
Second-Order Classical Sequent Calculus

Philip Johnson-Freyd

Abstract

We present a sequent calculus that allows to abstract over a type variable. The
introduction of the abstraction on the right-hand side of a sequent corresponds to
the universal quantification; whereas, the introduction of the abstraction on the left-
hand side of a sequent corresponds to the existential quantification. The calculus
provides a correspondence with second-order classical propositional logic. To show
consistency of the logic and consequently of the type system, we prove the property of
strong normalization. The proof is based on an extension of the reducibility method,
consisting of associating to each type two sets: a set of of strong normalizing terms
and a set of strong normalizing co-terms.

1 Introduction

A persistent challenge in programming language design is combining features. Many fea-
tures have been proposed that are of interest individually, but the interplay of features can
be non-obvious. Particularly troublesome can be efforts to intermix dynamic features such
as powerful control operators with static features such as advanced type systems: How do
we design a language which combines Scheme’s continuations with ML’s modules? How do
C#’s generators interact with its generic types? Should the difference in evaluation order
between ML and Haskell lead to differences in their type systems?

In order to reason about programming languages, it is often helpful to design core calculi
that exhibit the features we are interested in. By rigorously analyzing these calculi we can
gain important insights of importance not just to language design and implementation
but also to reasoning about programs. A particularly important source of inspiration for
the design of programming language calculi is the deep connection between programming
languages and proof systems for formal logics. The switch from intuitionistic logic to
classical logic gives insight into what happens when continuations are added to a language.
While natural deduction serves to model many high level languages, sequent calculus helps
in theorizing lower level aspects of computation and gives insight into questions such as the
duality between evaluation strategies and the relationship between objects and algebraic
data types. Programming language features related to abstraction and polymorphism can
be studied by analogy to second order quantifiers in logic. While Java’s generics or ML’s

1

polymorphism can be understood in terms of universal quantifiers, implementation hiding
in module systems is related to the use of existential quantifiers.

We study the combination of control effects and type abstraction by describing a cal-
culus that is in a “proofs as programs correspondence” with second-order classical propo-
sitional logic. Section 2, provides a brief background in proof theory and its connection
to computation, culminating in the presentation of a calculus which provides an elegant
computational interpretation for first-order classical propositional logic. In Section 3, we
present a variant of System F [7] in sequent calculus style; polymorphism comes with
a computational interpretation. In Section 4, we review the role of existential types to
provide modularity, and show how they can be easily incorporated into our sequent frame-
work by following a duality argument. In Section 5, we motivate strong normalization as
a technique for establishing the consistency of second-order classical propositional logic,
and then we give a proof of the strong normalization property using a variant of Girard’s
“Reducibility Candidates” method. We conclude in Section 6.

2 Proofs as Programs

We review propositional logic in sequent style by introducing the reader to the use of left
and right rules, as opposed to the use of introduction and elimination rules of natural
deduction. The right rules allow one to derive new conclusions, whereas the left rules allow
one to derive new assumptions. We then present a calculus or language which encodes such
sequent proofs.

2.1 Sequent calculus

In the years of 1934 and 1935 Gerhard Gentzen published his “Untersuchungen ber das
logische Schlieen”[6]. Gentzen described a system of natural deduction for both classical
and intuitionistic predicate logics. Natural deduction was as “close as possible to actual
reasoning” [6]. Further, Gentzen posited his ‘Hauptsatz’1 that every proof in natural
deduction could be reduced to a normal form. Although not published (but see [13]),
Gentzen claimed a direct proof of this fact for intuitionistic natural deduction, but he
could not determine a way to reduce classical proofs that made use of the law of the
excluded middle. For this he introduced a new system called sequent calculus and showed
the equivalence of classical and intuitionistic sequent calculi to natural deduction as well
as to a “Hilbert style” system. For sequent calculus, even in the classical case, Gentzen
was able to show his Hauptsatz in the form of “cut elimination.” It is hard to overstate
the significance of this result: the ‘Hauptsatz’ is the principle theorem in proof theory. It
implies, among other things, that these logics are internally consistent in that they are
unable to prove the proposition false.

1“Main Theorem.”

2

We will start with first-order propositional logic, in which a formula is built from
propositional variables p, q, r, etc, and the implication connective:

P,Q ∈ Formulae ::= P → Q | p .

For example, p → q and p → (q → r) are formulae. Whereas, a formula in which we use
some unspecified formula, like P → P , is more properly called a formula scheme. However,
in the following we refer to a formula scheme as a formula. The fundamental judgment of
sequent calculus is written

Γ ` ∆

where Γ (the assumptions) and ∆ (the conclusions) are sets of formulae. The intuitive
interpretation of the above sequent is that “if every formula in Γ is true then at least one
formula in ∆ is true.” The simplest rule of sequent calculus is the axiom, which says that
any formula entails itself:

Γ, P ` P,∆

The ability to work with lemmas is fundamental to mathematics. In sequent calculus,
lemmas are supported by way of the cut rule:

Γ ` P,∆ Γ, P ` ∆

Γ ` ∆

To define logical connectives in the sequent calculus we must do two things: describe
how to prove a sequent which has that connective in its conclusion, and, describe how to
prove a sequent which has that connective as an assumption.

We now consider the implication connective. We should be able to prove P → Q if we
can prove Q under the assumption P . The right introduction rule for implication encodes
this view:

Γ, P ` Q,∆
Γ ` P → Q,∆

On the other hand, the left introduction rule for implication must show us how to prove
a sequent of the form Γ, P → Q ` ∆. We know that something in ∆ holds under the
assumption of P → Q if something in ∆ holds under the assumption Q or if either P or ∆
holds:

Γ, Q ` ∆ Γ ` P,∆
Γ, P → Q ` ∆

We have given a short semantic justification for the left and right rules for implication, but
one might still wonder how can we be sure that the inference rules are correct. In other

3

words, how can we guarantee that the logic does not allow one to derive a false proposition.
Gentzen proposed cut elimination as the primary correctness criteria. Suppose we have a
proof that ends in a right introduction of P → Q and another proof that ends in a left
introduction of the same formula. A cut between these two proofs can be eliminated in
so far as it can be reduced to a proof that only makes use of cuts at structurally smaller
formula:

Γ, P ` Q,∆
Γ ` P → Q,∆

Γ, Q ` ∆ Γ ` P,∆
Γ, P → Q ` ∆

Γ ` ∆

⇓

Γ ` P,∆
Γ, P ` Q,∆ Γ, Q ` ∆

Γ, P ` ∆

Γ ` ∆

The cut elimination procedure works to eliminate all cuts from our proofs. The existence of
cut elimination means that if something is provable, it is provable without the use of cuts.
This property ensures the consistency of the logic: what can be shown about a connective
is exactly what can be shown by the left and right rules only. So for example, we can
convince ourselves that the formula A → B is not provable by only considering the right
rule for implication:

A ` B
` A→ B

Since one cannot derive B from A we are done. Note however that if we would not be able
to remove all cuts from a proof, then we would need to consider also the case below:

` C C ` A→ B

` A→ B

Observe that cut elimination is inherently non deterministic. For example, we could
give an alternative cut elimination for implication:

Γ ` P,∆ Γ, P ` Q,∆
Γ ` Q,∆

Γ, Q ` ∆

Γ ` ∆

In addition to the left and right rules for connectives, there are the structural rules. We
should not have to care about the order of assumptions and conclusions in our sequent,

4

P,Q ∈ Formulae ::= P → Q | p

Γ ` P,∆ Γ, P ` ∆

Γ ` ∆
Γ, P ` P,∆

Γ, P ` ∆ Γ ` Q,∆
Γ, P → Q ` ∆

Γ, P ` Q,∆
Γ ` P → Q,∆

Figure 1: First-order classical propositional logic in sequent style

and thus Gentzen gives the rules of exchange:

Γ, P,Q,Γ′ ` ∆

Γ, Q, P,Γ′ ` ∆

Γ ` ∆, P,Q,∆′

Γ ` ∆, Q, P,∆′

The weakening rules state that if a sequent is provable, the same sequent is provable with
any number of extra assumptions and conclusions:

Γ ` ∆

Γ,Γ′ ` ∆

Γ ` ∆

Γ ` ∆,∆′

While the rules of contraction state that two assumptions (conclusions) of the same formula
can be shared:

Γ, P, P ` ∆

Γ, P ` ∆

Γ ` P, P,∆
Γ ` P,∆

Uses of the structural rules are often kept implicit. In particular, because we treat Γ and
∆ as sets rather than purely formal sequences of formulae, exchange and contraction are
completely automatic. We summarize the sequent calculus rules in Figure 1.

Unlike the single conclusion natural deduction, which is by nature intuitionistic, sequent
calculus with multiple conclusions corresponds to classical logic. This can be seen in the
derivation of Peirce’s law–((P → Q) → P) → P–a statement, which when added as an
axiom, has the consequence of turning intuitionistic logic into classical logic.

