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Abstract

Two-party secure-function evaluation (SFE) has become
significantly more feasible, even on resource-constrained
devices, because of advances in server-aided computa-
tion systems. However, there are still bottlenecks, par-
ticularly in the input-validation stage of a computation.
Moreover, SFE research has not yet devoted sufficient
attention to the important problem of retaining state af-
ter a computation has been performed so that expensive
processing does not have to be repeated if a similar com-
putation is done again. This paper presents Partial GC,
an SFE system that allows the reuse of encrypted val-
ues generated during a garbled-circuit computation. We
show that using Partial GC can reduce computation time
by as much as 96% and bandwidth by as much as 98%
in comparison with previous outsourcing schemes for se-
cure computation. We demonstrate the feasibility of our
approach with two sets of experiments, one in which the
garbled circuit is evaluated on a mobile device and one in
which it is evaluated on a server. We also use Partial GC
to build a privacy-preserving “friend-finder” application
for Android. The reuse of previous inputs to allow state-
ful evaluation represents a new way of looking at SFE
and further reduces computational barriers.

1 Introduction

Secure function evaluation, or SFE, allows multiple par-
ties to jointly compute a function and maintain the pri-
vacy of their inputs and outputs. The two-party variant,

known as 2P-SFE, was first introduced by Yao in the
1980s [36] and was largely a theoretical curiosity. Devel-
opments in recent years have made 2P-SFE vastly more
efficient [17, 26, 35]. However, computing a function us-
ing SFE is still usually much slower than doing so in a
non-privacy-preserving manner.

As mobile devices become more powerful and ubiqui-
tous, users expect more services to be accessible through
them. When SFE is performed on mobile devices (where
resource constraints are tight), it is extremely slow — if
the computation can be run at all without exhausting
the memory. In fact, for non-trivial input sizes and algo-
rithms, most programs run out of memory [8]. One way
to allow mobile devices to perform SFE is to use a server-
aided, or “outsourced,” computational model [8, 21].
These systems allow the majority of an SFE computa-
tion to be outsourced to a more powerful device while
still preserving privacy.

Although outsourcing makes resource-constrained
SFE more practical, removing the prohibitive cost of on-
device circuit evaluation, it is still resource heavy and
slow. We have carefully examined CMTB, an outsourced
SFE scheme presented by Carter et al. [8], and deter-
mined that the new bottleneck is in the cryptographic
consistency checks performed on the inputs to the SFE
program. We observed that it would be more efficient to
adopt other mechanisms for input validation, specifically
those proposed by shelat and Shen [35] (herein referred
to as sS13). We also noted that even with more efficient
input validation, there are many programs that, in order
to function properly, require the ability to save state, a
feature that current garbled-circuit implementations do
not possess. Additionally, the ability to save state and
reuse an intermediate value from one garbled circuit ex-
ecution in another would be useful in many other ways —
e.g., we could split a large computation into a number of
smaller pieces. Combined with efficient input validation,
this becomes an extremely attractive proposition.

In this paper, we show that it is possible to reuse an



encrypted value in an outsourced SFE computation even
if one is restricted to primitives that are part of standard
garbled circuits. Our system, PartialGC, which is built
oftf of CMTB [8], provides a way to take encrypted out-
put wire values from one SFE computation, save them,
and then reuse them as input wires in a new garbled cir-
cuit. Our method vastly reduces the number of crypto-
graphic operations compared to the trivial mechanism of
simply XOR’ing the results with a one-time pad. We pro-
vide a performance analysis and a sample application to
illustrate our system.

Our system comprises three parties - a generator, an
evaluator, and a third party (“the cloud”), to which the
evaluator outsources its part of the computation. Our pro-
tocol is secure against a malicious adversary, assuming
that there is no collusion with the cloud. We also provide
a semi-honest version of the protocol.

In order to reuse intermediate values in a 2P-SFE, in-
formation from both parties - the generator and the eval-
uator - has to be saved. In our protocol, instead of re-
quiring the evaluator to save information, the cloud saves
it. This allows multiple distinct evaluators that outsource
to the same cloud to participate in a large computation
over time by saving state in the cloud between the dif-
ferent garbled circuit executions. For example, in a sce-
nario where a mobile phone is outsourcing computation
to a cloud, PartialGC can save the encrypted intermedi-
ate outputs to the cloud instead of the phone (Figure 1).
This allows the phones to communicate with each other
by storing encrypted intermediate values in the cloud,
which is more efficient than requiring them to directly
participate in the saving of values, as required by earlier
2P-SFE systems. For instance, the application we dis-
cuss later is a friend finder, where multiple friends save
their locations inside the saved intermediate values in the
cloud. Other friends can use these saved values to check
whether or not someone is in the same map cell as them-
selves without having to copy and send data.

Figure 2 shows how PartialGC works at a high level:
First, a standard SFE execution (blue) takes place, at the
end of which we “save” some intermediate output val-
ues. All further executions use intermediate output val-
ues from previous executions.

Our Contributions:

1. Reusable Encrypted Values — We show how to reuse
an encrypted value, using only garbled circuits, by
mapping one garbled value into another.

2. Reduced Runtime and Bandwidth — We show how
reusable encrypted values can be used in practice to
reduce the execution time for a garbled-circuit com-
putation; we get a 96% reduction in runtime and a
98% reduction in bandwidth over CMTB. Impres-
sively, we can reduce the amount of bandwidth re-
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Figure 1: In our system there are three parties. Only the
cloud party and generator have to save intermediate val-
ues, this means the phone in one computation could be
different from a phone in another computation.
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Figure 2: Overview of the PartialGC system. The blue
box is a standard execution that produces partial outputs
(garbled values). The yellow boxes represent executions
that receive partial inputs and produce partial outputs. E
is evaluator and G is generator.

quired by the mobile party arbitrarily when no input
checks have to be performed on the partial inputs,
i.e., the intermediate inputs in our protocol.

3. Outsourcing Stateful Applications — We show how
our system increases the scope of SFE applications
by allowing multiple evaluating parties over a pe-
riod of time to operate on the saved state of an SFE
computation without the need for these parties to
have any knowledge of each other.

The remainder of our paper is organized as follows:
Section 2 provides some background on SFE. Section 3
introduces partial garbled circuits in detail. The Par-
tialGC protocol and its implementation are described in
Section 4. Section 6 lists the results from our experi-
ments; our implementation of the aforementioned friend-
finder application is described in Section 6.3. Section 7
discusses related work.

2 Background

Secure function evaluation (SFE) addresses scenarios
where two or more mutually distrustful parties P, ..., P,
with private inputs xi,...,x,, want to compute a given
function y; = f(x1,...,x,) (y; is the output received by
P;), such that no P; learns anything about any x; or y;,
i # j that is not logically implied by x; and y;. Moreover,
there exists no trusted third party - in that case, the P;s



could simply send their inputs to the trusted party, which
would evaluate the function and return the y;s.

SFE was first proposed in the 1980s in Yao’s semi-
nal paper [36]. The area has been studied extensively by
the cryptography community, leading to the creation of
the first general purpose implementation of SFE, Fair-
play [29] in the early 2000s. Today, there exist many such
implementations [6, 9, 15, 16, 25, 34, 37].

The classic implementations of 2P-SFE, including
Fairplay, use garbled circuits. A garbled circuit is a
Boolean circuit, which is encrypted in such a way that
it can be evaluated when the proper input wires are en-
tered. The party that evaluates this circuit does not learn
anything about what any particular wire represents. In
2P-SFE, the two parties are: the generator, which creates
the garbled circuit, and the evaluator, which evaluates
the garbled circuit. Additional cryptographic techniques
are used for input and output; we discuss these later.

