Xeon
Phi) for several BLAS kernels and for kernels from a radiation transport simulation
code. We observe that the best code variant founds varies with the input code, the
input data problem size, and the architecture in a complex manner, suggesting that a
machine learning approach to the problem would be valuable for multi-architecture
autotuning.

2 Related Work

Autotuning systems are of three types: library-based, language-based, and compiler-
based [7]. Library-based autotuning systems perform benchmarking at compile time
to select good-performing variants based on the environment in which they are be-
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Figure 1: Performance of different search algorithms during autotuning of different
codes. Adapted from Figures 1, 2, and 3 of [2].



ing installed. The linear algebra library ATLAS [39] (Automatically Tuned Linear
Algebra Software) is a widely-used example of library-based autotuning. An alter-
native is to perform benchmarking at runtime, once parameters of the input data are
known. The Fourier Transform library FFTW [18] does this. Language-based auto-
tuning systems, such as PetaBricks [1], use special-purpose programming languages
which allow the programmer to specify alternate implementations of a computation.
Compiler-based autotuning systems automatically generate alternative implemen-
tations at compile time from code written in existing languages. CHiLL [10, 37]
(with an external search engine such as Active Harmony [37]) and Orio [20] are
examples of compiler-based autotuning systems. These systems have some overlap
with language-based systems, as these allow programmers to specify parameters to
source-to-source transformations, which generate code variants.

There has been considerable interest in autotuning for GPUs and other accel-
erator devices. A library-based system has been built around MAGMA [31], a lin-
ear algebra library similar to ATLAS, but for accelerators. Library-based systems
have been developed for dense-matrix multiplication routines [24], sparse-matrix
multiplication routines [11], N-body simulations [13], molecular dynamics sim-
ulations [32], tensor contraction routines [35], and Fast Fourier Transform rou-
tines [14]. CUDA-CHILL [33] and OrCUDA [28, 12] are compiler-based systems
which generate CUDA code variants from a subset of C.

Most existing autotuning work has been done using the CUDA programming
model, although an auto-tuning FFT implementation for OpenCL, MPFFT, has
been developed [25]. Comparisons of CUDA and OpenCL implementations of
kernels implementing the same computation have found that roughly equivalent
performance can be obtained, but that different optimizations are required to obtain
equivalent performance [16]. As a result, systems that directly translate optimized
CUDA kernels into OpenCL kernels, such as CU2CL [29], will not necessarily
provide good performance, and Du et al. [15] have suggested autotuning as a means
of achieving performance portability for OpenCL kernels.

3 OpenCL Code Generation

The capabilities of execution units and the sizes and performance characteristics of
the memories vary among devices, especially between generations of devices and
between devices from different vendors. While OpenCL provides portability in the
sense that kernels originally designed for one device will run on another, they are
not performance-portable: optimizations that yield good performance on one device
will often not yield good performance on another device. Given this constraint,
automatic performance tuning can be used to search for variants with good perfor-
mance.

To accomplish this, we have extended the Orio autotuning framework with a
transformation module, OrCL, which takes as input a kernel specified in a subset
of C (also referred to as the “loop language”) and a set of transformation parameters
and outputs OpenCL device and host code, much as the OrCuda module described
in [28] does for CUDA. OrCuda and OrCL accept the same kernel specifications



and, with some exceptions, the same transformation specifications, allowing for code
to be generated for either CUDA or OpenCL as desired.

When using OrCL, the user identifies loops in his or her application which are
targets for execution on an accelerator device. This loop is then wrapped with a
tuning specification by placing annotations as comments before and after the origi-
nal loop in the code, so that the original code can still be executed normally. When
Orio is invoked on the code, variants are generated and tested based on the spec-
ification. An example of an OrCL annotation is shown in Figure 3. The tuning
specification consists of several regions: the performance_params section, describ-
ing the parameter values which make up the search space for autotuning; the build
section, which describes how generated variants can be compiled; the input_params
section, which describes properties of the inputs against which generated variants
are tested; the input_vars section, which specifies the values of the inputs; and the
performance_counter and performance_test_code sections, which describe how
performance measurements of the generated variants are to be made. The tuning
specification is followed by a transformation statement, which makes use of the pa-
rameter values described in the tuning specification.

