
Identifying Optimization Opportunities within Kernel
Execution in GPU Architectures

Directed Research Project

Robert Lim
University of Oregon

Eugene, OR 97403-1202
roblim1@cs.uoregon.edu

Abstract

Tuning codes for GPGPU architectures is challenging because few performance
tools can pinpoint the exact causes of execution bottlenecks. While profiling applica-
tions can reveal execution behavior with a particular architecture, the abundance of
collected information can also overwhelm the user. Moreover, performance counters
provide cumulative values but does not attribute events to code regions, which makes
identifying performance hot spots difficult. This research focuses on characterizing the
behavior of GPU application kernels and its performance at the node level by provid-
ing a visualization and metrics display that indicates the behavior of the application
with respect to the underlying architecture. We demonstrate the effectiveness of our
techniques with LAMMPS and LULESH application case studies on a variety of GPU
architectures. By sampling instruction mixes for kernel execution runs, we reveal a va-
riety of intrinsic program characteristics relating to computation, memory and control
flow.

1 Introduction

Scientific computing has been accelerated in part due to heterogeneous architectures, such
as GPUs and integrated manycore devices. Parallelizing applications for heterogeneous ar-
chitectures can lead to potential speedups, based on dense processor cores, large memories
and improved power efficiency. The increasing use of such GPU-accelerated systems has mo-
tivated researchers to develop new techniques to analyze the performance of these systems.
Characterizing the behavior of kernels executed on the GPU hardware can provide feedback
for further code enhancements and support informed decisions for compiler optimizations.

Tuning a workload for a particular architecture requires in-depth knowledge of the charac-
teristics of the application [11]. Workload characterization for general-purpose architectures
usually entails profiling benchmarks with hardware performance counters and deriving per-
formance metrics such as instructions per cycle, cache miss rates, and branch misprediction
rates. This approach is limited because hardware constraints such as memory sizes and
multiprocessor cores are not accounted for and can strongly impact the workload character-
ization. Moreover, the current profiling methods provide an overview of the behaviors of the
application in a summarized manner without exposing sufficient low-level details.

1



Time
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Co
un

ts

1e9 LULESH - K40
instructions
cycles

Time
IST
ISE

AF1
CHG
CFB
AF2
CAN
AAB
CVN
CPN
CKE
CLE

CMG
CMQ
AMP
EEE
CE1
CPE
CE2
CE3
CE4
EE2
CSS
UVE
CCC
CHC

Ke
rn

el
s

LULESH - K40

Figure 1: Sampled hardware counters of instructions executed and active cycles (left) and
individual kernel executions (right), both for LULESH.

Performance tools that monitor GPU kernel execution are complicated by the limited
hardware support of fine-grained kernel measurement and the asynchronous concurrency
that exists between the CPU and GPU. With so many GPUs available, identifying which
applications will run best on which architectures is not straightforward. Applications that
run on GPU accelerators are treated like a black box, where measurements can only be
read at the start and stop points of kernel launches. Moreover, the difficulty of tracking and
distinguishing which activities are on the CPU versus the GPU makes debugging applications
a very complicated task. Thus, analyzing static and dynamic instruction mixes can help
identify potential performance bottlenecks in heterogeneous architectures.

In Figure 1, we show a time series of hardware counters sampled in the GPU, a capability
we’ve added in TAU (Section 3.2.2), and kernels that were executed for the LULESH appli-
cation. The plot reveals spikes in the hardware samples for the application. However, one
cannot correlate those spikes to the dense regions of activities in source code. If timestamps
were used to merge GPU events with CPU events for purposes of performance tracing, the
times will need to be synchronized between host and device [5], as the GPU device has a
different internal clock frequency than the host. Using timestamps to merge profiles may
not be sufficient, or even correct. Thus, optimizing and tuning the code would require a best
guess effort of where to begin. This motivates our exploration of the use of instruction type
mixes in aiding the analysis of potential performance bottlenecks.

1.1 Contributions

In our work, we perform static analysis on CUDA binaries to map source text regions and
generate instruction mixes based on the CUDA binaries. This feature is integrated with
TAU to sample region runs on the GPU. We also provide visualization and analysis to
identify GPU hotspots and optimization opportunities. This helps the user better understand
the application’s runtime behavior. In addition, we repeatedly sample instructions as the
application executes. To the knowledge of the authors, this work is the first attempt at
gaining insight on the behavior of kernel applications on GPUs in real time. With our
methodology, we can also identify whether an application is compute-bound, memory-bound,
or relatively balanced.

