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ABSTRACT

Power is becoming a major design constraint in the world of high-
performance computing (HPC). This constraint affects the hard-
ware being considered for future architectures, the ways it will run
software, and the design of the software itself. Within this context,
we explore tradeoffs between power and performance. Visualiza-
tion algorithms themselves merit special consideration, since they
are more data-intensive in nature than traditional HPC programs
like simulation codes. This data-intensive property enables differ-
ent approaches for optimizing power usage.

Our study focuses on the isosurfacing algorithm, and explores
changes in power and performance as clock frequency changes, as
power usage is highly dependent on clock frequency. We vary many
of the factors seen in the HPC context — programming model (MPI
vs. OpenMP), implementation (generalized vs. optimized), concur-
rency, architecture, and data set — and measure how these changes
affect power-performance properties. The result is a study that in-
forms the best approaches for optimizing energy usage for a repre-
sentative visualization algorithm.

1 INTRODUCTION

Power is a central issue for achieving future breakthroughs in high
performance computing (HPC). As today’s leading edge supercom-
puters require between 5 and 18 MegaWatts to power, and as the
cost of one MegaWatt-year is approximately one million US dol-
lars, supercomputing centers regularly spend over five million US
dollars per year, and sometimes exceed ten million US dollars per
year. Worse, power usage is proportional to the size of the machine;
scaling up to even larger machines will cause power usage (and as-
sociated costs) to grow even larger. Applying today’s designs to
exascale computing would cost hundreds of millions of US dollars
to power. As a result, the HPC community has made power effi-
ciency a central issue, and all parts of the HPC ecosystem are being
re-evaluated in the search for power savings.

Supercomputers require a varying amount of power. When run-
ning programs that stay within the machine’s normal operating lim-
its, the amount of power often matches the usage for when the ma-
chine is idle. However, programs that engage more of the hard-
ware — whether it is caches, additional floating point units, main
memory, etc. — use more power. HPL (High Performance Lin-
pack), a benchmark program that is computationally intensive, has
been known to triple power usage, since HPL has been highly op-
timized and makes intense use of the hardware. However, many
visualization programs have not undergone the same level of opti-
mization, and thus only require power near the machine’s idle rate.
That said, alternate approaches exist that do create opportunities
for data-intensive programs — i.e., visualization programs — to
achieve energy savings.
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As power usage is highly dependent on clock frequency, reduc-
tions in frequency can lead to significant power savings. On the
face of it, reducing the clock frequency seems like, at best, a break-
even strategy — i.e., running at half the speed should take twice
as long to execute. However, visualization programs are differ-
ent than traditional HPC workloads, since many visualization algo-
rithms are data-intensive. So, while HPC workloads engage floating
point units (and thus drive up power), visualization workloads make
heavier use of the memory infrastructure.

The data-intensive nature of visualization algorithms creates an
opportunity: newer architectures have controls for slowing down
the clock frequency, but keeping the memory operating at a nor-
mal speed. In this case, power is being devoted to main memory
at the same rate (which is good because memory is often a bottle-
neck), but power is devoted to the CPU at a lower rate (which is also
good because the CPU is being under-utilized). As the extreme out-
come, then, it is conceivable that slowing down the clock frequency
(and keeping the memory operating at full speed) could lead to a
scenario where the execution time is the same (since the memory
performance dominates), but the power usage drops.

With this study, we explore the efficacy of varying clock speed
to achieve energy savings. The achieved effects vary based on myr-
iad factors, and we endeavor to understand those factors and their
impacts. Our study focuses on a representative visualization al-
gorithm (isosurfacing), and looks at how that algorithm performs
under a variety of configurations seen in HPC settings. We find
that these configurations have real impacts on power-performance
tradeoffs, and that some approaches lend themselves to better en-
ergy efficiency than others.

2 RELATED WORK
2.1 Power

Power is widely viewed as the central challenge for exascale com-
puting, and that challenge is expected to impact exascale soft-
ware [7], including visualization software [2]. Outside of visualiza-
tion, many HPC researchers have looked at how to reduce energy
usage at different levels ranging from the processor to the full sys-
tem, including tradeoffs between power and performance. Porter-
field et al. [20] looked into the variability in the performance to
energy usage at the processor level using OpenMP and MPI. Other
research has been dedicated to reduce the total power usage of the
system [15, 20, 10, 9]. Ge et al. [12] developed compute-bound
and memory-bound synthetic workload to demonstrate that power-
performance characteristics are determined by various characteris-
tics in the application.

The study closest to ours was by Gamell et al. [11]. In this work,
they investigated the power-performance relationship for visualiza-
tion workloads. However, our studies are complementary, as they
looked at behaviors across nodes and we aim to illuminate the be-
havior within a node. A second noteworthy study was by Johns-
son et al. [14]. In this study, the authors studied power usage on a
GPU when different rendering features were enabled and disabled.
Our study is different in nature, as we are studying a visualiza-
tion algorithm, and also we are studying impacts of programming



model, data set, and architectural features, rather than changing the
(OpenGL) rendering algorithm itself.

2.2 Visualization

Our study focuses on a traditional isosurfacing algorithm using
Marching Cubes [16]. While our study does not preclude using
an acceleration structure to quickly identify only the cells that con-
tain the isosurface [6], we did not employ this optimization since
we wanted the data loads and stores to follow a more controlled
pattern.

