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Abstract. Human Activity Recognition (HAR) has a growing research
interest due to the widespread presence of motion sensors on user per-
sonal devices. The performance of HAR system deployed on large-scale
is often significantly lower than reported due to the sensor-, device-, and
person-specific heterogeneities. In this work, we develop a new approach
for clustering such heterogeneous data, represented as a time series,
which incorporates different level of heterogeneities in the data within
the model. Our method is based on representing the heterogeneities as
a hierarchy where each hierarchy denotes a specific heterogeneity (e.g.
a sensor-specific heterogeneity). Experimental evaluation on an EMG
sensor dataset with heterogeneities shows that our method performs
favourably compared to other time series clustering approaches.

1 Introduction

The widespread availability of sensors in everyday lives enables us to capture
contextual information from underlying human behavior in real-time. This has
lead to the significant research focus on Human Activity Recognition (HAR)
using sensor data [55]. Sensor data is used to determine the specific activity
performed by the user at that instant, using either statistical or machine-learning
approach. Despite a significant interest on HAR research, real-world performance
variations across different sensors have been overlooked [55].

Another significant research problem based on use of sensor networks is de-
velopment of automatic prosthetic limbs equipped with sensors; e.g. EMG and
Accelerometer. The sensor network is used for detecting the intention of the user
of the prosthetic limbs to provide a better control mechanism to the prosthetic
limbs. The sensor network provides data related to the neural intent of the user,
which is then interpreted by the prosthetic limb control mechanism as a signal
for providing certain degree of freedom to the limb motion. For example, the con-
trol system is able to recognize whether the user is walking along a level ground
or climbing up a stair based on the neural impulse of the user (inferred from
sensor data using statistical and machine learning models), which then triggers
an intent specific freedom on the prosthetic limbs; e.g. automated raising of the
prosthetic limb when the user is climbing up a stair. While significant progress
has been made in the development of prosthetic limbs with such control mech-
anisms [27], most of the work focus on having a prosthetic limb trained to a



specific user only. There is a distinct lack of research in unsupervised learning
of user intent from such sensor data.

We focus on developing an unsupervised approach to recognize the user in-
tent based on the sensor data. We treat the sensor data as a time series which
is the most natural interpretation of such data. While there is a great amount
of work done in time series clustering, most of them are inapplicable to our
current problem. Time series clustering usually cluster the data obtained from
same or similar data source, which is not true for our case. Moreover, most of
the approaches require the number of clusters (or activity) in the data to be
predetermined which is not always feasible or even possible in sensor data. An-
other challenge lies in the interpretation of the sensor data itself. The sensor data
comprises of additive noises and have been found to be inefficient in representing
the user intent as raw data themselves [54]. Time and frequency domain features
are extracted from sensor data which are then used in machine-learning models
for intent interpretation.

In this work, we address the challenges of performing unsupervised learn-
ing approach on sensor datasets. We first introduce the heterogeneities in the
dataset as a hierarchy which each level in the hierarchy representing a specific
heterogeneity. Next, we perform clustering using Bayesian semiparametric ap-
proach to mitigate the problem of pre-specifying the number of clusters in the
dataset. Our approach learns the number of clusters (or activities) present in
the dataset as a parameter of the model, which is capped by some large number
that is considered to be an upper limit of possible number of clusters. Finally,
we also develop a feature series clustering approach where we obtain features
from the sensor dataset, which is then used to cluster the input data.

In the next section, we cover the background and related work, followed by
our approach, experiments and results.

2 Background and Related Work

2.1 Dynamic Linear Model and Sampling Model

Dynamic Linear Models (DLMs) are a special case of general state space models,
being linear and Gaussian. State space models [1] consider a time series as the
output of a dynamic system perturbed by random noise. This allows a natural
interpretation of a time series as the combination of several components such as
trend, seasonal and regressive components. State space models are used to model
multivariate time series also in presence of non-stationarity, structural changes
and irregular patterns [49, Chapter 2]. One important class of state space models
is given by Gaussian Linear state space models, also called Dynamic Linear
Models [24].

Let yi = {yi,t : t = 1, 2, 3, ...T}, i = 1, 2, 3, ...n be a set of n time series,
each of them observed during T time periods. A Dynamic Linear Model (DLM)
describes each time series in terms of an observation (measurement) equation
and an evolution or system equation:

yit = Fitθi,t + εi,t (1)
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θit = ρθi,t−1 + νi,t (2)

where εi,t is the measure error given by εi,t ∼ N(0, σ2
εi) and νi,t is process error

given by νi,t ∼ N(0, σ2
θ) with independence across i and t. The evolution equation

(2) describes a dynamic in the coefficients θi,t as an auto-regressive process of
order 1 (i.e. an AR(1)). This has proved to be flexible enough representations
for most time series [23].

We use the sampling model presented in [45] to separate the clustering and
non-clustering parameters, which are interpreted as random variables to enable
Bayesian treatment of DLMs.

yi = Zαi +Xβi + θi + εi, i = 1, 2, ..., n (3)

Z and X are two design matrices of dimension T × p and T × d respectively.
The p × 1 dimensional vector αi, the d × 1 dimensional vector βi and T × 1
dimensional vector θi are the parameters of the model such that ηi = (αi, βi, θi)
but only αi and βi are considered for clustering. Finally, ε

′

i = (εi1, εi2, ...., εiT ) ∼
NT (0, σ2

εiI) is the vector of measurement error such that I is the identity matrix
with dimension T × T .

Here, αi represents the non-clustering features of the time series (e.g. mean)
while βi represents the clustering features of the time series (e.g. polynomial
trend). θi represents the dynamic behavior of the DLMs, which are also consid-
ered as a clustering parameter similar to [45].

The sampling model can also accommodate multi-dimensional time series
data. For multi-dimensional time series, we consider each feature as having a
time series of their own. For our particular purpose, this approach also enables
us in reducing the additional overhead while an Majority Voting system for
posterior inference makes the model more powerful. Then the sampling model is
extended to form:

yi,f = Zαi,f +Xβi,f + θi,f + εi,f , i = 1, 2, ..., n, f = 1, 2..F (4)

where F is the number of features. The design matrices Z,X can be same or
different for each feature based on the data. Since we want the Sampling Model
to incorporate trends in our observation equation, we consider the same design
matrices for all the features.