A two-input Boolean gate has four truth table entries.
A two-input garbled gate also has a truth table with four
entries representing 1s and Os, but these entries are en-
crypted and can only be retrieved when the proper keys
are used. The values that represent the 1s and Os are ran-
dom strings of bits. The truth table entries are permuted
such that the evaluator cannot determine which entry she
is able to decrypt, only that she is able to decrypt an en-
try. The entirety of a garbled gate is the four encrypted
output values.

Each garbled gate is then encrypted in the following
way: Each entry in the truth table is encrypted under
the two input wires, which leads to the result, truth; =
Enc(inputy||input,) @ out put;, where truth; is a value
in the truth table, input, is the value of input wire x,
input, is the value of input wire y, and output; is the
non-encrypted value, which represents either 0 or 1.We
use AES as the Enc function. If the evaluator has input,
and input,, then she can also receive out put;, and the en-
crypted truth tables are sent to her for evaluation.

For the evaluator’s input, 1-out-of-2 oblivious trans-
fers (OTs) [1, 19, 31, 32] are used. In a 1-out-of-2 OT,
one party offers up two possible values while the other
party selects one of the two values without learning the
other. The party that offers up the two values does not
learn which value was selected. Using this technique, the
evaluator gets the wire labels for her input without leak-
ing information.

The only way for the evaluator to get a correct output
value from a garbled gate is to know the correct decryp-
tion keys for a specific entry in the truth table, as well as
the location of the value she has to decrypt.

During the permutation stage, rather than simply ran-
domly permuting the values, the generator permutes val-
ues based on a specific bit in input, and input,, such that,
given input, and input, the evaluator knows that the loca-

tion of the entry to decrypt is bit, * 2+ bit,. These bits are
called the permutation bits, as they show the evaluator
which entry to select based on the permutation; this opti-
mization, which does not leak any information, is known
as point and permute [29].

Example Execution

We give an example execution for the above garbled
circuit protocol where the circuit is solely composed of
a single AND gate. In this circuit both the generator and
evaluator enter in input to the AND gate and both parties
receive the output from the AND gate.

Creation of Wire Labels

In our protocol, the generator must first create the wire
labels for the three garbled wires (two input and one out-
put wires to the AND gate). Each wire needs two labels
since each wire can have a value of 0 or 1. Wire e is the
evaluator’s input, g is the generator’s input, and o is the
output. We give the possible wire values for each wire
below.

Wire | Ovalue | 1 value
e 0x40FF | 0x5788
g 0x9143 | 0x8634
o 0x78F2 | Ox6F85

Creation of Garbled Gate
The generator creates the garbled gate’s truth table us-
ing the following equations:

tableogy = hash(epl|go) ® 0o
tabley, = hash(ep||g1) ® 0o
tableyy = hash(e||go) & oo
tabley) = hash(e1]|g1) ® 01

The equations above show how the generator en-
crypts the output values, o;, using a 1-time pad gener-
ated by hashing together both input wire labels. Take
note that the entries for the output of the garbled gate,
00,00, 00,01, correspond to the truth table for an AND
gate.

Next, the truth table is permuted such that a bit from
the input wire labels, the point and permute bit, correctly
informs the evaluator which entry she can decrypt.

In this example we use the least significant bit as the
point and permute bit. Both our example wire labels, g
and e, have 0-value wire labels with point and permute
bits of 1. This means we have to permute the truth table’s
values to swap the 0 and 1 values for both the g and e
wire values. After permuting the truth table we receive
the following table:

tabley; = hash(e||g1) ® 01
tableyy = hash(e1]|go) @ oo
tabley, = hash(ep||g1) ® oo
tableyy = hash(ep||go) ® 0o



After removing the identifying from the truth table ta-
bles, the complete truth table sent by the generator to the
evaluator:

hash(e1||g1) ® o
hash(e|[go) & 0o
hash(eo||g1) ® oo
hash(ep||go) & 0o

Inputs

After creation of the garbled gate, the evaluator still
needs to know her input wire label. The generator can
send over his encrypted input bit, as he knows the cor-
rect wire label for his input. For the evaluator’s input,
both parties participate in an OT. In this OT, the eval-
uator enters her input bit and the generator enters both
possible wire label values. At the conclusion of the OT,
the evaluator receives the input wire label corresponding
to her input.

For this example, we assume the evaluator entered a 1
(0x5788) as input and the generator entered a 0 (0x9143)
as input.

Evaluation
The evaluator receives the following truth table, as this
is the entire garbled circuit:

hash(e1||g1) ® o1
hash(e1||go) ® oo
hash(eo||g1) ® oo
hash(ep||go) & 0o

The evaluator examines the point and permute bits, a
0 on the evaluator’s input wire label and a 1 on the gen-
erator’s input wire label, and knows she needs to decrypt
the 0*2 41 entry in the truth table.

The evaluator then hashes the wires together, XORs
the truth table entry with the hash she just generated and
receives 0g. The hash she created using the input wires
and the hash in the truth table, which encrypted o0¢, can-
cel out.

hash(e1||go) ® 0o & hash(e1|[go) = 0o

Output

The evaluator has the output wire label but does not
know how to interpret it. The generator sends the evalua-
tor a table that informs the evaluator what the output wire
label represents. This table contains hashes of both pos-
sible output wire values. Then evaluator sends the output
wire label to the generator.

2.1 Threat Models

Traditionally, there are two threat models discussed in
SFE work, semi-honest and malicious. The above de-
scription of garbled circuits is the same in both threat

models. In the semi-honest model users stay true to
the protocol but may attempt to learn extra information
from the system by looking at any message that is sent
or received. In the malicious model, users may attempt
to change anything with the goal of learning extra in-
formation or giving incorrect results without being de-
tected; extra techniques must be added to achieve secu-
rity against a malicious adversary.

There are several well-known attacks a malicious ad-
versary could use against a garbled circuit protocol. A
protocol secure against malicious adversaries must have
solutions to all potential pitfalls, described in turn:

Generation of incorrect circuits: If the generator does
not create a correct garbled circuit, he could learn extra
information by modifying truth table values to output the
evaluator’s input; he is limited only by the external struc-
ture of the garbled circuit the evaluator expects.

To solve this problem, the parties perform the compu-
tation many different times with different garbled circuits
all computing the same function. Some of the garbled cir-
cuits are evaluated and many garbled circuits are checked
for correctness. The output for the computation is then a
majority vote from point and permute bit of the output
values from the evaluation circuits. Using this concept,
the evaluator knows the generator has a negligible chance
of successfully gaining extra information with respect to
then number of circuits, which is a security parameter.
This type of protocol is known as a cut and choose pro-
tocol.

As an example we again look at the AND gate from
the previous example. In the permuted gate the truth table
should be:

hash(ei||g1) ® o1
hash(ei||go) ® oo
hash(epl|g1) &® 0o
hash(epl|go) ® 0g

Instead a malicious generator could create a different
garbled gate where that the output is always the evalua-
tor’s input:

hash(e1||g1) ® o1
hash(ei||go) ® o1
hash(eo||g1) ® oo
hash(eo||go) ® oo

Using the cut and choose, the generator has to the
commit to multiple garbled gates before any other op-
eration takes place. Based on selection by a fair coin, the
generator gives the evaluator keys to “open” a portion of
the garbled circuits so the evaluator can verify they were
correct.