P ` P
P ` P,Q
` P → Q,P

(P → Q)→ P ` P
` ((P → Q)→ P)→ P

5

2.2 Term assignment for first-order classical propositional logic

We are now looking at the rules of Figure 1 not as inference rules but as typing rules,
instead of talking about the implication P → Q we will talk about a function type. We
introduce the notion of a command, say c, which corresponds to the sequent:

c : Γ ` ∆ ,

where Γ and ∆ give the types of the free variables appearing in c. Note, however, that
we now have two kinds of variables: the normal variables which stand for an unknown
term, and the co-variables which stand for continuations or co-terms. Terms and co-terms
correspond to a sequent having a distinguished formula on the right-hand and left-hand
side of the sequent, respectively. They are typed with the following judgements:

Γ ` v : T | ∆ Γ | e : T ` ∆

A term v (co-term e) has type T provided that its free variables occur in Γ and its free co-
variables occur in ∆. The construction of a command 〈v||e〉 is interpreted as a cut. The right
introduction rule for implication is captured by a lambda abstraction. Whereas, the left
introduction rule for implication is captured by a stack extension operator ·, reminiscent
of Lisp cons constructor. Given a command c we also need a way to focus on either a
conclusion or an assumption. This is the role of the constructs µα.c and µ̃x.c. The term
µα.c is similar to Felleisen C control operator, it allows one to name the context [5] or to
specify which output channel one wants to observe the answer of a command. The dual
construct µ̃x.c abstracts over a variable in a command to construct a co-term and can be
thought of as an open let expression (i.e., . of the form let x = 2 in t), it specifies which
channel one wants to observe the input of a command. The full syntax for the Curien-
Herbelin calculus is in Figure 2 while the static semantics is in Figure 3. The reduction rules
are given in Figure 4. To get an intuition for these rules, we consider a simple translation
from the lambda calculus.

Jλx.vK = λx.JvK
JxK = x

Jv1 v2K = µα. 〈Jv1K||Jv2K · α〉

Under this translation, we can see that the one step lambda reduction

(λx.v1) v2 −→ v1[v2/x]

6

T, S ∈ Types ::= T → S | t
e ∈ Co-Terms ::= α | v · e | µ̃x.c

v ∈ Terms ::= x | λx.e | µα.c
c ∈ Commands ::= 〈v||e〉

Figure 2: Syntax of µµ̃→

Γ ` v : T | ∆ Γ | e : T ` ∆

〈v||e〉 : Γ ` ∆
[cut]

Γ, x : T ` x : T | ∆
[Var]

Γ | α : T ` α : T,∆
[Co-Var]

Γ, x : A ` v : B | ∆
Γ ` λx : A.v : A→ B

[→ R]
Γ ` v : A | ∆ Γ | e : B ` ∆

Γ | v · e : A→ B ` ∆
[→ L]

c : (Γ ` α : T,∆)

Γ ` µα.c : T | ∆
[µ]

c : (Γ, x : T ` ∆)

Γ | µ̃x.c : T ` ∆
[µ̃]

Figure 3: Typing rules of µµ̃→

becomes a multi step reduction.

J(λx.v1) v2K = µα. 〈Jλx.v1K||Jv2K · α〉
= µα. 〈λx.Jv1K||Jv2K · α〉

〈µα. 〈λx.Jv1K||Jv2K · α〉||e〉 −→ 〈λx.Jv1K||Jv2K · e〉
−→ 〈Jv2K||µ̃x. 〈Jv1K||e〉〉
−→ 〈Jv1K[Jv2K/x]||e〉
= 〈Jv1[v2/x]K||e〉

It is remarkable that the sequent calculus provides also a typing for the Krivine abstract
machine, which is a simple model for the call-by-name evaluation of lambda calculus [2].

Notice that input and output abstraction produce a critical pair which leads to losing
confluence:

(〈x||δ〉 ←−µ 〈µα. 〈x||δ〉||µ̃x. 〈y||δ〉〉 −→µ̃ 〈y||δ〉

If we interpret the reduction rules as defining an equational theory, it is possible to prove

7

〈µα.c||e〉 −→ c[e/α] (µ)

〈v||µ̃x.c〉 −→ c[v/x] (µ̃)

〈λx.v1||v2 · e〉 −→ 〈v2||µ̃x. 〈v1||e〉〉 (β)

Figure 4: Dynamic Semantics of µµ̃→

that 〈x||δ〉 and 〈y||δ〉 are equal. In other words, the consequence of the critical pair is the
collapse of the equational theory: every term is equal to every other term.

Intermezzo 1. To restore confluence, Curien and Herbelin [2] restrict the syntax into
two subsystems: one corresponding to a call-by-name language and the other to a call-by-
value language. An alternative design, taken by Downen and Ariola [3], is to modify the
reduction rules for input and output abstraction to only fire in the presence of syntactic
values, that is, we restrict the µ and µ̃ rules as follows:

〈µα.c||E〉 −→ c[E/α]

〈V ||µ̃x.c〉 −→ c[V/x]

A call-by-name reduction theory can then be formed by making the class of values as large
as possible while excluding µ̃ from the class of co-values:

V, V1, V2, . . . ∈ Values ::= λx.v | x | µα.c
E,E1, E2, . . . ∈ Co-Values ::= v · E | α

Dually, a call-by-value reduction theory can be formed by making the class of co-values as
large as possible while excluding µ from the class of values.

V, V1, V2, . . . ∈ Values ::= λx.v | x
E,E1, E2, . . . ∈ Co-Values ::= v · e | α | µ̃x.c

Making the notion of values a parameter of the theory allows Downen and Ariola to also
give a call-by-need reduction theory that uses the same notion of value as call-by-value
but which further restricts the notion of co-value. In here however we will focus on the
unrestricted calculus, which we call µµ̃→.

3 Universal Quantification

As we did before, we will first look at the logic point of view, and then switch to the
computational interpretation of the universal quantification.

8

3.1 Proof Theory of ∀

The significant change needed to our language is that the syntax for formulae now allows
quantification over propositional variables:

P,Q ∈ Formulae ::= P → Q | t | ∀(t.P) .

In first-order propositional logic, one can say p → p, which could stand for the sentence
“if today is Friday then today is Friday”, now however we can also say ∀p.p → p which
means “for every proposition p, proposition p implies itself.” Hence, we have second-order
instead of first-order. Second-order propositional logic is more restricted than first-order
predicate logic because all predicate symbols have arity zero (since it does not expect any
arguments). On other other hand, second-order propositional logic is more general than
first-order predicate logic because it allows quantifications over propositions. With respect
to the inference rules: the left rule for the universal quantifier formalizes the idea that if
we can prove our goal under the assumption that some formula in some specific case holds,
then we can prove the same goal under the (usually stronger) assumption that the formula
is true in all cases.

Γ, P [Q/t] ` ∆

Γ,∀(t.P) ` ∆

The challenge is in giving the right rule. What we would like to be able to say is that if we
can prove some formula P which includes some proposition variables, then we can prove
that formula holds for any valuation of those variables.

Γ ` P,∆
Γ ` ∀(t.P),∆

[unsafe]

The problem is that we have to be careful about scoping, that is unfortunately always the
case once bound variables are introduced. The above naive version of the right rule does
not ensure that the proposition variable t being used is fresh, and so allows for proving
things which are false. This can be seen easily if we extend the logic with the connective ⊥
(pronounced “false”) which has no right introduction rule but can be always introduced on
the left, and > (pronounced “true”) which has no left introduction rule but can be always
introduced on the right.

t ` t
t ` ∀(t.t)
` t→ ∀(t.t)

` ∀(t.t→ ∀(t.t)))

` >,⊥
⊥ ` ⊥
∀(t.t) ` ⊥

> → ∀(t.t) ` ⊥
∀(t.t→ ∀(t.t)) ` ⊥

` ⊥

9

The key to avoiding this problem is to ensure that all uses of the proposition variables
are properly scoped. To to this, we modify the inference rules to track which proposition
variables are in scope. The judgments are extended by the addition of a context Θ which is
a set of proposition variables and is written adjacent and below the turnstile. We consider
a judgment syntactically well formed only if all free proposition variables occur in Θ, for
example, the following judgment:

t ` t

is not valid. We define the notation Θ, t to be the extension of Θ with the new proposition
variable t under the assumption that t is not in Θ.

Θ, t
∆
=Θ ∪ {t} when t 6∈ Θ

Θ, t
∆
=undefined when t ∈ Θ

The use of Θ allows us to give the rules of the universal connective in a safe way:

Γ, P [Q/t] `Θ ∆

Γ, ∀(t.P) `Θ ∆

Γ `Θ,t P,∆

Γ `Θ ∀(t.P),∆

It is easy to check that the addition of the Θ and the resulting modified rules avoid the
problematic derivation from earlier.

???

t `t ∀(t.t)
`t t→ ∀(t.t)

` ∀(t.t→ ∀(t.t)))

` >,⊥
⊥ ` ⊥
∀(t.t) ` ⊥

> → ∀(t.t) ` ⊥
∀(t.t→ ∀(t.t)) ` ⊥

` ⊥

There is no proof of the sequent t `t ∀(t.t) because the right introduction rule for the
universal is only defined if the proposition variable being introduced is fresh. Note however
that since we only consider formulae up to α equivalence, we could rename ∀(t.t) to ∀(s.s).
We are now able to apply the right rule as shown below:

t `t,s s
t `t ∀(s.s)

However, we are now stuck since there is no proof of the sequent t `t,s s. We give the
second-order propositional logic in sequent style in Figure 5.