2



Figure 2: TAU CUPTI tools framework.

2 Background

This section provides an overview of CUDA-related semantics and events with respect to
TAU.

2.1 TAU Performance System

The TAU Parallel Performance Framework [1] provides scalable profile and trace measure-
ment and analysis for high-performance parallel applications. TAU provides tools for source
instrumentation, compiler instrumentation, and library wrapping that allows CPU events
to be observed. TAU also offers parallel profiling for GPU-based heterogeneous programs,
by providing library wrappings of the CUDA runtime/driver API and preloading of the
wrapped library prior to execution (Figure 2). Each call made to a runtime or driver routine
is intercepted by TAU for measurement before and after calling the actual CUDA routine.

2.1.1 TAU CUPTI Measurements

TAU collects performance events for CUDA GPU codes asynchronously by tracing an appli-
cation’s CPU and GPU activity [10]. An activity record is created, which logs CPU and GPU
activities. Each event kind (e.g. CUpti ActivityMemcpy) represents a particular activity.

CUDA Performance Tool Interface (CUPTI) provides two APIs, the Callback API and
the Event API, which enables the creation of profiling and tracing tools that target CUDA
applications. The CUPTI Callback API registers a callback in TAU and is invoked whenever
an application being profiled calls a CUDA runtime or driver function, or when certain events
occur in the CUDA driver. CUPTI fills activity buffers with activity records as corresponding
activities occur on the CPU and GPU. The CUPTI Event API allows the tool to query,
configure, start, stop, and read the event counters on a CUDA enabled device.

CUPTI registers callbacks in the following steps. Tau Cupti Subscribe() is invoked,
which calls cuptiActivityRegisterCallbacks(). The callback registration creates an ac-
tivity buffer, if one has not been created, and registers synchronous events for listening.
Within the synchronous event handler, CUPTI activities are declared and parameters are
set accordingly. For instance, monitoring a memory copy event would require setting the type
of memory copy (host-to-device, device-to-host, device-to-device, etc.), as well its allocation
type (pinned, paged, device or host).

3



Figure 3: CUPTI callback.

The synchronous event handlers are invoked at synchronous points in the program, where
activity buffers are read and written. For each activity task that executes, CUPTI logs
activity records at synchronization points that contains the task start and end times. For
the memory copy example, the amount of bytes transferred, which kernel transferred those
bytes, and start and end timestamps are provided in its activity record.

Callback Method and Asynchronous Buffering The CUPTI Callback API registers
a callback in TAU and is invoked whenever an application being profiled calls a CUDA
runtime or driver function, or when certain events occur in the CUDA driver (Figure 3).
The callback method is a mechanism in the device layer that triggers callbacks on the host
for registered actions, such as the beginning and ending of a kernel execution. The callback
domain is grouped into four domains (runtime functions, driver functions, resource tracking,
synchronization notification) to make it easier to associate callback functions with groups
of related CUDA functions or events. The subscriber associates each callback function with
one or more CUDA API functions and at most one subscriber cuptiSubscribe() at a time,
which requires finalizing with cuptiUnsubscribe() before initializing another subscriber.

Asynchronous buffering registers two callbacks, where one is invoked whenever CUPTI
needs an empty activity buffer, and the other is called to deliver a buffer containing one
or more activity records to TAU. CUPTI fills activity buffers with activity records as cor-
responding activities that occur on the CPU and GPU. The CUPTI client within TAU
provides empty buffers to ensure that no records are dropped. Enabling a CUPTI activity
forces initialization of the activity API, whereas flushing a CUPTI activity forces CUPTI
to deliver activity buffers with completed activity records. Reading and writing attributes
are handled via cuptiActivityGetAttribute and cuptiActivitySetAttribute calls, re-
spectively, which controls how buffering API behaves. activity trace async uses activity
buffer API to collect traces of CPU/GPU activity.

3 Methodology

Our approach to enabling new types of insight into the performance characteristics of GPU
kernels includes both static and dynamic measurement and analysis.

4



Figure 4: Overview of our proposed methodology.

IS
T

IS
E

AF1
CHG

CFB AF2
CAN

AAB
CVN

CPN CKE CLE
CM

G
CM

Q
AM

P
EE

E
CE1 CPE CE2 CE3 CE4 EE

2
CSS UVE

CCC
CHC

0

500000

1000000

1500000

2000000

2500000

In
st

ru
ct

io
n
s

LULESH

compute

move

memory

branch

misc

BK
NBF PK PV

C
BPA

CSK CRK FI
I

CPC FF
I

PB
C

AVL
AVC

BSL APB UPB
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

In
st

ru
ct

io
n
s

LAMMPS
compute

move

memory

branch

misc

Figure 5: Instruction breakdown for M2090, K80, and M6000 for individual kernels in
LULESH and LAMMPS applications.