2.2 Hierarchical Normal model

Many different kind of data, including observational data collected in human and
biological sciences, have a hierarchical structure. For example, Electro Myogra-
phy(EMG) signals have a natural hierarchy where the measurement of each per-
son is grouped under an individual person and of each type of sensor is grouped
under that particular sensor. This natural hierarchical tendency of data requires
multi-level analysis, which can be incorporated using Hierarchical Normal Mod-
els (HNM). HNMs were first studied in the context of biological and human
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sciences where family, race, geographical location introduces a natural hierarchy
in the data [38] [11]. Significant work in efficient inference of multivariate HNMs
is done in [15].

A hierarchy of normal distribution is considered in hierarchical normal model.
The top-most hierarchy include a prior for mean and variance of the model (joint
prior or distinct prior). A mean value is sampled from the prior, which is then
used to sample different means for Level 1 hierarchies (represented by θi in
the representation below), with the variance obtained from prior. For each sub-
hierarchy in Level 2, the mean is sampled from each θi separately (yi). The
variance at each level can be either estimated from the data of that group and
kept fixed or obtained from Gibbs sampler step for variance [15]. The HNMs
are based on theory of exchangability with different groups at each group be-
ing exchangeable and irrelevant to the sampling order and sequence, except for
hierarchy [38].

The posterior distribution for HNMs are obtained by either estimation with
rejection sampling [15], substitution sampling and Gibbs sampling [2] or by us-
ing EM algorithms [6]. In this work, we consider the Gibbs Sampling approach
due to the ease of integrating the sampler into the overall clustering approach.
We also consider conjugate prior to the multivariate normal distribution with
diagonal covariances. The Markov Chain Monte Carlo approach for inference in
hierarchical normal models is often slower than compared to estimation with re-
jection sampling and EM approaches, but provides an easy integration to models
where HNMs are used for introducing hierarchies only.

An example representation of Hierarchical Normal Model (HNM) is given
in Figure 1. The existence of such hierarchies is the result of differentiation in
all kind of activities (e.g. different gait events for different person and differing
sensor metrics for different muscle activation). We use hierarchies for different
person and sensor level variances with the sensor level variance being the first
level and person level variance in the second level. We then use the samples from
person level variance for a specific person-sensor combination which is inherent
in the data.
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p(µ,Σ)

N(yn11|y1, Σ)

...

N(y11|y1, Σ)

N(y|θ2, Σ)

N(y|θ1, Σ)

N(y|θi, Σ)

...

N(y|θI , Σ)

...

N(θ|µ,Σ)

N(ynII |yI , Σ)

N(y1I |yI , Σ)

...

N(y12|y2, Σ)

...

N(yn22|y2, Σ)

N(ynii|yi, Σ)

...

N(y1i|yi, Σ)

...

N(yji|yi, Σ)

Fig. 1: A hierarchical Normal model.
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2.3 Non parametric hierarchical models

Truncated non parametric hierarchical models are useful for introducing clus-
tering parameters in model where the probability distribution for each cluster
(multinomial parameters) is required. It is a generalization of Dirichlet process
with truncation where Polya Urn characterization ([13] and [14]) is unknown. We
fist describe the Polya Urn sampler for clustering, followed by a blocked Gibbs
Sampler where Polya Urn Characterization is limited or unknown [29].

Stick Breaking Priors We represent a random probability measure P as

P (.) =

N∑
k=1

pkδZk
(.) (5)

where δZk
(.) denote discrete measures concentrated at Zk,

pk are random variables (called random weights) independent of Zk such that

0 ≤ pk ≤ 1 and
∑N
k=1 pk = 1 almost surely.

It is assumed that Zk are independent and identically distributed (i.i.d.)
random elements with a distribution H. Stick breaking priors can be constructed
can be constructed using either a finite or infinite number of terms.

The random weights are constructed by means of independent Beta random
variables, with p1 = V1 and pk = (1 − V1)(1 − V2)....(1 − Vk−1)Vk, k ≥ 2 where
Vk are independent Beta variables (Be(a, b)) with P = PN (a, b) being random
probability measure or stick breaking random measure. For finite dimensional
measure, we set VN = 1, where N is the number of measure.

If Vk are independent Be(1, α) variables with P∞ being the random prob-
ability measure, then P∞ is a Dirichlet process with concentration parameter
α > 0 and reference distribution H. It is also represented as DP (αH) [56].

The approach introduced by [29] is based on truncating P∞ to PN which
provides a good approximation for P∞ and is also possible to perform simple
multivariate update to p1, p2, ...., pN in the Gibbs Sampler. We proceed to explain
the approximation and consider p(.) to be a Beta two-parameter process given
as Be(a, b,H), which for Dirichlet process is P∞ = B(1, α,H) = DP (αH).

Random Variables Description We recast the variables in Equation (5)
completely in terms of random variables. Let p = (p1, p2, ..., pN ) and Z =
(Z1, Z2, ..., ZN ). Then we can rewrite the above model as:

(Xi|Z,K) ∼ π(Xi|ZKi)

(Ki|p) ∼
N∑
k=1

pkδk(.)

(p, Z) ∼ π(p)π(Z)

(6)

where K = (K1,K2, ...,KN ) and Ki are conditionally independent classification
variables that identify the Zk associated with Yi, so that Yi = ZKi
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The Gibbs sampler implementation iteratively draw values from the condi-
tional distributions of

π(p, Z|K,X) (7)

π(K|p, Z,X) (8)

We represent the random variable p as a Generalized Dirichlet Distribution
(GDD). Z is calculated using multivariate normal distribution updates. We fol-
low the adequate truncation value selection described in [29] to determine the
upper limit of number of clusters.

2.4 EMG Signal

The neuromuscular system can be studied by measuring the electrical potential
(signal) generated from a muscle contraction. This signal is a function of time
and can be described in terms of amplitude, phase and frequency. The EMG sig-
nal (Electromyographic signal) measures electrical current generated in muscles
during its contraction representing neuromuscular activity. The EMG signal is
controlled by nervous system and is dependent on the anatomical and physiolog-
ical property of muscles along with the noise it gathers while travelling through
different tissues. Surface EMG detectors, placed on the surface of skin to gather
muscle contraction signals, collects signals from different motor units at a time,
which may generate interaction of different signals. The individual motor neu-
rons and its muscle fibres are referred to as Motor Unit (MU) and the waveform
generated by such motor units is called motor unit action potential (MUAP).