If the generator tries to do the aforementioned attack,
he will be caught with a s degree of certainty, depending
upon the total number of garbled circuits evaluated.



Selective failure of input: Select failure attacks occur
when the generator can cause the evaluator to abort the
protocol based on her inputs to the function. This reveals
information about the evaluator’s input.

If the generator does not offer up correct input wires
labels to the evaluator in the OT, the generator will learn
a single bit of information based on whether the compu-
tation produced correct outputs. This attack is prevented
by encoding each of the evaluator‘s input bits into multi-
ple input bits. Using this encoding, if a single bit fails it
does not leak any information about the evaluator’s input
to the generator, as the single bit of input held no infor-
mation without knowing all of the encoding bits.

As an example of this attack, instead of using ey and
e as the two values the generator inputs into the OT, the
generator uses eg and X where X causes the computation
to fail. To prevent this attack the evaluator breaks these
bits into many bits, which, by XORing them together in-
side of the garbled circuit, will generate the real input.
The parties perform the OTs over two input bits, e; and
ej, to represent to input bit e. The garbled circuit is then
augmented to take in e; and e¢; and XOR them to form
the true input bit e. Notice now, assuming we use a large
enough amount of bits, if the computation fails then the
input bit is not revealed.

Related to the attack of incorrect OT output wire la-
bels is the attack of reversing the OT output wire labels.
In this attack, the generator swaps the two possible OT
inputs in the garbled circuit to invert the input wires. To
prevent this, the protocol forces the generator to commit
ahead of time to the possible input wire values. Those
commitments are then checked during the evaluation. If
the commitment fails then the evaluator knows the gen-
erator did not perform the correct OT operation. Since
the input is already encoded the generator learns nothing
from the abort.

To use a more concrete example, instead of using egy
and e as input into the OT, the generator swaps the or-
der and enters e; and ep. The commitment prevents the
generator from performing this attack.

Input consistency: To prevent the generator from us-
ing an incorrect garbled circuit we use many different
garbled circuits. However, if either party’s input is not
consistent across all circuits then it is possible for ex-
tra information to be retrieved during the evaluation. If
the generator’s input is not consistent then a single in-
correct circuit could give extra information, bypassing
most of the security gained from the parameter of the cut
and choose. To prevent this attack the parties engage in a
cryptographic technique that guarantees the consistency
of the generator’s input.

The generator has a reasonable chance (40%) of get-
ting a single incorrect circuit into the evaluation portion

of the garbled circuits. If we assume there are three eval-
uation circuits and the generator knows the output should
be 0 for one possible input of his and 1 for a different in-
put of his, and uses two almost evenly distributed inputs,
the generator can use a single incorrect circuit to change
the output by changing ouput vote from a 2 — 1 vote to a
1 — 2 vote. The generator learns a single bit of informa-
tion based upon the output he saw in this example.

If the evaluator’s input is not consistent then it will
give out extra information, as she would know the output
for many computations instead of just a single computa-
tion (as she can observe the output for each circuit with
different inputs). The solution to this problem is to force
the evaluator to generate all her inputs for circuits 2...n
from the inputs to circuit 1.

If we again assumed three evaluation circuits and the
evaluator entered different inputs to all three circuits, it
allows her to see the results from three the different in-
puts, instead of the single set of outputs she is suppose to
receive.

Output consistency: In the two-party case, the output
consistency check verifies that the evaluator did not mod-
ify the generator’s output before sending it to the gener-
ator. Without the output check, it is impossible for the
generator to know the evaluator did not modify the out-
put before sending it to the generator. To prevent the eval-
uator from learning the actual output the generator adds
1-time pads into the output bits.

A simple solution to the problem of output consistency
is to output X concatenated with a MAC(X) and encrypt
the total output value under a 1-time pad. For the evalu-
ator to successfully modify the output she would have
to guess how modifying X modifies MAC(X) without
knowing either X or MAC(X). This is very unlikely given
a large enough private key.

2.2 CMTB Protocol

As we are building off of the CMTB garbled circuit ex-
ecution system, we give an abbreviated version of the
protocol. In our description we refer to the generator, the
cloud, and the evaluator. The cloud is the party the eval-
uator outsources her computation to.

Circuit generation and check: The template for the gar-
bled circuit is augmented to add one-time XOR pads on
the output bits and split the evaluator’s input wires per the
input encoding scheme. The generator generates the nec-
essary garbled circuits and commits to them and sends
the commitments to the evaluator. The generator then
commits to input labels for the evaluator’s inputs.
CMTB relies on the random seed check created by
Goyal et al. [13], which was then implemented by
Kreuter et al. [26] to combat generation of incorrect cir-



cuits. This technique uses a cut-and-choose style proto-
col to determine whether or not the generator created the
correct circuits by creating and committing to many dif-
ferent circuits. Some of those circuits are used for evalu-
ation, while the others are used as check circuits.

Evaluator’s inputs: Rather than a two-party oblivious
transfer, we perform a three-party outsourced oblivious
transfer. An outsourced oblivious transfer is an OT that
gets the select bits from one party, the wire labels from
another, and returns the selected wire labels to a third
party. The party that selects the wire labels does not learn
what the wire labels are, and the party that inputs the
wire labels does not learn which wire was selected; the
third party only learns the selected wire labels. In CMTB,
the generator offers up wire labels, the evaluator provides
the select bits, and the cloud receives the selected labels.
CMTB uses the Ishai OT extension [19] to reduce the
number of OTs.

CMTB uses an encoding technique from Lindell and
Pinkas [28], which prevents the generator from finding
out any information about the evaluator’s input if a selec-
tive failure attack transpires. CMTB also uses the com-
mitment technique of Kreuter et al. [26] to prevent the
generator from swapping the two possible outputs of the
oblivious transfer. To ensure the evaluator’s input is con-
sistent across all circuits, CMTB uses a technique from
Lindell and Pinkas [28], whereby the inputs are derived
from a single oblivious transfer.

Generator’s input and consistency check: The gener-
ator sends his input to the cloud for the evaluation cir-
cuits. Then the generator, evaluator, and cloud all work
together to prove the input consistency of the genera-
tor’s input. For the generator’s input consistency check,
CMTB uses the malleable-claw free construction from
shelat and Shen [34].

Circuit evaluations: The cloud evaluates the garbled
circuits marked for evaluation and checks the circuits
marked for checking. The cloud enters in the generator
and evaluator’s input into each garbled circuit and evalu-
ates each circuit. The output for any particular bit is then
the majority output between all evaluator circuits. The
cloud then recreates each check circuit. The cloud cre-
ates the hashes of each garbled circuit and sends those
hashes to the evaluator. The evaluator then verifies the
hashes are the same as the ones the generator previously
committed to.

Output consistency check and output: The three par-
ties prove together that the cloud did not modify the out-
put before she sent it to the generator or evaluator. Both
the evaluator and generator receive their respective out-
puts. All outputs are blinded by the respective party’s
one-time pad inside the garbled circuit to prevent the

cloud from learning what any output bit represents.

CMTB uses the XOR one-time pad technique from Ki-
raz [23] to prevent the evaluator from learning the gener-
ator’s real output. To prevent output modification, CMTB
uses the witness-indistinguishable zero-knowledge proof
from Kreuter et al. [26].

2.2.1 Non-collusion

In the CMTB protocol there is an assumption of non-
collusion. Non-collusion is stated in CMTB as:

“The outsourced two-party SFE protocol securely
computes a function fla,b) in the following two cor-
ruption scenarios: (1)The cloud is malicious and non-
cooperative with respect to the rest of the parties, while
all other parties are semi-honest, (2)All but one party is
malicious, while the cloud is semi-honest.”