3.1 Static Analysis

Each CUDA code is compiled with CUDA 7.0 v.7.0.17, and the “-g -lineinfo” flags, which
enables tracking of source code location activity within TAU. Each of the generated code
from nvcc is fed into cuobjdump and nvdisasm to statically analyze the code for instruction
mixes and source line information. The generated code is then monitored with TAU, which
collects performance measurements and dynamically analyzes the code variants.

3.1.1 Binary Utilities

CUDA binaries are disassembled with the binary utilities provided by the NVIDIA SDK. A
CUDA binary (cubin) file is an ELF-formatted file, or executable and linkable format, which
is a common standard file format for representing executables, object code, shared libraries
and core dumps. By default, the CUDA compiler driver nvcc embeds cubin files into the
host executable file. The objdump command is typically used to obtain disassembled binary
machine code from an executable file, compiled object, or shared library.

cuobjdump extracts information from CUDA binary files (both standalone and those
embedded in host binaries). The output of cuobjdump includes CUDA assembly code for
each kernel, CUDA ELF section headers, string tables, relocators and other CUDA specific
sections. It also extracts embedded PTX text from host binaries. The cubin file is then

5



Category Opcodes

Floating Point FADD, FCHK, FCMP, FFMM, FMNMX, FMUL,
FSET, FSETP, FSWZADD, MUFU, RRO, DADD,
DFMA, DMNMX, DMUL, DSET, DSETP

Integer BFE, BFI, FLO, IADD, IADD3, ICMP, IMAD,
IMADSP, IMNMX, IMUL, ISCADD, ISET, ISETP,
LEA, LOP, LOP3, POPC, SHF, SHL, SHR, XMAD

Conversion F2F, F2I, I2F, I2I

Movement MOV, PRMT, SEL, SHFL

Predicate/CC CSET, CSETP, PSET, PSETP, P2R, R2P

Texture TEX, TLD, TLD4, TxQ, TEXS, TLD4S, TLD5

Load/Store LD, LDC, LDG, LDL, LDS, ST, STG, STL, STS,
ATOM, ATOMS, RED, CCTL, CCTLL, MEMBAR,
CCTLT

Surface Memory SUATOM, SULD, SURED, SUST

Control BRA, BRX, JMP, JMX, SSY, CAL, JCAL, PRET,
RET, BRK, PBK, CONT, PCNT, EXIT, BPT

Miscellaneous NOP, CS2R, S2R, B2R, BAR, R2B, VOTE

Table 1: Instruction mixes broken down according to categories.

fed to nvidsasm, which outputs assembly code for each kernel, listings of ELF data sections,
and other CUDA-specific sections. Instruction mixes such as floating-point operations and
load/store operations are extracted from the assembly code, along with source line informa-
tion.

3.1.2 Instruction Breakdown

We start the analysis by categorizing the executed instructions from the disassembled binary
output. Table 1 displays the opcodes from nvcc-generated binaries, categorized according to
instruction types.

Figure 5 displays the instruction breakdown for individual kernels in LULESH and
LAMMPS applications for M2090, K80 and M6000 architectures (one per generation). For
LAMMPS, the PK kernel shows more computational operations, whereas FII and PBC
shows more move operations. For the LULESH kernels CKE, CMG, and CE2 we observe
more compute-intensive operations, as well as branches, and moves. One thing to note is
that the Maxwell architectures (M6000) in general shows more compute operations for all
kernels in LULESH, whereas the M2090 makes use of more operations in LAMMPS.

3.2 Dynamic Analysis

The TAU Parallel Performance System monitors various CUDA activities, such as memory
transfers and concurrent kernels executed. TAU also tracks source code locator activities, as
described below. Hardware counter sampling for CUPTI is also implemented in TAU and
is enabled by passing the “ebs” flag to the tau exec command line [4]. In addition, the
environment variable TAU METRICS is set with events to sample. TAU lists CUPTI events
available for a particular GPU with the tau cupti avail command. For our experiments,
we monitored instructions executed and active cycles, since those events are available across

6



all GPUs.
For each of the sampled regions from the source locator activity, the instruction mixes and

line information that was collected from the static analyzer is attributed to those locations.
This gives precise information on what instructions are being executed in real time.

