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ABSTRACT

External facelist calculation on three-dimensional unstructured
meshes is used in scientific visualization libraries to efficiently ren-
der the results of operations such as clipping, interval volumes,
and material boundaries. With this study, we consider the exter-
nal facelist algorithm on many-core architectures. We introduce
four different approaches: three based on hashing and one based
on sorting. Each of the algorithms consists entirely of data-parallel
primitive operations, in an effort to achieve portable performance
across different architectures. We study the performance of the al-
gorithms via experiments varying over algorithm, data set, hard-
ware, and other factors. Overall, we observe that a hashing-based
implementation achieves better runtime performance for the major-
ity of configurations, while also achieving the most-stable perfor-
mance on highly unstructured data sets.

1 INTRODUCTION

This work considers External Facelist Calculation (EFC) in the
paradigm of Data-Parallel Primitives (DPP). We motivate each
topic independently, and then motivate the purpose for joint con-
sideration and the corresponding research challenges.

1.1 External Facelist Calculation
Scientific visualization algorithms vary regarding the topology
of their input and output meshes. When working with three-
dimensional volumes as input, algorithms such as isosurfacing and
slicing produce outputs (typically triangles and quadrilaterals) that
can be rendered via traditional surface rendering techniques, e.g.,
rasterization via OpenGL. Algorithms such as volume rendering
operate directly on three-dimensional volumes, and use a combi-
nation of color and transparency to produce images that represent
data both on the exterior of the volume and in the interior of the
volume. However, some scientific visualization algorithms take
three-dimensional volumes as input and produce three-dimensional
volumes as output. While these three-dimensional volume outputs
could be rendered with volume rendering or serve as inputs to other
algorithms such as isosurfacing, users often want direct renderings
of these algorithms’ outputs using surface rendering. With this
work, we consider this latter case, and consider the approach where
geometric primitives are extracted from a volumetric unstructured
mesh, in order to use traditional surface rendering techniques.

Given, for example, an unstructured mesh of N tetrahedrons to
render (see Figure 1), a naı̈ve solution would be to extract the four
faces that bound each tetrahedron, and render the corresponding
4×N triangles. This naı̈ve solution would be straight-forward to
implement and would fit well with existing rendering approaches.
However, many of the 4×N triangles this algorithm would produce
are contained within the interior of the volume, and thus not useful.
The primary downside to the naı̈ve approach, then, is efficiency.
For a data set with N tetrahedrons, only O(N

2
3 ) of the faces would

actually lie on the exterior, meaning the large majority of the 4×N
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(a) Tetrahedral mesh (b) Tetrahedron cell

Figure 1: Example of a mesh of tetrahedron cells. Each tetrahedron
cell consists of 4 faces, one or more of which may overlap with the
faces of other neighboring cells. The non-overlapping cell faces are
denoted external.

faces produced are unwanted, taking up memory to store and slow-
ing down rendering times. If N was one million, then the expected
number of external faces would be approximately 10,000, where
the naı̈ve algorithm would calculate four million faces, i.e., 400X
too many. A second downside to these triangles is that they can cre-
ate rendering artifacts. If the faces are rendered using transparency,
then internal faces become visible, which is typically not the effect
the user wants when they opt to use surface rendering for a three
dimensional volume.

A better algorithm, then, is to produce only the faces that lie
on the exterior of the mesh, so called “External Facelist Calcula-
tion,” or EFC. EFC is a mainstay in scientific visualization pack-
ages, specifically to handle the case of rendering the exteriors of
three-dimensional volumes via surface-rendering techniques.

1.2 Data-Parallel Primitives
Many-core architectures are being increasingly included on
leading-edge supercomputers, although the specific types of archi-
tecture vary. While developers of large-data visualization software
packages recognize the need to update their code bases for many-
core [4, 9], they view the variation in architecture as problematic,
because their packages contain so many algorithms. Restated, if
faced with N algorithms and M architectures, they do not want
N ×M implementations. Rather, they prefer an approach where
they can deal with many-core architectures abstractly, and thus im-
plement their algorithms only one time each. Of course, they still
want their instantiation of each algorithm on a given architecture to
perform as efficiently as possible.

Data-parallel primitives [7], or DPP, is a paradigm for achiev-
ing portable performance across many-core architectures. In this
paradigm, programmers compose operators known to perform ef-
ficiently on many-core architectures. However, translating an al-
gorithm into data-parallel primitives is a non-trivial task, and often
requires “re-thinking” an algorithm rather than “porting” it.

1.3 Combination and Challenges
VTK-m [22] is a new visualization software package, designed for
efficient use of many-core architectures via DPP. In terms of mo-
tivation for the combination of DPP and EFC, the VTK-m project



team made a list of the top algorithms needed to be functional [21],
and EFC was one of fourteen algorithms placed in the “first tier”
of immediate needs, along with slicing, isosurfacing, thresholding,
streamlines, and others. Further, this ranking placed EFC ahead of
well-known algorithms such as glyphing, tetrahedralization, vertex
normal calculations, coordinate transformations, clipping, and fea-
ture edges.

The challenges with EFC and DPP are two-fold. One, serial EFC
is traditionally done with hashing, which is non-trivial to implement
with DPP. As a result, we needed to construct new, hashing-inspired
algorithms that sidestep the problems with traditional hashing with
DPP. And, two, DPP has been shown to be efficient with more tra-
ditional scientific visualization algorithms that iterate over cells or
pixels, but EFC is essentially a search problem, and so it is unclear
if DPP will perform well. On this front, we demonstrate that DPP
does indeed perform well and again does provide good performance
on this class of scientific visualization problem.

This paper’s contribution, then, is to illuminate the best tech-
niques to execute EFC with DPP. We introduce three algorithmic
variants inspired by hashing, and also an algorithm based on sort-
ing; to our knowledge, these are the first ever shared-memory al-
gorithms for EFC. We then conduct a performance study, where
we measure execution time for our algorithms on multiple data sets
and architectures. Our findings show that hashing is still the best
approach for EFC on parallel architectures.