Most of our experiments were run using our own implementa-
tion of an isosurface algorithm. However, some experiments were
run using the isosurfacing algorithm in the Visualization ToolKit
(VTK) [21]. Further, we believe that the corresponding results are
representative of the class of general frameworks, e.g., OpenDX [1]
and AVS [23], and of the end-user tools built on top of such frame-
works (i.e., VTK-based ParaView [3] and Vislt [5]).

3 BENCHMARK TESTS

One goal for this study is to identify situations where the clock fre-
quency can be reduced, but the execution time does not increase
proportionally. In such cases, energy savings are possible. How-
ever, we should only expect the execution time to be maintained
if the computation is data-bound. This situation occurs when data
load and store requests exceed what the memory infrastructure can
deliver.

To get a sense of when programs are data-bound and when they
are compute-bound, we created four micro-benchmarks. These
benchmarks will also inform the spectrum of outcomes we can ex-
pect. The benchmarks are:

o computeBound: A compute-bound workload performing sev-
eral multiplication operations on one variable.

o computeBoundILP: The above compute-bound benchmark
with instruction-level parallelism. This enables pipelining of
multiple instructions.

e memoryBound: A memory-bound benchmark that accesses an
element in an array and then writes it to another array based
on an index.

o memoryBoundCacheThrash: The above memory-bound
benchmark, but the indices that map the output value have
been randomized, removing any benefit of locality.

Figure 1 shows the performance results of our micro-benchmarks
with varying CPU clock frequencies. Our original hypothesis was
that the computeBound workload would double in execution time
if run at half the speed, the memoryBoundCacheThrash application
would have the most consistent runtime across all frequencies, and
the computeBoundILP and memoryBound workloads would have
changes in runtime that fall between the two extremes. From the
figure, we find that the computeBound workload follows our ini-
tial premise. The memoryBoundCacheThrash workload stays rela-
tively consistent, but there is a slight increase in runtime when run
at the lowest frequency. Even with a synthetic data-bound work-
load, we are not able to achieve perfect consistency in runtime over
varying frequencies. This means that we should not expect visual-
ization workloads to achieve perfect consistency in runtime, since
they have significantly more computations than the synthetic work-
load, and since they use cache in a more coherent way.

4 EXPERIMENTAL SETUP

The following section details the various parameters in our experi-
ments.
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Figure 1: Performance results of our micro-benchmarks with varying
frequencies. The computeBound workload is directly proportional to
the clock speed, while the memoryBoundCacheThrash is indepen-
dent of the change in clock frequency.

Table 1: Increase in runtime for the four micro-benchmarks when
slowing down the clock frequency by a factor of 2X. Though memo-
ryBoundCacheThrash is synthetically designed to be the most data-
intensive workload, it still does not hold constant in runtime across
frequencies, i.e., achieve a ratio of exactly 1X.

Time

Benchmark 24GHz 1.2 GHz Ratio
computeBound 24.59s  49.17s 2X
computeBoundILP 1.32s 2.58s 2X
memoryBound 5.25s 7.63s 1.4X

memoryBoundCacheThrash ~ 79.78s  84.22s 1.1X

4.1 Factors Studied

We considered the following factors:

e Hardware architecture. Architecture is important, since
each architecture has different power requirements at varying
clock frequencies, and also different caching characteristics.

e CPU clock frequency. As the clock speed slows down, the
data-intensive workloads may not slow down proportionally,
creating opportunities for power savings.

e Data set. Data set dictates how the algorithm must traverse
memory. While structured data accesses memory in a regu-
lar pattern, unstructured data may have more random arrange-
ments in memory, increasing the data intensity.

e Concurrency. Concurrency affects the demands placed on
the memory subsystem: more cores are more likely to hit the
memory infrastructure’s bandwidth limit, while fewer cores
are less likely.

e Algorithm implementation. The algorithm implementation
dictates the balance of computations and data loads and stores.
Across implementations, the total number of instructions and
the ratios of instruction types will change, which in turn could
affect power-performance tradeoffs.

e Parallel programming model. The programming model af-
fects how multi-core nodes access data and the necessary
memory bandwidth for the algorithm. Specifically, coordi-
nated accesses across cores can reduce cache thrashing, while
uncoordinated accesses can increase cache thrashing.

4.2 Configurations

Our study consisted of six phases and 277 total tests. It varied six
factors:



e Hardware architecture: 2 options

e CPU clock frequency: 7 or 11 options, depending on hard-
ware architecture

e Data set: § options

e Concurrency: 4 options

e Algorithm implementation: 2 options

e Parallel programming model (OpenMP vs. MPI): 2 options

4.2.1 Hardware Architecture
We studied two architectures:

e CPUI1: A Haswell Intel i7 4770K with 4 hyper-threaded cores
running at 3.5 GHz, and 32 GB of memory operating at 1600
MHz. Each core has a private L1 and L2 cache running with
a bandwidth of 25.6 Gbytes/s.

e CPU2: A single node of NERSC’s Edison machine. Each
node contains two Intel Ivy Bridge processors, and each pro-
cessor contains 12 cores, running at 2.4 GHz. Each node con-
tains 64 GB of memory operating at 1866 MHz. Each core
has a private L1 and L2 cache, with 64 KB and 256 KB, re-
spectively. A 30 MB L3 cache is shared between the 12 cores.
The cache bandwidth for L1/L.2/L3 is 100/40/23 Gbytes/s.