This is the standard definition of non-collusion used in
server-aided works such as Kamara et al. [21].

3 Partial Garbled Circuits

We introduce the concept of partial garbled circuits
(PGCs), which allow the encrypted wire outputs from
one SFE computation to be used as inputs to another.
This can be accomplished by mapping the encrypted out-
put wire values to valid input wire values in the next com-
putation. In order to better demonstrate their structure
and use, we first present PGCs in a semi-honest setting,
before showing how they can aid us against malicious
adversaries.

3.1 PGCs in the Semi-Honest Model

In the semi-honest model, for each wire value, the gener-
ator can simply send two values to the evaluator, which
transform the wire label the evaluator owns to work in
another garbled circuit. Depending on the point and per-
mute bit of the wire label received by the evaluator, she
can map the value from a previous garbled circuit com-
putation to a valid wire label in the next computation. At
the beginning of the protocol, for a given wire, the gener-
ator has both possible encrypted output input wires and
the evaluator has the correct wire label values. At the end
of the protocol, the evaluator has the correct input wire
label for the output label she previously owned.
Specifically, for a given wire pair, the generator has
wires wf)*l and w’fl , and creates wires wj, and w/. Here,
t refers to a particular computation in a series, while 0
and 1 correspond to the values of the point and permute
bits of the # — 1 values. The generator sends the values
wh ' @wl and wi ™! @ w to the evaluator. Depending on
the point and permute bit of the wfl value she possesses,
the evaluator selects the correct value and then XORs her
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3.2 PGCs in the Malicious Model

In the malicious model, either party could choose to not
perform their side of the protocol correctly. We must al-
low the evaluation of a circuit with partial inputs and
verification of the mappings, while preventing a selec-
tive failure attack. The following features are necessary
to accomplish these goals:
1. Verifiable Mapping

The generator G is able to create a secure mapping
from a saved garbled wire value into a new computation
that can be checked by the evaluator E, without E being
able to reverse the mapping. For the evaluation circuits,
G sends E the information required to transform the val-
ues and E maps the values. For check circuits, E is able
to check the mapping by simulating the mappings created
by G. During the evaluation and check phase, £ must be
able to verify whether the correct encrypted value was
mapped and that G did not send an incorrect mapping. G
must have either previously committed to the mappings
before deciding the partition of evaluation and check cir-
cuits, or never learned which circuits are in the check
versus the evaluation sets.
2. Partial Generation and Partial Evaluation

G creates the garbled gates necessary for E to enter
the previously output intermediate encrypted values into
the next garbled circuit. These garbled gates are called
partial input gates. As shown in Figure 3 each garbled
circuit is made up of two pieces: the partial input gates
and the remainder of the garbled circuit.
3. Revealing Incorrect Transformations

Our last goal is to let E inform G that incorrect val-
ues have been detected. Without a way to limit leakage,
G could gain information based on whether or not E in-
forms G that she caught him cheating. This is a selective
failure attack and is not present in our protocol.

4 PartialGC Protocol

We start with the CMTB protocol and add cut-and-
choose operations from sS13 before introducing the
mechanisms needed to save and reuse values. We de-
fer to the original papers for details of the outsourced
oblivious transfer [8] and the generator’s input consis-
tency check [35] sub-protocols that we use.

Our system operates in the same threat model as
CMTB: we are secure against a malicious adversary with
the assumption that no parties are colluding to defeat the
protocol. We discuss this further in Section 5.

4.1 Preliminaries

There are three participants in the protocol:

Generator — The generator is the party that generates
the garbled circuit for the 2P-SFE.

Evaluator — The evaluator is the other party in the 2P-
SFE, which is outsourcing computation to a third party,
the cloud.

Cloud - The cloud is the party that executes the gar-
bled circuit outsourced by the evaluator.

Notation

Ciey - Circuit key used for the free XOR optimiza-
tion [24], which we employ. The key is randomly gen-
erated and then used as the difference between the 0 and
1 wire labels for a circuit C.

Cseeqa - This value is created by the generator’s PRNG,
and is used to generate a particular circuit C.

POut; - The partial output values are the values output
from an SFE computation. These are encrypted garbled
circuit values which can be reused in another garbled
circuit computation. The i determines whether the value
represents a 0 or a 1 value (as it does for all subsequent
values in this list).

PIn; - The partial input values are the POut values after
they have been hashed to remove the previous circuit key,
Ciey- These values are input to the partial input gate.

GlIn; - The garbled circuit input values are the results of
the partial input gates and are input into the remaining
garbled circuit.

Partial Input Gates - These are garbled gates that take
in PIn values and output GIn values. Their purpose is to
transform the PIn values, to values that work under the
key Ciey for the current circuit.

GlIn; - The garbled circuit input values are the results of
the partial input gates and are input into the remainder of
the garbled circuit, as shown in Figure 3.



4.2 Protocol

Common Inputs: The program circuit file, the bit level
security, the circuit level security (number of circuits),
and encryption and commitment functions.

Private Inputs: The evaluator and the generator both
have inputs to the computation.

Outputs: The evaluator and the generator receive gar-
bled circuit outputs.

Phase 1: Cut-and-choose

We use the cut-and-choose mechanism described in
sS13. Here, the cloud selects which circuits are evalu-
ation circuits and which are check circuits; the generator
does not learn this information.

To decide how each circuit is to be used, the cloud and
generator participate in an oblivious transfer where the
generator offers up either the decryption key for its input
to a circuit or the decryption key for the circuit seed. If
the cloud selects the circuit seed, then that circuit is used
as a check circuit. If the cloud selects the generator’s in-
put then that circuit is used as an evaluation circuit.

The generator then encrypts and sends his garbled in-
put values and the check circuit information for all cir-
cuits to the cloud. The cloud is able to decrypt the check
circuit information for the check circuits and decrypt the
encrypted garbled input value for evaluation circuits.

We only perform the cut and choose oblivious trans-
fers for the initial computation. For any subsequent com-
putations, we require the parties hash the last decryption
keys and use these hashes as the new decryption keys.

To allow the evaluator to know the circuit split, we per-
form the following:

The generator sends a hash of both possible encryption
keys the cloud could have selected to the evaluator for
each circuit as an ordered pair.

GeneratorSend (hash(check key)) (1)
GeneratorSend (hash(evaluation_key)) )

The cloud then sends a hash of the value received to
the evaluator for each circuit. The cloud also sends bits
to indicate what circuits were selected as check or evalu-
ation circuits to the evaluator.

CloudSend(hash(selected key)) 3)
CloudSend (circuit split) 4

Using the hashes received from both parties and
the circuit selection map from the cloud, the evaluator
matches the hashes the cloud sent with the circuit selec-
tion to the hash the generator. If the selected hash from
the generator for a given circuit does not match the hash
the cloud sent over for the selected circuit, then the eval-
uator knows one of the two parties tried to cheat her.

Phase 2: Oblivious Transfer

We use the outsourced oblivious transfer (OOT) of
CMTB. The generator inputs both possible input wires
for the evaluator’s input and the evaluator inputs its own
private input values. After the OOT is performed, the
cloud has the input wires, which represent the evaluator’s
input.

We make the following modification to the outsourced
oblivious transfer: we perform the OOT on all circuits
(this is required since the generator cannot know which
circuits are for checking and which for evaluation), but
the outputs of the OOT are composed of the original out-
put of the OOT and an added blind that the generator
creates and sends to the evaluator. There is one blind per
output wire. The evaluator then sends the blinds to the
cloud only for evaluation circuits.