2 BACKGROUND AND RELATED WORK

2.1 Visualization and Data Parallel Primitives
Many community visualization packages, such as VTK,
OpenDX [3], and AVS [24], have demonstrated the benefit
of having interoperable modules connected via a data-flow
paradigm. However, these packages were developed more than two
decades ago, and the majority of their functionality is implemented
with single-thread programming. Starting around the year 2000,
packages such as VisIt [8], ParaView [5], EnSight [10], and Field-
View [14] added parallelization via distributed-memory concepts.
With this model, the program managed parallel processing of
data, but the basis for applying algorithms mostly derived from
the existing (serial) visualization packages. This approach allowed
these community packages to remain effective on supercomput-
ers until present day. However, recent supercomputing trends
increasingly include many-core architectures, such as GPUs and
Intel Xeon Phis. In response to this trend, multiple efforts began
in the 2010 time frame to create visualization systems that would
work efficiently on many-core architectures, and further would
provide portable performance over multiple architectures (e.g.,
both NVIDIA GPUs and Xeon Phi). These efforts, DAX [20],
EAVL [17, 19], and PISTON [15] all independently arrived at the
same strategy, namely using data-parallel primitives as the basic
construct as a way to achieve efficiency in on many-core archi-
tectures, and as a way to future-proof their development against
upcoming architectures. Two of the efforts, DAX and PISTON,
made heavy use of NVIDIA’s Thrust [6], which subscribes to the
data-parallel primitive approach. Ultimately, these three efforts
united into a single effort, now called VTK-m.

A major research question for data-parallel primitives is whether
the approach can achieve high efficiency on varying platforms,
so-called portable performance.. Some of this evidence was re-
ported in the initial papers by the DAX, EAVL, and PISTON teams,
with additional evidence coming afterwards. Specifically, May-
nard et al. demonstrated good performance with thresholding [16]
and Larsen et al. demonstrated good performance with both ray-
tracing [13] and volume rendering [12]. These latter papers are
likely the most closely related work, in that they recast existing
visualization algorithms into the data-parallel primitives paradigm
and consider their performance. This work is differentiated from

those in that (1) EFC has not been previously considered and, more-
over, (2) EFC represents a class of scientific visualization algorithm
(search-based algorithms rather than iterating over loops of cells or
pixels) that has not been previously considered.

2.2 External Facelist Calculation
EFC comes up surprisingly often in scientific visualization. For ex-
ample, many engineering applications, such as bridge and building
design, use the external faces of their model as their default visual-
ization, often to look at displacements. Further, clipping and inter-
val volumes are also commonly used with external facelist calcula-
tion. In these algorithms, a filter removes a portion of the volume
(based on either spatial selection or data selection); if no further
operations are performed then EFC is needed to view the clipped
region. As a final example, some material interface reconstructions
approaches, like that by Meredith et al. [18], take three-dimensional
volumes and create multiple three-dimensional volumes, each one
corresponding to a pure material. In this case, when users remove
one or more materials, EFC is needed to few the material bound-
aries.

To our knowledge, no previous research papers
have been devoted to EFC. However, implementations
are posted on the internet, for example with VTK’s
vtkUnstructuredGridGeometryFilter [1] and VisIt’s
avtFacelistFilter [2]. The basic idea behind the filter is to
count how many times a face is encountered. If it is encountered
twice, then it is internal, since the face is incident to two different
cells, and so it is thus between them (and internal). If a face is
encountered a single time, then it is external, since the face bounds
one cell, and there is no neighboring cell to provide a second
abutment.

In both implementations readily available on the internet, the
“face count” is calculated through hashing. That is, in the first
phase, every face is hashed (with the hash index derived from the
point indices that define the face) into a large hash table. Then, in
the second phase, the hash table is traversed. If a face was hashed
into a hash table index two times, then it is internal and discarded.
But if it was hashed into a hash table index only a single time, then
it is external, and the face is added to the output.

3 DATA PARALLEL PRIMITIVES

The parallel algorithms presented in this section are based en-
tirely on “Data Parallel Primitives,” or DPP, which are architecture-
agnostic operations that can be written once in a high-level lan-
guage and compiled on different environments. The following DPP
form the basis of our algorithm implementations:

• Gather: Given an input array of elements, Gather reads values
into an output array according to an array of indices.

• Map: Applies an operation on an input array to produce an
output array of the same size.

• Reduce: Applies a “combiner” operator (e.g., summation or
average) to an input array to produce a single output value.
A variation includes performing a Reduce for each key, or
unique data value, in the input array.

• Scan: Performs a series of partial reductions, or a prefix-sum,
on an input array to produce an output array of the same size.

• Scatter: Given an input array of data and an array of indices,
Scatter writes each element of the data array into a location in
an output array, as specified in the array of indices.

• Stream Compact: Removes all elements from an input array
that satisfy a unary predicate condition (e.g., if an input ele-
ment equals zero), and places the remaining elements into an
ouput array of an equal or smaller size.

Additionally, our parallel algorithms consist of several “func-
tors,” which are functions that a DPP applies to an input array, yield-



ing an array of output values. For example, a custom functor can be
written to multiply an input value by a constant factor, with a Map
DPP executing this functor over the input array, in parallel.

4 ALGORITHMS

This section presents four DPP-based EFC algorithms. All four
algorithms share a common initialization procedure, which is de-
scribed in Section 4.1. The first three algorithms, which are all
hashing-based, are described in Section 4.2. The final algorithm,
which is sorting-based, is described in Section 4.3.

4.1 Initialization

For each algorithm, the first step is to generate a list of point in-
dices for each of its faces. That is, for a tetrahedral mesh of N
cells, we generate an 12×N array, where the first three elements
are the indices of the first face of the first cell, the next three ele-
ments are the indices of the second face of the first cell, and so on.
While generating this array is conceptually simple, doing so with
DPP takes multiple invocations of scans, gathers, and maps, using
various functors. For the remainder of this paper, this initialization
procedure will be referred to as GetFacePoints and its output ar-
ray as facePoints. Both pseudocode and an algorithm description
are presented for the routine in the Appendix section. The algo-
rithm details are deferred to the appendix since they are relatively
straightforward and distract from the overall message of this study.