1) workGroups: The number of OpenCL work groups to use. This, multiplied
by the number of work items per work group, gives the overall number of threads
that make up a kernel invocation, the global work size. Where this number is smaller
than the size of the data to be processed, kernels are generated such that each work
item processes more than one input. The requested number of work groups are
then scheduled across the compute units of the device by the OpenCL runtime.

2) workltemsPerGroup: The number of work items (threads) that make up each
work group; this controls the local work size. Each device has a maximum number of
work items per group, which can be queried on the host. Using the maximum num-
ber of work items makes use of all the computational resources within a workgroup;
however, because the entire work group shares a pool of local memory, increasing
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void VecAXPY(int n, double a, double *x, double *y) {

register int i;
/*@ begin PerfTuning (
def performance_params {

param wWi[] [32,64,128,256];

param WG| [4,8,16,32,64,128];

param CB [True, False];
param SH [True, False];
param Ul range (1,4);
param VH [0,2,4];
param CL [*7,"—cl-fast —relaxed —math ’];

{J
t
t
]
t
1

}
def build {
) arg build_command = ’gcc —O3 —1OpenCL *;
def input_params {
param N[] = [100000,1000000];

def input_vars {
decl double a = random;
decl static double x[N] = random;
decl static double y[N] = 0;
}
def performance_counter {
arg method = “basic timer’;
arg repetitions = 5;

def performance_test_code {
arg skeleton_code_file = ’tau_skeleton.c’;

g
}
) @'/

int n=N;

/*@ begin I.oop(rr;nwf‘orm Opvn(,f],(\x'ork(‘vroups:\x/(}. workltemsPerGroup=WI, sizeHint=SH, vecHint=VH,
cacheBlocks=CB, unrolllnner=UI, clFlags=CL, device=1, platform=0)

for (i=0; i<=n—1; i++)
)‘[i]+:1’x[i]

) @/

for (1=0; i<=n-1; i++)
ylil+=a*x[i];

/*@ end @/

/*@ end @/

Figure 3: Annotated vecAXPY kernel for OpenCL generation.

the number of work items decreases the available memory per work item, which
can result in the spilling of data into global memory, which is much slower than
local memory. The optimum number of work items per group is thus dependent
on the memory usage of the work items.

3) sizeHint: OpenCL provides a pair of function attributes which provide hints
to the compiler about the expected local work size. The work_group_size_hint at-
tribute allows the compiler to make optimizations that improve performance when
the local work size is equal to the hinted size but might degrade performance other-
wise. The reqd_work_group_size attribute makes it an error to invoke the kernel
with any work group size other than the hinted size, allowing the compiler to make
optimizations that would yield incorrect results for other sizes. OpenCL compilers,




const char* orcl_kerne]_source=“#pragmauOPENCL_,EXTENSIONuc]_khr_fp64u:uenable\n”

»__kernel,__attribute__ ((vec_type_hint(double2) ,work_group_size_hint(64,1,1),
reqd_work_group_size (64,1,1)))uvoidyorcl_kernel (constyintun, doublesa,u__globalydouble*Ly,
._.__globaludouble*ux)u{\n”

»Luconstysize_tytid=get_global_id (0) ;\n”

“Luconstysize_tygsize=get_global_size (0) ;\n”
*uuftpragmagunrolly2\n”

“uufory(intyi=tid ;ui<:n71;ui+:gsize)u{\n”
”uuuuy[i]=y[i]+a*x[i];\n"

“uui\n”

»\n”

Figure 4: Example of a generated OpenCL vecAXPY kernel.

however, are not required to make use of these hints. The sizeHint transformation
parameter specifies whether these attributes should be applied to generated kernels.

4) vecHint: OpenCL provides another function attribute which provides infor-
mation to the compiler as to how the function should be autovectorized. The vec_-
type_hint attribute informs the compiler of the width of the data consumed by the
kernel, which the compiler can use to merge or split work items to enable better use
of vector operations. As with the size hints, the compiler is not required to make
use of the hint.