Both CPUs enable users to set a fixed CPU clock frequency
as part of launching the application. CPUI uses the Linux
cpufreg-utils tool, while CPU2 uses an aprun command
line argument to specify the frequency of a submitted job. Both
CPUs are also capable of reporting total energy usage and power
consumed (see Section 4.3).

Finally, it is important to note that Intel Haswell processors (i.e.,
CPU1) do not tie cache speeds to clock frequency, but Intel Ivy
Bridge processors (i.e., CPU2) do force their caches to match clock
frequency, and thus their caches slow down when clock frequency
is reduced.

4.2.2 CPU Clock Frequency

For CPU1, we were able to set the clock frequency at 11 different
options, from 1.6 GHz to 3.5 GHz (nominal frequency). For CPU2,
the hardware controls only allowed for 7 options, from 1.2 GHz to
2.6 GHz (nominal frequency).

4.2.3 Data Set

In this study, we consider only unstructured meshes, although we
consider different sizes, and different cache coherency characteris-
tics. Our study used the following eight data sets:

e Enzo-1M: a cosmology data set from the Enzo [19] simula-
tion code originally mapped on a rectilinear grid. We decom-
posed the data set into 1.13 million tetrahedrons.

e Enzo-10M: a 10.5 million tetrahedron version of Enzo-1M.
e Enzo-80M: an 83.9 million tetrahedron version of Enzo-1M.

e Nek5000: a 50 million tetrahedron unstructured mesh from a
Nek5000 [8] thermal hydraulics simulation. Nek5000’s native
mesh is unstructured, but composed of hexahedrons. For this
study, we divided these hexahedrons into tetrahedrons.

¢ REnzo-1M, REnzo-10M, REnzo-80M, RNek5000: Altered
versions of the above data sets. We randomize the point in-
dices such that accesses are irregular and locality is not main-
tained.

We selected an isovalue of 170 for the Enzo data sets, and 0.3 for
Nek5000. While “isovalue” could have served as another parameter
for our study, we found that varying it did not significantly affect
results.
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Figure 2: Visualizations of the two data sets used in this study. The
Enzo data set is on the left and Nek5000 is on the right.

4.2.4 Concurrency

For CPU1, we ran tests using 1, 2, 3, and 4 cores. For CPU2, no
tests of this nature were run.

4.2.5 Algorithm Implementation

The isosurfacing algorithm is a standard visualization technique
used to extract a surface from 3D data (in 2D, a plane would be
extracted). This surface (or plane) represents points of a constant
value, specified by the isovalue. Computing the isosurface involves
iterating over all cells in the input data set, comparing each cell to
the isovalue, and outputting a new data set consisting of valid cells.

We implemented two different versions of isosurfacing for our
study, which target two different use cases:

o BaselineImplementation: We wrote our own isosurfacing al-
gorithm, which consisted of only the instructions necessary to
perform Marching Cubes on tetahedral data (Marching Tets).
Thus, it was efficient for that purpose, especially in terms of
minimal numbers of instructions. Though the more common
case would make use of the implemented algorithm included
in a general-purpose visualization software toolkit (also in-
cluded in this study for comparison), we wanted to explore
the effects of an alternative implementation that could achieve
the same algorithm using a minimum number of instructions.
We implemented versions of our code to work with both MPI
and OpenMP.

e Generallmplementation: Isosurface implemented using a
general-purpose visualization software library (VTK), specifi-
cally the vtkContourFilter. Generalized frameworks like VTK
sacrifice performance to ensure that their code works on a
wide variety of configurations and data types. As a result, the
performance characteristics of such a framework are different
(specifically having an increased number of instructions), and
thus the opportunities for power-performance tradeoffs may
also be different. The vtkContourFilter does not work with
OpenMP, so our only supported programming model for this
implementation was with MPI (via our own custom MPI pro-
gram that incorporated this module).

4.2.6 Parallel Programming Model

We implemented our isosurfacing algorithm using both the
OpenMP [4] and MPI [22] parallelism approaches within a node.
Depending on the approach, the work of iterating over the cells in
the input can be divided among invididual cores in some way in or-
der to increase performance. The approach may impact the percent-
age of time spent waiting for data being fetched from main memory
(depending on if accesses are coordinated or uncoordinated), which
may influence power-performance tradeoffs.



With the OpenMP approach, all cores operated on a common
data set, meaning that cache accesses can be done in a coordinated
way. Our OpenMP implementation used default thread scheduling,
and the cells in the data set were split evenly among the threads.
With this method, the chunk size is determined by the number of
iterations in the loop divided by the number of OpenMP threads.
That said, we experimented with many chunking strategies and
were not able to locate any that significantly outperformed the de-
fault.

With the MPI approach, each core operated on an exact local
copy of the data in its own space. In other words, our approach
was embarrasingly parallel, and we did not add logic to partition
the work across parallel tasks. As a result, the cores were operating
independently to compute the isosurface, creating uncoordinated
cache accesses.