The detection and recordings of EMG signal are influenced by two main
issues. The first one is the signal-to-noise ratio i.e. the ratio of energy in EMG
signal to ratio of energy in the noise signal. Noise is defined as electrical signal
that is not part of the desired EMG signal. The other is the distortion of signal,
meaning the relative contribution of any frequency component in the EMG signal
should not be altered.

Fig. 2: EMG signal and decomposition of MUAPs [9].
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EMG sensor is applied to the study of skeletal muscle, which is attached
to the bone and is responsible for supporting and moving the skeleton. The
contraction of skeletal muscle is initiated by impulses in the neuron to the muscle
and is usually under voluntary control. Skeletal muscle fibres are well supported
with neurons for contraction. These type of neurons are called motor neuron. In
response to the stimulus from the neuron, a muscle fibre depolarizes as the signal
propagates through the surface. This depolarization generates an electric field
near each muscle fibre. An EMG signal is the train of MUAPs characterizing the
muscle response to neural stimulation. Figure (2) shows the process of acquiring
EMG signal.

2.5 Gait Event Detection

Gait Cycle A gait is defined as someone’s manner of ambulation or locomotion,
involving the total body [19]. The gait cycle is a repetitive pattern involving steps
and strides [40]. A step time is the time from one foot hitting the floor to the
other foot hitting the floor. A stride is a whole gait cycle. The sequences for
walking could be summarized as:

1. Registration and activation of the gait command within the central ner-
vous system

2. Transmission of the gait systems to peripheral nervous system
3. Contraction of muscles
4. Generation of several forces
5. Regulation of joint forces and movements across synovial joints and

skeletal segments
6. Generation of ground reaction forces

Fig. 3: Phases of gait cycle [59].

The two main phases of gait cycle are the stance phase and the swing phase.
The stance phase occupies 60% of the gait cycle while the swing phase occupies
only 40% of it. A more detailed classification of gait cycle recognizes six phases
which are listed below and shown graphically in Figure (3).

1. Heel Strike (HS)
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2. Flat Foot (FF)
3. Mid-stance (MS)
4. Heel Off (HO)
5. Toe Off (TO)
6. Mid Swing (MS)

Two phases of gait cycle have been found to be most efficient in recognizing
locomotion mode. The first is Heel Strike (also called initial contact), a short
period which begins the moment the foot touches the ground. The second phase
is toe-off (also called pre-swing phase), a period when the toe begins to take
stance.

Surface EMG for Gait event detection Surface EMG has been widely used
for gait event detections. The application of gait event detection is in assist-
ing amputees have automated control of prosthetic limbs as opposed to man-
ually controlled limbs, which is both inconvenient and tiresome. The design of
lower limb prostheses have offered the amputees patient improved stability and
decrease in energy consumption in level ground walking ([51] and [32]). The
advances in computerized control and powered prosthetics limb design have im-
proved the function of artificial limbs; with these legs able to assist users with
versatile action beyond the level walking. However, in order to properly select
the correct control mode to adjust the joint impedance, the limbs should have a
mechanism for knowing the user movement intent ([48] and [25]).

Surface EMG signals are one of the primary neural control sources for pow-
ered upper limb prostheses. While the use of EMG signals for upper limb pros-
theses has been prominent for decades ([61], [47], [28] and [12]), there has also
been recent influx of work on using surface EMG signals for lowered limb pros-
thetics ([27], [26], [58], [21], [22] and [46]). It was demonstrated by [48] that there
is a difference in EMG signal envelope among level-ground walking and descend-
ing and ascending a ramp, with conclusion that EMG signals from hip-muscles
could be used to classify the locomotion modes. [31] presented an algorithm for
terrain identification during walking. The features are extracted from EMG sig-
nals for a complete stride cycle, which are then used to make one decision per
stride cycle. This led to further development of applications which are able to
give real time decisions by integrating them into the prosthetic limb.

Most of the work in EMG signal based terrain identification (locomotion
mode identification) is based on using classification algorithms, which depends
on having training data with correct labels. The earlier work for EMG signal
analysis is based upon wavelet analysis [35] and auto-regressive models [18].
The more recent approaches are based on using the features extracted from
EMG signals which are then fed to a machine learning model in order to train
a classifier. Support Vector Machine (SVM), Linear Discriminant Analysis and
Markov Models are more prominent in recent works [41].

The muscles on which surface EMGs are placed for locomotion mode iden-
tification are usually based on the application and the extent of amputation.
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In particular, the following muscle’s EMG signal have been found to be most
significant in better gait event detection

• Tibialis anterior muscle (near shin)
• Gastrocnemius muscle (back of calf)
• Rectus Femoris muscle (middle of the front of thigh)
• Vastus Lateralis muscle (thigh muscle)
• Biceps femoris muscle (posterior thigh muscle)
• Gluteus maximus muscle (hip muscle)
• Gluteus medius muscle (outer surface of pelvis)

The skeletal muscles used for detecting terrains are illustrated in Figure (4).
The EMG signals by themselves are just random signal with zero mean, but
have significance during stages where the muscle contraction is maximum (i.e.
during the phase where the electrical impulse generated from MUs could be
measured). In terrain detection using EMG signal data, two phases of gait cycle
are most significant, namely Heel Strike and Toe Off. During these two phases,
the MUAP potential is maximum and thus provides a vital information for
classifying terrains based on the input signals. Moreover, due to the random
nature of EMG signal themselves, even the EMG signal collected during the
significant phases of gait cycle (heel strike and toe off) are unable to predict
terrain with any reliable accuracy [26].

Features extracted from EMG signals The features extracted from EMG
signals are crucial for getting proper classification accuracy during prediction.
The features extracted during the 150ms phase before and after the Heel Strike
and Toe Off is found to be most accurate for terrain event detection [27]. In
this section, we describe the features that are most relevant to the terrain clas-
sification task using EMG signals given by [20] and [3]. Only the time-domain
features are described since they are the easiest to compute and most relevant
to most type of time series (e.g. stock market data and rainfall measurement).

