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Fig. 1: Demonstrating our binning visualization technique on a volume of 25 clusters. The image on the left uses an isovalue of
0.5, while the image on the right uses an isovalue of 100.

Abstract— We present a novel methodology for clustering and visualizing large-scale tractography data sets. Tractography data
sets are very large, containing up to hundreds of millions of tracts; making visualizing and understanding this data very difficult. Our
method reduces and simplifies this data to create coherent groupings and visualizations. Our input is a collection of tracts, from which
we derive metrics and perform a k-means++ clustering. Using the clustered data, we create a binning volume that contains the counts
of the number of tracts that intersect each bin, from which we can perform standard visualization techniques. Our contribution is the
visualization technique and methodology itself, as well as an extensive study and evaluation schema. Our study utilizes our evaluation
schema to identify the best and most influential clustering metrics in a metric set, and an optimal number of clusters under varying
user requirements.
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1 INTRODUCTION

Fields researching the function and structure of the brain have long
been confronted with challenges regarding imaging and visualization
of the complex data being studied [9]. Non-invasive methods, such
as Magnetic Resonance Imaging (MRI), have been developed in or-
der to safely generate three-dimensional representations of structural
components of the living human brain. Typically, MRI data is used
to provide differentiation between various tissue types (grey matter,
white matter, and Cerebral Spinal Fluid (CSF)) [12]. Diffusion MRI
(dMRI) builds on MRI technology to measure the diffusion of water
throughout tissue [19]. Since white matter neurons are myelinated,
their diffusion characteristics differ substantially from the similar grey
matter neurons. Groups of these white matter neurons, or fiber tracts,
form the basic connections between distant brain regions. It is believed
that studying white matter fiber tracts will enable researchers to better
understand the fine structure of the brain leading to a more complete
understanding of how it works [27].

While tractography data is clearly useful, the size of this data often
makes analysis difficult. A typical tractography data set consists of
hundreds of thousands of tracts, and they can sometimes contain much
more, even hundreds of millions. Further, each advance in technology
allows more and more tracts to be identified. Each tract contains mul-
tiple line segments, typically around 300. In our study, we considered
a data set with almost 500,000 tracts and 150 million line segments.
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The problem with tractography data, then, is two-fold: (1) how to
operate on large data sets? and (2) how to create meaningful results
that do not visually overwhelm a medical researcher? Plotting each of
the tracts and their line segments on the screen leads to a very complex
scene; in the data set described above, there would be 15 line segments
for every pixel of a 10002 image. Instead, techniques are needed that
make the scale of the data more manageable. Specifically, techniques
are needed that make tractography data smaller to operate on while
also creating scenes that are more comprehensible for viewers.

With this work, we develop a novel approach for visualizing trac-
tography data. The approach uses clustering to group similar tracts
together, and then creates new data sets that can visualize the density
of each cluster using traditional visualization techniques. The contri-
bution of our study is the technique itself, as well as extensive analysis
behind the best ways to carry out the technique.

The remainder of this paper is organized as follows: Section 2 sur-
veys related work. Our new technique is described in Section 3. The
technique is a framework with multiple “knobs”; Section 4 describes
the metrics we use to evaluate which knob settings are best. Section 5
provides an overview of our experiment, and Section 6 describes our
study over the knob values. This study is incorporated into Section 7,
which describes our algorithm for picking the best knob values. Sec-
tion 8 describes our experiences in practice, both in terms of carrying
out the study and in terms of applying the algorithm to create new
visualizations.

2 RELATED WORK

2.1 Diffusion MRI

Understanding how the various parts of the brain are interconnected
by neurons in white matter is an active topic of research [9]. dMRI



produces a series of volumetric images in which each image repre-
sents the directional strength of water diffusion in vivo. Due to the fi-
brous nature of myelinated white matter neurons, water diffuses more
rapidly along these fibers than it does in other directions [11]. Once the
dMRI is acquired, the various images of directional diffusion are co-
alesced into a single three dimensional image of high-order elements.
Generally, these reconstructed images are referred to as diffusivity
images. While there exist many methods to creating diffusivity im-
ages [14, 29, 32], each method requires different data acquisition pro-
tocols that may drastically change the time it takes to capture the over-
all dMRI scan. As this work focuses on the Diffusion Tensor Imaging
(DTI) family of dMRI reconstructions, we restrict our discussion of
fiber tractography methods to those that may use this representation.
One of the simpler reconstruction techniques, DTI, uses symmetric,
rank two diffusion tensors as basic elements in the diffusivity image.
Scans to be used with DTI reconstructions are considered fast to ac-
quire (approximately fifteen minutes), enabling their use with at risk
populations, children, and patients that may not tolerate long scanning
times [25].