Regardless of the parallel programming model, the algorithm op-
erated on the same data size, and each compute element (whether
that be an OpenMP thread or an MPI rank) iterated over the same
number of cells. Given C cores and N cells in the data set, the
OpenMP approach divides the work across the cores, such that each
core operates on N /C cells, and repeats this assigned work C times.
The OpenMP approach coordinates cores and their data accesses.
The MPI approach, on the other hand, would have each core op-
erate on N cells, and each core would have uncoordinated data ac-
cesses. Further, in order to obtain reliable measurements, we had
each algorithm execute ten times, and the reported measurements
are for all ten executions.

4.3 Performance Measurements

We enabled PAPI [18] performance counters to gather
measurements for each phase of the algorithm. Specif-
ically, ~we capture PAPI_TOT_INS, PAPI_TOT_CYC,
PAPI_L3_TCM, PAPI L3 _TCA, and PAPI_ STL_ICY.
(Note that PAPI_TOT_INS counts all instructions executed,
which can vary from run to run due to CPU branch speculation.
Unfortunately, we were not able to count instructions retired,
which would be consistent across runs.)
We then derive additional metrics from the PAPI counters:

e instructions executed per cycle (IPC) =
PAPI_TOT_ INS/PAPI_TOT CYC

e L3 cache miss rate =
PAPI_L3_TCM/PAPI_TOT_CYC

On CPUI1, we used Intel’s Running Average Power Limit
(RAPL) [13] to obtain access to energy measurements. This instru-
mentation provides a per socket measurement, aggregating across
cores. On CPU2, we took power and energy measurements using
the Cray XC30 power management system [17]. This instrumen-
tation provides a per node measurement, again aggregating across
cores.

4.4 Methodology

Our study consisted of six phases. The first phase studied a base
case, and the subsequent phases varied additional dimensions from
our test factors, and analyzed the impacts of those factors.

4.41 Phase 1: Base Case

Our base case varied the CPU clock frequency. It held the re-
maining factors constant: CPU1, Enzo-10M, four cores (maximum
concurrency available on CPU1), the BaselineImplementation, and
the OpenMP parallel programming model. The motivation for this
phase was to build a baseline understanding of performance.

Configuration: (CPUL, 4 cores, Enzo-10M, Baselinelmplemen-
tation, OpenMP) x 11 CPU clock frequencies

4.4.2 Phase 2: Data Set

In this phase, we continued varying clock frequency and added vari-
ation in data set. It consisted of 88 tests, of which 11 were studied
in Phase 1 (the 11 tests for Enzo-10M).

Configuration: (CPU1, 4 cores, Baselinelmplementation,
OpenMP) x 11 CPU clock frequencies x 8 data sets

4.4.3 Phase 3: Parallel Programming Models

In this phase, we continued varying clock frequency and data set
and added variation in parallel programming model. It consisted of
176 tests, of which 88 were studied in Phase 2 (the OpenMP tests).

Configuration: (CPUI1, 4 cores, BaselineImplementation) x 11
CPU clock frequencies x 8 data sets x 2 parallel programming
models

4.4.4 Phase 4: Concurrency

In this phase, we went back to the Phase 1 configuration, and added
variation in concurrency and programming model. It consisted of
88 tests, of which 11 were studied in Phase 1 (the OpenMP config-
urations using all 4 cores) and 11 were studied in Phase 3 (the MPI
configurations using all 4 cores).

Configuration: (CPU1, Enzo-10M, BaselineImplementation) x
11 CPU clock frequencies x 4 concurrency levels x 2 parallel pro-
gramming models

4.4.5 Phase 5: Algorithm Implementation

In this phase, we studied variation in algorithm implementation.
Since the Generallmplementation was only available with the MPI
parallel programming model, we could not go back to Phase 1. In-
stead, we compared 11 new tests with 11 tests first performed in
Phase 3.

Configuration: (CPUI, 4 cores, Enzo-10M, MPI) x 11 CPU
clock frequencies x 2 algorithm implementations

4.4.6 Phase 6: Hardware Architecture

With this test, we went to a new hardware architecture, CPU2. We
kept many factors constant — BaselineImplementation, Enzo-10M,
24 cores — and varied CPU clock frequency and parallel program-
ming model. All 14 tests for this phase were new.

Configuration: (CPU2, 24 cores, Enzo-10M, Baselinelmple-
mentation) X 7 CPU clock frequencies x 2 parallel programming
models

5 RESULTS

In this section, we describe results from the six phases detailed in
Section 4.4. Before doing so, we consider an abstract case, as the
analysis of this abstract case is common to the analysis of each
phase. We also define terms that we use throughout this section.

Assume a visualization algorithm, when running at the default
clock frequency of Fp, takes time Tp seconds to run, consumes
a total energy of Ep Joules, and requires an average power of Pp
Watts (with Pp = Ep/Tp). Further assume that same visualization
algorithm, when reducing the clock frequency to Fg, takes T sec-
onds, consumes a total of Eg Joules, and requires an average of Pr
Watts (once again with Pg = Eg/Tg). We then define the following
terms:

e F.y = Fp/Fg. This is the ratio of the clock frequencies. If
the clock frequency was slowed down by a factor of two, then
Frar =2.

e Tyt = Tr/Tp. This is the ratio of elapsed time. If the algo-
rithm runs twice as slow, then T, = 2.

e E,y = Ep/Eg. This is the ratio of energy consumed. If the
energy consumed is reduced by a factor of two, then E,,; = 2.



e Py = Pp/Pg. This is the ratio of power usage. If the power
usage is reduced by a factor of two, then Py, = 2.