• Mean
• Variance
• Mean Trend
• Variance Trend
• Windowed Mean Difference
• Windowed Variance Difference
• Auto-regressive coefficient

2.6 Time series clustering

Time series clustering is one of the most fundamental and complex task in data
mining research. The summary of approaches for clustering of time series is
shown in Figure (5). Time series clustering algorithms are usually applied by
either converting the popular static clustering approaches to handle time series
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(a) Tibialis anterior muscle (b) Gastrocnemius muscle (c) Rectus Femoris muscle

(d) Vastus Lateralis muscle (e) Biceps femoris muscle (f) Gluteus maximus muscle

(g) Gluteus medius muscle

Fig. 4: Skeletal muscles used for terrain detection during locomotion.
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Fig. 5: Time series clustering approaches [37].

or by modifying the time series such that static clustering algorithms could be
applied [37].

One of the most popular approach for static data clustering is k-means or
k-mediods, which generate spherical-shaped cluster with a distance metric being
considered for deciding cluster membership. Another popular approach for clus-
tering is hierarchical clustering which generate clusters in agglomerative manner
(assign each data as individual cluster and proceed with merging to generate
ideal cluster) or divisive manner (partition the data based on some metric).
This approach requires cluster quality check metric to determine the best clus-
ter partitions. Density-based clustering approaches grow a cluster as long as the
density of the ”neighbourhood” exceeds some threshold. Model-based clustering
approaches assume a model for each cluster and attempt to best fit the data to
the assumed model.

The most used approach for clustering time series data is based on computing
the similarity measure between different time series and then using the similarity
measure to obtain either a spherical cluster partitions using k-means algorithm
or a non-spherical cluster partitions using fuzzy k-means. Another popular ap-
proach is to extract features from time series and then use those features to
perform clustering, either by using a multinomial distribution (when the num-
ber of clusters is known apriori) or a Dirichlet Process (when the number of
clusters is not known apriori). The recent focus is on model-based clustering
[53] and Markov Chain Monte Carlo approaches to generate clusters [10]. Us-
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ing latent variables to determine the cluster parameters is also another popular
approach ([50] and [45]). However, there is a distinct lack of approaches which
consider clustering among heterogeneous data sources, unless we consider Hier-
archical Dirichlet Process [57] and its extensions, even these are rarely used for
actual time series data.

We now describe some of the similarity measures which are used for comput-
ing the similarity/dissimilarity between different time series, the measure which
are then applied to clustering algorithms. Please refer to [43] for more details

• Autocorrelation based distances (ACF): The autocorrelation distance is
obtained by calculating the difference between two time series repre-
sented by their estimated autocorrelation vectors [16].

• Periodogram-based distances (PER): This approach is based on calcu-
lation of periodogram of time series and then calculating the distance
between two time series using the measure.

• Normalized Compression Distance (NCD): [36] It is one of the compres-
sion based dissimilarity measure where the dissimilarity is calculated
using compression distance.

• Euclidean Distance (EUCL): It is the simplest and most primitive dis-
similarity measure, but is surprisingly robust and performs well on
generic time series data [33].

• Compression-based dissimilarity measure (CDM): It is another of com-
pression based dissimilarity measure [36].

• Dynamic Time Warping (DTW) measure: It is one of the most popular
similarity measure in recent time series literature [52]. It calculates the
optimal match between two given sequences with certain restrictions.
Due to the exponential time complexity of DTW approaches, several
alternatives have been proposed, including [34] which is able to reduce
the complexity significantly without compromising the performance.

• Discrete Wavelet Transform (DWT) measure: This similarity measure
is calculated by performing an unsupervised feature extraction using
orthogonal wavelets on the series. The distance is then calculated as
Euclidean Distance between wavelet approximations [39].

• Correlation based dissimilarity(COR): This approach calculates the dis-
similarity between two time series using estimated Pearson’s correlation
between them [17].

• Autocorrelation based dissimilarity (PACF): This approach computes
the similarity between two time series as the distance between their
estimated partial autocorrelation coefficients, in a very similar way
to ACF measure [7].

• Complexity Invariant Distance (CID) measure: This measure computes
the distance based on Euclidean distance corrected by the complexity
estimation of the series [4].

• Permutation Distribution Clustering (PDC): PDC represents an alter-
native complexity-based approach to clustering time series with dissim-
ilarity between series described in terms of divergence between permu-
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tation of distributions of order patterns in m-embedding of the original
series [5].

3 Our approach

In this section, we describe our method for performing heterogeneous time series
clustering.

3.1 Model Specification

We represent each time series as a sampling model [45].

yi = Zαi +Xβi + θi + εi, i = 1, 2, ..., n (9)

Here, yi is a T ×1 dimensional time series and εi is the random noise of same
dimension. A multi-variate time series of dimension T ×f can be represented by
considering each feature (column, if the time factor is represented row-wise) to
be independent from one another and each column being represented as a single
one-dimensional time series. We will cover more on that later.

The three parameters given in Equation (9) are used to model three different
components of time series, namely

• αi is p×1 dimensional vector representing the non-clustering parameter
of the time series. It is used to enhance the fit of the model with respect
to time series magnitude.

• βi is the d × 1 dimensional vector representing the clustering but non-
autoregressive aspect of time series. It can be interpreted as the rep-
resentation of latent features of time series that are not related to the
auto-regressive aspect of time series

• θi is the T × 1 dimensional vector representing the AR(1) aspect of the
time series assuming stationarity in the time series.

The matrices Z and X are design matrices used to represent temporal com-
ponents of time series. Z is T × p dimensional matrix, while X is T × d dimen-
sional. The clustering parameters of the model are θi and βi which is represented
jointly as γi. Also ε

′

i ∼ NT (0, σ2
εiI), which is the noise in the data with I being

an identity matrix of dimension T × T .
The hyper parameters for αi ∼ NP (0, Σα), with Σα = diag(σ2

α1
, ..., σ2

αp
) and

σ2
αi
∼ IGa(cα0 , c

α
1 ) where IGa represents the Inverse-Gamma distribution. Also

σ2
εi ∼ IGa(cε0, c

ε
1) for εi.

Hierarchical heterogeneity For clustering parameters βi, θi (referred to as γi
jointly in this section, where γi = βi × θi to obtain a (p + d) × 1 dimensional
vector), a hierarchy is used in our approach to address the heterogeneity in the
data. We consider a hierarchical normal model for simplicity purpose.
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At the top-most level (root) of hierarchy,

γroot ∼ N(0, Σβ)×N(0, Σθ) (10)

Here, Σβ = diag(σ2
β1
, ..., σ2

βd
) and σ2

βj
∼ IGa(cβ0 , c

β
1 ) where IGa represents

the Inverse-Gamma distribution as hyper parameter. And Σθ = (Rjk) with each
Rjk = σ2

θρ
|j−k|.