2.2 White Matter Fiber Tractography

In order to study the connectivity of the brain, white matter fiber tracts
must be estimated from the diffusivity image. Tractography recon-
struction algorithms may be divided into two large classes: proba-
bilistic strategies, and deterministic ones [10]. Probabilistic tractog-
raphy alogrithms, such as Yendiki et al.’s TRACULA [32], use Bay-
seian frameworks to generate volumetric distributions of pathway like-
lihoods. A more complete discussion of probabilistic tractography is
given by the work of Jbabdi et al. [18]. Deterministic approaches to
tractography, such as the FACT method [22], integrate the diffusion
tensor field to generate streamlines representing recovered fiber paths.

Both probabilistic and deterministic methods for tractography re-
construction may be local or global in nature. Local reconstructions
seed positions at a small region of the brain in order to discover how
a single cortical region is connected. Global methods, on the other
hand, densely seed the white matter volume in order to capture a more
holistic view of white matter fiber paths.

Unfortunately, global tractography methods may take hours to com-
plete and produce large amounts of data. Only through the use of data
reduction techniques can these data be analyzed to learn more about
the brain’s connectivity. In this work, we rely on the global tractog-
raphy methods and acquisition parameters proposed by Scherrer et al.
in order to generate the large data sets required to best understand the
interconnectivity of the brain [28].

2.3 Visualization of Tractography

The visualization of whole brain tractography can generally be sep-
arated into two groups: (1) visualization of clustered tractography
and (2) visualization of non-clustered tractography. We explore select
closely related works in sections 2.3.1 and 2.3.2 respectively.

2.3.1 Clustered Tractography

Partitioning tracts into groupings is an important step in analyzing and
understanding a tractography data set. Often, this partitioning is done
by clustering. Tractography clustering generally breaks down to two
components, the clustering method, and the tract similarity metrics
used to perform the clustering.

Clustering methods can generally be broken down into two different
general themes, Cartesian clustering and anatomical clustering. Each
of these clustering approaches attempts to provide answers to the same
general questions. Anatomical clusterings use existing knowledge of
the brains structure to make assumptions about how a given data set
should be partitioned. Cartesian clusterings on the other hand, solely
use information that can be derived from individual tracts or the data
set as a whole, to create metrics and a final clustering.

There has been substantial work on clustering methods and metrics
in the past, especially in Cartesian clustering. Visser et al [30] and
Moberts et al [21] both employ the use of hierarchical clustering using

variations of the pairwise distance between tracts as their tract similar-
ity metrics. This work is important in that it does not use anatomical
knowledge to perform the clustering, but relies solely on the charac-
teristics of the data set at hand. The drawback of this method however,
is that it does not consider multiple aspects of the tract or the data set.
There are other metrics that can be calculated on a per tract basis that
could lead to a more comprehensive clustering.

Brun et al [5] and Batchelor et al [3] address this issue of low order
clustering metrics, by each using multiple metrics. Brun et al creates a
feature vector representing each tract using the mean of coordinates of
all points on the tract, as well as the covariance of the coordinates in
a 3D space. Using this feature vector, pairwise tract comparisons are
performed to create a weighted undirected graph, and partitions this
space using normalized cuts. Whereas, Batchelor et al takes it a step
further, and define more metrics, by using curvatures, torsions, and
Fourier descriptors.

O’Donnel et al [23] and Voineskos et al [31] take a slightly di-
vergent path, and use derived clustering metrics, but do so only for
selected regions of interest where they perform their clusterings. They
employ a spectral clustering technique that uses a similarity metric that
is a modification of the Hausdorff distance (the upper bound of the
minimal point-to-point distance between tracts), using high distances
as low similarity and low distances as high similarity. This approach
is taken primarily to increase clustering speed, while potentially sacri-
ficing the insights that can be gained from whole brain clustering and
visualization.