4.2 Hashing Approach

Collisions are a key aspect of hashing. Typically, these collisions
are dealt with via chaining (i.e., employing linked lists to store mul-
tiple entries at a single index) or open addressing (i.e., when an
index is occupied, then storing the data at the next open address).
While these strategies are straight-forward to implement in a serial
setting, they do not directly translate to a parallel setting. For ex-
ample, in a GPU setting where each thread is executing the same
program, the variable number of operations resulting from chain-
ing or open addressing can lead to divergence (while non-collided
threads wait for a collided thread to finish), and thus a performance
bottleneck. Additionally, if multiple threads map to the same hash
entry at the same time, then the behavior may be erratic, unless
atomics are employed.

To address the problem of collisions in a parallel setting, we em-
ploy a modified hashing scheme that uses multiple iterations. In this
scheme, no care is taken to detect collisions. Instead, every face is
written directly to the hash table, possibly overwriting previously-
hashed faces. The final hash table will then contain the winners of
this “last one in” approach. Our next step, however, is to check,
for each face, whether it was actually placed in the hash table. If
so, the face is included for calculations during that iteration. If not,
then the face is saved for future iterations. All faces are eventu-
ally processed, with the number of iterations equal to the maximum
number of faces hashed to a single index.

In terms of hashing specifics, our hash function uses a face’s
three point indices as input, and produces an unsigned integer as
output. This integer value, modulo the size of the hash table, is the
hash index for the face. Hash function is important, as good choices
of hash function minimize collisions, and poor choices create more
collisions. We experimented with multiple hash functions and used
the best performing, FNV-1a, for our study.

In this study, we introduce three different hashing-inspired al-
gorithms, which we refer to as General, Compact, and Rehash.
Each algorithm is composed entirely of DPP. The pseudocode for
all three is listed in Algorithm 1, and the following subsections aug-
ment this pseudocode with descriptions of individual variables and
operations.

4.2.1 Hashing—General
The algorithm first computes a hash value for each face, using a
ComputeFaceHash functor, as denoted on Line 17. The set of hash
values, faceHashes, is the output of ComputeFaceHash.

Given faceHashes, an iterative process then identifies which of
the collisions are associated with either internal or external faces.
A description of this process is as follows:

1. Scatter faces into the hash table (Line 19): For each “active”
face, fi, with isActive[i] = 1, write the face Id i to location
k = f aceHashes[i] in hashTable. Multiple, distinct faces may
hash to the same location k, resulting in collisions; the final
value written in hashTable[k] is the Id of the “current” hashed
face at index k.

2. Gather current hashed faces (Lines 20 and 21):
For each face, fi, read the last-written face Id
from hashTable[ f aceHashes[i]] and store the Id in
currentHashedIds[i]. Then, for each index j, 0 ≤ j ≤ F ,
of currentHashedIds, extract the three point indices of the
current hashed face with Id k = currentHashedIds[ j]; the
point indices are gathered from location k of the f acePoints
array.

3. Check for internal faces via CheckForMatches (Line 22): An
active face, fi, with isActive[i] = 1, is an internal face if it
satisfies the following two conditions:

(a) fi has the same point indices, f acePoints[i], as that of
the current hashed face, f j = currentHashedFaces[i].

(b) The face Id, i, is not equal to the current hashed face Id,
currentHashedIds[i].

If fi is internal, then f j must be as well. Hence, isActive[i]
is set to 0, and both f j and f j are denoted internal by setting
isExternalFace[i] = 0 and isExternalFace[ j] = 0. If both the
point indices and Ids match, then fi is the current hashed face
at location f aceHashes[i] in hashTable, and isActive[i] is set
to 0; note that fi maintains its status as an external face until
another active face satisfies the internal face criteria with fi.

4. Update the number of active faces (Line 24): The number of
active faces, A, is computed via an Inclusive Scan operation
on the isActive array. This scan performs a prefix-sum of the
binary values within the array; hence, the last array element
represents the sum of all faces with isActive = 1.

The foregoing process continues until A = 0; i.e., when all faces
have been set to inactive. Then, to extract the external faces, a
StreamCompact operation (Line 39) generates an externalFaces
array that contains the point indices of each face, fi, satisfying
isExternalFace[i] = 1.

4.2.2 Hashing—Compact
The Compact hashing algorithm follows the same iterative proce-
dure as the General hashing algorithm, but instead “compacts” the
f aceHashes and f aceIndices arrays each iteration to remove ele-
ments with corresponding values of 0 in isActive. The Compact
algorithm then deploys the following variation to the General algo-
rithm. First, for each active face with isActive[i] = 1, its correspond-
ing elements from the f aceHashes and f aceIndices arrays are re-
moved (Lines 26 and 27). Then, isActive is compacted by removing
all values of 1 (Line 28). The new size of this array, A = |isActive|,
becomes the number of active faces for the next iteration (Line 29).
As with the General approach, this iterative procedure continues
until A = 0.

4.2.3 Hashing—Rehash
The Rehash algorithm specializes the General algorithm by re-
computing f aceHashes every iteration (Line 34), instead of once,



Algorithm 1: Pseudocode for the EFC hashing algorithms. N
is the total number of tetrahedral cells, F is the total number
of (non-unique) cell faces, E is the number of external faces,
and A is the number of active cell faces. The constant c is a
multiplier for the hash table size.