Remark 1. To emphasize the difference between first-order and second-order propositional
logic, consider the formula P → P . In first-order propositional logic, one can say that

10

P,Q ∈ Formulae ::= P → Q | p | ∀(p.P)

Γ `Θ P,∆ Γ, P `Θ ∆

Γ `Θ ∆ Γ, P `Θ P,∆

Γ, Q `Θ ∆ Γ `Θ P,∆

Γ, P → Q `Θ ∆

Γ, P `Θ P,∆

Γ `Θ P → Q,∆

Γ, P [Q/t] `Θ ∆

Γ, ∀(t.P) `Θ ∆

Γ `Θ,t P,∆

Γ `Θ ∀(t.P),∆

Figure 5: Second-order classical propositional logic in sequent style

P → P is a tautology for every formula P . Notice that the quantification is at the meta-
level, whereas in second-order case quantification is made formal: the formula ∀p.p→ p is
a tautology:

p ` p
` p→ p

` ∀p.p→ p

3.2 Term assignment for ∀

It turns out that the computational interpretation of the universal quantification is poly-
morphism, that is the capability of writing uniform programs that work with a different
number, even infinite, of types. In the µµ̃→ calculus it is possible to write an identity
function at the type t→ t, where t stands for an unknown type. However, we cannot then
use the identity at different types. We enrich the set of types with polymorphic types:

T, S ∈ Types ::= T → R | t | ∀(t.T)

We can thus define an identity function for all types, which we call id:

` Λt.λx.x : ∀(t.t→ t)

We extend the judgments of µµ̃→ to incorporate a set of type variables. In each case we
consider the judgment syntactically well formed only if all free type variables occur in Θ.

Γ `Θ v : T | ∆ Γ | e : T `Θ ∆ c : (Γ `Θ ∆)

We then have to give a term assignment for the left and right rules for ∀. The term for
the right rule mirrors the term assignment for the arrow type, the only difference being

11

T, S ∈ Types ::= T → R | t | ∀(t.T)

e ∈ Co-Terms ::= α | µ̃x.c | v.e | T.e
v ∈ Terms ::= x | µα.c | λx.v | Λt.v

Γ | e : T [S/t] `Θ ∆

Γ | S.e : ∀(t.T) `Θ ∆
[∀L]

Γ `Θ,t v : T | ∆
Γ `Θ Λt.v : ∀(t.T) | ∆

[∀R]

〈Λt.v||T.e〉 −→ 〈v[T/t]||e〉

Figure 6: Syntax, static and dynamic semantics of µµ̃→,∀

that now we are waiting for a type instead of a term. The co-term for the left rule also is
similar to the left rule for the arrow type, the only difference being that we are waiting for
a type and the type of the remaining context depends on this type. The syntax, typing
rules and the dynamic semantics are given in Figure 6.

One interesting example of the power of µµ̃→,∀ is to apply the identity function to
itself producing a new term of type ∀(t.t → t). There are two ways to do this. The first,
and more direct, approach is made possible by the fact that µµ̃→,∀ is impredicative. That
is, type abstraction abstracts over all types, not just simple types. In particular, we can
instantiate the polymorphic identity function with the type of the polymorphic identity
function.

µα. 〈id||∀(t.t→ t).id · α)〉

The second way is to instantiate the identity function with two different types: once with
the desired type, and once with the function type.

Λt.µα. 〈id||t→ t.(µβ. 〈id||t.β〉 · α)〉]

In programming languages, such as Haskell or ML, polymorphism is implicit and so
there is no way to differentiate between the two ways of applying the identity function to
itself. The first implementation we gave works by specializing and then generalizing types
corresponds to the Hindley-Milner type elaboration these languages use [10]. Although
Haskell will permit a polymorphic type be assigned to the program that applies the identity
function to itself, ML will not.

System F in sequent calculus style is also considered by Summers and van Bakel, who
describe a classical sequent calculus with implication and universal connectives [14]. Their

12

calculus, called X , is quite different from µµ̃→,∀. Unlike µµ̃→,∀, X lacks any notion of
term or co-term, making everything into commands. Further, X does not use substitutions
in its reduction theory. Lengrand et al. present a sequent calculus approach to Pure
Type Systems [8]. They go significantly beyond the present work in considering not only
polymorphism, but the entire family of Pure Type Systems including dependent types.
Their PTS system is intuitionistic (i.e., it does not incorporate control operators) while
µµ̃→,∀ is classical. Further their interpretation of cuts as explicit substitutions differs
significantly from the interpretation of cuts in the µµ̃→,∀. In particular, because it is
intuitionistic, cuts are interpreted as explicit substitutions of terms in for variables, and it
does not expose the dualities of µµ̃→,∀. Lengrand and Miquel develop a sequent calculus
presentation of a non-confluent classical variant of System Fω and show it to be strongly
normalizing [9]. They utilize a one sided presentation of the sequent calculus instead of
our two sided presentation.

4 Existential Quantification

As we did for universal quantification, we will first look at the proof theory side, and then
consider the programming language feature that provides a computational reading of the
the existential quantification.

4.1 Proof theory for ∃

We consider one more formula of the form ∃p.P , as for example we can write ∃p.p →
p. To better illustrate the advantage of using a sequent style framework, we will first
consider the inference rules for existential in natural deduction style. Whereas for universal
quantification, the introduction rule was hard to define and the elimination rule was easy,
for the existential quantification the role is flipped: the introduction rule for existential is
easy but the elimination rule is hard to define. The existential introduction is expressed
as :

Γ ` P [Q/p]

Γ ` ∃p.P
In the sequent style, the rule is very similar, we simply add the context for the co-variables:

Γ ` P [Q/p],∆

Γ ` ∃(p.P),∆

Consider now the elimination rule:

Γ ` ∃p.P Γ, P ` Q
Γ ` Q

which has two proviso: p cannot occur free in Γ and in Q. To understand the role of these
proviso let us consider some examples.

13

Example 1. If one relaxes the proviso that the quantified variable can occur in the con-
clusion, then we could have the following wrong derivation:

∃p.p ` ∃p.p ∃p.p, p ` p
∃p.p ` p ∃e

∃p.p ` ∀p.p ∀i

Example 2. Let us first introduce the proof by contradiction rule (where contradiction is
represented by the constant ⊥) and the negation elimination rule, respectively:

Γ,¬P ` ⊥
Γ ` P RAA

Γ ` ¬ Γ ` P
Γ ` ⊥

¬e

With these rules now consider this derivation:

∃p.p,¬p ` ∃p.p
∃p.p,¬p, p ` ¬p ∃p.p,¬p, p ` p

∃p.p,¬p, p ` ⊥
¬e

∃p.p,¬p ` ⊥ ∃e

∃p.p ` p RAA

∃p.p ` ∀p.p ∀i

The wrong step consists in making the assumption p when p already occurs in the assump-
tions.

We now represent the elimination rule in sequent style. To avoid the problem of variable
clashing we keep track of the propositional variables in the set θ, as we did for the universal
quantification. The left rule becomes:

Γ, P `Θ,p ∆

Γ,∃(p.P) `Θ ∆

The notation θ, p captures the fact that p cannot occur in Γ and ∆. We present the full
system with both quantifiers in Figure 7. Notice the advantage of using a sequent style
framework: the rules for the existential quantification come out automatically as dual to
the universal quantification.

Example 3. Let us represents the wrong derivations we did before in sequent style. Con-
sider the first example, we have:

p `p p
∃p.p `p p

∃L

∃p.p ` ∀p.p ∀R

The existential to the left is not correct since p already occurs free in the conclusion.

14

Γ, P [Q/p] `Θ ∆

Γ, ∀(p.P) `Θ ∆

Γ `Θ,t P,∆

Γ `Θ ∀(p.P),∆

Γ `Θ P [Q/p],∆

Γ `Θ ∃(p.P),∆

Γ, P `Θ,t ∆

Γ, ∃(p.P) `Θ ∆

Figure 7: First-order propositional quantification

Example 4.

∃p.p `p ∃p.p
p `p p
∃p.p `p p

∃l

∃p.p `p p
cut

∃p.p ` ∀p.p ∀i

As before, the existential on the left is not valid since p occurs in the Θ.

4.2 Term assignment for ∃

It turns out that the computational interpretation of the existential quantification corre-
sponds to the notion of an abstract data type. A single piece of functionality might be
implemented in multiple ways. For example, an abstraction representing sets of integers
might be implemented as a linked list, or, alternatively as red-black tree. A client program
using only the abstract type of a set of integers can be written independently of the con-
crete implementation. To be concrete, let us consider a simple example. Take a module
COLORS [4] that exposes two constants red and black and a function show for turning these
colors into strings. In an ML or Haskell like language, one implementation of this module
COLORS might use booleans to store the color.

booleanColor = COLORS {
red = true

blue = false

show = λx.if x then“red”else“blue”

}

15

An alternative representation might encode the colors not as booleans, but as the strings.

stringColor = COLORS {
red = “red”

blue = “blue”

show = λx.x

}

Intuitively, these two implementations are in some sense equivalent. That is, if we have
a program that uses one, we would like to be able to substitute it in the other and know
that nothing about the observable behavior of the program changes. The problem is that
of course, we can not simply perform such a substitution. There may well be programs
that depend on implementation details of the booleanColor module. The program

if booleanColor.red then 1 else 2

produces the output 1 while the program

if stringColor.red then 1 else 2

has a type error. The key to enabling modularity and avoiding this problem is existential
types [11]. The signature of a module is an existential type and the implementation is a term
of that type. Because types constrain the set of possible contexts that a module may be
used, it can be used to prevent programs from determining implementation details. In our
example, we could assign a type which would make the two implementations observationally
indistinguishable.