3.2.1 Source Code Locator Activity

Source code locator information is an activity within the CUPTI runtime environment that
makes possible logging of CUPTI activity. Instructions are sampled at a fixed rate of 20 ms.
Within each sample, the following events are collected: threads executed, instructions exe-
cuted, source line information, kernels launched, timestamps, and program counter offsets.
Our research utilizes the information collected from the source code locator and instruction
execution activities. The activity records are collected as profiles and written out to disk for
further analysis.

3.2.2 Hardware counter sampling

Hardware counter sampling provides a mechanism to periodically read CUPTI counters,
where the event API samples event values while kernels are executing. Hardware counter
sampling is integrated in TAU and builds upon previous event-based measurement efforts
[4]. The event collection mode is set to “continuous” so that event counters run continuously.
Two threads are used in event sampling, where one thread schedules the kernels and memory
transfers that perform the computation, while another thread wakes up periodically to sample
an event counter. When sampling hardware counters, there is no correlation of the event
samples with what is happening on the GPU. GPU timestamps provide coarse correlation
at the time of the sample and also at other points of interest in the application.

The CUPTI Event API provides a means to query, configure, start, stop, and read the
event counters on a CUDA-enabled device. An event is a countable activity, action, or
occurrence on a device, which is assigned a unique identifier. A named event represents the
same activity, action, or occurrence on all device types. Each event is placed in one of the
categories defined by CUpti EventCategory, which describes the general type of activity,
action, or occurrence measured by the event. A device exposes one or more event domains,
where each event domain represents a group of related events that are managed together
and must belong to the same domain. The number and type of events that can be added to
an event group are subject to device-specific limits.

3.2.3 Runtime Mapping of Instruction Mixes to Source Code Location

Using the source locator activity discussed in Section 3.2.1, we statically collect instruction
mixes and source code locations from generated code and map the instruction mixes to the
source locator activity as the program is being run. The static analysis of CUDA bina-
ries produces an objdump file, which provides assembly information, including instruction
operations, program counter offsets, and line information. We attribute the static analysis
from the objdump file to the profiles collected from the source code activity to provide run-
time characterization of the GPU as it is being executed on the architecture. This mapping
of static and dynamic profiles provides a rich understanding of the behavior of the kernel
application with respect to the underlying architecture.

7



3.3 Instruction Operation Metrics

We define several instruction operation metrics derived from our methodology as follows.
These are examples of metrics that can be used to relate the instruction mix of a kernel
with a potential performance bottleneck. Let opj represent the different types of operations,
timeexec equal the time duration for one kernel execution (ms), and callsn represent the
number of unique kernel launches for that particular kernel.

Efficiency metric describes flops per second, or how well the floating point units are
effectively utilized:

efficiency =
opfp + opint + opsimd + opconv

timeexec
· callsn (1)

Impact metric describes the performance contribution of a particular kernel with respect
to the overall application:

impact =

∑
j∈J opj∑

i∈I
∑

j∈J opi,j
· callsn (2)

Individual metrics for computational intensity, memory intensity and control intensity
can be calculated as follows:

FLOPS =
opfp + opint + opsimd + opconv∑

j∈J opj
· callsn (3)

MemOPS =
opldst + optex + opsurf∑

j∈J opj
· callsn (4)

CtrlOPS =
opctrl + opmove + oppred∑

j∈J opj
· callsn (5)

4 Analysis

We use the LAMMPS and LULESH applications to demonstrate the new static and dynamic
measurement and analysis capabilities.

4.1 Applications

4.1.1 LAMMPS

The Large-scale Atomic/Molecular Massively Parallel Simulator [12] is a molecular dynamics
application that integrates Newton’s equations of motion for collections of atoms, molecules,
and macroscopic particles. Developed by Sandia National Laboratories, LAMMPS simulates
short- or long-range forces with a variety of initial and/or boundary conditions. For compu-
tational efficiency LAMMPS uses neighbor lists to keep track of nearby particles, which are
optimized for systems with particles that are repulsive at short distances so that the local
density of particles never become too large. On parallel machines, LAMMPS uses spatial-
decomposition techniques to partition the simulation domain into small 3D sub-domains,
where each sub-domain is assigned to a processor. LAMMPS-CUDA offloads neighbor and
force computations to GPUs while performing time integration on CPUs. In this work, we
focus on the Lennard-Jones (LJ) benchmark, which approximates the interatomic potential
between a pair of neutral atoms or molecules.