1 /*Input from GetFacePoints*/
2 Array: Vec<int,3> facePoints[F]
3 /*Output*/
4 Array: int outShapes[E], outNumIndices[E], outConn[3E]
5 /*Local Objects*/
6 Array: int faceHashes[F], faceIndices[F], hashTable[cF],

isActive[F], isExternalFace[F]
7 Array: Vec<int,3> externalFaces[E]
8 ArrayPerm: Vec<int,3> currentHashedFaces[F]
9 ArrayPerm: int currentHashedIds[F]

10 facePoints←GetFacePoints
11 F = |facePoints|
12 A← F
13 //Parallel array allocations
14 hashTable←~0
15 isActive←~1
16 isExternalFace←~1
17 faceHashes←ComputeFaceHash(facePoints)
18 while A > 0 do
19 hashTable←Scatter(faceHashes, faceIndices, isActive,

hashTable);
20 currentHashedIds←Gather(faceHashes, hashTable);
21 currentHashedFaces←Gather(currentHashedIds,

facePoints);
22 (isActive,

isExternalFace)←CheckForMatches(currentHashedFaces,
facePoints, currentHashedIds, isActive, isExternalFace);

23 if General then
24 A←ScanInclusive(isActive);
25 else if Compact then
26 faceHashes←StreamCompact(faceHashes, isActive);
27 faceIndices←StreamCompact(faceIndices, isActive);
28 isActive←StreamCompact(isActive, isActive);
29 A← |isActive|;
30 else if Rehash then
31 hashTable←Shrink(hashTable);
32 faceIndices←StreamCompact(faceIndices, isActive);
33 facePoints←StreamCompact(facePoints, isActive);
34 faceHashes←ComputeFaceHash(facePoints);
35 isActive←StreamCompact(isActive, isActive);
36 A← |isActive|;
37 end
38 externalFaces←StreamCompact(facePoints, isExternalFace)
39 //Serial loop to create triangle face connectivity
40 return (outShapes, outNumIndices, outConn)

prior to the hashing loop. Additionally, Rehash shrinks the size of
hashTable to a length of c×A at the end of each iteration (Line
31), where c is a constant size factor. This smaller table size af-
fects the output of the ComputeFaceHash routine in the succeed-
ing iteration because the hash value is a function of the table size.
Due to the change in hash table size and multiple invocations of
ComputeFaceHash, new collisions will likely arise each iteration.
Thus, Rehash may exhibit a stable number of iterations, regardless
of the hash table size.

The remaining parallel components of Rehash mirror those of
the Compact hashing algorithm.

4.3 Sorting Approach

The idea behind this approach is to use sorting to identify duplicate
faces. First, faces are placed in an array and sorted. Then, the
array can then be searched for duplicates in consecutive entries.
Faces that repeat in consecutive entries are internal, and the rest are
external. The sorting operation requires a way of comparing two
faces (i.e., a “less-than” test); we order the vertices within a face,
and then compare the vertices with the lowest index, proceeding to
the next indices in cases of ties.

The pseudocode for the DPP Sorting algorithm is in Algo-
rithm 2; the remainder of this paragraph augments this descrip-
tion with additional details on individual variables and operations.
The f acePoints array is sorted in ascending order so that a reduce-
by-key operation can be performed to determine the unique faces
and their frequency counts within the array. All faces with counts
greater than 1 are considered internal and removed, in parallel, from
the array via a StreamCompact functor. The final, compacted array
consists of only the external faces, which are returned as output.

Algorithm 2: Pseudocode for the Sorting approach of external
facelist calculation. N is the total number of tetrahedral cells,
M is the total number of (non-unique) cell faces, and E is the
number of external faces.

1 /*Input from GetFacePoints*/
2 Array: Vec<int,3> facePoints[M]
3 Int: M
4 /*Output*/
5 Array: int outShapes[E], outNumIndices[E], outConn[3∗E]
6 /*Local Objects*/
7 Array: Vec<int,3> uniqueFaces[E ≤ L≤M],

externalFaces[E]
8 Array: int uniqueFaceCounts[E ≤ L≤M]
9 ArrayConstant: int ones[M]

10 (facePoints, M)←GetFacePoints
11 facePoints←Sort(facePoints)
12 uniqueFaces, uniqueFaceCounts←ReduceByKey(facePoints,

ones)
13 externalFaces←StreamCompact(uniqueFaces,

uniqueFaceCounts)
14 //Serial loop to create triangle face connectivity
15 return (outShapes, outNumIndices, outConn)

5 EXPERIMENT OVERVIEW

This section describes the details of our experiment.

5.1 Factors

This study varied the following four factors:

• Data set: Since data set may affect algorithm performance, we
varied them over both size and data layout.



• Hardware architecture: Aligned with our motivation of de-
veloping portable performance across different architectures,
we test our implementation for two architectures: CPU and
GPU. For the CPU, we also consider the effect of concurrency
on runtime performance by varying the number of hardware
cores.

• Algorithm implementation: We assess the variation in perfor-
mance over our four different parallel algorithms for EFC.

• Hash table size: For the hashing-based algorithms, we varied
the size of the hash table, and observe its effect on perfor-
mance.

5.2 Software Implementation
All four of the EFC algorithms are implemented in the VTK-m
toolkit. With VTK-m, a developer chooses data parallel primitives
to employ, and then customizes those primitives with kernels of
C++-compliant code. This code is then used to create architecture-
specific code for architectures of interest, for example CUDA code
for NVIDIA GPUs and Threading Building Blocks (TBB) code
for Intel CPUs. Data parallel operations are templated by a de-
vice adapter tag that specifies both the type of device on which the
operation will be dispatched and the method of parallel processing.
Since these device modes only need to be enabled pre-compilation,
each EFC algorithm is written once and used (and compiled) for, in
our case, both TBB and CUDA execution. This flexibility demon-
strates the advantage of using DPP as part of VTK-m, as a single
code base can be deployed to multiple hardware architectures.

In terms of configuration, both the TBB and CUDA configu-
rations of VTK-m were compiled with the gcc compiler, and the
VTK-m index integer (vtkm::Id) size was set to 32 bits.

5.3 Configuration
In this study, we vary the four factors over a sequence of five phases,
resulting in 59 total test configurations. The number of options, per
factor is as follows:

• Data set (6 options)
• Hardware architecture (7 options)
• Algorithm (4 options)
• Hash table size (5 options)

These configurations are discussed in the following subsections.