COLORS = ∃t.{
red : t

blue : t

show : t→ String

}

Such a type would outlaw the program which distinguishes between the modules since the
projection booleanColor.red does not yield a term of boolean type, but rather a term
whose type is given as a type variable. In this way, the client of the module is generally
unable to determine what implementation the module is using. This implementation hiding
is important for practical programming, since it allows for software to be developed in pieces
independently of each other, and, for components to be replaced. Because the type system
enforces abstraction, these development practices are safe: we can prove that no clients of
a module depend on some implementation detail of that module by simply examining the
type of the module.

16

T, S ∈ Types ::= t|T → S|∀(t.T)|∃(t.T)
e . . . ∈ Co-Terms ::= α|µ̃x.c|v.e|T.e|Λt.e
v . . . ∈ Terms ::= x|µα.c|λx.v|T.v|Λt.v

Γ ` v : T | ∆ Γ | e : T ` ∆

〈v||e〉 : Γ ` ∆
[cut]

Γ, x : T ` x : T | ∆
[Var]

Γ | α : T ` α : T,∆
[Co-Var]

Γ, x : A ` v : B | ∆
Γ ` λx : A.v : A→ B

[→ R]
Γ ` v : A | ∆ Γ | e : B ` ∆

Γ | v · e : A→ B ` ∆
[→ L]

c : (Γ ` α : T,∆)

Γ ` µα.c : T | ∆
[µ]

c : (Γ, x : T ` ∆)

Γ | µ̃x.c : T ` ∆
[µ̃]

Γ | e : T [S/t] `Θ ∆

Γ | S.e : ∀(t.T) `Θ ∆
[∀L]

Γ `Θ,t v : T | ∆
Γ `Θ Λt.v : ∀(t.T) | ∆

[∀R]

Γ `Θ v : T [S/t] | ∆
Γ `Θ S.v : ∃(t.T) | ∆

[∃R]
Γ | e : T `Θ,t ∆)

Γ | Λt.e : ∃(t.T) `Θ ∆
[∃L]

〈µα.c||e〉 −→ c[e/α] (µ)
〈v||µ̃x.c〉 −→ c[v/x] (µ̃)
〈λx.v1||v2 · e〉 −→ 〈v2||µ̃x. 〈v1||e〉〉 (β)
〈Λt.v||T.e〉 −→ 〈v[T/t]||e〉 (∀)
〈S.v||Λt.e〉 −→ 〈v||e[T/t]〉 (∃)

Figure 8: Syntax, static and dynamic semantics of µµ̃→,∀,∃

We now enrich our set of types:

T, S ∈ Types ::= t|T → S|∀(t.T)|∃(t.T)

and add the following typing rules:

Γ `Θ v : T [S/t] | ∆
Γ `Θ S.v : ∃(t.T) | ∆

[∃R]
Γ | e : T `Θ,t ∆

Γ | Λt.e : ∃(t.T) `Θ ∆
[∃L]

The existential on the left corresponds to an abstraction over the propositional variable,
whereas the existential on the right corresponds to a pair of a type (the “witness”) and
the body of the module, that is, the implementation of the module. Notice the duality
with the universal quantification. Instead in natural deduction, as Pierce comments on
[12], the introduction and elimination forms for existential types are syntactically heavier

17

than the simple type abstraction and application associated to universals. We present the
full system which we write µµ̃→,∀,∃,in Figure 8.

Remark 2. To enhance the reader intuition, we present the term assignment for the
existential quantification in natural deduction and show its translation in sequent style.
We have:

Γ `θ v : T [S/t]

Γ `θ pack(S, v) : ∃t.T
Γ `θ v1 : ∃t.T Γ, x : T `θ,t v2 : S

Γ `θ open v1 as (t, x) in v2 : S

The dynamic semantics for call-by-value is:

open pack(S, V) as (t, x) in v → v[S/t, V/x]

The translation in sequent calculus is:

Jpack(S, v)K = S.JvK
Jopen v1 as (t, x) in v2K = µα. 〈Jv1K||Λt.µ̃x. 〈Jv2K||α〉〉

Notice how the translation preserves the semantics:

µα. 〈S.JV K||Λt.µ̃x. 〈JvK||α〉〉 → µα. 〈JV K||µ̃x. 〈JvK||α〉 [S/t]〉 → µα. 〈JvK[S/t][JV K/x]||α〉

We present in sequent calculus some examples taken from [12]. Consider the package p4 be

pack(nat, (0, λx : nat.x+ 1) : ∃t.t ∗ (t→ nat) ,

the term
open p4 as (t, x) in snd (fst x)

evaluates to 1. This is expressed in the sequent as an interaction between the producer of
the module and the consumer or client of the module:

〈nat.(0, λx : nat.x+ 1)||Λt.µ̃x. 〈x||snd.µ̃f. 〈f ||µα. 〈x||fst.α〉 .δ〉〉〉

Note that if we changed the type of p4 to ∃t.t ∗ (t → t) then the above command would
not type since type t will escape its scope. The same happens with the command

〈nat.(0, λx : nat.x+ 1)||Λt.snd.µ̃x. 〈x+ 1||α〉〉 ,

which will raise a typing error since the type of x is t (the client of the package does not
know the witness type) and therefore x + 1 does not type checks. Another error is raised
with the program:

〈nat.(0, λx : nat.x+ 1)||Λt.fst.α〉

The context has this typing judgement:

Λt.fst.α : ∃t.t ∗ (t→ t) `t α : t

18

Since t occurs in ∆, one would have:

fst.α : s ∗ (s→ s) `t,s α : t

which is not derivable. If the above term were typable then we would have:

µα. 〈nat.0||Λs.s〉

which will lead to having an inhabitant of the type ∀t.t: Λs.µα. 〈nat.0||Λs.s〉.

5 Strong Normalization

We would like to prove that µµ̃→,∀,∃ is strongly normalizing: if a command is typeable it
is not the start of any infinite reduction sequences. From the perspective of computation,
strong normalization ensures that all programs terminate. From the perspective of logic,
strong normalization allows us to prove internal consistency. Internal consistency is the
proposition that there exists an unprovable formula.

Theorem 1. Second order propositional logic is internally consistent.

Proof. Consider the sequent `t t. It is enough to show that there is no proof of this sequent.
Assume, by contradiction, that there was such a proof. Then, there would have to be some
command c1 : (`t α : t). Any command c1 reduces to also has the type `t α : t (type
safety). In particular, by strong normalization any reduction sequence starting at c1 must
terminate, meaning there must be some c2 : (`t α : t) such that c2 is not the start of any
reduction sequence. For 〈v||e〉 to be typeable and not the start of any reduction sequence,
one of v or e must be a (co)-variable. Since 〈v||e〉 (`t α : t), and `t x : T | α : t is not
derivable, we know that e is a co-variable. Indeed, the only possibility is that e = α. Thus,
we know 〈v||α〉 : (`t α : t) meaning `t v : t | α : t. Since t is a type variable, the only
available rule for v is the output abstraction rule µβ.c′, but if 〈µα.c′||α〉 −→ c′[α/β] which
violates our assumption that 〈v||e〉 is not the start of any reduction sequence. As such,
there is no command of type (`t α : t) and so no proof of `t t.

One way we might go about proving strong normalization, would be to come up with
some “measure” in the form of a natural number that we assign to every command, and
show that during reduction this number is strictly decreasing. Unfortunately, such a strat-
egy is unlikely to work. Strong normalization for µµ̃→,∀ would imply strong normalization
for System F which in turn would imply the consistency of second-order Peano arithmetic
[18], and each of those steps can be shown by simple induction. Thus, because a combi-

natorial proof of strong normalization for µµ̃→,∀
S would presumably be formalizable using

the axioms of arithmetic, it could be used to construct a proof of the consistency of Peano
arithmetic from within Peano arithmetic. This, of course, is outlawed by Gödel’s incom-
pleteness theorem (and the consistency of arithmetic). Instead, we adopt a proof technique

19

that is more semantic in character based on Girard’s “reducibility candidates” method [7].
As such, we freely take advantage of the non-arithmetic reasoning available in set theory.

The idea is to provide a semantic interpretation of the meaning of types. By carefully
constructing the semantics we can ensure two things: that the typing rules are sound
with respect to the semantics, and that semantically well typed programs are strongly
normalizing.

In order to simplify the presentation, we focus on the steps necessary to get the proof
to work for implication. Our proof extends to handle ∀ and ∃ using standard techniques
[7]. The proof for µµ̃→ allows us to capture those aspects of the proof that are unique to
the setting of µµ̃.