Note that three of the terms have the value for the default clock
frequency in the numerator and the value for the reduced clock fre-
quency in the denominator, but that 7, flips them. This flip sim-
plifies comparison across terms, since it makes all ratios be greater
than 1.

We then find these three pairs of terms noteworthy:

o Fry and T,y: When T,y is less than F4, the data-intensive
nature of the visualization algorithm enabled the program to
slow down at a rate less than the reduction in clock frequency.

o T4 and E,,: This pair represents a proposition for visual-
ization consumers (i.e., visualization scientists or simulation
scientists who use visualization software): “if you are willing
to run the visualization (7,,) times slower, then you can use
(Erqr) times less energy.”

e T,y and P.4: This pair represents a related proposition for
visualization consumers: “if you are willing to run the visual-
ization (7,4;) times slower, then you can use (P4 ) times less
power when doing so.” This power proposition would be use-
ful for those that want to run a computing cluster at a fixed
power rate.

5.1 Phase 1: Base Case

Phase 1 fixed all factors except clock frequency, to provide a base-
line for future phases. The factors held constant were: BaselineIm-
plementation, OpenMP, 4 cores on CPU1, and the Enzo-10M data
set. Table 2 contains the results.

In terms of our three ratios:

o F.y and T,4: At the slowest clock speed (1.6 GHz), Fr4
was 2.2X, but T;, was 1.84X, meaning that the program was
not slowing down proportionally. A purely compute-intensive
program that took 1.29s at 3.5 GHz would have taken 2.82s
at 1.6 GHz, while our isosurfacing program took 2.40s (i.e.,
17% faster).

e T,4 and E,4: Energy savings of up to 1.44X can be gained
by accepting slowdowns of up to 1.84X. Clock frequencies
in between the extremes offer propositions with less energy
savings, but also less impact on runtime.

o T,y and P.;: Power savings of up to 2.7X can be gained
by accepting slowdowns of up to 1.84X. The power savings
are greater than the energy savings since the energy accounts
for reduced runtime, while the power only speaks to instanta-
neous usage. Regardless, such power savings could be useful
when running complex systems with a fixed power budget.

5.2 Phase 2: Data Set

Phase 2 extended Phase 1 by varying over data set. Table 3 shows
specific results for the REnzo-10M data set (which compares with
the Enzo-10M data set in Table 2 of Section 5.1), and Figure 3
shows aggregate results over all data sets.

In terms of our three ratios:

e [, and T,4: The right sub-figure of Figure 3 shows that the
slowdown factor varies over data set. In the worst case, for the
Enzo-1M data set, the slowdown factor is at 2.2X — i.e., ex-
actly 3.5 GHz over 1.6 GHz — meaning that it is performing
like a computationally-intensive workload. This makes sense,
however, since Enzo-1M is our smallest data set, and it has a
regular data access pattern.

e T,. and E,4: This tradeoff varies based on data set. The data
sets with randomized access patterns (REnzo, RNek) have
better propositions, as do large data sets. Also, when com-
paring Table 3 and Table 2, we can see that the tradeoffs got
more favorable with REnzo-10M, with energy savings of 1.7X
against slowdowns of 1.4X (where it was 1.44X and 1.84X for
Enzo-10M).

e T,y and P.y;: Table 3 shows us that the power tradeoff for
REnzo-10M is slightly worse than Enzo-10M. We attribute
the increase in instantaneous power to increased data intensity
(see Table 4).

Table 2: Experiment results for Phase 1, which uses OpenMP and
the Baselinelmplementation.

F Fa T Ta E  Ewu P Prar
35GHz 1X 1.29s 1X 743) 1X 574W 1X
33GHz 1.1X 132s 1X 694 1.1X 52.6W 1.1X
3.1GHz 1.1X 1.38s 1.1X 66.7] 1.1X 482W 1.2X
29GHz 1.2X 142s 1.1X 63.4) 12X 448W 13X
2.7GHz 1.3X 1.50s 1.2X 61.5] 1.2X 409W 14X
2.5GHz 14X 1.62s 13X 609J 12X 375W 1.6X
23GHz 1.5X 1.78s 14X 53.7) 14X 30.1W 19X
2.1GHz 1.7X 193s 1.5X 53.8] 14X 279W 21X
2.0GHz 1.8X 1.95s 1.5X 52.1J 14X 268W 22X
1.8GHz 19X 2.13s 1.7X 51.1J 14X 24.1W 24X
1.6GHz 2.2X 240s 19X 514] 14X 214W 27X

Table 3: Experiment results for the REnzo-10M data set in Phase 2,
which uses OpenMP and the Baselinelmplementation.