We consider the hyper prior for ρ and σθ jointly with distribution which
maximizes the power of data to represent the best value [42].

f(σ2
θ , ρ) ∝ (σ2

θ)−1
√

1 + ρ2

1− ρ2
(11)

where σ2
θ > 0 and ρ ∈ (−1, 1)

We have a separate Hierarchical Normal tree for each cluster. The number
of clusters is determined semi-parametrically using the Adequate truncation
values approach for Beta two-parameter variable. We use two-level hierarchy,
with each level having mean as a sample from the level immediately above and
covariances specific to that level.

The top-most level of the hierarchy for cluster k is

γk ∼ N(0, Σβ,k)×N(0, Σθ,k) (12)

where γk represents the clustering random variable for cluster k and level 0 (or
root). Σβ,k represents the covariances for β parameter for cluster k and level 0
and Σθ,k represents the covariances for θ parameter for cluster k and level 0.

For the first level of hierarchy, let us assume there are R branches, then for
a branch r of cluster k at level 1:

γr,k ∼ N(βr,k, Σβ,r,k)×N(θr,k, Σθ,r,k)

βr,k ∼ N(0, Σβ,k)

θr,k ∼ N(0, Σθ,k)

(13)

where Σβ,r,k and Σθ,r,k are covariances for β and θ parameters of cluster k, level
1 and branch r.

For level 2, we proceed in similar manner. For each branch r in level 1, there
are S branches at level 2, which are obtained in similar manner to previous level
for a branch s

γs,r,k ∼ N(βs,r,k, Σβ,s,r,k)×N(θs,r,k, Σθ,s,r,k)

βs,r,k ∼ N(βr,k, Σβ,r,k)

θs,r,k ∼ N(θr,k, Σθ,r,k)

(14)

Here, k represents a specific hierarchical model among K such models, r
represents the first level selection of the model among R such groups and s
represents the second level selection of the model among S groups. The number

15



Fig. 6: Block HNMs for heterogeneity.

of variables at the subscript represents the level of the specific parameter. The
block diagram of HNM given in Figure (6) for more clarity.

The hyper parameters for all Σx’s in the hierarchical model is represented as
diag(σ2

x1, ..., σ
2
xy), where y = D if x ∈ β or y = T if x ∈ θ and σ2

xi ∼ IGa(cx0 , c
x
1).

The sampling model explained previously then can be explained more clearly
as

f(yi) ∝ NT (Zαi +Xβi + θi, σ
2
εi
I)

αi ∼ N(0, Σα)

βi ∼ N(βs,r,k, Σβ,s,r,k)

θi ∼ N(θs,r,k, Σθ,s,r,k)

(15)

where s, r and k are the level 2, level 1 and cluster value for series yi, i = 1, .., T
respectively.

Clustering Parameter The hierarchies for the data are obtained from the
data heterogeneity, while the selection of a particular k for yi is based upon
Generalised Dirichlet Distribution (GDD).

The probability are obtained by means of truncated stick-breaking process

PN (.) = V1δZ1(.) +

N∑
k=2

{(1− V1)(1− V2)...(1− Vk−1)Vk}δZk
(.) (16)

where
p1 = V1, pk = (1− V1)(1− V2)...(1− Vk−1)Vk(k = 2, ..., N) (17)
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and Vk are independent Be(ak, bk) random variables with ak = a and bk = b,
for k ≤ N − 1. VN is set to 1 to ensure p1 + ...+ pN = 1.

GDD has the distribution of

p ∼ G(a1, b1, ...., aN−1, bN−1) (18)

Its density is equal to ([8]):

{
N−1∏
k=1

Γ (ak + bk)

Γ (ak)Γ (bk)
}pa−11 ...p

aN−1−1
N−1 pbN−1−1

n

×(1− P1)b1−(a2+b2)....(1− PN−2)bN−2−(aN−1+bN−1))

(19)

where Pk = p1 + ...+ pk. It can be seen that this distribution is conjugate with
multinomial sampling with ak = a and bk = b is G(a∗1, b

∗
1, ..., a

∗
N−1, b

∗
N−1), where

a∗k = a+mk

b∗k = b+

N∑
j=k+1

mj = b+Mk(k = 1, 2, ..., N − 1)
(20)

and mk is the number of Ki’s which equal k.
Here ai and bi are the hyper parameters of GDD and pi is the probability

distribution of the model which can be updated easily using conjugacy in case of
multivariate normal distribution which is true for our case. This completes the
description of the model.

3.2 Posterior Characterization

The likelihood function is

f(y) =

N∏
i=1

NT (Zαi + xβi + θi, Σy) (21)

where Σy = σ2
ε I.

The conditional distribution for all the parameters used in the model can be
obtained analytically. The posteriors are further updated in same order as given
below.

• αi: The posterior for αi is

f(αi|rest) ∝ NP (µa, Σa)

Σa = (Σ−1α + ZTΣ−1y Z)−1

µa = ΣaZ
TΣ−1y (yi −Xβi − θi)

f(σ2
αj
|rest) = IGa(cα0 +

n

2
, cα1 +

1

2

n∑
i=1

α2
ij), j = 1, .., p

(22)
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• βi: The posterior for βi (or βs,r,k) is

f(βi|rest) ∝ ND(µb, Σb)

Σb = (Σ−1β,s,r,k +XTΣ−1y X)−1

µb = Σb[X
TΣ−1y (yi − Zαi − θi) +Σβ,s,r,kβs,r,k]

f(σ2
βs,r,k,i

|rest) = IGa(c
βs,r,k,i

0 +
m

2
, c
βs,r,k,i

1 +
1

2

m∑
j=1

β2
s,r,k,i)

i = 1, .., p

(23)

where m is the number of data points belonging to that cluster.
• θi: The posterior for θi (or θs,r,k) is

f(θi|rest) ∝ NT (µc, Σc)