5) cacheBlocks: A parameter specifying whether work items should copy input
data located in global memory into local memory before operating on it. This can
improve performance, especially when global memory is not cached, at the expense
of increasing the memory consumption of each work item.

6) unrollluner: A parameter specifying whether to provide a hint to the compiler
as to an unroll factor for the innermost loop in the kernel. This is done by inserting
a pragma before the loop in the kernel source code. This is an OpenCL extension
which is not necessarily supported by all implementations.

7) clFlags: Flags provided to the OpenCL compiler to control optimization.
These can be -cl-mad-enable to enable fused multiply-add instructions; -c1-no-
signed-zeros to ignore the signedness of zeroes; -cl-unsafe-math-optimizations
to assume all arguments to floating-point arithmetic operators are valid; -c1-finite-
math-only to assume that all arguments to floating-point arithmetic operators are
finite numbers; and -c1-fast-relaxed-math, which combines the effects of the pre-
vious two flags.

8) device and platform: In a system with more than one OpenCL platform and/or
device available, a parameter specifying which of these to use. If used as a tuning
parameter, autotuning will be attempted with each of the platforms and devices spec-
ified and the device providing the highest performance will be used in the generated
code.

Some optimizations available in the CUDA code generator are not yet available
in the OpenCL generator. The streamCount parameter to the CUDA code generator




cl_int orcl_status;

cl_uint orcl_num_platforms;

cl_platform_id * orcl_platforms;

orcl_status=clGetPlatformIDs (0 ,NULL&orcl_num_platforms);

/*get platforms ™/

orcl_platforms=malloc (orcl_num_platforms*sizeof (cl_platform_id));

orcl_status=clGetPlatformIDs (orcl_num_platforms, orcl_platforms ,NULL) ;

/*get number of devices for chosen platform™*/

cl_uint orcl_num_devices;

cl_device_id * orcl_devices; orcl_status=clGetDevicelDs(orcl_platforms[0],CL_DEVICE_TYPE_ALL,0,
NULL&orcl_num_devices) B

if (orcl_status!=CL_SUCCESS) {

fprintf(stderr ,”OpenCLyuError: Y6duin %s\\n”, orcl_status ,”clGetDevicelDs for number”);

exit (EXIT_FAILURE) ;

}

/*get devices for chosen platform™/

orcl_devices=malloc (orcl_num_devices*sizeof (cl_device_id)); orcl_status=clGetDevicelDs(
orcl_platforms [0] ,CL_DEVICE_TYPE_ALL, orcl_num_devices , orcl_devices ,NULL);

/*create OpenCL context™/

cl_context orcl_context;

orcl_context=clCreateContext (NULL, orcl_num_devices, orcl_devices ,NULL,NULL& orcl_status);

/*create OpenCL command queue*/

cl_command_queue orcl_command_queue;

orcl_command_queue=clCreateCommandQueue (orcl_context , orcl_devices[1],CL QUEUE PROFILING_ENABLE,&
orcl_status);

clFinish (orcl_command_queue);

/*declare variables*/

cl_mem dev_y, dev_x;

int nthreads=64;

/*calculate device dimensions*/

size_t orcl_global_work_size[1], orcl_local_work_size[1];

urcl_global_wurk_size [0]=4096;

orcl_local_work_size [0]=64;

/*allocate device memory”*/

dev_y=clCreateBuffer (orcl_context ,CL MEM_READ_WRITE,N*sizeof (double) ,NULL& orcl_status);

dev_x:chreateBuffer(orcl_context ,CL_MEM_READ_WRI'IE,N*sizeof(dcuble) ,NULL,&orcl_status);

/*copy data from host to device*/

orcl_status=clEnqueueWriteBuffer (orcl_command_queue ,dev_y,CL_FALSE,0 ,N*sizeof (double),y,0,0 ,NULL
; arcl_status=clEnqueueWriteBuffer(urcl_command_queue,dev_x,CL_FALSE,O,N'sizeof(double
),x,(),(),NULL);