There are many possible approaches to providing a denotational semantics to a pro-
gramming language–here we use the free one. We will simply interpret µµ̃ in terms of
itself: terms will be interpreted as terms, co-terms as co-terms, and commands as com-
mands. The reader may be surprised that such an approach to semantics would be useful,
indeed, it does not seem obvious that it deserves to be called ”semantics” at all. For our
purposes though, these “term models” are interesting. That is because what we are inter-
ested in is the semantic interpretation of types in order to prove a property (namely strong
normalization) stated in terms of the operational semantics of terms.

In languages such as the lambda calculus where there is only one syntactic category of
terms, term models work by interpreting types as sets of terms. In the sequent calculus
though, types don’t just interpret terms but also co-terms. Thus, the semantic function
J−K interprets types as pairs of sets of terms and sets of co-terms.

JT K ∈ P(Term)× P(Co-Term)

Given the interpretation of types, we can define what it means for a term to be semantically
well typed. In place of the syntactic judgment

Γ ` v : T | ∆

we have the semantic judgment
Γ � v : T | ∆

where Γ and ∆ are sets of (co-)variables together with types. Variables stand-in for possible
substitutions, so the meaning of Γ � v : T | ∆ must be that for any substitution φ that
implements Γ and ∆, applying φ to v (which we will, in a slight abuse of notation, write
φ(v)) must be in the set of terms which is associated with T .

Γ � v : T | ∆ ∆
= ∀ψ ∈ JΓK, ψ ∈ J∆K⇒ ψ(v) ∈ fst(JTK)

Here ψ ∈ JΓK means that ψ maps variables in Γ to terms in the sets associated with those
variable types.

JΓK = {ψ : Var→ Term|∀(x : T) ∈ Γ, ψ(x) ∈ fst(JTK)}
J∆K = {ψ : Co-Var→ Co-Term|∀(α : T) ∈ Γ, ψ(α) ∈ snd(JTK)}

20

Similarly, we can give a semantic typing judgment for co-terms and commands. We use
the notation SN for the set of strongly normalizing commands.

Γ | e : T � ∆
∆
= ∀ψ ∈ JΓK, ψ ∈ J∆K⇒ ψ(e) ∈ snd(JTK)

c : (Γ � ∆)
∆
= ∀ψ ∈ JΓK, ψ ∈ J∆K⇒ ψ(c) ∈ SN

We wish to establish that soundness, that is, if Γ ` v : T | ∆ is derivable, then the
semantic judgment Γ � v : T | ∆ is true (and the equivalent statements for co-terms and
commands).

The basic way to show soundness will be to induct over all the possible proofs. In
order to make induction work there are certain conditions that must hold on the output
of our semantic function J−K. We call a pair that satisfies these conditions a reducibility
candidate and the set of reducibility candidates CR. For example, one rule that we will
have to consider is the cut rule.

Γ ` v : T | ∆ Γ | e : T ` ∆

〈v||e〉 : Γ ` ∆

Semantically, the cut rule tells us that:

(Γ � v : T | ∆) ∧ (Γ | e : T � ∆)⇒ (c : (Γ � ∆))

Expanding this definition out yields:

(∀ψ ∈ JΓK, ψ ∈ J∆K⇒ ψ(v) ∈ fst(JTK))
∧(∀ψ ∈ JΓK, ψ ∈ J∆K⇒ ψ(e) ∈ snd(JTK))
⇒ (∀ψ ∈ JΓK, ψ ∈ J∆K⇒ ψ(c) ∈ SN)

Our first condition on reducibility candidates then is simply the condition needed to make
this always hold.

CR 1. (Orthogonality) For any term v and co-term e such that v ∈ fst(JTK) and e ∈
snd(JTK) the command 〈v||e〉 is strongly normalizing.

Another useful property would be the semantic equivalent of subject reduction. If
a (co-)term is semantically well typed, then anything it internally reduces to should be
semantically well typed also.

CR 2. Forward Closure:

1. If v ∈ fst(JTK) and v −→ v′ then v′ ∈ fst(JTK).

2. If e ∈ snd(JTK) and e −→ e′ then e′ ∈ snd(JTK).

21

In addition to the conditions we need to ensure soundness, we want the model to ensure
that all typed commands are strongly normalizing. But c : (Γ � ∆) only ensures that for
any ψ ∈ JΓK ∧ ψ ∈ J∆K the substitution command is strongly normalizing: ψ(c) ∈ SN . To
make sure c itself is strongly normalizing we need to make sure that the identity substitution
is in JΓK and J∆K.

CR 3. Inclusion of (Co-)Variables:

1. Var ⊆ fst(JTK) and

2. Co-Var ⊆ snd(JTK).

Finally, returning to the conditions needed for soundness, the set of terms and the set
of co-terms should include some uses of µ and µ̃, respectively. The abstraction rule:

c : (Γ ` α : T,∆)

Γ ` µα.c : T | ∆

has the semantic interpretation that

c : (Γ � α : T,∆)⇒ Γ � µα.c : T | ∆

which expands to:

(∀ψ ∈ JΓK, ψ ∈ Jα : T,∆K⇒ ψ(c) ∈ SN)⇒ (∀ψ ∈ JΓK, ψ ∈ J∆K⇒ µα.ψ(c) ∈ fst(JT K)

This gives our last condition on reducibility candidates.

CR 4. Saturation:

1. {µα.c|∀e ∈ snd(JT K), c[e/α] ∈ SN} ⊆ fst(JT K);

2. {µ̃x.c|∀v ∈ fst(JT K), c[v/x] ∈ SN} ⊆ snd(JT K).

To summarize, types are to be interpreted as reducibility candidates and a reducibility
candidate is a pair of a set of terms and a set of co-terms that satisfies the conditions of

• CR 1: orthogonality,

• CR 2: forward closure,

• CR 3: inclusion of (co-)variables and

• CR 4: saturation.

Lemma 1. If (A,B) is a reducibility candidate then all terms in A and co-terms in B are
internally strongly normalizing.

22

Proof. Let v ∈ A. We need to show that v is strongly normalizing. (A,B) is a reducibil-
ity candidate, thus it satisfies CR 3 (inclusion of (co-)variables) so α ∈ B. Further,
since (A,B) is a reducibility candidate, it must satisfy CR 1 (orthogonally) meaning the
command 〈v||α〉 is strongly normalizing. By contradiction, assume v was not strongly nor-
malizing, then there would be an infinite reduction sequence v −→ v1 −→ v2 −→ . . . but
that would imply the existence of an infinite reduction sequence 〈v||α〉 −→ 〈v1||α〉 −→
〈v2||α〉 −→ . . . which is a contradiction. Dually, if e ∈ B then we know x ∈ A and that the
command 〈x||e〉 is SN so e must be internally strongly normalizing.

Given a command 〈v||e〉 we can divide the possible reductions into those that would happen
internally to v and e and those that happen at the head and so involve both v and e. A
command is strongly normalizing precisely if all the commands it reduces to are strongly
normalizing. The next lemma allows us to consider only head reduction in certain cases

Lemma 2. Let A be a set of terms and B a set of co-terms, then (A,B) is orthogonal
(∀v ∈ A,∀e ∈ B, 〈v||e〉 ∈ SN) if:

1. A and B are forward closed,

2. all terms in A and co-terms in B are strongly normalizing, and

3. ∀v ∈ A,∀e ∈ B for any command c such that 〈v||e〉 head reduces to c we have that
c ∈ SN .

Proof. Given v, v′ ∈ A and e, e′ ∈ B we say (v, e) > (v′, e′) if either

1. v −→? v′ and e −→+ e′ or

2. e −→? e′ and v −→+ v′.

It is easy to see that > is well founded on A× B precisely because both A and B are
internally strongly normalizing. Now, we wish to show that for all v ∈ A and e ∈ B the
command 〈v||e〉 ∈ SN . We do this by Noetherian induction on (v, e) using > as the well
order. 〈v||e〉 is strongly normalizing if every thing it reduces to is strongly normalizing.
There are three possible reductions:

1. 〈v||e〉 −→ 〈v′||e〉 where v −→ v′. Since A is forward closed v′ ∈ A and since (v, e) >
(v′, e), 〈v′||e〉 is strongly normalizing by the inductive hypothesis.

2. 〈v||e〉 −→ 〈v||e′〉 where e −→ e′. Since B is forward closed e′ ∈ B and since (v, e) >
(v, e′), 〈v||e′〉 is strongly normalizing by the inductive hypothesis.

3. 〈v||e〉 −→ c by head reduction, so c ∈ SN by assumption.

Note that our use of Noetherian induction avoids the need to consider the base case ex-
plicitly.

23

Now that we know what must be true about the interpretation of every type, we can
consider what must be true about interpretation of specific types. We will assume that the
function J−K is defined at all type variables, and yields a reducibility candidate (that is,
a pair of sets satisfying the four conditions). We require no additional conditions for the
candidate defined for type variables because there are no introduction or elimination rules
for type variables. By contrast, we will define the meaning of JT1 → T2K. In particular, in
order to ensure soundness, we must support the left introduction rule for implication.