5.3.1 Data Sets
We applied our test cases to six data sets, four of which were de-
rived from two primary data sets. Figure 2 contains renderings for
these two data sets.

• Enzo-10M: A cosmology data set from the Enzo [23] simu-
lation code. The data set was originally on a 1283 rectilinear
grid, but was mapped to a 10.2M tetrahedral grid. The data
set contains approximately 20M unique faces, of which 194K
are external.

• Enzo-80M: An 83.9M tetrahedron version of Enzo-10 M,
with approximately 166M unique faces, of which 780.3K are
external.

• Nek-50M: An unstructured mesh that contains 50M tetrahe-
drons from a thermal hydraulics simulation Nek5000 [11].
The data set contains approximately 100M unique faces, of
which 550K are external.

• Re-Enzo-10M, Re-Enzo-80M, Re-Nek-50M: Versions of our
previous three data sets where the point lists were randomized.
Especially for the Enzo data sets, the regular layout of the data
leads to cache coherency — by randomizing the point list,
each tetrahedron touches more memory. To be clear, each in-
dividual tetrahedron in the mesh occupies the same spatial lo-
cation as its non-randomized predecessor, but the four points

that define the tetrahedron no longer occupy consecutive or
nearby points in the point list.

Figure 2: Visualizations of two of the data sets used in this study.
The Enzo-10M data set is on the left and Nek-50M is on the right.

Finally, while we reference the data sources, we note the only
important aspect for EFC performance is the mesh and mesh con-
nectivity.

5.3.2 Hardware architecture

We ran our tests on the following two architectures:

• CPU: A 16-core machine running 2 nodes. Each node has a
2.60 GHz Intel Xeon(R) E5-2650 v2 CPU with 8 cores and
16 threads. For each CPU, the base frequency is 2.6 GHz,
memory bandwidth is 59.7 GB/s, and memory 64 GB. In our
experiment we also varied the number of cores: 1, 2, 4, 8,
12 and 16. Each concurrency employed the Intel TBB multi-
threading library for many-core parallelism.

• GPU: An NVIDIA Tesla K40 Accelerator with 2880 proces-
sor cores, 12 GB memory, and 288 GB/sec memory band-
width. Each core has a base frequency of 745 MHz, while the
GDDR5 memory runs at a base frequency of 3 GHz. All GPU
experiments use NVIDIA CUDA V6.5.

5.3.3 Algorithm implementation

The four EFC algorithms are evaluated in this study:

• General: The general hashing algorithm presented in Section
4.2.1.

• Compact: The compact hashing algorithm presented in Sec-
tion 4.2.2.

• Rehash: The rehash algorithm presented in Section 4.2.3.
• Sorting: The sorting algorithm presented in Section 4.3.

5.3.4 Hashing Table Size

For the hashing-based algorithms, we assess the runtime perfor-
mance as the hash table size changes. The table size is set at various
multiples of the total number of faces in the data set. In this study,
we considered five options: 0.5X, 1X, 2X, 4X, and 8X.

The presence of the 0.5X option underscores the difference be-
tween regular hashing and our hashing variant. With regular hash-
ing and a chaining approach, the size of the hash table must be at
least as large as the number of elements to hash, and preferably
much larger. With our variant, the table size can be decreased, with
the only penalty being that there will be more iterations, as the max-
imum number of faces hashed to a single index will (on average) in-
crease proportionally. In this way, the memory allocated to hashing
can be reduced, at the cost of increased execution time.

5.4 Methodology

Our study contains five phases, with each phase examining the im-
pact of different parameters on performance.



5.4.1 Phase 1: Base Case
In this phase, we explore the basic performance characteristics for
our four algorithms: General, Compact, Rehash, and Sorting. We
perform our tests using the Enzo-10M data set, 16 CPU cores, and
a hashing table factor of two (for hash-based algorithms).

Configuration: (CPU, 16 cores, Enzo-10M, hash table factor 2
for hashing-based algorithms) × 4 algorithms.

5.4.2 Phase 2: Hash Table Size
In this phase, we examine the impact of the hash table size on per-
formance. We consider 5 different sizes, varying the proportion
over 0.5X, 1X, 2X, 4X, and 8X. We again run the experiment using
the Enzo-10M data set and 16 CPU cores.

Configuration: (CPU, 16 cores, Enzo-10M) × 5 different hash
table proportions × 3 hashing-based algorithms.

5.4.3 Phase 3: GPU
In this phase, we investigate the runtime performance on a GPU,
comparing the Sorting algorithm against each of the three hashing-
based algorithms.

Configuration: (GPU, Enzo-10M) × 4 algorithms.

5.4.4 Phase 4: Data Sets
In this phase, we assess the impact of data set size and memory lo-
cality on the runtime performance of the Sorting and Rehash algo-
rithms, using the data sets of Section 5.3.1. Configuration: (CPU,
16 cores, GPU) × 6 data sets × 2 algorithms.

5.4.5 Phase 5: Concurrency
In this phase, we investigate the CPU runtime performance by
changing the number of hardware cores. We perform our test on
both the Enzo-10M and Re-Enzo-10M data sets.

Configuration: (CPU)× 6 different concurrency levels× 2 data
sets × 2 algorithms.

6 RESULTS

In this section, we present and analyze the results of our suite of
EFC experiments for the different phases outlined in Section 5.4.

6.1 Phase 1: Base Case
Our base case assesses the performance for the four algorithms —
General, Compact, Rehash, and Sorting—with the following fac-
tors fixed:

• Enzo-10M data set
• 16 CPU cores
• Hash table size of 2 ∗F , where F is the total number of non-

unique faces in the data set

For each algorithm, we present the total execution time (in sec-
onds), along with the sub-times for the primary parallel operations
and routines. Additionally, we present the overhead time for mem-
ory allocations and deallocations. The results of the hashing- and
sorting-based experiments are presented in Tables 1 through 4.