/* compile kernel*/

cl_program orcl_kernel_program;

orcl_kernel_program=clCreateProgramWithSource (orcl_context ,1,(const char **)&orcl_kernel_source ,
NULL&orcl_status);

orcl_status=clBuildProgram (orcl_kernel_program ,1,&orcl_devices[1],”—cl—fast —relaxed —math” ,NULL,

cl_kernel orcl_kernel_kernelobj;

orcl_kernel_kernelobj=clCreateKernel (orcl_kernel_program ,”orcl_kernel”, & orcl_status);

/*invoke device kernel*/

orcl_status=clSetKernelArg (orcl_kernel_kernelobj ,0,sizeof (int),&n);

orcl_status:clSetKernelArg(orcl_kernel_kernelob_j W1, sizeof(double) ,&a) H

orcl_status=clSetKernelArg (orcl_kernel_kernelobj ,2,sizeof (cl_mem) &dev_y);

urcl_status=clSetKernelArg(orcl_kernel_kernelobj \3, sizeof(cl_mem) ,&dev_x) B

orcl_status=clEnqueueNDRangeKernel (orcl_command_queue , orcl_kernel_kernelobj ,1 ,NULL,
orcl_global_work_size ,orcl_local_work_size ,0 ,NULL,NULL) ;

/*copy data from device to host*/
orcl_status:clEnqueueReadBuffer (orcl_command_queue ,dev_x ,CL_TRUE,0 ,N* sizeo((double) ,x,0 ,NULL,
NULL) ;

clFinish (orcl_command_queue);

Figure 5: Example of generated host code invoking the OpenCL vecAXPY kernel.
Error checking and host memory management code have been removed for brevity.

splits the execution into multiple, overlapping transfers and kernel executions by
using CUDA asynchronous streams. This could be implemented in OpenCL by
using out-of-order command queues on devices which support that option, but this
has not yet been done in OrCL. The preferL1Size parameter uses a feature of the
CUDA API to choose how to apportion physical memory on the device into L1




cache and shared memory. This feature is not exposed in the OpenCL standard, nor
is it exposed in any of the currently existing extensions.

3.1 Performance Measurement with TAU

For each requested combination of values of the above parameters, OrCL gener-
ates OpenCL device code (Figure 4) and host (Figure 5) code. In order to measure
performance, the generated code is inserted into a skeleton which specifies how
measurements are to be made. The skeleton code may be chosen from a library or
the user may specify a custom skeleton. For integration with the TAU performance
measurement system [34], we use a skeleton code which wraps the generated code in
TAU instrumentation API calls. The time to execute the generated code can then be
measured, along with requested hardware performance counters supported by TAU
through PAPI [30]. In the case of CUDA or OpenCL code, the generated code is
invoked through a TAU library wrapper, in which an instrumented version of the
CUDA or OpenCL runtime library is used, which captures performance measure-
ments for CUDA and OpenCL API calls before passing those calls on to the installed
runtimes [27]. For CUDA, hardware performance counters can be sampled using
CUPTL. For OpenCL, timings from OpenCL events are captured; however, hard-
ware performance counters are not currently supported because OpenCL does not
provide a standardized method for accessing performance counters, and NVIDIA’s
CUPTI does not support OpenCL.

For each variant tested, performance information gathered by TAU is stored
into TAUdb, a database system for storing performance profiles and related meta-
data [22]. The performance data is annotated with metadata recording properties
of the execution environment (such as the accelerator card used and the sizes of its
memories), input data (such as the sizes of inputs), and optimizations applied (values
chosen for each of the tunable parameters). This workflow is shown in Figure 2.
Data stored in TAUdb can be analyzed using the ParaProf visualization system [8]
and the PerfExplorer data mining framework [21, 23]. PerfExplorer analyses can be
performed with a GUI or scripted by using a Python interface.