8



4.1.2 LULESH

The Livermore Unstructured Lagrange Explicit Shock Hydrodynamics (LULESH) [13] is a
highly simplified application that solves a Sedov blast problem, which represents numerical
algorithms, data motion, and programming styles typical in scientific applications. Devel-
oped by Lawrence Livermore National Laboratory as part of DARPA’s Ubiquitous High-
Performance Computing Program, LULESH approximates the hydrodynamics equation dis-
cretely by partitioning the spatial problem domain into a collection of volumetric elements
defined by a mesh. Modeling hydrodynamics describes the motion of materials relative to
each other when subject to forces. LULESH is built on the concept of an unstructured hex
mesh, where a node represents a point where mesh lines intersect. In this paper, we study
the LULESH-GPU implementation with TAU.

4.2 Methodology

We profile LULESH and LAMMPS applications on seven different GPUs (listed in [3]) with
the TAU Parallel Performance System. Next, we calculate the performance of the kernel
for one pass. Then, we apply the metrics from Section 3.3 to identify potentially poorly
performing kernels that can be optimized. Note that callsn, which represents the number of
times a particular routine is called, can easily be collected with TAU profiling. The overhead
associated with running the static analysis of our tool is equivalent to compiling the code
and running the objdump results through a parser.

4.3 Results

Figure 7 shows statically analyzed heatmap representations for LAMMPS and LULESH on
various architectures. The x-axis represents the kernel name (listed in Appendix of [3]),
while the y-axis lists the type of instruction mix. For LAMMPS, overall similarities exist
within each architecture generation (Tesla vs. Maxwell), where Maxwell makes greater use
of the control and floating-point operations, while Tesla makes greater use of the conversion
operations. The GTX980 makes use of predicate instructions, as indicated in top row of the
bottom-middle plot. For LULESH, more use of predicate and conversion operations show
up in Fermi and Tesla architectures, versus Maxwell which utilizes SIMD instructions for
both AF1 and AF2 kernels. Load/store instructions are particularly heavy in M2090 and
the GTX480 for the CKE kernel.

Figure 6 displays results for individual metrics for FLOPS, memory operations and con-
trol operations for the top five poor performing kernels for each architecture. Poor per-
forming kernels were determined using the impact metric. FLOPS and branch instructions
were higher in general for LULESH on the Maxwell architectures, when compared to Tesla.
The M2090 architecture showed higher memory operations for the CKE kernel and for all
LAMMPS kernels. The M2090 has a smaller global memory compared to Tesla (5 GB vs
11.5 GB), and a smaller L2 cache compared to Maxwell (0.8 MB vs. 3.1 MB), which explains
its poor memory performance.

Figure 8 compares divergent branches over total instructions in GPU codes using hard-
ware counters and instruction mix sampling for the top twelve kernels in LULESH, calculated
with the CtrlOPS metric. The dotted line separates the different approaches, indicating
that in all cases the instruction mix method was able to detect divergent paths. The kernels
that are closest to the y-axis represent divergent paths that weren’t detected with hardware

9



CKE CMG
CE2 CFB CCC

0.0
0.5
1.0
1.5
2.0
2.5

FL
OP

S

1e9 LULESH - FLOPS

CKE CMG
CE2 CFB CCC

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
nt

ro
l

1e9 LULESH - Branch

CKE CHG ISE CFB CCC
0.0
0.5
1.0
1.5
2.0
2.5

M
em

or
y

1e8 LULESH - Memory

PK CPC FII PV
C BK

LAMMPS - FLOPS

PK CPC FII PV
C

PB
C

LAMMPS - Branch

PK CPC FII PV
C

NBF

LAMMPS - Memory

k20x
k40
k80
m2090
gtx980
m6000

Figure 6: Floating point, control and memory intensity for top five individual kernels in
LULESH and LAMMPS applications.

counters (about 33%), which further affirms the counter’s inconsistencies in providing accu-
rate measurements. Our methodology was able to precisely detect divergent branches for
kernels that exhibited that behavior.

Figure 9 shows the correlation of computation intensity with memory intensity (nor-
malized) for all seven architectures for the LAMMPS application. For static, input-size-
independent analysis (left), differences in code generated are displayed for different archi-
tectures. However, the figure in the right shows the instruction mixes for runtime data and
reflects that there isn’t much of a difference in terms of performance across architectures.
Nevertheless, by using our static analysis tool, we were able to identify four of the top five
time-consuming kernels based only on instruction mix data.

5 Related Work

There have been attempts to assess the kernel-level performance of GPUs. However, not
much has been done to provide an in-depth analysis of activities that occur inside the GPU.