Phase 3: Generator’s Input Consistency Check

We use the input consistency check of sS13. A uni-
versal hash structure is used to prove the consistency of
the generator’s input across each evaluation circuit. If the
proof is incorrect then the cloud knows the generator did
not enter consistent input across all evaluation circuits.

Phase 4: Partial Input Gate Generation, Check,
and Evaluation

Generation

For all circuits in the computation the generator cre-
ates the partial input gates, which transform previously
output values into values that can be used in the current
garbled circuit execution, and other necessary informa-
tion to transform the previously output values, POut, into
wires which are used in the complete circuit, GIn.

The generator creates a pseudorandom transformation
value R and the partial input gates. One R is created for
each circuit C, and one partial input gate is created for
each saved wire for each C.

R = PRNG.random() )

For each POut, the wires previously output, the gener-
ator XORs the wire with R. The value is then hashed.

tempo = hash(R @ POuty) (6)
temp; = hash(R @ POut) @)

A function, setPPBitGen, is then used to pseudo-
randomly find a bit which is different between the wire’s
two values to be used as the “point and permute” bit. We
refer to the final value as the partial input value, Pln,
which is used as the input to the partial input gate. Once
per circuit, setPPBitGen is seeded using a seed derived
from Cyeey.

PIng,PIn; = setPPBitGen(tempo,tempy) (8)



For each PIn wire, a wire GIn is created under the
master key of that specific circuit — where Cy,y, is the dif-
ference between 0 and 1 wire labels for the circuit. We
reseed the PRNG with Cy,.; and add 1 to prevent overlap
from the PRNGs.

GIng = PRNG.random() 9)
Gln; = GII’loEBCkey (10)

The generator creates two truth table values, TT, for
each partial input gate such that the truth table values
change PIn to the corresponding GIn.

TTy = Plng & Glinyg (11)
TTy = PIny & Glny (12)

The generator sends R to the cloud for every circuit.

The generator sends each partial input gate to the
cloud. This includes both 7T values and the point and
permute bit location. The truth table values are permuted
such that the point and permute bits of the PIn values cor-
rectly map to the TT values using the point and permute
optimization.

Check

For all check circuits, the cloud checks the partial in-
put gates the generator created by recreating them using
the check circuit information sent to the cloud during the
cut-and-choose. The cloud uses the R value the generator
sent for the circuit and verifies that the partial input gates
sent by the generator matches the partial input gates cre-
ated by the R value and circuit seed.

The cloud is able to recreate the partial input gates by
recreating both PIn values, both GIn values, each point
and permute bit location, and then creating the 7T val-
ues. As previously noted, each GIn value is created di-
rectly from the circuit seeds. Each PIn value is a combi-
nation of R and the point and permute bit location. Using
PIn and GIn, the cloud creates the TT values. After the
creation of these values, the cloud is able to verify that
the generator sent the correct partial input gate values.

Evaluation

For all evaluation circuits, the cloud evaluates the par-
tial input gates to receive the garbled input values GIn.
The cloud creates the PIn values by using R and setPP-
BitEval with the received point and permute bit location.
setPPBitEval reads the location of the point and permute
bit from the partial gate sent by the generator and applies
it to the wire label.

temp = hash(R ® POut) (13)

PIn = setPPBitEval(temp) (14)

The cloud inputs each PIn value into the correspond-
ing partial input gate. It then evaluates them by XORing

the PIn value with the truth table value, which is selected
by the point and permute bit.

GIn = (PIn® TTppyi) (15)

The cloud then uses the GIn values to evaluate the re-
mainder of the garbled circuit.

Phase 5: Circuit Generation and Evaluation

The generator creates each garbled circuit for the
cloud. The cloud then verifies that the check circuits are
correct and uses the evaluation circuits to compute the
result of the garbled circuit.

Phase 6: Output and Output Consistency Check

As the final step of the garbled circuit execution, a
MAC of the output is generated inside the garbled cir-
cuit, based on a k-bit secret key entered into the function.
Both the resulting garbled circuit output and the MAC
are are encrypted under a one-time pad. The cloud re-
ceives the encrypted outputs of both the generator and
evaluator from the garbled circuit execution, and sends
the correct encrypted outputs to each party.

The generator and evaluator then decrypt the received
ciphertext, perform a MAC over it, and verify the cloud
did not modify the output by comparing the generated
MAC with the one calculated within the garbled circuit.

Phase 7: Partial Output

The generator saves both possible wire values for each
partial output wire. The cloud its value for each partial
output wire associated with the evaluation circuits and
both possible output values for all check circuits. The
generator and cloud both save all decryption keys used
during the cut-and-choose.

4.3 Implementation

As with most garbled circuit systems there are two stages
to our implementation. The first stage is a compiler for
creating garbled circuits, while the second stage is an ex-
ecution system to evaluate the circuits.

For our compiler, we modified the KSS12 [26] com-
piler to allow the saving of input and output wire la-
bel values. By using the KSS12 compiler, we have an
added benefit of being able to compare circuits of al-
most identical size and functionality between our system
and CMTB, whereas other protocols generate circuits of
sometimes vastly different sizes.

For our execution system, we started with the CMTB
system and modified it according to our protocol require-
ments. Partial GC automatically performs the output con-
sistency check, and we implemented this check at the
circuit level. We became aware and corrected issues with
CMTB relating to too many primitive OT operations per-
formed in the outsourced oblivious transfer when using
a high circuit parameter and too low a general security
parameter in general. After the fixes were applied, this
reduced the run-time of the OOT.



S Security of PartialGC

In this section, we provide a basic proof sketch of the
Partial GC protocol, showing that our protocol preserves
the standard security guarantees provided by traditional
garbled circuits - that is, none of the parties learns any-
thing about the private inputs of the other parties that is
not logically implied by the output it receives. Since we
borrow heavily from [8] and [35], we focus on our addi-
tions, and defer to the original papers for detailed proofs
of those protocols.

We know that the protocol described in [8] allows us
to garble individual circuits and securely outsource their
evaluation. In this paper, we modify certain portions of
the protocol to allow us to transform the output wire val-
ues from a previous circuit execution into input wire val-
ues in a new circuit execution. These transformed values,
which can be checked by the evaluator, are created by the
generator using circuit “seeds.”

We also use some aspects of [35], notably their novel
cut-and-choose technique which ensures that the genera-
tor does not learn which circuits are used for evaluation
and which are used for checking - this means that the
generator must create the correct transformation values
for all of the cut-and-choose circuits.

Because we assume that the CMTB garbled circuit
scheme can securely garble any circuit, we can use it in-
dividually on the circuit used in the first execution and
on the circuits used in subsequent executions. We focus
on the changes made at the end of the first execution and
the beginning of subsequent executions which are intro-
duced by Partial GC.

The only difference between the initial garbled circuit
execution and any other garbled circuit in CMTB is that
the output wires in an initial Partial GC circuit are stored
by the cloud, and are not delivered to the generator or the
evaluator. This prevents them from learning the output
wire labels of the initial circuit, but cannot be less secure
than CMTB, since no additional steps are taken here.

Subsequent circuits we wish to garble differ from or-
dinary CMTB garbled circuits only by the addition, be-
fore the first row of gates, of a set of partial input gates.
These gates don’t change the output along a wire, but
differ from normal garbled gates in that the two possible
labels for each input wire are not chosen randomly by the
generator, but are derived by using the two labels along
each output wire of the initial garbled circuit.