Often, Cartesian clustering is extended through the use of anatom-
ical maps. One such example comes from Guevara et al [16]. They
defined a robust clustering system for tractography data composed of
a five step process, two steps of which are partitioning and Carte-
sian clustering. The partitioning is used to break the brain down
into anatomical regions, and hierarchical clustering is performed sep-
arately in each region. The preprocess step of subsets does allow for
faster clustering, but may hide more natural clusterings of the data,
i.e., where tracts from neighboring subsets intersect.

Another example comes from Ros et al [26]. They proposed a
clustering method using a hybrid of hierarchical clustering and an
atlas-based classification. Their clustering classification is unique
in that they develop a method called CASTOR (Cluster Analysis
Through Smartly Extracted Representatives), which reduces the clus-
tering space overhead. This allows for faster clusterings, but relies on
the soundness of the representatives in creating coherent and meaning-
ful clusters.

Summarizing the previous related work, all previous efforts use
metrics derived from tracts as input to their clustering algorithms.
However, many of the works do not describe their metrics, or, alterna-
tively, describe metrics that are not suitable for large data (for example,
the work of [21, 30] considers pairwise metrics between all tracts). For
our study, our focus in on the methodology that transform tractography
data into a smaller form for interactive visualization. Our methodol-
ogy is conceptually capable of dealing with any per-tract metric, and
we consider six such metrics in our own experiments.

2.3.2 Non-Clustered Tractography

Very little work has been done in the area of whole brain tractography
visualization. Most often, simple line or tube representations are used
to portray the data. These techniques have drawbacks however, the
most prominent of which are a lack of depth and locality information.

One recent work by Petrovic et al [24] extends the tube represen-
tation to not only include enhanced depth information, but also an in-
tricate in-image tract labeling system. This work does provide a well
defined sense of locality of the tracts within the data set, and is im-
plemented as a GPU-based renderer. One important contribution of
this work is a Level of Detail management system that occludes low
level tracts when the user is too far away to meaningfully view them.
This enhances the speed and performance of the system, but lacks a
fine tunning ability for a user to directly dial in the exact level of detail
they need.
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Fig. 2: A representation of the flow of data through our clustering and visualization pipeline. Demonstrating the transformation of raw tracts to
derived metrics, to clustered tracts, to a binned volume, to the final visualization solution.

Two other works [13, 15] follow the same general pattern of Petro-
vic et al, and provide new and different ways of emphasizing tracts
within the view plane. However, one item missing from each of these
methods, is that they do not focus on data reduction or gaining insight
into the structural qualities of the brain. Instead, they focus on the
beautification of the very dense data they display.

With our study, we present a new visualization technique that incor-
porates important aspects from each of these works. We extend those
works by enhancing the interactive and level of detail abilities of the
rendering, by allowing the user to interactively dial in their desired
level of detail. This ability combined with the space saving size of the
visualization files, combine to form an intuitive visualization method
for large-scale tractography data sets.

3 METHODOLOGY

Our method transforms tractography data into a set of three-
dimensional histograms. These histograms can then be visualized
with traditional techniques. The transform has free parameters, i.e.,
knobs that affect how the transform is carried out. As the output of
the transform varies greatly based on parameter choices, a key part of
our methodology is to locate the parameter values that optimize the
output.

In the following sections, we describe the details of the trans-
form and the parameters that affect it (Section 3.1), how we evaluate
whether one set of parameters is better than another (Section 3.2), and
lastly, we discuss the visualization options for our histograms (Section
3.3).

3.1 Transform

The transform occurs over three distinct phases: (1) calculating met-
rics on individual tracts, (2) clustering the tracts using these metrics,
and (3) binning the tractography data for each cluster into a three-
dimensional histogram. The resulting data can then be visualized us-
ing traditional scientific visualization techniques. Fig. 2 illustrates the
transform.

The following subsections describe each of the phases in the trans-
form. The free parameter associated with each phase is identified at
the end of its section.

3.1.1 Tractography Metrics: Phase I

The purpose of this phase is to augment each tract in the data set with
descriptive values. We do this by calculating metrics on a per tract
basis, and we considered six metrics in this study. In order to prevent
some metrics from overwhelming others, all metrics were normalized
to values between 0 and 1. The six metrics were:

• Tract Area (A), computed by taking the area of the bounding
box around a tract.