Distributed with CUDA SDK releases, NVIDIA’s Visual Profiler (NVP) [7] has a suite
of performance monitoring tools that focuses on CUDA codes. NVP traces the execution of
each GPU task, recording method name, start and end times, launch parameters, and GPU
hardware counter values, among other information. NVP also makes use of the source code
locator activity by displaying source code alongside PTX assembly code. However, NVP
doesn’t quantify the use of instruction mixes which differs from our work.

G-HPCToolkit [14] characterizes kernel behavior by looking at idleness analysis via
blame-shifting and stall analysis for performance degradation. In this work, the authors
quantify CPU code regions that execute when a GPU is idle, or GPU tasks that execute
when a CPU thread is idle, and accumulate blame to the executing task proportional to the

10



ISTISEAF1CHG
CFBAF2CAN

AAB
CVN

CPNCKECLE
CMG

CMQ
AMP

EE
E
CE1CPECE2CE3CE4EE

2
CSSUVE

CCC
CHC

fp
surf

conv
ctrl
int

ldst
move
misc

tex
simd
pred

gtx480

ISTISEAF1CHG
CFBAF2CAN

AAB
CVN

CPNCKECLE
CMG

CMQ
AMP

EE
E
CE1CPECE2CE3CE4EE

2
CSSUVE

CCC
CHC

k40

ISTISEAF1CHG
CFBAF2CAN

AAB
CVN

CPNCKECLE
CMG

CMQ
AMP

EE
E
CE1CPECE2CE3CE4EE

2
CSSUVE

CCC
CHC

k80

ISTISEAF1CHG
CFBAF2CAN

AAB
CVN

CPNCKECLE
CMG

CMQ
AMP

EE
E
CE1CPECE2CE3CE4EE

2
CSSUVE

CCC
CHC

fp
surf

conv
ctrl
int

ldst
move
misc

tex
simd
pred

m2090

ISTISEAF1CHG
CFBAF2CAN

AAB
CVN

CPNCKECLE
CMG

CMQ
AMP

EE
E
CE1CPECE2CE3CE4EE

2
CSSUVE

CCC
CHC

gtx980

ISTISEAF1CHG
CFBAF2CAN

AAB
CVN

CPNCKECLE
CMG

CMQ
AMP

EE
E
CE1CPECE2CE3CE4EE

2
CSSUVE

CCC
CHC

m6000

LULESH

BK
NBF PK PV

C
BPA CSK CRK FII CPC FF

I
PB

C
AVL

AVC
BSL APB UPB

fp
surf

conv
ctrl
int

ldst
move
misc

tex
simd
pred

gtx480

BK
NBF PK PV

C
BPA CSK CRK FII CPC FF

I
PB

C
AVL

AVC
BSL APB UPB

k40

BK
NBF PK PV

C
BPA CSK CRK FII CPC FF

I
PB

C
AVL

AVC
BSL APB UPB

k80

BK
NBF PK PV

C
BPA CSK CRK FII CPC FF

I
PB

C
AVL

AVC
BSL APB UPB

fp
surf

conv
ctrl
int

ldst
move
misc

tex
simd
pred

m2090

BK
NBF PK PV

C
BPA CSK CRK FII CPC FF

I
PB

C
AVL

AVC
BSL APB UPB

gtx980

BK
NBF PK PV

C
BPA CSK CRK FII CPC FF

I
PB

C
AVL

AVC
BSL APB UPB

m6000

LAMMPS

Figure 7: Heatmap for micro operations for LULESH and LAMMPS benchmarks on various
GPU architectures.

11



GTX480 K20x K40 K80 M2090 GTX980 M6000

CUDA Capability 2 3.5 3.5 3.7 2 5.2 5.2
Global Memory (MB) 1156 5760 11520 11520 5375 4096 12288

Multiprocessors 15 14 15 13 16 16 24
CUDA Cores per MP 32 192 192 192 32 128 128

CUDA Cores 480 2688 2880 2496 512 2048 3072
GPU Clock Rate (MHz) 1400 732 745 824 1301 1216 1114

Memory Clock Rate (MHz) 1848 2600 3004 2505 1848 3505 3305
L2 Cache Size (MB) 0.786 1.572 1.572 1.572 0.786 2.097 3.146

Constant Memory (bytes) 65536 65536 65536 65536 65536 65536 65536
Shared Memory (bytes) 49152 49152 49152 49152 49152 49152 49152

Registers per Block 32768 65536 65536 65536 32768 65536 65536
Warp Size 32 32 32 32 32 32 32

Max Threads per MP 1536 2048 2048 2048 1536 2048 2048
Max Threads per Block 1024 1024 1024 1024 1024 1024 1024

Architecture Family Fermi Tesla Tesla Tesla Tesla Maxwell Maxwell

Table 2: Graphic processors used in this experiment.