{v · e|v ∈ fst(JT1K), e ∈ snd(JT2K)} ⊆ snd(JT1 → T2K)

Similarly, we need to incorporate the right rule for implication.

{λx.v|∀v′ ∈ fst(JT1K), v[v′/x] ∈ fst(JT2K))} ⊆ fst(JT1 → T2K))

Based on what we have seen so far, we can give a pair of mutually recursive equations for
JT1 → T2K

fst(JT1 → T2K)) = Var

∪ {λx.v|∀v′ ∈ fst(JT1K)), v[v′/x] ∈ fst(JT2K))}
∪ {µα.c|∀e ∈ snd(JT1 → T2K), c[e/α] ∈ SN}

snd(JT1 → T2K) = Co-Var

∪ {v · e|v ∈ fst(JT1K)), e ∈ snd(JT2K)}
∪ {µ̃x.c|∀v ∈ fst(JT1 → T2K)), c[v/x] ∈ SN}

This is not enough to define JT1 → T2K since we don’t know how many solutions these
equations have (if they have any at all). To get around this, we define a function FT1→T2

FT1→T2 : P(Term)× P(Co-Term)→ P(Term)× P(Co-Term)

FT1→T2(A,B) = (Var

∪ {λx.v|∀v′ ∈ fst(JT1K), v[v′/x] ∈ fst(JT2K)}
∪ {µα.c|∀e ∈ B, c[e/α] ∈ SN}
,Co-Var

∪ {v · e|v ∈ fst(JT1K), e ∈ snd(JT2K)}
∪ {µ̃x.c|∀v ∈ A, c[v/x] ∈ SN})

Indeed, we could generalize this construction. Let S be an arbitrary pair of a set of

24

terms and a set of co-terms.

FS : P(Term)× P(Co-Term)→ P(Term)× P(Co-Term)

FS(A,B) = (Var

∪ fst(S)

∪ {µα.c|∀e ∈ B, c[e/α] ∈ SN}
,Co-Var

∪ snd(S)

∪ {µ̃x.c|∀v ∈ A, c[v/x] ∈ SN})

We recover the definition of FT1→T2 by setting S = ({λx.v|∀v′ ∈ fst(JT1K), v[v′/x] ∈
fst(JT2K)}, {v · e|v ∈ fst(JT1K), e ∈ snd(JT2K)}).

Examining FS we see that fst(FT1→T2(A,B)) is determined entirely by B. What is
more, fst(FS(A,−) is monotonically decreasing (order reversing) in terms of the ordinary
ordering of sets as subset inclusion. Similarly, the second component of FS(A,B) is deter-
mined entirely by A and is monotonically decreasing in A. We can thus define the ordering
relation v on the elements of P(Term)×P(Co-Term) as the product of the usual set the-
oretic inclusion in the first component and the dual of the usual set theoretic ordering in
the second.

(A,B) v (A′, B′)
∆
= A ⊆ A′ ∧B′ ⊆ B

Lemma 3. FS is monotonic with respect to v.

Proof. Suppose (A,B) v (A′, B′). We wish to show that FS(A,B) v FS(A′, B′). By the
definition of v we know A ⊆ A′ and that B′ ⊆ B. Given any command c such that
∀e ∈ B, c[e/α] ∈ SN it must be the case that ∀e ∈ B′, c[eα] ∈ SN . Therefore, the set of
terms {µα.c|∀e ∈ B, c[e/α] ∈ SN} is a subset of {µα.c|∀e ∈ B′, c[e/α] ∈ SN}. Dually,
{µ̃x.c|∀v ∈ A′, c[v/x] ∈ SN} ⊆ {µ̃x.c|∀v ∈ A, c[v/x] ∈ SN}. Thus:

fst(FS(A,B)) = Var ∪ fst(S)

∪ {µα.c|∀e ∈ B, c[e/α] ∈ SN}
⊆ Var ∪ fst(S)

∪ {µα.c|∀e ∈ B′, c[e/α] ∈ SN}
⊆ fst(FS(A′, B′))

snd(FS(A′, B′)) = Co-Var ∪ snd(S)

∪ {µ̃x.c|∀v ∈ A′, c[v/x] ∈ SN}
⊆ Co-Var ∪ snd(S)

∪ {µ̃x.c|∀v ∈ A, c[v/x] ∈ SN}
⊆ snd(FS(A,B))

25

fst(FS(A,B)) ⊆ fst(FS(A′, B′)) and snd(FS(A′, B′)) ⊆ snd(FS(A,B)). Therefore FS(A,B) v
FS(A′, B′).

Lemma 4. FS has a fixed point, and indeed a least fixed point, when ordered by v.

Proof. Since P(Term) × P(Co-Term) ordered by v is the product partial orders of two
partial orders each of which is a complete lattice, P(Term) × P(Co-Term) is a complete
lattice ordered by v. Therefore, by the Knaster-Tarski theorem [17] FS has a least fixed
point.

We can now give the semantic interpretation of types. To do this, we will use an
auxiliary semantic function L−M which we will use to seed the fixed point construction.

L−M : Type→ P(Term)× P(Co-Term)

LtM = (∅, ∅)
LT1 → T2M = ({λx.v|∀v′ ∈ fst(JT1K), v[v′/x] ∈ fst(JT2K)}

, {v · e|v ∈ fst(JT1K), e ∈ snd(JT2K)})

From the seed we can define the interpretation of types (J−K) by way of the fixed point.
For our proof to work it does not matter which fixed point we take for JTK, but the least
fixed point is available and defined.

JT K = lfpvFLT M

Since JT K is a fixed point of FLT M we know

fst(JT K) = Var ∪ fst(LT M)
∪ {µα.c|∀e ∈ snd(JT K), c[e/α] ∈ SN}

snd(JT K) = Co-Var ∪ snd(LT M)
∪ {µ̃x.c|∀v ∈ fst(JT K), c[v/x] ∈ SN}

Remark 3. We showed in Lemma 4 that FT1→T2 had a least fixed point, but it may build
intuition to work through the construction of this fixed point. In particular, observe that
given any set of Q ∈ P(P(Term)× P(Co-Term) we have:

sup{FT1→T2(T)|T ∈ Q} = FT1→T2(sup Q)

Which is to say that FT1→T2 preserves limits. Thus, the least fixed point guaranteed to
exist by the Knaster-Tarski theorem is also given constructively by Kleene’s fixed point
theorem as the limit of an increasing chain.

26

The least element of the domain P(Term)× P(Co-Term) ordered by v is the pair

⊥ = (∅,Co-Term)

We can then define the upward chain of candidates C0, C1,

C0 = ⊥
Cn+1 = FT1→T2(Cn)

The least upper bound is then given as the supremum of this chain.

JT1 → T2K = lfpv(FT1→T2)

= sup{Cn|n ∈ N}

= (
⋃
n

fst(Cn),
⋂
n

snd(Cn))

Lemma 5. Whenever LT M is internally strongly normalizing so is JT K

Proof. Assume LT M is internally strongly normalizing. If v ∈ fst(JT K) then either

• v ∈ Var in which case it is internally strongly normalizing as there are no possible
reductions,

• v ∈ fst(LT M) and so internally strongly normalizing by assumption, or

• v ∈ {µα.c|∀e ∈ snd(JT K), c[e/α] ∈ SN} and since α ∈ snd(JT K) (by definition) we
know that v = µα.c where c = c[α/α[is strongly normalizing.

If e ∈ snd(JT K) then either

• e is a variable and so strongly normalizing,

• e ∈ fst(LT M) and so internally strongly normalizing by assumption, or

• e ∈ {µ̃x.c|∀v ∈ fst(JT K), c[v/x] ∈ SN} where since x ∈ fst(JT K) we know e is strongly
normalizing.

Lemma 6. If LT M satisfies the forward closure property then so does JT K

Proof. If v ∈ fst(JT K) and v −→ v′ then v′ ∈ fst(JT K).

• If v is a variable than there does not exists a v′ such that v −→ v′.

• If v ∈ fst(LT M) and v −→ v′ then by assumption v′ ∈ fst(LT M) and so v′ ∈ JT K

27

• If v = µα.c then for any e ∈ snd(JT K) we know c[e/α] ∈ SN . Suppose v −→ v′ then
v′ = µα.c′ where c −→ c′ meaning that for any e ∈ snd(JT K), c[e/α] −→ c′[e/α] and
so c′[e/α] ∈ SN . Thus µα.c′ ∈ fst(JT K).

Dually, if e ∈ snd(JT K) and e −→ e′ then e′ ∈ snd(JT K).

• If e is a co-variable then there is no possible e′ such that e −→ e′.

• If e ∈ snd(LT M) and e −→ e′ then by assumption e′ ∈ snd(LT M) and so e′ ∈ JT K.

• If e = µ̃x.c then ∀v ∈ fst(JT K), c[v/x] ∈ SN so if c −→ c′ then ∀v ∈ fst(JT K), c′[v/x] ∈
SN so µ̃x.c′ ∈ snd(JT K).

We define a nucleus as a pair (A,B) where A is a set of terms and B is a set of co-terms
such that

1. A and B are internally strongly normalizing;

2. A and B are forward closed;

3. there are no terms of the form µα.c in A and no co-terms of the form µ̃x.c in B;

4. (A,B) is orthogonal, that is ∀v ∈ A,∀e ∈ B, 〈v||e〉 ∈ SN .