• Tract Length (L), computed by summing the individual line
segment lengths between each pair of points that compose a tract.

• Tract Curvature (C), computed by evaluating the maximum
curvature along a tract. Specifically, we considered each pair of
connected line segments within a tract, calculated its curvature,
and then assigned the tract the maximum value.

• Tract Linear Distance (LD), computed by calculating the linear
distance between the starting and ending points of a tract.

• Tract Start Position (SP), computed by calculating the linear
distance from the starting point in a tract to a reference point.
This was actually a family of metrics, measuring distance from
three different reference points. Each of the reference points co-
incided with the bounding box of the overall data set.

• Tract End Position (EP), computed similarly to Tract Start Po-
sition, but using the last point in a tract.

While it is possible to use all six of these metrics, it is not clear that
they are all useful, i.e., that they lead to better clusterings. So we treat
the metrics as one of our free parameters, i.e., which metrics should be
used to cluster? We allow for all combinations except for the choice
where none of the six metrics are used, meaning 26 −1.

Free Parameter for Phase I: metrics used (63 total options)

3.1.2 Tractography Clustering: Phase II
The purpose of this phase is to cluster tracts, and this is done using
the metrics from Phase I. The output of Phase II is k clusters, with the
clusters forming a partition over the original tractography data.

To perform the clustering, we opted to use the k-means++ algo-
rithm. The goal of k-means++ is to partition n observations (tracts)
into k clusters which minimize intra-cluster variance. K-means++ op-
erates similarly to the k-means algorithm, only differing in the selec-
tion of initial seed locations. Tracts are represented by their metric
values; these values combine to form a position in the Cartesian co-
ordinate system. The intra-cluster variance is calculated based on the
clustering domain in this Cartesian space. The algorithm starts by dis-
tributing k centroid points in the clustering domain. The points are
placed according to the updated initialization algorithm developed by
Arthur and Vassilvitskii [2]. The algorithm then iterates through a
series of steps that update the positions of the k centroid points, at-
tempting to minimize the intra-cluster sum of squares.

While k can be as low as one (meaning one cluster total) and as high
as Ntracts, the number of tracts (meaning one cluster per tract), both
of these extremes are likely sub-optimal in terms of maximizing user
insight. We leave k as a free parameter for our subsequent optimization
phase.

Free Parameter for Phase II: k (Ntracts total options)

3.1.3 Tractography Binning: Phase III
The purpose of this phase is to create bins of the tractography data,
i.e., a three-dimensional histogram. The binning of the tracts is ac-
complished in two steps:



Fig. 3: Example showing three tracts being binned in two dimensions.

1. A binning volume is created to store a count of the number of
tracts that cross any given bin in the volume. This volume is sized
to be large enough to encompass the minimum and maximum
extents of the entire input tractography data set.

2. Counts for each bin are calculated. This is done by considering
each segment of each tract, determining the bins that each seg-
ment overlaps, and increasing the counts in those bins accord-
ingly.

Fig. 3 demonstrates the binning in two-dimensions.
One control in this process is the granularity of the histogram, i.e.,

the total number of bins in the volume. If the total number of bins is
high, then the storage costs are higher, but the subsequent visualiza-
tions are at a finer resolution. On the other hand, if the total number
of bins is low, then the storage costs are lower, but the subsequent
visualizations are coarser.

For our tests, we fixed the grid resolution to be 420× 420× 420.
This resolution gave a good representation of the underlying tractog-
raphy data set, without being overly coarse. With a lower resolution,
we would have lost many of the finer structures within the data set.
We feel that this resolution is representative of the level of detail that
would be needed for this data, and thus, did not treat grid size as a free
parameter during the optimization phase.

3.2 Choices for Free Parameters

Let (m,k) be a choice in the parameter space, such that:
• m is a Boolean tuple. In our study, the tuple had six elements,

since we considered six metrics. The value of m[i] was true if
the ith metric was used as an input to the clustering and false
otherwise. This was the free parameter associated with Phase 1
(Section 3.1.1).

• k is an integer denoting the total number of clusters. This was
the free parameter associated with Phase 2 (Section 3.1.2).

We then choose an (m,k) configuration and run the clustering and eval-
uation steps based on these inputs.

Discussion of our approach to evaluating the optimum set of free
parameters can be found in Section 4.