Table 1: Comparison of overall execution time (sec) for the CPU
execution time (sec) for the EFC algorithms. The Main Computa-
tion quantity measurement does not include initialization, and in-
stead measures the time for either sorting or hashing. Total time
includes the time for both Main Computation and initialization.

Time Sorting General Compact Rehash

Main
Computation 0.5 1.6 0.6 0.6
Total Time 0.9 2.0 0.9 0.9

As seen in Tables 1 and 2, Sorting completed the experiment
in 0.9 seconds, with the Sort and Reduction operations—the main
computation—accounting for 56% of the total time. Among the
three hashing algorithms, both Compact and Rehash performed
comparably with Sorting, while General demonstrated a slower run-
time of 2.0 seconds.

Table 2: Individual phase times for the Sorting algorithm
Phase CPU Time

GetFacePoints 0.2
Sort 0.3

Reduction 0.2
StreamCompact 0.02

Overhead 0.2
Total time 0.9

The three hashing algorithms differ in how much work they do
each iteration. With General, all faces are traversed each iteration,
although some faces are immediately discarded since they have
been previously evaluated. With Compact and Rehash, the num-
ber of faces traversed goes steadily down each iteration. Tables 3
and 4 show the effect of this behavior. Table 3 shows that General is
much slower, with its CheckForMatches phase (see Section 4.2.1),
accounting for 65% of the total time. Further, Table 4 shows that
the time per iteration for General is staying constant, while it gets
much faster for the other two. Finally, we can see how many total
iterations are needed from Table 4; for Enzo-10M with a hash table
size of 2X, eight iterations are needed for Rehash. That said, the
strategy of reducing the number of faces considered in each itera-
tion makes most of these iterations inconsequential in terms of total
run time.

Table 3: Execution time (sec) for the three hashing-based algo-
rithms, broken down by phase

Phase General Compact Rehash

GetFacePoints 0.2 0.2 0.2
Scatter 0.1 0.1 0.1

CheckForMatches 1.3 0.3 0.3
StreamCompact 0.02 0.15 0.1
ScanInclusive 0.1 - -

ComputeFaceHash 0.03 0.02 0.05
Overhead 0.3 0.2 0.1
Total time 2.0 0.9 0.9

Table 4: Hashing algorithm execution time
Loop General Compact Rehash

0 0.4 0.5 0.5
1 0.2 0.06 0.06
2 0.2 6.2e-03 4.3e-03
3 0.2 6.9e-04 6.6e-04
4 0.2 1.8e-04 2.2e-04
5 0.2 3.3e-05 4.1e-05
6 0.2 2.7e-05 4.2e-05
7 - - 2.9e-05

6.2 Phase 2: Hashing Factor
In this phase, we study the effect of the hash table size on the per-
formance of the three hashing algorithms. For each multiplier c, the
hash table size is computed as c∗F , where F is the total number of
non-unique faces (F ≈ 40 million for the Enzo-10M data set).

The results in Table 5 show that the execution time of General is
impacted strongly by the hash table size, while both Compact and



Rehash are more size-independent. As hash table size increases,
General realizes fewer hashing collisions, which results in fewer
hashing iterations. The smaller number of iterations leads to the
0.7-second speedup in total runtime from the base multiplier of 2 to
the multiplier of 8. Contrastingly, Compact and Rehash do not ob-
serve such a speedup. Rehash is likely not affected by the hash table
multiplier because it recomputes hash values each iteration, leading
to a slower decrease in collisions. While Compact demonstrates a
reduction in the hashing iterations as the multiplier increases, the
saved execution time of these iterations is not significant enough
to yield a noticeable speedup. Summarizing, in memory-rich envi-
ronments, higher multipliers can be used to gain modest speedups,
while in memory-poor environments, lower multipliers can be used
with only modest slowdowns.

Table 5: Performance of hashing algorithms as a function of hash
table size multiplier.

Multiplier General Compact Rehash

0.5 2.6 1.1 1.0
1 2.3 1.0 0.9
2 2.0 0.9 0.9
4 1.5 0.9 0.8
8 1.3 0.9 0.8

While increasing the hash table multiplier can reduce the total
execution of General, additional CPU memory is required. This
tradeoff should be taken into consideration when running larger
data sets or using hardware architectures with lower memory ca-
pabilities. In our General experiments, running the Enzo-80M data
set with a hashing multiplier of 8 exceeded the memory capacity of
both the CPU and GPU architectures.

6.3 Phase 3: GPU

In this phase, we assess the performance of the algorithms on the
GPU architecture with the Enzo-10M data set.

Table 6: GPU execution time (sec) for all 4 algorithms, along with
the main computation time for the sort-and-reduction and hashing
loop phases.

Time Sorting General Compact Rehash

Main
Computation 0.5 0.3 0.2 0.2
Total Time 0.7 0.5 0.4 0.4

From Table 6, we observe that all three of the hashing-based al-
gorithms achieve faster run times than Sorting. Both Compact and
Rehash devote only half of their total execution time on main com-
putation, which, for hashing, is the cumulative time spent in the
hashing while-loop. Contrarily, Sorting spends more than 70% of
its total runtime on the CUDA Thrust Sort operation, which, along
with the Reduction operation, comprises the main computation; see
Table 7 for GPU sub-times of the Sorting algorithm. Table 8 shows
that the Scatter and CheckForMatches parallel routines account for
at least half of the work for all three hashing algorithms. This
contrasts slightly from the equivalent CPU findings of Phase 2, in
which the algorithms spend a larger percentage of the time on the
StreamCompact and ScanInclusive operations. The results of Table
8 indicate that the GPU significantly reduced the runtime of these
parallel operations.

Based on the CPU and GPU experimental findings, the Rehash
algorithm provides equal or better performance than the other two
algorithms on the base case data set. So, for Phases 4 and 5, we
opted to evaluate only Rehash of the hashing algorithms.