This does not reduce security. In Partial GC, the input
labels for partial input gates have the same property as
the labels for ordinary garbled input gates: the gener-
ator knows both labels, but does not know which one
corresponds to the evaluator’s input, and the evaluator
knows only the label corresponding to its input, but not
the other label. This is because the evaluator’s input is ex-
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actly the output of the initial garbled circuit, the output
labels of which were saved by the evaluator. The evalu-
ator does not learn the other output label for any of the
output gates because the output of each garbled gate is
encrypted. If the evaluator could learn any output labels
other than those which result from an evaluation of the
garbled circuit, the original garbled circuit scheme itself
would not be secure.

The generator, which also generated the initial garbled
circuit, knows both possible input labels for all partial
evaluation gates, because it has saved both potential out-
put labels of the initial circuit’s output gates. Because of
the outsourced oblivious transfer used in CMTB, the gen-
erator did not know which input labels to use for the ini-
tial garbled circuit, and therefore will not have been able
to determine the output labels for that circuit. Therefore,
the generator will likewise not know which input labels
are being used for subsequent garbled circuits.

Generator’s Input Consistency Check

We use the generator’s input consistency check from
sS13. We note there is no problem with allowing the
cloud to perform this check; for the generator’s incon-
sistent input to pass the check, the cloud would have to
see the malicious input and ignore it, which would vio-
late the non-collusion assumption.

Correctness of Saved Values

Scenarios where either party enters incorrect values in
the next computation reduce to previously solved prob-
lems in garbled circuits. If the generator does not use the
correct values, then it reduces to the problem of creating
an incorrect garbled circuit. If the evaluator does not use
the correct saved values then it reduces to the problem
of the evaluator entering garbage values into the garbled
circuit execution; this would be caught by the output con-
sistency check.

Abort on Check Failure

If any of the check circuits fail, the cloud reports the
incorrect check circuit to both the generator and eval-
uator. At this point, the remaining computation and any
saved values must be abandoned. However, as is standard
in SFE, the cloud cannot abort on an incorrect evaluation
circuit, even when she knows that it is incorrect.

Concatenation of Incorrect Circuits

If the generator produces a single incorrect circuit and
the cloud does not abort, the generator learns that the cir-
cuit was used for evaluation, and not as a check circuit.
This leaks no information about the input or output of
the computation; to do that, the generator must corrupt
a majority of the evaluation circuits without modifying
a check circuit. An incorrect circuit that goes undetected
in one execution has no effect on subsequent executions
as long the total amount of incorrect circuits is less than
the majority of evaluation circuits.



Using Multiple Evaluators

One of the benefits of our outsourcing scheme is that
the state is saved at the generator and cloud allowing the
use of different evaluators in each computation. Previ-
ously, it was shown a group of users working with a sin-
gle server using 2P-SFE was not secure against malicious
adversaries, as a malicious server and last k parties, also
malicious, could replay their portion of the computation
with different inputs and gain more information than they
can with a single computation [14]. However, this is not
a problem in our system as at least one of our servers,
either the generator or cloud, must be semi-honest due to
non-collusion, which prevents the attack stated above.

Threat Model

As we have many computations involving the same
generator and cloud, we have to extend the threat model
for how the parties can act in different computations.
There can be no collusion in each singular computation.
However, the malicious party can change between com-
putations as long as there is no chain of malicious users
that link the generator and cloud — this would break the
non-collusion assumption.

6 Performance Evaluation

We now demonstrate the efficacy of PartialGC through
a comparison with the CMTB outsourcing system. Apart
from the optimized cut-and-choose from sS13, Partial GC
provides other benefits through generating partial input
values after the first execution of a program. On subse-
quent executions, the partial inputs act to amortize over-
all costs of execution and bandwidth.

We demonstrate that the evaluator in the system can
be a mobile device outsourcing computation to a more
powerful system. We also demonstrate that other devices
can act as an evaluator, such a server-class machine, to
show the generality of this system. Our testing envi-
ronment includes a 64-core server containing 1 TB of
RAM, which we use to model both the Generator and
Outsourcing Proxy parties. We run separate virtual ma-
chines for the Generator and Outsourcing Proxy roles,
giving them each 32 threads. For the evaluator, we use a
Samsung Galaxy Nexus phone with a 1.2 GHz dual-core
ARM Cortex-A9 and 1 GB of RAM running Android
4.0, connected to the server through an 802.11 54 Mbps
WiFi connection in an isolated environment. In our tests,
which outsource the computation from a single server
process we create that process on our 64-core server as
well. We ran the CMTB implementation for comparison
tests on the same experimental setup.
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6.1 Execution Time

The PartialGC system is particularly well suited to
complex computations that require multiple stages and
the saving of intermediate state. To date, previous gar-
bled circuit execution systems have focused on single-
transaction evaluations, such as computing the “million-
aires” problem (i.e., a joint evaluation of which party in-
puts a greater value without revealing the values of the
inputs) or evaluating an AES circuit.

Our evaluation considers two comparisons: the im-
provement of our system when compared with CMTB
without reusing saved values, and comparing our proto-
col for saving and reusing values against CMTB if such
reuse was implemented in that protocol. We also bench-
mark the overhead for saving and loading values on a per-
bit basis for 256 circuits, a necessary number to achieve
a security parameter of 2780 in the malicious model. In
all cases we run 10 iterations of each test and give timing
results with 95% confidence intervals.

The programs used for our evaluation are exemplars of
differing input sizes and differing circuit complexities:
Keyed Database: In this program, one party enters a
database and keys to it while the other party enters a key
that indexes into the database, receiving a database entry
for that key. This is an example of a program expressed
as a small circuit that has a very large amount of input.
Matrix Multiplication: Here, both parties enter 32-bit
numbers to fill a matrix. Matrix multiplication is per-
formed before the resulting matrix is output to both par-
ties. This is an example of a program with a large amount
of inputs with a large circuit.

Edit Distance: This program (also known as Levenstein
distance) finds the distance between two strings of the
same length and returns the difference. This is an exam-
ple of a program with a small number of inputs and a
medium sized circuit.

Millionaires: In this classic SFE program, both parties
enter a value, and the result is a one-bit output to each
party to let them know whether their value is greater or
smaller than that of the other party. This is an example of
a small circuit with a large amount of input.

Gate counts for each of our programs can be found in
Table 1. The only difference for the programs described
above is the additional of a MAC function in Partial GC.
We discuss the reason for this check in Section 6.4.

Table 2 shows the results from our experimental tests.
In the best case, execution time was reduced by a fac-
tor of 32 over CMTB, from 1200 seconds to 38 sec-
onds, a 96% speedup over CMTB. Ultimately, our results
show that our system outperforms CMTB when the input
checks are the bottleneck. This run-time improvement is
due to improvements we added from sS13 and occurs in
the keyed database, millionaires, and matrix multiplica-



16 Circuits 64 Circuits 256 Circuits
CMTB Partial GC CMTB Partial GC CMTB Partial GC

KeyedDB 64 18+2% | 35+3% | 5.1x 72 + 2% 83+5% 8.7x 290 + 2% 26 +2% 11x
KeyedDB 128 334+2% | 44+8% | 7.5x | 140£2% | 9.5+ 4% 15x 580 + 2% 31 +3% 19x
KeyedDB 256 65+2% | 4.6 2% 14x 270 + 1% 12 + 6% 23x 1200 +3% | 38+5% 32x
MatrixMult8x8 48 £4% | 46 = 4% 1.0x | 110+8% | 100 = 7% 1.1x | 400 +10% | 370 + 5% 1.1x
Edit Distance 128 | 21 6% | 22+3% | 095x | 47+ 7% 50+9% | 0.94x | 120 +9% 180 £ 6% | 0.67x
Millionaires 8192 | 35+£3% | 73+£6% | 4.8x | 140+2% | 20+£2% 7.0x 580 + 1% 70 + 2% 8.3x

Table 2: Timing results comparing Partial GC to CMTB without saving any values. All times in seconds.