0.000 0.001 0.002 0.003 0.004 0.005 0.006

Hardware Counter Rate

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

In
st

ru
ct

io
n
 M

ix
 R

a
te

Divergent/Instructions Metric (LULESH)

M6000

M2090

GTX480

GTX980

0 1000000 2000000 3000000 4000000 5000000

Average Time

IST
ISE

AF1
CHG
CFB
AF2
CAN
AAB
CVN
CPN
CKE
CLE

CMG
CMQ
AMP
EEE
CE1
CPE
CE2
CE3
CE4
EE2
CSS
UVE
CCC
CHC

LULESH

gtx480

k40

k80

m2090

gtx980

m6000

Figure 8: Two approaches to measuring divergent branches: instruction mix sampling, and
hardware counters. Average execution times for individual kernels, both for LULESH appli-
cations.

12



Figure 9: Static (left) and dynamic (right) analyses for various architectures showing per-
formance of individual kernels in LAMMPS.

idling task. Vampir [8] also does performance measurements for GPUs. They look at the
trace execution at the start and stop times and provide a detailed execution of timing of
kernel execution, but do not provide activities that behave inside the kernel. The authors
[16] have characterized PTX kernels by creating an internal representation of a program and
running it on an emulator, which determines the memory, control flow and parallelism of
the application. This work closely resembles ours, but differs in that we perform workload
characterization on actual hardware during execution.

Other attempts at modeling performance execution on GPUs can be seen in [19] and [20].
These analytical models provide a tractable solution to calculate GPU performance when
given input sizes and hardware constraints. Our work is complementary to those efforts, in
that we identify performance execution of kernels using instruction mixes.

6 Conclusion and Future Work

Monitoring performance on accelerators is difficult because of the lack of visibility in GPU
execution and the asynchronous behavior between the CPU and GPU. Sampling instruc-
tion mixes in real time can help characterize the application behavior with respect to the
underlying architecture, as well as identify the best tuning parameters for kernel execution.

In this research, we provide insight on activities that occur inside the GPU. In partic-
ular, we characterize the performance of execution at the kernel level based on sampled
instruction mixes. In future work, we want to address the divergent branch problem, a
known performance bottleneck on accelerators, by building control flow graphs that model
execution behavior. In addition, we plan to use the sampled instruction mixes to predict
performance parameters and execution time for the Orio code generation framework [9]. The
goal is to substantially reduce the number of empirical tests for kernels, which will result in
rapid identification of best performance tuning configurations.

13



7 Acknowledgements

We want to thank Duncan Poole and J-C Vasnier of NVIDIA for providing early access to
CUDA 7.0 and to the PSG Clusters. This work is supported by the Department of Energy
(Award #DE-SC0005360) for the project “Vancouver 2: Improving Programmability of
Contemporary Heterogeneous Architectures.”

References

[1] S. Shende, and A. Malony. The TAU parallel performance system. International Journal
of High Performance Computing Applications, 2006.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable Programming
Interface for Performance Evaluation on Modern Processors,” International Journal of
High Performance Computing Applications, June 2000.

[3] R. Lim. Identifying Optimization Opportunities within Kernel Launches in GPU Archi-
tectures University of Oregon, CIS Department, Technical Report.

[4] A. Morris, A. Malony, S. Shende, and K. Huck. Design and implementation of a hy-
brid parallel performance measurement system. International Conference on Parallel
Processing (ICPP), IEEE, 2010.

[5] R. Dietrich, T. Ilsche, and G. Juckeland . Non-intrusive Performance Analysis of Parallel
Hardware Accelerated Applications on Hybrid Architectures First International Work-
shop on Parallel Software Tools and Tool Infrastructures (PSTI 2010), IEEE Computer
Society, 2010.

[6] Intel VTune Amplifier. https://software.intel.com/en-us/intel-vtune-amplifier-xe

[7] NVIDIA Visual Profiler. https://developer.nvidia.com/nvidia-visual-profiler

[8] A. Knpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. Mller, and
W. Nagel. ”The VAMPIR performance analysis tool-set.” In Tools for High Performance
Computing, pp. 139-155. Springer Berlin Heidelberg, 2008.