The notion of nucleus allows us to abstract out what we need to prove about LT M in
order to show that JT K is a reducibility candidate.

Lemma 7. If LT M is a nucleus then JT K is orthogonal.

Proof. We wish to show that v ∈ fst(JT K) and e ∈ snd(JT K) implies that 〈v||e〉 ∈ SN while
we know that LT M is a nucleus. We know by Lemma 6 that fst(JT K) and snd(JT K) are
forward closed under reduction, and by Lemma 5 that these internal reduction relations
are well founded. Thus, by Lemma 2 We need only consider head reduction. There are
only three forms of head reduction to consider.

1. 〈µα.c||e〉 −→ c[e/α]. Here, c[e/α] is strongly normalizing since we know that fst(LT M)
does not contain any term of the form µα.c (because it is a nucleus) if v = µα.c we
know by the definition of fst(JT K) that ∀e ∈ snd(JT K), c[e/α] ∈ SN .

2. 〈v||µ̃x.c〉 −→ c[v/x]. c[v/x] is strongly normalizing since if e = µ̃x.c we know that
∀v ∈ fst(JT1 → T2K), c[v/x] ∈ SN .

3. 〈λx.v′′||v′ · e′〉 −→ 〈v′||µ̃x. 〈v′′||e′〉〉. If λx.v′′ ∈ fst(JT K) then λx.v′′ ∈ fst(LT M). Simi-
larly, if v′ · e′ ∈ snd(JT K) then v′ · e′ ∈ snd(LT M). By the assumption that LT M is a
nucleus we know that 〈λx.v′′||v′ · e′〉 is strongly normalizing and so is 〈v′||µ̃x. 〈v′′||e′〉〉.

28

Lemma 8. If LT M is a nucleus then JT K is reducibility candidate.

Proof. • CR 1: Orthogonality holds by Lemma 7.

• CR 2: Forward closure holds by Lemma 6.

• CR 3: Inclusion of (co-)variables holds by definition of FLT M.

• CR 4: Saturation holds by the fact that JT K is a fixed point of FLT M.

Lemma 9. For all types T in µµ̃→, JT K is a reducibility candidate.

Proof. By structural induction on T .

• In the base case T is a type variable. By Lemma 8 it is enough to show that LT M =
(∅, ∅) is a nucleus.

1. ∅ and ∅ are internally strongly normalizing (vacuously).

2. ∅ and ∅ are forward closed (vacuously).

3. There are no terms of the form µα.c in ∅ and no co-terms of the form µ̃x.c in ∅
by the definition of the empty set.

4. (∅, ∅) is orthogonal, that is ∀v ∈ ∅, ∀e ∈ ∅, 〈v||e〉 ∈ SN holds vacuously.

• In the inductive case we have T is of the form T1 → T2. By Lemma 8 it is enough
to show that LT M is a nucleus under the inductive hypothesis that JT1K and JT2K are
reducibility candidates.

1. {λx.v|∀v′ ∈ fst(JT1K), v[v′/x] ∈ fst(JT2K)} and {v·e|v ∈ fst(JT1K), e ∈ snd(JT2K)}
are internally strongly normalizing.

– Let v be a term such that ∀v′ ∈ fst(JT1K), v[v′/x] ∈ fst(JT2K). Since JT1K
is a reducibility candidate it must satisfy CR 3 and so x ∈ fst(JT1K),
therefore v = v[x/x] ∈ fst(JT2K). Since JT2K is a reducibility candidate, by
Lemma 1 we know it is internally strongly normalizing, so v must be strongly
normalizing and therefore λx.v is strongly normalizing. Thus {λx.v|∀v′ ∈
fst(JT1K), v[v′/x] ∈ fst(JT2K)} is internally strongly normalizing.

– Let v ∈ fst(JT1K) and e ∈ snd(JT2K). Since JT1K and JT2K are reducibility
candidates by Lemma 1 they are internally strongly normalizing and so
there for v and e are strongly normalizing so the co-term v · e is strongly
normalizing. Thus {v · e|v ∈ fst(JT1K), e ∈ snd(JT2K)} is an internally
strongly normalizing set.

29

2. {λx.v|∀v′ ∈ fst(JT1K), v[v′/x] ∈ fst(JT2K)} and {v·e|v ∈ fst(JT1K), e ∈ snd(JT2K)}
are forward closed.

– Let λx.v such that ∀v′ ∈ fst(JT1K), v[v′/x] ∈ fst(JT2K). Given any v1

such that λx.v −→ v1 we know v1 = λx.v′1 where v −→ v′1. Now, given
any v′ ∈ fst(JT1K) we know v[v′/x] ∈ fst(JT2K). Since v −→ v′1 we also
know that v[v′/x] −→? v′1[v′/x] Because fst(JT2K) is a reducibility candi-
date it must be forward closed, so v′1[v′/x] ∈ fst(JT2K). This shows that
∀v′ ∈ fst(JT1K), v′1[v′/x] ∈ fst(JT2K). Thus, {λx.v|∀v′ ∈ fst(JT1K), v[v′/x] ∈
fst(JT2K)} is forward closed.

– Since JT1K and JT2K are reducibility candidates fst(JT1K) and snd(JT2K) are
forward closed and so is {v · e|v ∈ fst(JT1K), e ∈ snd(JT2K)}.

3. By definition there are no terms of the form µα.c in {λx.v|∀v′ ∈ fst(JT1K), v[v′/x] ∈
fst(JT2K)} and no co-terms of the form µ̃x.c in {v·e|v ∈ fst(JT1K), e ∈ snd(JT2K)}.

4. ({λx.v|∀v′ ∈ fst(JT1K), v[v′/x] ∈ fst(JT2K)}, {v · e|v ∈ fst(JT1K), e ∈ snd(JT2K)})
is orthogonal, that is ∀v ∈ A,∀e ∈ {v · e|v ∈ fst(JT1K), e ∈ snd(JT2K)}, 〈v||e〉 ∈
SN .

To see why this is the case, recall that a command is strongly normalizing
if every command it reduces to is strongly normalizing. Since, {λx.v|∀v′ ∈
fst(JT1K), v[v′/x] ∈ fst(JT2K)} and {v · e|v ∈ fst(JT1K), e ∈ snd(JT2K)} are in-
ternally strongly normalizing and forward closed, we need only consider head
reductions (Lemma 6). For head reductions, consider a v such that ∀v1 ∈
fst(JT1K), v[v1/x] ∈ fst(JT2K), a v′ ∈ fst(JT1K) and an e ∈ snd(JT2K). We wish
to show that the command 〈λx.v||v′ · e〉 is strongly normalizing. The only pos-
sible head reduction is 〈λx.v||v′ · e〉 −→ 〈v′||µ̃x. 〈v||e〉〉. So, it is enough to show
that 〈v′||µ̃x. 〈v||e〉〉 ∈ SN .

We know that ∀v1 ∈ fst(JT1K), v[v1/x] ∈ fst(JT2K) and that e ∈ snd(JT2K). Since
JT2K is a reducibility candidate it is orthogonal, so ∀v1 ∈ fst(JT1K), 〈v[v1/x]||e〉 ∈
SN which can be rewritten as ∀v1 ∈ fst(JT1K), 〈v||e〉 [v1/x] ∈ SN . Since JT1K is
a reducibility candidate it is saturated, so if ∀v1 ∈ fst(JT1K), 〈v||e〉 [v1/x] ∈ SN
then µ̃x. 〈v||e〉 ∈ snd(JT1K). We also know that v′ ∈ fst(JT1K) and since JT1K is
a reducibility candidate it is orthogonal, so 〈v′||µ̃x. 〈v||e〉〉 ∈ SN .

Theorem 2. Soundness for µµ̃→:

1. if Γ ` v : T | ∆ is derivable then Γ � v : T | ∆;

2. if Γ | e : T ` ∆ is derivable then Γ | e : T � ∆;

3. if c : (Γ ` ∆) is derivable then c : (Γ � ∆).

30

Proof. By mutually induction on the derivation.

• The variable rule

Γ, x : T ` x : T | ∆

is sound if it is always the case that Γ, x : T � x : T | ∆. Expanding the definition,
this says that ∀ψ ∈ JΓ, x : T K, ψ ∈ J∆K, ψ(x) ∈ fst(JT K) which holds since ∀ψ ∈
JΓ, x : T K, ψ(x) ∈ snd(JT K) by definition.

• The co-variable rule is dual to the variable rule.

Γ | α : T ` α : T,∆

is sound if it is always the case that Γ | α : T � α : T,∆ which holds since by
definition ∀ψ ∈ Jα : T,∆K, ψ(α) ∈ JT K.

• The cut rule

Γ ` v : T | ∆ Γ | e : T ` ∆

〈v||e〉 : (Γ ` ∆)

is sound if it is always the case that 〈v||e〉 : (Γ � ∆) under the inductive hypothesis
that Γ � v : T | ∆ and Γ | e : T ` ∆. Let ψ be a substitution such that ψ ∈ JΓK
and ψ ∈ J∆K. We wish to show that ψ(〈v||e〉) ∈ SN . By inductive hypothesis, we
know that ψ(v) ∈ fst(JT K) and that ψ(e) ∈ snd(JT K). Further, we know by Lemma
9 that T is a reducibility candidate and so therefore is orthogonal. Thus, it must be
the case that 〈ψ(v)||ψ(e)〉 ∈ SN and 〈ψ(v)||ψ(e)〉 = ψ(〈v||e〉).