CMTB Partial GC
KeyedDB 64 6,080 20,891
KeyedDB 128 12,160 26,971
KeyedDB 256 24,320 39,131
MatrixMult8x8 3,060,802 | 3,305,113
Edit Distance 128 1,434,888 | 1,464,490
Millionaires 8192 49,153 78,775
LCS Incremental 128 | 4,053,870 87,236
LCS Incremental 256 | 8,077,676 160,322
LCS Incremental 512 | 16,125,291 306,368
LCS Full 128 2,978,854 -
LCS Full 256 13,177,739 -

Table 1: Non-XOR gate counts for the various circuits.
In the first 6 circuts, the differences between CMTB and
Partial GC gate counts is in the consistency checks. The
explanation for the difference in size between the incre-
mental versions of longest common substring (LCS) is
given in Reusing Values.

tions programs. In the other program, edit distance, the
input checks are not the bottleneck and Partial GC does
not outperform CMTB. The total run-time increase for
the edit distance problem is due to overhead of using
the new sS13 OT cut-and-choose technique which re-
quires sending each gate to the evaluator for check cir-
cuits and evaluation circuits. This is discussed further in
Section 6.4. The typical use case we imagine for our sys-
tem, however, is more like the keyed database program,
which has a large amount of inputs and a very small cir-
cuit. We expand upon this use case later in this section.
Reusing Values

Until now, we have not given a comparison of Par-
tialGC to CMTB while demonstrating encrypted value
reuse. For a true comparison of our system’s capabilities,
we created an incremental version of an LCS program
for both Partial GC and CMTB. This program determines
the length of the longest common substring between two
strings. Rather than use a single dynamic program for
the solution, our version incrementally adds a single bit
to the computation each time the program is run and out-
puts the results each time to the evaluator. We believe this
is a realistic comparison to a real-world application that
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incrementally adds data during each computation.

To properly compare the Partial GC incremental pro-
gram to CMTB, we created a way to save and reuse val-
ues in that system. We saved every desired output bit un-
der a one-time pad and re-entered that information into
the next program, as well as the necessary information to
decrypt the ciphertext. We add a MAC of the saved in-
formation to verify that the party saving the output bits
did not modify their contents. The MAC over the output
bits are compared to a subsequent MAC computed over
the input bits to the next computation, to verify that the
user re-entered the correct bits. For our proof of concept
implementation we use the AES circuit of KSS12 as the
in-garbled circuit MAC function and we use AES to gen-
erate a one-time pad inside the garbled circuit. We used
the AES circuit, as this was the only cryptographically
secure function used in CMTB. Both parties enter pri-
vate keys to the MAC function. This program is labeled
CMTB-Inc. We also create a circuit that computes the
complete largest common substring up to a given value
in one computation. This program is labeled CMTB-Full.

The resulting size of the PartialGC and CMTB circuits
are shown in Table 1, and the results of the computation
are shown in Figure 4. This result shows that saving and
reusing values in Partial GC is more efficient than com-
pletely rerunning the computation. The additional costs
of the one-time pad generation and the MAC performed
within the garbled circuit add considerably to the costs of
CMTB-Inc and in the case of input bit 512, the CMTB-Inc
program will not run. In the case of the 512-bit CMTB-
Full, the program would not complete compilation in
over 42 hours. In our CMTB-Inc program, we assume the
cloud saves the output bits (so that we can have multiple
phones with a shared private key). We can have multiple
evaluators if the result MAC is output to the server under
a one-time pad generated by the phones’ shared key.

Note that the growth of CMTB-Inc and CMTB-Full are
different. CMTB-Full grows at a larger rate (4x for each
2x factor increase) than CMTB-Inc (2x for each 2x factor
increase), implying that although at first it seems more
efficient to rerun the program if small changes are de-
sired in the input, eventually this will not be the case.
The number of gates Partial GC requires to run a full ex-
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Figure 5: The amount of time it takes to save and load a
bit in Partial GC when using 256 circuits.

ecution of the LCS program is the same as CMTB-Full.
Overhead of Reusing Values

We created several versions of the keyed database pro-
gram to determine the runtime of saving and loading the
database on a per bit basis using our system (See Fig-
ure 5). This figure shows it is possible to save and load
a large amount of saved wire labels in a relatively short
time. The time to load a wire label is larger than the time
to save a value since saving only involves saving the wire
label to a file and loading involves reading from a file
and creating the partial input gates. Although not shown
in the figure, the time to save or load a single bit also
increases with the circuit parameter. This is because we
need s copies of that bit - one for every circuit.
Qutsourcing to a Server Process
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256 Circuits
CMTB | PartialGC

KeyedDB 64 64992308 3590416 18x
KeyedDB 128 129744948 3590416 36x
KeyedDB 256 259250228 3590416 72x
MatrixMult8x8 71238860 | 35027980 2.0x
Edit Distance 128 2615651 4108045 | 0.64x
Millionaires 8192 | 155377267 | 67071757 2.3x

Table 3: Bandwidth comparison of CMTB and Par-
tialGC. Bandwidth counted by instrumenting Partial GC
to count the bytes it was sending and receiving and then
adding them together. Results in bytes.

Partial GC can be used in other scenarios than just out-
sourcing to a mobile device. It can outsource garbled
circuit evaluation from a single server process and re-
tain performance benefits over a single server process
of CMTB. For this experiment, the generator and cloud
each have 32 threads and the outsourcing party has a
single thread. Table 4 displays these results and shows
that in the KeyedDB 256 program, Partial GC has a 92%
speedup over CMTB. As with the outsourced mobile
case, keyed database problems perform particularly well
in Partial GC. Because the computationally-intensive in-
put consistency check is a greater bottleneck on mobile
devices than servers, these improvments for most pro-
grams are less dramatic. In particular, both edit distance
and matrix multiplication programs benefit from higher
computational power and their bottlenecks on a server
are no longer input consistency; as a result, they execute
faster in CMTB than in Partial GC.

6.2 Bandwidth

Since the main reason for outsourcing a computation is
to save on resources, we give results showing a decrease
in the evaluator’s bandwidth. Bandwidth is counted by
instrumenting the evaluator to count the number of bytes
Partial GC sends and receives to either server. Our best
result gives a 98% reduction in bandwidth (see Table 3).
For the edit distance, the extra bandwidth used in the out-
sourced oblivious transfer for all circuits, instead of only
the evaluation circuits, exceeds any benefit we would
otherwise have received.