F Frat T T E Erat P Prat
3.5GHz 1X 295s 1X 14277 1X 484W 1X
33GHz 1.1X 3.05s 1X 134.8] 1.1X 442W 1.1X
3.1GHz 1.1X 3.01s 1X 1243] 1.1X 41.3W 1.2X
29GHz 12X 3.33s 1.1X 1223] 12X 36.8W 1.3X
27GHz 13X 3.23s 1.1X 109.3] 1.3X 33.8W 1.4X
2.5GHz 14X 3.22s 1.1X 99.6] 14X 309W 1.6X
2.3GHz 15X 348s 13X 934 1.5X 268W 1.8X
2.1GHz 1.7X 3.49s 13X 88.0J 1.6X 252W 19X
2.0GHz 1.8X 3.79s 13X 88.3]J 1.6X 233W 2.1X
1.8GHz 19X 3.79s 13X 822] 17X 21.7W 2.2X
1.6GHz 22X 4.19s 14X 82.1J 1.7X 19.6W 2.5X

The performance measurements listed in Table 4 help explain
the differences between the data sets. Specifically, the L3 miss rate
(unsurprisingly) goes up when data sets get larger and their accesses
become randomized. This in turn pushes down the number of in-
structions per cycle (a surrogate for capturing how many stalls are
occurring in the pipeline, which is difficult to measure).

Table 4: Performance measurements for the 1.6 GHz experiments
from Phase 2. IPC is short for Instructions Per Cycle, and the L3
Miss Rate is the number of L3 cache misses per one million cycles.
Data Set  Time Cycles IPC L3 Miss Rate
Enzo-1IM  0.39s 614M 142 597
Enzo-10M 2.40s 3.0B 1.89 1027
Enzo-80M 13.2s 18B 224 1422
Nek5000 143s 20B 1.54 949
REnzo-1IM 0.44s 700M 1.17 5420
REnzo-10M 4.2s 6.0B 0.94 10913
REnzo-80M 339s 51B 0.78 12543
RNek5000 27.2s 38B  0.81 11593
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Figure 3: Results from Phase 2, which uses four cores of CPU1 with OpenMP and the Baselinelmplementation and varies over data set and

clock frequency. The plots are of energy (left) and runtime (middle), as a function of CPU clock frequency. The right figure is a scatter plot of the
1.6GHz slowdown factor versus energy savings for the eight data sets.
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Figure 4: Results from Phase 3, which uses four cores of CPU1 with MPI and the Baselinelmplementation and varies over data set and clock

frequency. The plots are of energy (left) and runtime (middle), as a function of CPU clock frequency. The right figure is a scatter plot of the
1.6GHz slowdown factor versus energy savings for the eight data sets.
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5.3 Phase 3: Parallel Programming Models

Table 5: Experiment results from Phase 3 for the Enzo-10M data set,
which uses MPI and the Baselinelmplementation.

F Frat T Trat E  En P Prat
35GHz 1X 1.08s 1X 745 1X 692W 1X
33GHz 1.1X 1.12s 1X 704) 1.1X 62.7W 1.1X
3.1GHz 1.1X 1.18s 1.1X 67.3] 1.1X 57.0W 1.2X
29GHz 12X 1.20s 1.1X 66.2] 1.1X 55.0W 1.3X
2.7GHz 13X 1.35s 13X 63.5] 12X 47.1W 15X
25GHz 14X 136s 13X 59.8] 1.2X 439W 1.6X
2.3GHz 15X 146s 14X 553] 13X 37.8W 1.8X
2.1GHz 17X 1.59s 14X 51.7] 14X 32.6W 2.1X
2.0GHz 18X 1.80s 1.7X 554J 13X 30.8W 22X
1.8GHz 19X 1.92s 1.7X 52.6] 14X 274W 25X
1.6GHz 2.2X 2.08s 2X 51.8] 14X 249W 28X

Table 6: Experiment results from Phase 3 for the REnzo-10M data
set, which uses MPI and the Baselinelmplementation.

F Fa T  Ta E Erar P Prar
35GHz 1X 346s 1X 1795 1X 519W 1X
33GHz 1.1X 3.48s 1X 166.8] 1.1X 479W 1.1X
3.1GHz 1.1X 3.59s 1X 1589] 1.1X 442W 1.2X
29GHz 12X 3.62s 1X 147.7] 12X 40.8W 13X
2.7GHz 13X 3.78s 1.1X 143.0] 13X 379W 14X
25GHz 14X 3.88s 1.1X 1354] 13X 349W 15X
23GHz 1.5X 4.00s 1.1X 116.2] 1.5X 29.1W 1.8X
2.1GHz 1.7X 4.18s 13X 108.0J] 1.7X 25.8W 2X
2.0GHz 1.8X 4.29s 13X 109.8] 1.6X 25.6W 2X
1.8GHz 19X 4.52s 1.3X 105.0] 1.7X 232W 22X
1.6GHz 2.2X 4.62s 14X 955J 19X 20.7W 2.5X

Phase 3 extended Phase 2 by varying over parallel programming
model. Figure 4 shows the overall results for all eight data sets us-
ing MPI; it can be compared with Figure 3 of Section 5.2, which did
the same analysis with OpenMP. Tables 5 and 6 show the results us-
ing MPI on the Enzo-10M and REnzo-10M data sets, respectively.
Table 2 of Section 5.1 and Table 3 of Section 5.2 are also useful
for comparison, as they showed the results for these same data sets
using OpenMP.