3.3 Interactive Cluster Exploration

Using the cluster histograms from our three-phase process, we are
now able to interactively explore the entire tractography data set as
a whole, or each cluster individually. There are multiple end user tools
for large-scale visualization that can be used to accomplish this task.
Examples include VisIt [7], ParaView [1], EnSight [8], and Field-
View [20]. These tools provide interactivity through parallelization:
parallel I/O requests, parallel processing, and parallel rendering [6].
As an additional benefit, these tools provide rich sets of algorithms.
One particularly useful algorithm for our study was the ability to iden-
tify connected components on large data sets [17], and to then discard
small components.

Fig. 4: Single cluster demonstrating multiple distinct components con-
tained within the cluster.

For our study we utilized VisIt. Using the VisIt isosurfacing filter
on cluster histograms readily shows the areas that have high concen-
trations of tracts, and hides areas with low concentrations. This ability
effectively provides a “knob” for setting the amount of detail for ac-
complishing explorative tasks.

4 SELECTING FREE PARAMETERS

Given the free parameters, our goal is to select an (m,k) such that the
resulting histograms from the transform process is optimized for the
user.

4.1 Evaluation Metrics

We considered two metrics to evaluate this optimization:
1. The depth complexity: This metric captures, on average, the

number of cluster components stacked up in depth along a pixel.
If the depth complexity is low, then the scene is likely compre-
hensible for the viewer. However, a low choice also may force
unrelated things to be grouped together into the same cluster.

2. The average number of connected components per cluster: See
Fig. 4, which shows a single cluster that contains multiple com-
ponents, i.e., distinct regions that do not touch. Ideally, each
cluster would have exactly one component, meaning the cluster-
ing algorithm grouped only very similar things together. How-
ever, in practice, each cluster contains multiple components;
achieving one component per cluster requires increasing the total
number of clusters (k) to a point that increases the depth com-
plexity.

Our two metrics, then, are in tension. Minimal depth complexity is
achieved by setting k to one (and thus having many connected com-
ponents per cluster) and minimal connected components per cluster is
achieved by setting k to be the same as the number of tracts (and thus
having very high depth complexity). Our approach was to allow the
user to set a cutoff for acceptable depth complexity. Our thinking was
that the user would want the most information that they could com-
prehend, and that the depth complexity should be fixed to be at that
point.

4.2 Search Space

Optimizing the selection of the free parameters required many differ-
ent data runs to be conducted in a search space that contains up to
Ntracts×63 possible configurations. We evaluated which values for the
free parameters, (m,k), produced optimized clusterings, and present
our findings in Section 6.



5 EXPERIMENTAL OVERVIEW

5.1 Clustering Software
Three distinct pieces of software were used in this work. We developed
the first two pieces of software, and then utilized an existing clustering
software for the third

The first piece of software, creates the derived clustering metrics.
This code reads through the entire tractography data set, and creates
metrics for each tract. These metrics are then given to the clustering
software to perform clustering.

The piece of software is the binning code. This code creates a 3D
grid space with a given resolution, and then bins an input tractography
data set. This binning is performed by calculating which bins the tract
intersects by tracking which bin faces the tract intersects.

The clustering software that we used is contained in the ALGLIB
Free Edition package [4]. ALGLIB is a cross-platform numerical anal-
ysis and data processing library. Specifically, we used the ALGLIB
k-means++ clustering implementation for all clustering tests.

5.2 Data Set
The data set that we worked with during this project was generated
was provided by Electrical Geodesics Inc. The data set contained a
total of 49,6646 tracts, for a total of 3.6 Gigabytes.

5.3 Experimental Machines
Two different machines were used during the development and evalu-
ation stages of our work:

• A desktop computer containing two 2.60 GHz Intel Xeon(R) E5-
2650 v2 8 core CPUs and a total of 64 GB of memory.

• The parallel Oak Ridge National Laboratory Sith machine, con-
taining 39 nodes. Each node contains four 2.3 GHz 8 core AMD
Optetron processors and 64 GB of memory, configured with an
86 TB Lustre file system for scratch space.

We ran more than 15,000 different test configurations during the
course of our study, and used more than 50,000 node hours.