4 Evaluation

To evaluate OrCL, we ran a series of autotuning experiments on two AMD GPUs,
three NVIDIA GPUs, and an Intel Xeon Phi. Specifications for the test hardware are

Table 1: Properties of OpenCL target platforms

Accelerator Device [[ Radeon6970 | Radeon7970 | GTIX 480 | TeslaC2075 | TeslaK20C | Xeon Phi |
OpenCL Version 1.2 12 .1 .1 .1 12
Max Compute Units 24 32 15 14 13 204
Max Work Items (256,256,256) (256,256,256) (1024,1024,64) (1024,1024,64) (1024,1024,64) (1024,1024,1024)
Max Workgroup Size 256 256 1024 1024 1024 1024
Clock Frequency 380 MHz 1000 MHz 1401 MHz 1147 MHz 705 MHz 2000 MHz
Cache Size None 16 KB 24KB 224KB 208 KB None
Global Memory Size 1024 MB 2048 MB 1535 MB 5375 MB 4800 MB 23835 MB
Constant Buffer Size 64 KB 64 KB 64 KB 64 KB 64 KB 128 KB
Local Memory Size 32KB 32KB 48 KB 48 KB 48 KB 32KB
Preferred Workgroup Size Multiple 64 64 32 32 32 16




given in Table 4. To verify that the OpenCL code generator generates correct code,
we generated code from specifications of BLAS kernels previously used with the
OrCUDA code generator and checked that the generated OpenCL kernels produce
the same output. Generated variants were instrumented with TAU as described in
Section 3.1.

The numerical kernels we autotuned are a subset of the kernels that typically
consume a significant portion of the solution time of Newton-Krylov nonlinear
solvers, which are commonly used in applications based on the solution of nonlinear
partial differential algorithms (PDEs) discretized on a regular grid. Table 2 lists
the linear algebra kernels we considered. The operation notation is as follows: A
designates a matrix; x, x1, ..., X,, y, and w are vectors; and a, ay, ..., a, are scalars.

Figure 6 shows the execution times of the best variants for the matrix and vec-
tor kernels on vectors of size 10° for each architecture by an exhaustive search of
the parameter space of the implemented optimizations, as well as the execution of
of the best CUDA variant found for the K20c GPU. We normalize all times by
the execution time for the equivalent ViennaCL [36] implementations using the de-
fault configurations. For each of the kernels, the CUDA variant produced the best
performance, and the OpenCL kernels for the three NVIDIA GPUs produced the
next-best performance. The best variants for two AMD GPUs and the Xeon Phi did
not perform as well. We believe that the OpenCL kernels on NVIDIA produced
slightly worse results than CUDA kernels because of the absence of the stream count
and L1 cache size optimizations in the OpenCL code generator. Compared with
the ViennaCL static compilation results, our initial autotuning results are up to 2.5
times faster and slower in only a couple of cases on the Tesla C2075.

We also autotuned the function and Jacobian computations of a PETSc-based [6, 5]
application solving a 3-D solid fuel ignition (SFI) problem, defined as the following
boundary value problem

~vZu-Ae"=0in[0,1] x [0,1] x [0, 1]
u = 0 on the boundary

which is discretized by using a finite-difference approximation with a seven-point
(star) stencil in order to obtain a nonlinear system of equations. The system is then
solved by using PETSc’s Newton-Krylov iterative solvers which rely on the ker-
nels in Table 2 (and a few others) and invoke the application-specific code we refer
to as EX14FF (function computation) and EX14F] (Jacobian computation). The

Table 2: Kernel specifications.

Kernel Operation
matVec y = Ax
vecAXPY y=ax+y
vecMAXPY | y=y+aix) +0p X2 + -+ 0uXy
vecScale W= ow
vecWAXPY w=7y+ax

10
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int m = M;

int n = N;

int p = P;

int nrows = m'n*p;
double hx = 1.0/(m-1)
double hy = 1.0/(n-1);
double hz = 1.0/(p-1)
double sc = hx*hy*hz*lambda
double hxhzdhy = hx*hz/hy;
double hyhzdhx = hy*hz/hx
double hxhydhz = hx*hy/hz;