Table 7: GPU execution times (sec) for the Sorting algorithm
Phase GPU Time

GetFacePoints 0.1
Sort 0.5

Reduction 4.0e-02
StreamCompact 4.5e-03

Overhead 0.1
Total time 0.7

Table 8: GPU execution time (sec) for the three hashing-based al-
gorithms, broken down into primary parallel operations

Phase General Compact Rehash

GetFacePoints 0.1 0.1 0.1
Scatter 0.1 0.1 0.1

CheckForMatches 0.2 0.1 0.1
StreamCompact 5.9e-03 3.7e-02 4.1e-02
ScanInclusive 1.4e-02 - -

ComputeFaceHash 3.3e-03 4.6e-03 8.0e-03
Overhead 0.1 0.1 0.1
Total time 0.5 0.4 0.4

6.4 Phase 4: Data Set
This phase explores the effects of data set, by looking at six differ-
ent data sets which vary over data size and memory locality. The
study also varies architecture (CPU and GPU) and algorithm (Re-
hash and Sorting).

Table 9 displays the execution times on the CPU architecture us-
ing 16 cores. These results show that Sorting is affected by the lo-
cality of the cells within the data set meshes, as evident from the in-
crease in runtime between the pairs of regular and restructured data
sets. Table 10 further corroborates this observation by showing that
Sorting nearly doubles its total runtime when presented with the
restructured version of a data set on the GPU architecture. Contrar-
ily, Rehash maintains stable execution times regardless of the cell
locality in data sets.

With respect to execution time on both the CPU and GPU, Re-
hash consistently achieves comparable performance to Sorting for
the regular data sets and significantly better performance for the re-
structured data sets. These findings indicate Rehash is superior for
large data sets and for data sets with poor memory locality.

Table 9: CPU execution time in seconds for different data
set/algorithm pairs

Data set Sorting Rehash

Enzo-10M 0.9 0.9
Nek-50M 4.3 4.3
Enzo-80M 7.4 7.3

Re-Enzo-10M 1.2 0.9
Re-Nek-50M 5.5 4.5
Re-Enzo-80M 9.2 7.7

Table 10: GPU execution time in seconds for different data
set/algorithm pairs

Data set Sorting Rehash

Enzo-10M 0.7 0.4
Nek-50M 3.3 2.1
Enzo-80M 5.7 5.6

Re-Enzo-10M 1.0 0.4
Re-Nek-50M 5.3 2.2
Re-Enzo-80M 10.1 6.5



6.5 Phase 5: Concurrency
In this phase we investigate the CPU runtime performance of both
Sorting and Rehash using different numbers of hardware cores with
the base case Enzo-10M data set and its corresponding Re-Enzo-
10M data set.

Tables 11 and 12 reveal that, although Sorting performs better
than Rehash on configurations of 8 cores or fewer, Rehash provides
stable performance regardless of memory locality; this confirms our
findings from the previous phases. Additionally, the results indicate
that with 1 CPU core, there is nearly a 10-time increase in runtime
over the 16-core experiment, for both Sorting and Rehash. This
observation demonstrates clear parallelism; however, the speedup
is sub-linear.

Table 11: Impact of the number of CPU cores on the execution time
(sec) for Sorting and Rehash using Enzo-10M

Method 1 2 4 8 12 16

Sorting 8.0 4.3 2.3 1.7 1.1 0.9
Rehash 10.8 5.6 3.9 1.9 1.1 0.9

Table 12: Impact of the number of CPU cores on the execution time
(sec) for Sorting and Rehash using Re-Enzo-10M

Method 1 2 4 8 12 16

Sorting 9.6 5.1 2.9 1.9 1.3 1.1
Rehash 11.2 5.8 3.1 1.9 1.1 0.9

A review of Rehash over both Enzo-10M datasets indicates that
only the GetFacePoints, ComputeFaceHash, and CheckForMatches
data-parallel operations achieve near-linear speedup from 1 core to
16 cores. The remaining operations (e.g., Scatter and StreamCom-
pact) achieve sub-linear speedup, contributing to the overall sub-
linear speedup. For a majority of the individual operations, the
smallest runtime speedup from a doubling of the hardware cores
occurs in the switch from 8 to 16 cores. These findings suggest
that, on up to 8 cores (a single CPU node), scalable parallelism is
achieved, whereas from 8 to 16 cores (two CPU nodes with shared
memory) parallelism does not scale optimally, possibly due to hard-
ware and multi-threading limitations.

7 SERIAL RESULTS

In Section 6.5, Rehash demonstrated a nearly 10-time increase
in runtime over the base 16-core configuration, when executed
on 1 CPU core. This single-core experiment simulates a serial
execution of Rehash and motivates a comparison with the serial
EFC implementations of community visualization packages. This
section compares the runtime of serial Rehash (1-core) with that
of the VTK vtkUnstructuredGridGeometryFilter and
VisIt avtFacelistFilter, both of which are serial, single-
threaded algorithms for EFC.

In Table 13, we observe that the VisIt algorithm outperforms
both the VTK and Rehash algorithms on all of the data sets from
Section 6.4, while Rehash performs comparably with the VTK im-
plementation. The overall weak performance of Rehash is to be
expected, since the DPP-based implementation is optimized for use
in parallel environments. When compiled in VTK-m serial mode,
the DPP functions are resolved into backend, sequential loop oper-
ations that iterate through large arrays without the benefit of multi-
threading; hence, Rehash is neither optimized nor designed for
1-core execution. Contrarily, both VisIt and VTK are optimized
specifically for single-core, non-parallel environments, leading to
better runtimes than Rehash on the majority of the datasets.

Table 9 confirms that both Sorting and Rehash achieve better
runtime performance than the serial algorithms on the base case 16-

core CPU architecture. This finding validates the use of the DPP-
based algorithms when presented with a multi-core CPU system.

Table 13: 1-core (serial) CPU execution time in seconds for dif-
ferent data set/algorithm pairs. VTK and VisIt are visualization
toolkits that each provide serial, hashing-based EFC algorithms.