6 EXPLORING INTERACTION OVER (m,k)
Our analysis of (m,k) consisted of two distinct experiments. In the
first, we explored the relationships and patterns in our tractography
metrics from Section 3.1.1. In the second, we explore the effects of
varying the value for (k). The analysis of these two experiments are in
Sections 6.1 and 6.2, respectively.

6.1 Selecting Optimal Values for (m)

As the target value for (k) varies, the best set of metrics (m) may also
vary. That is, for very few clusters, one set of metrics may be best,
and, for very many clusters, another set of metrics may be best. With
this first part of our analysis, we wanted to understand how the various
configurations of (m) affected clustering quality for varying values of
(k).

To determine the relationship, we set up a series of tests using every
possible combination of (m), with eight different values for (k). From
these runs we then plotted and evaluated the clustering performance at
each value of (k), using the metrics we defined in Section 3.1.1. The
plots show a very persistent pattern in the quality of the clusterings
produced, see Fig. 5. There are six distinct groups that form for every
value of (k) that we used. These groups demonstrate that the quality
of the clusterings produced by different values of (m) are persistent
across different values for (k). We demonstrate this persistence with
the colored values in each of the plots that show three of the best values
for (m), and how they track across various (k).

From this data we can say which metrics (discussed in Section 3.1)
are more useful than others, and which combinations of metrics pro-
duce the best clusterings under our evaluation schema. The absolute
worst clusterings are featured in the upper four groupings in each of
the graphs (see Fig. 5). Consistently, the worst metric was curvature
used by itself. In every test, this produced the number one worst re-
sult. In fact, when Area, Length, Curvature, and Linear Distance are
used alone, their performance is worse than when any combination of

Table 1: Table showing the performance of each of the metrics used
singularly for (k = 50) in terms of the average number of connected
components and total surface area.

Metric Total Surface Area Average # of
Con. Comp.

Curvature 9,148,415 74.2
Linear Distance 6,382,081 45.8
Length 6,253,787 48.1
Area 5,698,423 8.1
Start Position 1,591,580 4.8
End Position 1,412,429 4.7

metrics is used, and significantly worse, than when Start Position and
End Position are used on their own. Table 1 demonstrates the perfor-
mance of each of the clustering metrics used singularly. This table is
representative of the results seen at other values of (k).

We were able to conclude, that to have a clustering that performed
well under our evaluation, it had to include Start Position, End Posi-
tion, or both. Used singularly with other metrics, they performed well,
but not as well when used together. Further, when both are used in con-
junction with either Length, Area, or both, we saw the best performing
clusterings.

A further clear trend in this analysis is that we do not have the case
where we have to perform a trade-off, of either picking metrics that
reduce the number of connected components, or metrics that reduce
the total surface area of our clusterings. We are always able to optimize
for both.

Persistent performance is the best result we could have gotten with
these tests. It means that we are able to eliminate the majority of (m)
from consideration when optimizing (k). Three of the top performing
metrics were:

• L/SP/EP: Length, Start Position, End Position
• SP/EP/A: Start Position, End Position, Area
• L/SP/EP/A: Length, Start Position, End Position, Area

We classified these three metrics as optimal configurations for the
remaining tests in our study. We could have also chosen SP/EP,
L/C/SP/EP, or L/C/A/SP/EP, but they were less persistent across tests,
and showed more variation.

6.2 Studying the Effects of (k)
As the value for (k) varies, the performance of our clusterings, based
on the metrics from Section 3.1.1, is going to vary. In order to un-
derstand the trends in performance, we ran tests on 200 values for (k),
using the top three optimal metrics as determined in Section 6.1. From
these runs we then plotted and evaluated the clustering performance at
each value of (k).

The plot in Fig. 6 shows the two trends in performance for our eval-
uation criteria. The lower the value of (k), the more connected com-
ponents per cluster. While the higher the value of (k), the fewer con-
nected components. The initial decreases in average number of con-
nected components as the values for (k) vary from (k = 1) to (k = 25)
are substantial, dropping from 66 to approximately 7.7

Another trend in Fig. 6, is that surface area increases as (k) in-
creases. As each new cluster is introduced, the surface area rises, giv-
ing us a constantly increasing surface area for larger and larger values
of (k). This is opposite the trend seen with average number of con-
nected components, which constantly decreases with higher values of
(k).