6.3 Secure Friend Finder

Many privacy-preserving applications can benefit from
using Partial GC to cache values for state. As a case study,
we developed a privacy-preserving friend finder applica-
tion, where users can locate nearby friends without any
user divulging their exact location. In this application,
many different mobile phone clients can use the same



16 Circuits 64 Circuits 256 Circuits
CMTB | PartialGC CMTB Partial GC CMTB Partial GC

KeyedDB 64 66+4% | 14+1% | 47x | 27+£4% | 51+2% | 53x | 110+£2% | 249+03% | 4.4x
KeyedDB 128 13+3% | 1.84+2% | 72x | 54+4% | 5.8+2% | 93x | 220+5% | 279+ 0.5% | 7.9x
KeyedDB 256 254+4% | 25+ 1% 10x | 110+7% | 7.3 £2% | 15x 420+ 4% | 33.5+0.6% 13x
MatrixMult8x8 42 + 3% 41 +4% | 1.0x | 94 +4% 79 +3% | 1.2x | 300 + 10% 310+ 1% 0.97x
Edit Distance 128 18 + 3% 18+3% | 1.0x | 40+ 8% 40+6% | 1.0x | 120+ 9% 150 £ 3% 0.8x
Millionaires 8192 13+£4% | 324+1% | 41x | 524+3% | 85+£2% | 6.1x | 220£5% | 384+09% | 5.7x

Table 4: Timing results from outsourcing the garbled circuit evaluation from a single server process to a group of 32

processors. Results in seconds.

lgu mapfinder

Set New Location

User ID: [l

L= T

(a) Map with a point selected.

(b) Map with a point selected and

“set new location” pressed with a

user present.

Figure 6: Screenshots from our application. The first im-
age shows the map with radio buttons a user can select to
indicate position. The second image show the result after
“set new position” is pressed when a user is present. The
application is set to use 64 different map locations. Map
image from Google Maps.

generator (a server application) and can outsource com-
putation to the same cloud. After each computation, the
map is updated when Partial GC saves the current state
of the map as wire labels. Without Partial GC outsourc-
ing values to the cloud, the wire labels would have to
be transferred directly between mobile devices, making
a multi-user application difficult or impossible.

We define three privacy-preserving operations that
comprise the application’s functionality:

MapStart - The three parties (generator, evaluator,
cloud) create a “blank” map region, where all locations
in the map are blank and remain that way until some mo-
bile party sets a location to his or her ID.

MapSet - The mobile party sets a single map cell to a
new value. This program takes in partial values from the
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generator and cloud and outputs a location selected by
the mobile party.

MapGet - The mobile party retrieves the contents of
a single map cell. This program retrieves partial values
from the generator and cloud and outputs any ID set for
that cell to the mobile.

In the application, each user using the Secure Friend
Finder has a unique ID that represents them on the map.
We divide the map into ‘cells’, where each cell is a set
amount of area. When the user presses “Set New Loca-
tion’, the program will first look to determine if that cell
is occupied. If the cell is occupied, the user is informed
he is near a friend. Otherwise it will update the cell to
contain his user ID and remove his ID from his previous
location. We assume a maximum of 255 friends in our
application since each cell in the map is 8 bits.

Figure 7 shows the performance of these programs
in the malicious model with a 278 security parameter
(evaluated over 256 circuits). We consider map regions
containing both 256 and 2048 cells. For maps of 256
cells, each operation takes about 30 seconds.! As there
are three operations for each “Set New Location” event,
the total execution time is about 90 seconds, while exe-
cution time for 2048 cells is about 3 minutes. The bottle-
neck of the 64 and 256 cell maps is the outsourced obliv-
ious transfer, which is not affected by the number of cells
in the map. The vastly larger circuit associated with the
2048-cell map makes getting and setting values slower
operations, but these results show such an application is
practical for many scenarios.

6.4 Discussion

Output check

Although the garbled circuit is larger for our output
check, this check performs less cryptographic operations
for the outsourcing party, as the evaluator only has to per-
form a MAC on the output of the garbled circuit. We
use this check to demonstrate using a MAC can be an

'Our 64-cell map, as seen the application screenshots, also takes
about 30 seconds for each operation.



Map size 256 =1 |
Map Size 2048

100 |

80

60

Time (s)

40

20

MapStart MapSet

Program

MapGet

Figure 7: Run time comparison of our map programs
with two different map sizes.

efficient output check for a low power device when the
computational power is not equivalent across all parties.
Commit Cut-and-Choose vs OT Cut-and-Choose
Our results unexpectedly showed that the sS13 OT cut-
and-choose used in Partial GC is actually slower than the
KSS12 commit cut-and-choose used in CMTB in our
experimental setup. Theoretically, sS13, which requires
fewer cryptographic operations, as it generates the gar-
bled circuit only once, should be the faster protocol. The
difference between the two cut-and-choose protocols is
the network usage — instead of % of the circuits (CMTB),
all the circuits must be transmitted in sS13. The sS13 cut-
and-choose is required in our protocol so that the cloud
can check that the generator creates the correct gates.

7 Related Work

SFE was first described by Yao in his seminal paper [36]
on the subject. The first general purpose implementation
of SFE, Fairplay [29], was created in 2004. Fairplay had
both a compiler for creating garbled circuits, and an eval-
uation system for executing them. Computations involv-
ing three or more parties have also been examined; one
of the earliest examples is FairplayMP [2]. There have
been multiple other implementations since, in both semi-
honest [6, 9, 15, 16, 37] and malicious settings [25, 34].
Optimizations for garbled circuits include the free-
XOR technique [24], garbled row reduction [33], rewrit-
ing computations to minimize SFE [22], and pipelin-
ing [17]. Pipelining allows the evaluator to proceed with
the computation while the generator is creating gates.
KSS12 [26] included both an optimizing compiler and
efficient execution system using a parallelized imple-
mentation of SFE in the malicious model from [34]. The
compiler generally created better circuits than Fairplay,
and was much faster and required far fewer resources.
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The creation of circuits for SFE in a fast and efficient
manner is one of the central problems in the area. Previ-
ous compilers, from Fairplay to KSS12, were based on
the concept of creating a complete circuit and then op-
timizing it. The PAL compiler [30] improved such sys-
tems by using a simple template circuit, which reduced
the amount of memory used by orders of magnitude. As
work related to that compiler, another was created [25],
that used a more advanced intermediate representation to
reduce the amount of disk space used.

Other branches of privacy-preserving computation in-
clude homomorphic encryption [3, 11], which performs
operations on encrypted data, secret sharing [4], and or-
dered binary decision diagrams [27]. Another work using
privacy-preserving computation using homomorphic en-
cryption was created specifically for mobile devices [7].
There also exist custom protocols for privacy-preserving
computations; recently, Kamara et al. [20] showed how
to scale server-aided Private Set Intersection to sets with
a billion elements using a custom protocol. Previous at-
tempts at creating reusable garbled circuits include the-
oretical work by Branddo [5], which uses homomorphic
encryption, Gentry et al. [10], which uses attribute-based
functional encryption, and Goldwasser et al. [12], which
introduces a succinct functional encryption scheme. All
of these protocols are very inefficient; none of them pro-
vides a performance analysis.

The Quid-Pro-Quo-tocols system [18] allows fast ex-
ecution with a single bit of leakage. In their system, the
garbled circuit is executed twice, with the parties switch-
ing roles in the latter execution. In the end, the two par-
ties run a secure protocol to ensure that the output from
both executions are equivalent; if this fails, a single bit
may be leaked due to the selective failure attack.

8 Conclusion

This paper presents PartialGC, a server-aided SFE
scheme allowing the reuse of encrypted values to save
the costs of input validation and to allow for the saving
of state, such that the costs of multiple computations may
be amortized. Compared to the server-aided outsourcing
scheme by CMTB, we reduce costs of computation by
up to 96% and bandwidth costs by up to 98%. In future
work we will consider the generality of the encryption
re-use scheme to other SFE evaluation systems and con-
sider large-scale systems problems that benefit from the
addition of state, which can open up new and intriguing
ways of bringing SFE into the practical realm.
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