[9] A. Hartono, B. Norris, and P. Sadayappan. Annotation-based empirical performance tun-
ing using Orio. International Symposium on Parallel & Distributed Processing (IPDPS).
IEEE, 2009.

[10] A. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland, R. Dietrich,
D. Poole, and C. Lamb. Parallel performance measurement of heterogeneous parallel
systems with GPUs. IEEE International Conference on Parallel Processing (ICPP),
2011.

[11] Y. Shao, and D. Brooks. “ISA-independent workload characterization and its implica-
tions for specialized architectures.” IEEE International Symposium Performance Anal-
ysis of Systems and Software (ISPASS), 2013.

[12] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of
Computational Physics 117, no. 1 (1995): 1-19.

14



[13] I. Karlin, A. Bhatele, B. Chamberlain, J. Cohen, Z. Devito, M. Gokhale, R. Haque et
al. Lulesh programming model and performance ports overview Lawrence Livermore
National Laboratory (LLNL), Livermore, CA, Tech. Rep (2012).

[14] M. Chabbi, K. Murthy, M. Fagan, and J. Mellor-Crummey. Effective sampling-driven
performance tools for GPU-accelerated supercomputers. International Conference for
High Performance Computing, Networking, Storage and Analysis (SC). IEEE, 2013.

[15] N. Farooqui, A. Kerr, G. Eisenhauer, K. Schwan, and S. Yalamanchili. Lynx: A dy-
namic instrumentation system for data-parallel applications on GPGPU architectures.
International Symposium on Performance Analysis of Systems and Software (ISPASS),
IEEE, 2012.

[16] A. Kerr, G. Andrew, and S. Yalamanchili. A characterization and analysis of ptx kernels.
International Symposium on Workload Characterization (IISWC), IEEE 2009.

[17] V. Weaver, D. Terpstra and S. Moore Non-Determinism and Overcount on Modern
Hardware Performance Counter Implementations. ISPASS Workshop, April 2013.

[18] R. Lim, D. Carrillo-Cisneros, W. Alkowaileet, and I. Scherson Computationally Efficient
Multiplexing of Events on Hardware Counters. Linux Symposium, July 2014

[19] S. Hong, and H. Kim. An analytical model for a GPU architecture with memory-level
and thread-level parallelism awareness. ACM SIGARCH Computer Architecture News,
ACM, 2009.

[20] H. Kim, R. Vuduc, S. Baghsorkhi, J. Choi, and W. Hwu Performance Analysis and
Tuning for General Purpose Graphics Processing Units (GPGPU). Morgan & Claypool
Publishers, 2012.

8 Appendix

8.1 Applications

15



Applications

Benchmark Kernel Abb

LULESH

InitStressTermsForElems IST
IntegrateStressForElems ISE
AddNodeForcesFromElems AF1
CalcHourglassControlForElems CHG
CalcFBHourglassForceForElems CFB
AddNodeForcesFromElems2 AF2
CalcAccelerationForNodes CAN
ApplyAccelerationBoundaryConditionsForNodes AAB
CalcVelocityForNodes CVN
CalcPositionForNodes CPN
CalcKinematicsForElems CKE
CalcLagrangeElementsPart2 CLE
CalcMonotonicQGradientsForElems CMG
CalcMonotonicQRegionForElems CMQ
ApplyMaterialPropertiesForElems AMP
EvalEOSForElems EEE
CalcEnergyForElemsPart1 CE1
CalcPressureForElems CPE
CalcEnergyForElemsPart2 CE2
CalcEnergyForElemsPart3 CE3
CalcEnergyForElemsPart4 CE4
EvalEOSForElemsPart2 EE2
CalcSoundSpeedForElems CSS
UpdateVolumesForElems UVE
CalcCourantConstraintForElems CCC
CalcHydroConstraintForElems CHC

LAMMPS

Binning Kernel BK
NeighborBuildFillBin NBF
Pair Kernel TpA PK
PairVirialCompute reduce PVC
Pair Kernel BpA BPA
ComputeTempCuda Scalar Kernel CSK
ComputeTempCuda Reduce Kernel CRK
FixNVECuda InitialIntegrate FII
CommCuda PackComm self Kernel CPC
FixNVECuda FinalIntegrate FFI
Domain PBC Kernel PBC
AtomVecCuda PackExchangeList AVL
AtomVecCuda PackExchange AVC
CommCuda BuildSendlist BSL
AtomVecCuda PackBorder APB
CommCuda UnpackBorder UPB

Table 3: Applications and kernels with abbreviations.

16