An important observation that can be made from Fig. 6, is that
the benefits of increasing numbers of clusters diminishes extremely
quickly. The average number of connected components for (k = 30)
using the L/SP/EP/A metric is 6.3. Whereas, using the same metric at
(k = 200), the average number of connected components only drops
to 2.75, while surface area rises from (1.08) million to (1.98) mil-
lion. The drop in average connected components is extremely small



(a) 25 Clusters (b) 50 Clusters

(c) 75 Clusters (d) 100 Clusters

(e) 125 Clusters (f) 150 Clusters

(g) 175 Clusters (h) 200 Clusters

Fig. 5: Average number of connected components compared against surface area for all 63 clustering metrics. The best metrics that we chose
are shown as square: red is L/SP/EP, green is SP/EP/A, blue is L/SP/EP/A
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Fig. 6: Average number of connected components per cluster (o) ver-
sus the total surface area of all clusters (+) using the three optimum
clustering metrics.

when compared to the large rise in total surface area, and the added
visual complexity of 170 more clusters. We describe our algorithm for
selecting (m,k) pairs in Section 7.

7 ALGORITHM FOR SELECTING (m,k)

Given the optimal set of clustering metrics that we learned in Section
6.1, and the clustering performance curves that we learned in Section
6.2, we can now describe an algorithm for selecting (m,k) pairs.

Given a depth complexity requirement, we can select a value for
(m,k) that produces the optimal configuration. In our study, we use
total surface area of all clusters to analogously represent depth com-
plexity. We do this by making the following assumptions:

• The tracts were binned on a 4203 grid;
• An orthographic projection;
• The final image fills the screen;
• The user sets a depth complexity requirement per pixel (e.g., 6.5

triangles per pixel in depth on average).
Fig. 7 demonstrates the depth complexity of the scene for eight differ-
ent values, from (k = 25) to (k = 200), in increments of 25.

Using our assumptions, we can then start by selecting a value for
(k). Assuming the user asks for a depth complexity of 6.5, we start by
multiplying 6.5 by the number of grid cells in a single plane of the data,
4202, which gives us our analogous surface area value 1,146,600. Us-
ing this value, we search for a (k) that creates clusterings as close to
this value as possible. Visually, we draw a horizontal line across the
total surface area curve from our chart at the total surface area value
of 1,146,600, as in Fig. 8. We then draw a vertical line down to the
x-axis, to get our values for (m) and (k). This line gives us a value
of (k = 36), and we then select the (m) at that point that produces the
fewest number of connected components, (m = L/SP/EP/A).

8 METHOD IN PRACTICE

Our software pipeline consists of three distinct phases. (1) Creating
Derived Metrics; (2) Clustering; and 3) Binning. Each stage of this
pipeline is constrained by different time and size bounds. Some stages
are time constrained by the input data size, while others are time con-
strained by the number of clusters, and further still, some by a function
of both. In Table 2, we present the time complexity and output file size
of each stage in Big O notation.

The most time intensive operation in our pipeline is clustering as it
is dependent on the number of clusters, the number of input tracts,
and the dimensionality of the derived clustering metrics. As more
clusters, tracts, or dimensions are introduced, the clustering will take
more time. The current clustering implementation presents a bottle-
neck for tractography data sets that contain hundreds of millions of
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Fig. 8: Drawing the horizontal and vertical lines at the user specified
depth complexity to determine the optimal value for (m,k)

Table 2: Table showing the Big O time and storage size complexity of
each phase of our pipeline. n denotes the number of tracts to be clus-
tered, s denotes the average number of segments per tract, k denotes
the number of clusters, d denotes the dimensionality of the derived
clustering metrics, and g denotes the binning grid size.

Derived Metrics Clustering Binning

Time: O(n× s×d) O(nd×k+1 × logn) O(n×s+k×g3)
Size: O(n×d) O(n) O(k×g3)∗

(* Represents uncompressed sparse grid size)

tracts. However, this can be addressed through the use of parallel clus-
tering, which we did not address in the scope of this work.

The operation in our pipeline that generates the most data is bin-
ning. A new file is created for each cluster generated, at a fixed size
per file, dependent on the grid size. These files represent regular grids,
and due to the data locality introduced by clustering, these files end
up with large very sparse regions. Using compression, we are able to
compress these files at a minimum ratio of 370 to 1, using our cur-
rent input data set. This compression leaves us with clustered binary
files that are much smaller than the input data set, reducing the storage
overhead associated with the raw tract files. Table 3 shows the total
visualization file sizes and run times for the clustering section of the
pipeline for eight varied values of (k).