/*@ begin Lnop(transform OpenCL(\w\rk(}rnup%:\X/G workItemsPerGroup=WI, clFlags=CFLAGS,
unrollInner=UIF, sizeHint=SH, vecHint=VH, device=1)

fm‘(lz(); i<=nrows—1; 1++) {
if (i<m"n Il i>=nrows-m*n Il i%mn)<m |l i%m"'n)>=m*n-m Il i%m==0 Il i%m==m-1) {
F[i] = X[i];
} else {
F[i] = (2*X[i] = X[i-1 ] = X[i+1 ])*hyhzdhx
+ (2"X[i] = X[i-m ] - X[i+m ])*hxhzdhy
+ (2°X[i] = X[i-m*n] - X[i+m"n]) “hxhydhz
— screxp(X[il);
}
3
) @/

Figure 7: Input source code for the ex14FF kernel.

specifications for these kernels are shown in Figures 7 and 8, respectively. Most
stencil-based computations can be similarly optimized by Orio, which is not lim-
ited to matrix algebra. We autotuned these kernels with four input sizes: 64°, 75°,
100°, and 128° by using a Nelder-Mead-based algorithm for the search (unlike the
exhaustive search used in the vector and matrix kernel tuning). These more complex
kernels produced much more varied results from autotuning.

Figures 9 and 10 show the sorted execution times for all OpenCL code variants
generated by the search for each of the kernels, sizes, and devices. The Radeon
6970 is omitted from results for all but the ex14FF 64> because that card did not
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int m =M;

int n =N;

int p = P;

int nrows =m'n*p;
double hx = 1.0/(m-1);
double hy = 1.0/(n-1);
double hz = 1.0/(p-1);
double sc = hx*hy*hz*lambda;
double hxhzdhy = hx*hz/hy;
double hyhzdhx = hy*hz/hx;
double hxhydhz = hx*hy/hz;

/*@ begin Loop (transform OpenCL(workGroups=WG, workItemsPerGroup=WI, clFlags=CFLAGS,
unrolllnner=UIF, sizeHint=SH, vecHint=VH, device=0)

for(i=0; i<=nrows—1; i++) {

if (i<m*n Il i>=nrows-m'n Il i%m*n)<m |l i%m"n)>=m*n-m |l i%m==0 || i%m==m—1) {
dia[i] = 1.0;

} else
diali ] = —hxhydhz;
dia[i+ nrows] = —hxhzdhy;
d!;\[l*‘z'n!‘(\\\,ﬂ-‘ = *]!)"II7LH!\:
dia[i+3*nrows] = 2.0*(hyhzdhx+hxhzdhy+hxhydhz) — sc*exp(x[i]);
dia[i+4"nrows] = —hyhzdhx;
dia[i+5*nrows] = —]!\dehy;
dia[i+6*nrows] = —hxhydhz;

Figure 8: Input source code for the ex14F] kernel.

Table 3: Parameter values for the best performing ex14FF and ex14F] kernels across
architectures. Result tuples are (workGroups, workltemsPerGroup, compileFlags,
unrolllnner, sizeHint, vecHint).

[ Accelerator Device [ [ Radeon 6970 [ Radeon 7970 [ Xeon Phi ]
exI4FF 647 (64,64.”.1 False,0) (64.32.” 2, False,0) (64,6472, True,2)
ex14FF 75° N/A (16,32, cl-fast-relaxed-mach’ 4, False,4) (32,128,”,2,False,2)
ex14FF 1000 N/A (32,3274, True,0) (128,64.” 1. True,0)
ex14FF 1287 N/A (32,64,”,4, True,4) (16,256,”,1,False,0)
ex14F] 64° N/A (64,64, cl-fast-relaxed-math’,2, False,2) (128,64, cl-fast-relaxed-math’,2, True,2)
ex14F] 75° N/A (64,256, cl-fast-relaxed-math’,1,False,0) (64,256,”,2,False,2)
ex14F] 100 N/A (128,128,”2,False,0) (16,3272, True,2)
ex14F] 128 N/A (32,128,”,2,False,2) (32,64, cl-fast-relaxed-math’,4,False,2)
[ Accelerator Device |] GTX 480 [ Tesla C2075 [ Tesla K20c

ex14FF 64

(16,64, 1,False,2)

(64,64,7,2,True,0)