Σc = (Σ−1θ,s,r,k +Σ−1y )−1

µc = Σc[Σ
−1
y (yi − Zαi −Xβi) +Σθ,s,r,kθs,r,k]

f(σ2
θs,r,k,i

|rest) = IGa(c
θs,r,k,i

0 +
m

2
, c
θs,r,k,i

1 +
1

2

m∑
j=1

θ2s,r,k,i)

i = 1, .., T

(24)

where m is the number of data points belonging to that cluster.
• σ2

εi : The posterior for σ2
εi is

f(σ2
εi |rest) ∝ IGa(cε0 +

T

2
, cε1 +

1

2
M
′

iMi)

Mi = (yi − Zαi −Xβi − θi)
(25)

• Level 1 posterior : The posterior for level 1 of hierarchy is

f(βr,k|rest) ∝ ND(µx, Σx)

Σx = (Σ−1β,s,r,k +Σ−1β,r,k)−1

µx = Σx(Σβ,r,kβr,k +Σ−1β,s,r,kβs,r,k)

f(σ2
βr,k,i
|rest) = IGa(c

βr,k,i

0

S

2
, c
βr,k,i

1

S∑
j=1

β2
r,k,i)

f(θr,k|rest) ∝ NT (µy, Σy)

Σy = (Σ−1θ,s,r,k +Σ−1θ,r,k)−1

µy = Σy(Σθ,r,kθr,k +Σ−1θ,s,r,kβs,r,k)

f(σ2
θr,k,i
|rest) = IGa(c

θr,k,i

0

S

2
, c
θr,k,i

1

S∑
j=1

θ2r,k,i)

(26)
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• k level posterior : The posterior for k level of hierarchy is

f(βk|rest) ∝ ND(µg, Σg)

Σg = (Σ−1β,r,k +Σ−1β,k)−1

µg = Σg(Σβ,kβk +Σ−1β,r,kβr,k)

f(σ2
βk,i
|rest) = IGa(c

βk,i

0

R

2
, c
βk,i

1

S∑
j=1

β2
k,i)

f(θk|rest) ∝ ND(µh, Σh)

Σh = (Σ−1θ,r,k +Σ−1θ,k)−1

µh = Σh(Σθ,kθk +Σ−1θ,r,kθr,k)

f(σ2
θk,i
|rest) = IGa(c

θk,i

0

R

2
, c
θk,i

1

R∑
j=1

β2
k,i)

(27)

• Top level posterior : The posterior at the top-most level is

f(β|rest) ∝ ND(µe, Σe)

Σe = (Σ−1β,k +Σ−1β )−1

µe = Σe(Σ
−1
β,kβk)

f(σ2
βi
|rest) = IGa(cβi

0

K

2
, cβi

1

K∑
j=1

β2
i )

f(θ|rest) ∝ ND(µf , Σf )

Σf = (Σ−1θ,k +Σ−1θ )−1

µf = Σf (Σ−1θ,kθk)

f(σ2
θ |rest) = IGa(

KT

2
,

1

2

K∑
j=1

θ
′

jQ
−1θj)

f(ρ|rest) ∝ |Q|−K/2 exp
−1

2σ2
θ

K∑
j=1

θ
′

jQ
−1θj

√
1 + ρ2

1− ρ2

(28)

where Qij = ρ|i−j| for i, j = 1, .., T .
• Posterior for GDD and p: The posterior for GDD is conjugate with

multinomial sampling and is obtained as explained in Section (3.1). The
probability p is updated based on the fit of the data with respect to the
individual clusters lowest level mean using the likelihood function [29].

3.3 Model Learning and Majority Voting

Gibbs Sampling algorithm is used for posterior inference, with Metropolis within
Gibbs sampler being used for sampling ρ and σ2

θ . The Gibbs Sampler algorithm
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used is same as given in [30] except for sampling from the hierarchical model
and Metropolis steps for θ parameters. The hierarchical model posterior sampling
is done in bottom-top approach. The hierarchy is sampled beginning from the
Sampling model until the top level is reached.

In order to handle time series where the signal themselves are not significant
but the set of features extracted from them are significant in both clustering
and classification task, we extend our approach to handle such cases. We assume
that each feature series is independent of one another in order to reduce the
complexity of the model. Then each feature is considered as an independent
time series and the above model is applied to all the features.

The most significant aspect during handling such multiple features is to con-
sider how each feature series affect the overall clustering aspect of the model.
We propose two approach for such cases:

• The Generalized Dirichlet Distribution is used for combining different
feature series. A single cluster label is selected for all the feature se-
ries. The probability distribution p is updated with each feature series
likelihood w.r.t. the data. Rest of the model is kept same as explained
above.

• Different Generalized Dirichlet Distribution is used for each feature se-
ries. The final cluster membership is based on majority voting used for
determining cluster membership.

The problem of non exchangeability in second approach is handled by considering
the mean of each cluster for different feature series and assigning one cluster as
reciprocal to another cluster based on the similarity (Euclidean distance) and
the updating the index label before performing Majority Voting.

3.4 Cluster Selection

Each iteration of Gibbs Sampling produces a cluster assignment among the data,
which is then filtered using selection criteria to select one cluster assignment as
the best fit. One way of selecting a cluster membership used by [45] is Hetero-
geneity Measure (HM).

HM(G1, .., Gm) =

m∑
k=1

2

nk − 1

∑
i<j∈Gk

T∑
t=1

(yit − yjt)2 (29)

The larger the value of HM, the more heterogeneous a clustering is. It is prefer-
able to have a cluster with small HM and small m.

4 Experiments and Results

4.1 Data

As an application for our method, we apply the proposed method to Electromyo-
graphy (EMG) signals collected from 7 sensors placed in different muscles and
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12 human subject. The EMG signals are collected while the subject walks on
different terrains (level ground, stair ascent/descent, ramp ascent/descent). The
data is naturally heterogeneous with each sensor being considered the first level
of hierarchy and person-wise differentiation being considered the second level of
hierarchy. This is done due to sensor wise differences being much more prominent
than person-wise differences (in our data).

Fig. 7: Each class count of data.

There are altogether 9450 records of gait cycles as time series data. The data
count for each type of terrain where gait events are happening is given in Figure
(7).

Fig. 8: EMG sample with 4 gait cycles

An EMG sample with 4 gait cycles is shown in Figure (8). In order to apply
our method to the data, we split the EMG signals into each gait cycles. Each
such gait cycle consists of a label for terrain on which the person is moving when
the data is collected. This enables us to compare and contrast our method with
other time series clustering algorithms.