As demonstrated in Table 3, file sizes for the binary clustered files
become quite large as the number of clusters grows beyond 50. Large

Table 3: Table showing the run time for clustering (the most time in-
tensive section of the pipeline), the total size of all of the binary files
used in post-hoc visualization in raw and compressed form, and the
achieved compression factor.

Num
Clusters

Clustering
Time (min)

Binary
File Size

gzip
Compressed

Compression
Ratio

25 4.9 7.2 GB 19.4 MB 371.1
50 9.4 14.5 GB 29.2 MB 496.6
75 20.5 21.7 GB 38.5 MB 563.6

100 25.9 28.9 GB 47.5 MB 608.4
125 32.5 37.0 GB 56.3 MB 657.2
150 45.0 43.4 GB 65.1 MB 666.7
175 58.1 50.7 GB 73.8 MB 687.0
200 72.8 57.9 GB 82.5 MB 701.2



(a) 25 Clusters (b) 50 Clusters (c) 75 Clusters (d) 100 Clusters

(e) 125 Clusters (f) 150 Clusters (g) 175 Clusters (h) 200 Clusters

Fig. 7: Plots showing an isosurface (value = 10), clipped in half. This demonstrates the varying depth complexity for different values of (k)
using metric L/SP/EP/A

enough in fact, that visualizing this data on a single commodity node
becomes prohibitive due to RAM limitations. This obstacle can be
overcome by utilizing a visualization tool that operates on sparse data
in compressed form, however, we did not investigate this path. Instead,
we accomplished the visualization for large numbers of clusters using
a distributed memory version of VisIt, running across multiple nodes
on Sith. One effective visualization technique that emphasizes areas of
high tract concentration is contouring. In Fig. 9 you can see the areas
of very high tract density emphasized as higher isovalues are applied.

8.1 Example Workflow

Each stage in our pipeline is presented below, along with a representa-
tive amount of time spent in that section using a value of (k = 50).

• Creating Derived Metrics (82 seconds)
– This stage calculates the derived metrics for each tract so

that clustering can be performed. Using this data set, this
file is 38 MB.

• Clustering (564 seconds)
– This stage is where the clusters are determined based on

the derived clustering metrics. Each cluster is saved for
reuse as well as the next stage, at approximately 5 MB per
file.

• Binning (100 seconds)
– Using the clustered tracts from the previous stage, separate

binary files containing the binned tracts for each cluster are
created and saved to allow for post-hoc visualization. At
current bin resolution of 4203, this is 294.6 MB per cluster
uncompressed, or 584 kB compressed.

• Visualization (70 seconds)
– Performing an isosurface on the 50 binned binary files run-

ning a parallel memory version if VisIt on 15 Sith nodes.
This time may be reduced by utilizing a visualization tool
that operates on sparse data.

Overall, the total time to generate 50 clusters and perform an initial
visualization with the current input data size is approximately 13.6
minutes. This time can still be reduced by perusing parallel clustering
and a visualization tool that operates on compressed sparse data.

9 CONCLUSIONS AND FUTURE WORK

We have described a methodology for the interactive visualization of
tractography data. We have shown the creation of whole brain tractog-
raphy clusters based on the creation of derived metrics and K-means++
clustering. We have shown a process under which the set of optimal
clustering metrics chosen from the initial set of clustering metrics can
be chosen, as well as an evaluation of the optimal number of clusters.
Our clusterings combined with our binning visualization technique,
provide a unique visualization and space saving solution.

Using compression, we are able to drastically reduce the size of our
binned datasets, below that of the size of the original input data set.
This space savings will likely be even larger on data sets with 10’s of
millions of tracts, and when the number of clusters is increased.

In terms of future work, we would like to implement a method for
parallel clustering and perform an analysis on the effect of varying
the binning grid resolution. Parallel clustering combined with either
adaptive grid resolution in the binning mesh, or a visualization system
that works on sparse data sets, would allow for a very large speedup in
our pipeline. Having accomplished this speedup, we would then like
to confirm our analysis using much much larger tractography datasets,
of 10’s to 100’s of millions of tracts.
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