(64,128,",1,False,0)

ex14FF 75

(128,64, cl-fast-relaxed-math’ 2, True,2)

(16,128, cl-fast-relaxed-math’ 2, False,0)

(32,32, cI-fast-relaxed-math’ 2, True.0)

ex14FF 1007

(128,128, cl-fast-relaxed-math’ 4, True,0)

(64,128,,1,True,2)

(64,64, cl-fast-relaxed-math’ 4, False,2)

ex14FF 1287

(32,32,,2,False,2)

(64,128, cl-fast-relaxed-math’,1, True,0)

(32,32, cl-fast-relaxed-math’ False,0)

ex14F] 64° (16,64, 2,False,0) (64,128,”,2,True,2) (32,64,”,1,True,0)
ex14F] 75 (64,256,” 2, False,2) (64,128, cl-fast-relaxed-math’,2, True,2) (128,64, cl-fast-relaxed-math’,1, True,0)
ex14F] 100 (32,128,”,2,False,2) (32,64, cl-fast-relaxed-mach’, 1, True) (32,256,”,1,False,4)

ex14F] 128’

(32,128, cl-fast-relaxed-math’ 4,False,2)

(32,128, cl-fast-relaxed-math’,2, True,2)

(32,64,”4,False,0)

have enough memory to complete the other versions. For each device, the highest
leftmost point represents the variant with the worst performance, while the lowest
rightmost point represents the variant with the best performance. Each curve shows
the distribution of points across the search space. The best-performing variant was
found on different devices for different kernels and sizes: on the Xeon Phi for the
ex14FF 64%, ex14FF 128% and ex14F] 1282 kernels; on the Radeon 7970 for the
ex14FF 75°, ex14FF 100° and ex14F] 100° kernels; and on the Tesla K20c for the
ex14F] 64° and ex14F] 75° kernels.
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Figure 9: Performance (execution time in milliseconds) of evaluated variants for
FormFunction3D kernels of four sizes.
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To better understand whether certain isolated parameters account for a large
proportion of improvement seen in optimized versions, we plotted all points exe-
cuted during autotuning of the ex14F] 128> kernel by parameter value separately
for each parameter, as shown in Figure 11. Some patterns are discernible: on the
Radeon 7970, for example, the best performance found improves with work items
per group up to a point, and then remains flat, while on the Xeon Phi, performance
improves with work items per group but then begins to degrade again. The lack
of other obvious patterns indicates that performance depends in a complex manner
upon the combination of the chosen transformation parameters and is not explained
by any one parameter.

To better understand the causes of variation in performance across code vari-
ants, we measured hardware performance counter data where vendor libraries were
provided to do so. As a small example of this, Figure 12 shows the performance of
the FormFunction3D variants of all four sizes on the Intel Xeon Phi, sorted first by
performance, to show the overall distribution of variants, and then sorted by DATA_-
READ_MISS_OR_WRITE_MISS. The overall trend follows the same general pattern as
performance, indicating that DATA_READ_MISS_OR_WRITE_MISS is an important con-
tributor to the improved performance of the faster variants.

5 Conclusions

The work here described is an inital step towards a more automated development en-
vironment for accelerator devices. To help developers write performance-portable
accelerator code, we have developed a system which automatically translates anno-
tated C code into OpenCL kernels with various optimizations applied, which we
search for the best-performing variant. We showed the benefits of this approach for
small numerical kernels and for radiation transport simulation code, outperforming
static approaches by up to 2.5 times.

Future work will involve two approaches: in the first, we will improve the
OpenCL code generator, expanding the number of supported optimizations, and
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Figure 12: Execution time in milliseconds of the FormFunction3D variants for four
sizes on the Xeon Phi. On left, sorted by performance; on right, same variants sorted
by DATA_READ_MISS_OR_WRITE_MISS.
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add more detailed performance analysis capabilties by integrating with instrumenta-
tion systems such as Lynx [17]. In the second, we will develop an integrated perfor-
mance knowledge management system, combining performance profiles collected
during autotuning with comprehensive metadata describing the code, algorithms,
execution environment, and tuning methods to help developers understand the per-
formance implications of their code.
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