• The output abstraction rule

c : (Γ ` α : T,∆)

Γ ` µα.c : T | ∆

is sound if it is always the case that Γ � µα.c : T | ∆ whenever c : (Γ � α : T,∆).
Let ψ be a substitution such that ψ ∈ JΓK and ψ ∈ J∆K. We wish to show that
ψ(µα.c) ∈ fst(JT K). By Lemma 9 that JT K is a reducibility candidate. Further,
ψ(µα.c) = µα.ψ(c). It is thus enough to show that ∀e ∈ snd(JT K), ψ(c)[e/α] ∈ SN .
Let e ∈ snd(JT K). We can construct the substitution, ψ′ = ψ, α 7→ e. By definition,
ψ′ ∈ JΓK and ψ′ ∈ Jα : T,∆K. Thus by the inductive hypothesis, we that that
ψ′(c) ∈ SN . Since ψ′(c) = ψ(c)[α/e], we are done.

31

• The input abstraction rule

c : (Γ, x : T ` ∆)

Γ | µ̃x : T.c ` ∆

is dual to output abstraction and is sound by a symmetric argument.

• The right rule for implication

Γ, x : T ` v : S | ∆
Γ ` λx.v : T → S | ∆

is sound if Γ � λx.v : T → S | ∆ holds under the inductive hypothesis that Γ, x : T �
v : S | ∆. To show this, let ψ be a substitution such that ψ ∈ JΓK and ψ ∈ J∆K. We
wish to show that ψ(λx.v) ∈ fst(JT K). For any v′ ∈ fst(JT K) we can define the new
substitution ψ′ = ψ, x 7→ v′. By definition, we know that ψ′ ∈ JΓ, x : T K and ψ′ ∈ J∆K.
Thus, by inductive hypothesis, ψ′(v) = ψ(v)[v′/x] ∈ JSK. Abstracting over the v′ we
see that ∀v′ ∈ fst(JT K), ψ(v)[v/′] ∈ fst(JSK) so ψ(λx.v) = λx.ψ(v) ∈ fst(JT → SK).

• The left rule for implication

Γ ` v : T | ∆ Γ | e : S ` ∆

Γ | v · e : T → S ` ∆

is sound if Γ | v·e : T → S � ∆ holds under the inductive hypothesis that Γ � v : T | ∆
and Γ | e : S � ∆. That is, for any ψ such that ψ ∈ JΓK and ψ ∈ J∆K we have
ψ(v · e) ∈ snd(JT → SK). This holds by since by definition {v · e|v ∈ fst(JT K), e ∈
snd(JSK)} ⊆ snd(JT → SK), ψ(v · e) = ψ(v) · ψ(e) and by inductive hypothesis
ψ(v) ∈ fst(JT K) and ψ(e) ∈ snd(JSK).

Corollary 1. Strong Normalization: If c : Γ ` ∆ is provable in µµ̃→ then c is strongly
normalizing.

Proof. By soundness, if c : Γ ` ∆ is provable then c : (Γ � ∆). Since J−K always yields a
reducibility candidate (Lemma 9), the identity substitution is in JΓK and J∆K so id(c) =
c ∈ SN .

5.1 Related Work in Normalization

Strong normalization for µµ̃→,∀,∃ is closely related to the problem of cut elimination for
classical second order logic (indeed, a cut elimination theorem can be derived from our
proof of SN). Cut elimination for second order logic was posed as an open problem by

32

Takeuti [16] in the early nineteen fifties, and first shown approximately a decade later by
Tait [15].

Reducibility candidates was originally discovered by Girard [7]. The exact details of
what properties are necessary for a reducibility candidate vary, and, can seem rather ad-
hoc. One hope of our variant for µµ̃→,∀,∃ is that it makes these conditions obvious. In
particular, while Girard’s first two conditions on reducibility candidates are essentially
identical to ours, his third condition is framed in terms of “neutral terms” which include
a wide variety of terms in the lambda calculus. In our presentation however, Girard’s
“neutral terms” are reinterpreted as being two sorts of things: variables and terms of the
form µα.c.

Our variant of the reducibility candidates method constructs candidates by means of
a fixed point construction similar to the Symmetric Candidates method of Barbanera and
Berardi [1]. Lengrand and Miquel also used a variant of Symmetric Candidates to prove

strong normalization for a calculus very similar to our µµ̃→,∀
S (but extended with polymor-

phism at higher-kinds in the style of System Fω). In particular, they showed the apparent
necessity of the fixed point construction and proved that the common technique of us-
ing orthogonality alone won’t work for non-confluent classical calculi [9]. The fixed point
construction presented here was developed independently of the Symmetric Candidates
method. As a result, the methods differ in non essential ways. For example, our justifi-
cation for monotonicity in terms of a lattice of type-like-things consistent with the usual
notion of sub-typing differs from the traditional justification in Symmetric Candidates
which relies on the fact that the composition of two order reversing functions is monotone–
this is though a difference only in presentation and intuition as the two arguments appear
to be equivalent.

6 Conclusion

The term assignment for the polymorphic classical sequent calculus provides an alterna-
tive to traditional calculi based on natural deduction. The use of sequent calculus clarifies
dualities, including the duality between existential and universal quantification. As future
work, we are interested in applying the classical sequent calculus to the design of interme-
diate languages for compilers. In particular, we are exploring the possibility of using the
sequent calculus as a new intermediate language in the Glasgow Haskell Compiler (GHC).
Because GHC uses a typed intermediate language and supports polymorphism, the theory
of quantification in the sequent calculus is essential to these efforts. In the context of com-
pilers, strong normalization properties are interesting because they ensure that rewriting
terminates. Of course, languages such as Haskell incorporate arbitrary recursion and are
not strongly normalizing. It would be interesting to explore the possibility of extending the
sequent calculus with unbounded recursion in such way that an easily recognized subset of
the language remains strongly normalizing.

33

References

[1] Barbanera, F., and Berardi, S. A symmetric lambda calculus for ”classical”
program extraction. In Proceedings of the International Conference on Theoretical
Aspects of Computer Software (London, UK, UK, 1994), TACS ’94, Springer-Verlag,
pp. 495–515.

[2] Curien, P.-L., and Herbelin, H. The duality of computation. In Proceedings of
the Fifth ACM SIGPLAN International Conference on Functional Programming (New
York, NY, USA, 2000), ICFP ’00, ACM, pp. 233–243.

[3] Downen, P., and Ariola, Z. M. The duality of construction. In ESOP (2014),
Z. Shao, Ed., vol. 8410 of Lecture Notes in Computer Science, Springer, pp. 249–269.

[4] Dreyer, D. Progress and preservation considered boring: A paean to parametricity.
In Programming Languages Mentoring Workshop (2014).

[5] Felleisen, M., Friedman, D., and Kohlbecker, E. A syntactic theory of se-
quential control. Theoretical Computer Science 52(3) (1987), 205–237.

[6] Gentzen, G. Investigations into logical deduction. American philosophical quarterly
1, 4 (1964), 288–306.

[7] Girard, J.-Y., TAYLOR, P., and LAFONT, Y. Proofs and types, web reprint
(2003) ed. Cambridge University Press, 1989.

[8] Lengrand, S., Dyckhoff, R., and McKinna, J. A sequent calculus for type
theory. In CSL 2006. LNCS (2006), Springer.

[9] Lengrand, S., and Miquel, A. Classical fω, orthogonality and symmetric candi-
dates. Annals of Pure and Applied Logic 153, 1 (2008), 3–20.

[10] Milner, R. A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17 (1978), 348–375.

[11] Mitchell, J. C., and Plotkin, G. D. Abstract types have existential type. ACM
Trans. Program. Lang. Syst. 10, 3 (July 1988), 470–502.

[12] Pierce, B. Types and Programming Languages. MIT Press, Cambridge, Massach-
esetts, 2002.

[13] Plato, J. v. Gentzen’s proof of normalization for natural deduction. Bulletin of
Symbolic Logic 14, 2 (06 2008), 240–257.

34

[14] Summers, A. J., and van Bakel, S. Approaches to polymorphism in classical
sequent calculus. In Proceedings of the 15th European Conference on Programming
Languages and Systems (Berlin, Heidelberg, 2006), ESOP’06, Springer-Verlag, pp. 84–
99.

[15] Tait, W. W., et al. A non constructive proof of gentzen’s hauptsatz for second
order predicate logic. Bulletin of the American Mathematical Society 72, 6 (1966),
980–983.

[16] Takeuti, G. On a generalized logic calculus. Japanese Journal of Mathematics 23
(1953), 39–96.

[17] Tarski, A. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics 5, 2 (1955), 285–309.

[18] Wadler, P. The girard–reynolds isomorphism. Inf. Comput. 186, 2 (Nov. 2003),
260–284.

35