For efficient sampling, We compress each gait cycle into a time series of
length T = 23. The compression was performed using peak amplitude values
for non-feature series, while the individual features were extracted for feature
series. Another reason for compression is to bring consistency in the length of
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each gait cycle. This is achieved by analysing the best split points for each time
series. The signal is then reduced to zero mean, unit standard deviation in order
to maintain consistency among amplitude values. For experiment, we consider
two different data set extracted from the original data set, (1). Peak amplitude
based non-feature series (2). Multi-dimensional feature series with all features
given in Section (2.5) being considered.

4.2 Experiments

We conduct several experiments with different configuration for the number of
hyper parameters in order to determine the best configuration for the data. The
number of clusters is determined initially using the Adequate Truncation
value measure during the initial Gibbs Sampling phase. We found out 15 is
sufficient number of clusters for this data.

The design matrices ZT×p and XT×d play a significant role for incorporating
additional information into the model. We experimented with different settings
for value of p with 1 and 2 being considered, while all the cells in the matrix has
value 1. For X, d = 7 with first three columns representing the polynomial trend
of degree 3, with remaining four columns being used as a latent trait indicator for
four gait phases (Before Heel Strike, After Heel Strike, Before Toe Off, After Toe
Off). The specific results selected below is based on the heterogeneity score of
sampled cluster membership. The Heterogeneity Score for every results obtained
is between 0.5 and 1.95, with random impact on the accuracy of the clustering.

It is important to investigate whether having a hierarchy in the method ac-
tually helps in getting better cluster or not. We conduct experiments where we
consider our model without any hierarchies (the posterior are modified accord-
ingly when needed). For all the experiments, we run Gibbs sampler upto 5000
iterations, with 3000 as burn-in phase and collect a sample every 200 iterations
after the burn-in phase.

Evaluation on peak amplitude series We run a Gibbs Sampler for peak
amplitude series, with number of clusters being set to 5. This is being done to
determine whether EMG signal itself is informative to give any sort of clustering
information. The rest of cluster parameters is given in table below.

Parameter Configuration

Hierarchy Yes
Dimension of Z matrix T × 1
Number of clusters 5
Features Used No
Majority Voting Not applicable
Inverse-Gamma Prior [2, 1]
Heterogeneity Score 1.95

The confusion matrix is given in Table (1). As is evident from the confusion
matrix, the model prefers a single cluster. This is due to two factors:
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• The EMG signal is mostly a random noise and feature extraction plays
a important role in making use of EMG signal.

• The data is unbalanced with one class (Level Ground) having more data
than other class data combined, which skews the model, greatly.

In order to combat the above mentioned issues, we consider the multi-dimensional
feature series for clustering along with sub-sampling approach to reduce the data
imbalance.

Table 1: Confusion matrix using Peak Amplitude data
Clusters generated by Gibbs Sampler (Membership Percentage)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Level Ground 5.6 76.3 9.17 5.5 3.43
Ramp Ascent 4.5 80.1 6.7 5.2 3.3
Ramp Descent 6.0 76.8 9.1 5.2 2.9
Stair Ascent 5.4 77.7 8.39 5.1 3.2
Stair Descent 5.8 74.5 10.8 5.6 3.2

Evaluation on Feature Series We use the feature series generated using the
raw EMG data for clustering the series. In this section, we conduct experiment to
determine whether having hierarchy helps in clustering or not. We also compare
the performance of majority voting based feature clustering with single GDD
parameter based feature clustering.

Hierarchy vs Without Hierarchy
The configuration for two experiments are given below

Parameter Experiment 1 Experiment 2

Hierarchy Yes No
Dimension of Z matrix T × 1 T × 1
Number of clusters 15 15
Features Used Yes Yes
Majority Voting Yes Yes
Inverse-Gamma Prior [2, 1] [2, 1]
Heterogeneity Score 0.735 0.645

The only change in the above two experiments configuration is the pres-
ence and absence of hierarchy. We take a look at the confusion matrix for both
experiments.

The confusion matrix for Experiment 1 is given in Table (2) while the confu-
sion matrix for Experiment 2 is given in Table (3). It is evident that introducing
hierarchy improves the classification accuracy.
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Table 2: Confusion matrix for Experiment 1

Clusters generated By Gibbs Sampler (Membership Percentage)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
Level Ground 0.0 33.69 22.8 15.54 10.77 6.9 3.93 2.38 2.2 1.13 0.6 0.06 0.0 0.0 0.0
Ramp Ascent 0.0 35.05 23.41 15.61 9.26 6.88 3.31 2.91 1.85 0.93 0.79 0.0 0.0 0.0 0.0
Ramp Descent 0.0 35.01 24.36 14.4 11.12 6.67 4.22 0.94 1.64 1.05 0.47 0.12 0.0 0.0 0.0
Stair Ascent 0.0 23.02 16.67 10.2 35.49 6.58 3.51 1.81 1.7 0.79 0.11 0.11 0.0 0.0 0.0
Stair Descent 0.0 23.57 16.9 11.19 32.86 6.67 3.33 2.14 1.67 0.71 0.48 0.36 0.0 0.12 0.0

Table 3: Confusion matrix for Experiment 2

Clusters generated By Gibbs Sampler (Membership Percentage)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
Level Ground 0.0 50.0 31.58 7.89 5.26 5.26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ramp Ascent 0.0 70.0 10.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ramp Descent 0.0 50.0 33.33 0.0 16.67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stair Ascent 0.0 70.83 16.67 8.33 4.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stair Descent 0.0 73.33 23.33 3.33 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

We repeat the same set of experiments with exact same difference once again
except without the majority voting for combining features. The configuration is
as follow:

Parameter Experiment 3 Experiment 4

Hierarchy Yes No
Dimension of Z matrix T × 1 T × 1
Number of clusters 15 15
Features Used Yes Yes
Majority Voting No No
Inverse-Gamma Prior [2, 1] [2, 1]
Heterogeneity Score 0.843 0.975

The confusion matrices for each experiment are given in Table (4) and Table
(5). Here, we can see again that the model without hierarchy tend to favour
a single large cluster. Also, the accuracy of clustering without using Majority
Voting for combining different features gives a slightly better performance in
comparison to the Majority Voting usage approach.
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Table 4: Confusion Matrix for Experiment 3