Data set VTK VisIt Rehash

Enzo-10M 6.2 1.4 8.3
Nek-50M 33.1 5.2 60.9
Enzo-80M 51.7 9.1 102.6

Re-Enzo-10M 9.9 2.1 8.2
Re-Nek-50M 59.1 10.3 41.5
Re-Enzo-80M 84.4 17.7 109.1

8 CONCLUSIONS AND FUTURE WORK

Our study has contributed new EFC algorithms within the DPP
paradigm. Further, our experiments had the following findings:

• From Phase 1, we found that the General hashing algorithm
is slower than the other algorithms, and that the overhead for
removing previously considered faces greatly pays off in sub-
sequent iterations. We also learned that, for smaller data sets,
a Sorting-based approach is competitive with the better hash-
ing algorithms.

• From Phase 2, we found that smaller hash table sizes slow
down performance, but only modestly. This finding makes the
hashing algorithms increasingly viable, since it allows them to
operate with reduced memory.

• From Phase 3, we found that the hashing algorithms demon-
strated an improved runtime on the GPU compared to sort-
ing. While this finding is interesting, it is not consistent with
the DPP mantra of “portable performance,” as portable per-
formance would imply that algorithms have the same relative
speedup from architecture to architecture.

• From Phase 4, we found that Rehash outperforms Sorting on
large and complex data sets. This finding is likely to be ex-
pected, since sorting has to do additional work when data is
disorganized, but hashing is unaffected.

• From Phase 5, we see that the DPP approach does lead
to improved performance as concurrency increases, but the
speedup is not linear.

In terms of future work, we would like to expand this study to
include more architectures, more data types, and further understand
scalability limitations on multi-core CPUs.
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9 APPENDIX

The following appendix section provides an algorithm description
and corresponding pseudocode (see Algorithm 3) for the GetFace-
Points initialization procedure.

Given cell shape, index, and connectivity arrays as input to Get-
FacePoints, the first parallel operation is to compute the number
of faces per cell via NumFacesPerCell functor. In the current im-
plementation, all tetrahedral cells have four faces. Subsequently,
the prefix sum (inclusive scan) of these face counts is performed to
obtain both the total number of (non-unique) faces, M, and the off-
sets for a forthcoming face-to-cell Id lookup array. For tetrahedral
cells, facesPerCell would be <4, . . . ,4> with a prefix sum output,
numFacesPrefixSum, of <4,8, . . . ,4N>.

Next, an UpperBounds function is employed to generate the
face2CellId lookup array in parallel. For each value i of a countin-
gArray, <1,2, . . . ,N>, UpperBounds finds the uppermost location
in numFacesPrefixSum where i could be inserted without disrupting
the sorted order. Hence, a lookup array <0,0,0,0,1,1,1,1, . . . ,N−
1> is produced of length M. Furthermore, in preparation for the
upcoming connectivity array construction, a localFaceIds lookup
array is created to assign a local Id to each unique face of a cell. We
obtain <0,1,2,3, . . . ,0,1,2,3> by computing (countingArray[i]−
f ace2CellId[i]) mod 4, for all 0≤ i≤ N−1, via a functor.

The next phase of the algorithm involves the extraction of point
coordinates (vertex Ids) for each of the M faces. First, two
gather operations are performed to obtain the shape types, pt1 =
<T ET, . . . ,T ET>, and number of indices, pt2 = <4, . . . ,4>, for
each of the cell indices in face2CellId. Second, a face connectiv-
ity array, faceConn, of length 4M is composed that repeats the four
vertex Ids of a cell for each of it’s four faces. For example, if cell
1 has vertices <4,7,6,3> and cell 2 has vertices <4,6,3,2>, then
faceConn would be <4,7,6,3,4,7,6,3, . . . ,4,6,3,2,4,6,3,2, . . .>.

Finally, pt1, pt2, and f aceConn are combined to form a new ex-
plicit cell set, which is passed into a GetFacePoint functor along
with localFaceIds. This functor assigns one of the four possible
combinations of three vertex Ids to a given face, using the face’s lo-
cal Id value as the combination index; for instance, in cell 1 above,
vertices <4,7,6> will be assigned to the first face of the cell (local
ID 0), vertices <4,7,3> to the second face (local ID 1), etc. The
resulting array of face point Ids, f acePoints, is used as input to the
subsequent sorting or hashing operations.



Algorithm 3: Pseudocode for the extraction of all face point
Ids. The resulting facePoints array and other output arrays are
subsequently used by both the Sorting- and Hashing-based Ex-
ternal Faces algorithms. N is the total number of tetrahedral
cells, M is the total number of (non-unique) cell faces, and E is
the number of external faces.

1 /*Input*/
2 Array: int shapes[N], numIndices[N], conn[4∗N]
3 /*Output*/
4 Array: Vec<int,3> facePoints[M]
5 Int: M
6 /*Local Objects*/
7 Array: int facesPerCell[N], numFacesPrefixSum[N],

face2CellId[M], localFaceIds[M]
8 ArrayPermutation: int pt1[M], pt2[M], faceConn[4∗M]
9 ArrayImplicit: int connIndices[4∗M]

10 ArrayCounting: int countingArray[M]
11 CellSetExplicit: permutedCellSet

12 facesPerCell← NumFacesPerCell(shapes)
13 M, numFacesPrefixSum←ScanInclusive(facesPerCell)
14 face2CellId←UpperBounds(numFacesPrefixSum,

countingArray)
15 localFaceIds←SubtractAndModulus(countingArray,

face2CellId)
16 pt1←Gather(face2CellId, shapes)
17 pt2←Gather(face2CellId, numIndices)
18 connIndices←GetConnIndex(4∗M)
19 faceConn←Gather(connIndices, conn)
20 permutedCellSet←(pt1, pt2, faceConn)
21 facePoints←GetFacePoint(localFaceIds, permutedCellSet)
22 //Continue with Algorithm 2 or Algorithm 3 after returning.
23 return (facePoints, M)