In terms of our three ratios:

o F,., and T,4: The right sub-figure of Figure 4 shows two
clusters: one grouping (made up of the randomized data sets)
slows down only by a factor of “1.4, while the other grouping
(made up of the non-randomized data sets) slows down in near
proportion with the clock frequency reduction. This contrasts
with the OpenMP tests seen in Figure 3, which showed more
spread over these two extremes. We conclude that the ran-
domized data sets create significantly more memory activity
for MPI than for OpenMP, which is supported by our perfor-
mance measurements. Taking REnzo-80M as an example, the
MPI test had over 48,000 L3 cache misses per million cycles,
while the OpenMP test had less than 12,500.

e T,, and E,;: Renzo-10M with MPI gave the largest energy
savings of any test we ran, going from 179.5J to 95.5J. That
said, its starting point was higher than OpenMP, which went
from 142.7J to 82.1J. Overall, energy savings were harder to
predict with MPI, but were generally better than the savings
with OpenMP (again because it was using more energy to start
with).

o T4 and P4 : the MPI tests used more power, but saw greater
reduction when dropping the clock frequency. For the Enzo-
10M data set, the MPI test dropped from 72.2W (3.5GHz)
to 25.3W (1.6GHz), while OpenMP dropped from 57.4W
to 21.4W. MPT’s increased power usage likely derives from
activity with the memory system, and increased L3 cache
misses.

Summarizing, our performance measurements show that the
MPI approach uses the memory infrastructure less efficiently, lead-
ing to increased energy and power usage, but also creating im-
proved propositions for reducing energy and power when reducing
clock frequencies.

5.4 Phase 4: Concurrency

Phase 4 did not build on Phase 3, but rather went back to Phase
1 and extended it by considering multiple concurrency levels and
programming models. Figure 5 shows plots of our results with
OpenMP and Figure 6 shows the results with MPI. Table 7 contains
data that complements the figures.

Higher levels of concurrency cause more memory requests to be
issued, leading to saturation of the memory infrastructure. As a re-
sult, runtimes steadily increase. Because some processes may have
to wait for the memory infrastructure to satisfy requests, we ob-
served energy savings by slowing down the clock frequency, mak-
ing waiting processes consume less power and having their memory
requests satisfied more quickly (relative to the number of cycles,
since cycles lasted longer). Table 7 shows this trend, in particular
that the four core configurations overwhelm their memory (as seen
in the increase in L3 cache misses and in the reduction in instruc-
tions per cycle), while the one core configurations fare better.

In terms of our three ratios:

o [y and T,y The right sub-figures of Figures 5 and 6 show
that the slowdown factor varies over concurrency. Lower
concurrencies (which have faster runtimes) have higher slow-
downs, because their memory accesses are being supported by
the caching system. Higher concurrencies (which have longer
runtimes) have lower slowdowns, because the cache was not
keeping up as well at high clock frequencies (since more pro-
cessors were issuing competing requests).

o T,y and E,4;: The tradeoff between slowdown and energy
varies quite a bit over concurrency. With OpenMP, a sin-
gle core suffers over a 2X slowdown to receive a 1.2X en-
ergy savings. But, with four cores, the slowdown improves to
1.86X and the energy savings improve to 1.45X. With MPI,
the trends are similar, but less pronounced.

o T,4 and Py As seen in Table 7, the power savings get bet-
ter as more cores are used, but not dramatically so. With one
core, both OpenMP and MPI provide 2.5X power improve-
ments by dropping the clock frequency. Going up to four
cores raises this power improvement to 2.85 (MPI) and 2.68
(OpenMP).

5.5 Phase 5: Algorithm Implementation

Phase 5 once again went back to Phase 1 as a starting point, this
time extending the experiments to consider multiple algorithm im-
plementations. The factors held constant were: OpenMP, 4 cores
on CPU1, and the Enzo-10M data set. Table 8 contains the results.

With Generallmplementation, runtime and clock frequency are
highly correlated, i.e., reducing the clock frequency by 2.2 causes
the workload to take 2.1X longer to run. This relationship between
frequency and runtime is characteristic of a compute-intensive
workload, depicted by our computeBound micro-benchmark. In



Table 7: Experiment results from Phase 4. IPC is short for Instruc-
tions Per Cycle, and L3 is the number of L3 cache misses per one
million cycles.

Configuration Time Energy Power IPC L3 Miss Rate
MPI/1/3.5GHz  090s 24.4] 269W 237 5652
MPI/1/1.6 GHz 20s 21.1J 10.8W 241 3788

OpenMP/1/3.5 GHz 0.83s 19.9] 23.9W 2.06 1697
OpenMP/1/1.6 GHz 1.74s 16.77 9.6W 2.11 931
MPI/4/3.5GHz  0.96s 69.5] 722W 2.07 10476
MPI/4/1.6 GHz  2.02s 51.2] 253W 237 3456
OpenMP/4/3.5GHz 1.29s 74.3] 574W 1.51 3351
OpenMP/4/1.6 GHz 2.40s 51.1J 21.4W 1.89 1027

Table 8: Experiment results for Generallmplementation of Phase 5.
These results compare with Baselinelmplementation, whose corre-
sponding results are in Table 2.