Clusters generated By Gibbs Sampler (Membership Percentage)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
Level Ground 0.0 36.07 22.02 14.94 9.05 5.48 4.17 3.1 2.14 1.61 0.83 0.36 0.18 0.06 0.0
Ramp Ascent 0.0 37.7 21.43 13.49 10.05 5.95 3.84 3.44 1.46 1.98 0.4 0.26 0.0 0.0 0.0
Ramp Descent 0.0 36.53 23.19 14.4 9.37 6.79 4.22 2.69 1.76 0.7 0.0 0.23 0.0 0.0 0.12
Stair Ascent 0.0 24.38 36.51 13.61 8.84 6.01 4.08 3.63 1.02 0.79 0.34 0.45 0.34 0.0 0.0
Stair Descent 0.0 19.4 37.98 16.31 9.76 6.79 4.17 2.62 0.95 1.07 0.71 0.0 0.24 0.0 0.0

Table 5: Confusion Matrix for Experiment 4

Clusters generated By Gibbs Sampler (Membership Percentage)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
Level Ground 0.0 65.79 26.32 5.26 0.0 2.63 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ramp Ascent 0.0 60.0 30.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ramp Descent 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stair Ascent 0.0 66.67 20.83 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stair Descent 0.0 63.33 20.0 3.33 10.0 3.33 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

As the result suggests, it is difficult to cluster EMG signals with enough ac-
curacy. The best effort from our approach (including hierarchy without Majority
Voting) was able to obtain accuracy of only around 35%. In the next section, we
compare our approach with existing time series clustering algorithms using the
same data set.

Comparison with existing approaches We compare our method with exist-
ing approaches including k-means clustering with various similarity/dissimilarity
measure for time series. For each method, we obtained clusters from the original
time series, peak amplitude series and feature series. Here, we report the best
result we obtained for each approach reported in Table (6).
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Table 6: Performance measure of different time series clustering approaches

Method Accuracy (%) Remark

Bayesian Nonparametrics Time Series Clustering
(BNPTSclust)

26.0 This approach is based on Bayesian
non parametric where the number
of clusters from the data is detected
from the model itself. This ap-
proach favors a single cluster most
of the time

Rest of the algorithms are k-means clustering algorithm

Autocorrelation based Dissimilarity (ACF) 26.0
Periodogram-based distances (PER) 25.3
Normalized Compression Distance (NCD) 23.3
Euclidean Distance (EUCL) 36.0
Compression-based dissimilarity measure (CDM) 24.7
Dynamic Time Warping (DTW) measure 31.3
Discrete Wavelet Transform (DWT) 30.7
Correlation Based Dissimilarity (COR) 29.3
Partial Autocorrelation based Dissimilarity
(PACF)

28.0

Complexity Invariant Distance (CID) 30.7
Permutation Distribution Clustering (PDC) 18.7 Used default configuration for clus-

tering

Heterogeneous time series clustering 39.1 The best accuracy is obtained when
not considering Majority Voting,
while specifying the number of clus-
ters to be only 5.
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5 Conclusion and Future Work

We study the feasibility of clustering approach for Human Activity Recognition
using sensor dataset. Our approach introduces hierarchy-based heterogeneity for
clustering time series where the number of clusters is not known in advance.
Experimental results show that introducing hierarchy helps in clustering such
sensor data time series better. Though the accuracy of our approach for EMG
data is lower than expected, comparison with other time series clustering ap-
proaches shows that our method is superior in terms of accuracy. The current
method expresses the time series as a linear model only, future work will involve
extension to non-linear model to handle more complex time series, along with
using more datasets for experiments.
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lar research platform for the control of artificial limbs based on pattern recognition
algorithms. Source code for biology and medicine 8, 11 (2013).

47. Parker, P. A., and Scott, R. Myoelectric control of prostheses. Critical reviews
in biomedical engineering 13, 4 (1985), 283–310.

48. Peeraer, L., Aeyels, B., and Van der Perre, G. Development of emg-based
mode and intent recognition algorithms for a computer-controlled above-knee pros-
thesis. Journal of biomedical engineering 12, 3 (1990), 178–182.

49. Petris, G., Petrone, S., and Campagnoli, P. Dynamic linear models with R.
Springer Science & Business Media, 2009.

50. Prado, R., and West, M. Exploratory modelling of multiple non-stationary time
series: Latent process structure and decompositions. In Modelling Longitudinal and
Spatially Correlated Data. Springer, 1997, pp. 349–361.

29



51. Psonak, R. Transfemoral prosthetics. Orthotics and Prosthetics in Rehabilitation
(2000), 491–520.

52. Rakthanmanon, Q. Z. G. B. T., and Keogh, E. A novel approximation to
dynamic time warping allows anytime clustering of massive time series datasets.

53. Rakthanmanon, T., Keogh, E. J., Lonardi, S., and Evans, S. Mdl-based
time series clustering. Knowledge and information systems 33, 2 (2012), 371–399.

54. Reaz, M., Hussain, M., and Mohd-Yasin, F. Techniques of emg signal analysis:
detection, processing, classification and applications. Biological procedures online
8, 1 (2006), 11–35.

55. Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjærgaard,
M. B., Dey, A., Sonne, T., and Jensen, M. M. Smart devices are different:
Assessing and mitigatingmobile sensing heterogeneities for activity recognition. In
Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems
(2015), ACM, pp. 127–140.

56. Teh, Y. W. Dirichlet process. In Encyclopedia of machine learning. Springer,
2010, pp. 280–287.

57. Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. Hierarchical Dirichlet
processes. Journal of the American Statistical Association 101, 476 (2006), 1566–
1581.

58. Varol, H. A., Sup, F., and Goldfarb, M. Multiclass real-time intent recognition
of a powered lower limb prosthesis. Biomedical Engineering, IEEE Transactions
on 57, 3 (2010), 542–551.

59. Vleeming, A., Pool-Goudzwaard, A. L., Stoeckart, R., van Wingerden,
J.-P., and Snijders, C. J. The posterior layer of the thoracolumbar fascia— its
function in load transfer from spine to legs. Spine 20, 7 (1995), 753–758.

60. Walker, S., and Muliere, P. Beta-stacy processes and a generalization of the
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