F Frar T Trar E  Ewu P Prar

35GHz 1X 16.06s 1X 1056J 1X 658W 1X

33GHz 1.1X 16.57s 1X 9921 1.1X 599W 1.1X
3.1GHz 1.1X 17.64s 1.1X 950J 1.1X 539W 1.2X
29GHz 12X 19.00s 13X 928] 1.1X 488W 1.3X
2.7GHz 13X 20.85s 13X 914 12X 439W 1.5X
25GHz 14X 21.82s 14X 876] 12X 40.1W 1.6X
23GHz 15X 2401s 14X 784 13X 327W 2X

2.1GHz 1.7X 26.09s 1.7X 763] 14X 293W 22X
20GHz 1.8X 2743s 17X 768] 14X 28.0W 24X
1.8GHz 19X 30.67s 19X 7641 14X 249W 2.6X
1.6GHz 22X 34.17s 2.1X 756] 14X 221W 3X

contrast, the Baselinelmplementation exhibited behavior closer to
data-intensive in our previous phases.

The explanation for the difference between the two implementa-
tions is in the number of instructions. While both issue the same
number of loads and stores, the Generallmplementation issues 102
billion instructions, while the BaselineImplementation issues only 7
billion. These additional instructions change the nature of the com-
putation (from somewhat data-intensive to almost entirely compute
intensive), as well as making the overall runtimes and energy con-
sumption much higher. Of course, these instructions add value for
general toolkits, in terms of supporting more data models and al-
gorithms. The takeaway from this study is that the approach from
general toolkits appears to tilt the instruction mix (at least for iso-
surfacing).

Interestingly, the E,, and P, ratios are still favorable, at 1.4X
and 3X, respectively. This is because the relationship between
clock frequency and energy consumed is not strictly linear. As a
result, even compute-intensive workloads can benefit from clock
frequency reductions, although their 7}, ’s will still match the clock
frequency reduction.

5.6 Phase 6: Architecture

Phase 6 did not build on any previous phases. Instead, it explored
CPU2, whose results do not translate to any of the previous CPU1
experiments. The factors held constant were: MPI, 24 cores on
CPU2, Enzo-10M, and the Baselinelmplementation. Table 9 con-
tains the results.

CPU2 is significantly different than CPUI in that it contains Ivy
Bridge processors, while CPU1 contains Haswell processors. On
Haswells, the core (compute units, private L1 and L2 caches) and
uncore (shared L3 cache, main memory) are on separate clock do-
mains, so slowing down the frequency only applies to the speed
of the executing instructions and accessing L1 and L2 caches. On
Ivy Bridge, core and uncore share the same clock frequency, and so
data-intensive workloads cannot benefit with respect to T;;.

Table 9 shows that, while P, is better at lower clock frequen-
cies, E,4 is worse. Restated, while the power dropped, its drop was

Table 9: Experiment results from Phase 6, which uses CPU2 with
MPI and the Baselinelmplementation.
F  Fa I Ta E Ewg P Pug

24 1X 2265 1X 549 1X 2424 1X

22 11X 2479 1.1X 558 1X 225 1.1X
20 12X 2.695 12X 571 1X 2119 1.1X
1.8 13X 3.024 13X 573 1X 1895 1.3X
1.6 1.5X 3385 15X 631 09X 1864 1.3X
14 17X 3.836 1.7X 668 0.8X 174.1 14X
1.2 2X 4466 2X 697 08X 156 1.6X

not steep enough to offset the increases in runtime, and so overall
energy usage goes up. This does not match the results in Phase
5, where a compute-bound workload created a similar “7,,, equals
F,4” situation. As explanation, we again note the non-linear re-
lationship between power and clock frequency (which varies over
architecture).

6 CONCLUSION AND FUTURE WORK

We conducted a study exploring the tradeoffs between power and
performance when reducing clock frequencies. We summarize the
results of our findings by phase:

e Phase 1 confirmed our basic hypotheses about reducing clock
frequencies: (i) Isosurfacing is sufficiently data-intensive to
slow the impact from reduced clock frequencies. (ii) Clock
frequency reductions can create options for visualization con-
sumers to choose between finishing an algorithm quickly us-
ing more energy, or slowly using less energy. (iii) Clock
frequency reductions decrease power usage, creating options
for visualization consumers wanting to balance system-wide
power usage.

e Phase 2 showed that the tradeoffs between energy and runtime
get increasingly favorable as data complexity goes up (either
due to size of increased irregularity in data access).

e Phase 3 showed that MPI's less coordinated memory accesses
affect energy and power tradeoffs compared to OpenMP.

e Phase 4 showed that the tradeoffs between execution time and
energy are most favorable when the memory infrastructure is
being stressed, and that this scenario exists at higher concur-
rencies (or, alternatively, is less likely to exist when some of a
node’s cores are not being used).

e Phase 5 showed that general-purpose implementations of vi-
sualization algorithms shift the instruction mix such that the
tradeoffs between execution time and energy are less favor-
able.

e Phase 6 showed the importance of having an architecture
where the memory infrastructure can be controlled separately
from the CPU.

In terms of future work, we would like to explore additional vi-
sualization algorithms. While we feel isosurfacing is representative
of many visualization algorithms — i.e., those characterized by it-
erating on cells one-by-one and producing a new output — other al-
gorithms have different properties. In particular, particle advection
problems perform data-dependent memory accesses, which may
produce even more favorable propositions for energy and power
savings. Further, algorithms like volume rendering require both sig-
nificant computation and irregular memory accesses (especially for
unstructured grids), making it unclear how it would be affected by
changes in clock frequency.
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