
Directed Research Project
Title: QoS aware Virtual Machine Consolidation in

Cloud Datacenter
Mohammad Alaul Haque Monil

Department of Computer and Information Science
University of Oregon

Email: mmonil@cs.uoregon.edu

Allen D. Malony
Department of Computer and Information Science

University of Oregon
Email: malony@cs.uoregon.edu

Abstract—With rapid growth of cloud industry in recent years,
energy consumption of warehouse-scale datacenter has become
a major concern. Energy aware Virtual Machine consolidation
has proven to be one of the most effective solutions for tackling
this problem. Among the sub problems of VM consolidation,
VM placement is the trickiest and can be treated as bin
packing problem which is NP hard, hence, it is logical to apply
heuristic approach. The main challenge of VM consolidation is
to achieve a balance between energy consumption and quality
of service(QoS). In this research, we evaluate this problem and
design a combined strategy using best fit decreasing bin packing
method and pass-based optimization in VM placement for an
efficient VM consolidation. Moreover, for maintaining energy-
QoS balance, we propose a rank-based VM selection strategy
and a mechanism to impose constraint on QoS to achieve desired
level of performance. In addition, we propose an under-load
detection method using an optimization phase. We have used
CloudSim toolkit to simulate our experiments. To evaluate the
performance of the proposed algorithms, we used real-world
work load traces from thousand VMs and also used randomly
generated work loads. Results demonstrate that our proposed
methods outperform other existing methods.

I. INTRODUCTION

Cloud computing can be classified as a new era of comput-
ing which has revolutionized the IT industry with its pay-as-
you-go services [4]. Having the viable business prospect, all
the tech-giants have already started providing cloud services.
IT companies are now moving from traditional CAPEX model
(buy the dedicated hardware and depreciate it over a period of
time) to the OPEX model (use a shared cloud infrastructure
and pay as one uses it). To enable and ensure the global growth
of computing need, cloud service providing companies are
now using warehouse sized data centers to meet user demand
which incurs considerable amount of energy consumption.
At the beginning of the cloud computing era, cloud service
providers focused mainly on catering the computing demand
that lead to expansion of cloud infrastructures; hence increased
energy consumption. Therefore, energy consumption by data
centers worldwide has risen by 56% from 2005 to 2010 [3].
So, to sustain the increasing need of computing, energy aware
technique should be applied in cloud computing infrastructure
otherwise the energy need will be huge and will be threatening

to the environment. To handle this problem, datacenter re-
source needs to be utilized in an efficient manner. An efficient
approach will not only reduce the energy consumption but also
will keep the performance up to the mark. Both in hardware
and software there are several techniques those are being used
for energy consumption reduction of a cloud system and VM
consolidation is considered as one of the most promising soft
approach [1].

Virtualization is the key strength of cloud computing and
one major advantage of this technology is live migration
of Virtual Machine. For this reason, VM consolidation in
cloud data center draws researcher’s attention and is an active
field of research in recent times. The main idea of VM
consolidation is to keep minimum number of hosts active by
consolidating VMs into active hosts and the remaining hosts
which are not required are kept in sleep or inactive mode. As
we know that inactive host or sleeping host causes minimal
energy consumption; therefore, using this technique, energy
consumption can be reduced considerably [5] . However, for
VM consolidation we need to migrate VMs from one host
to another which may lead to QoS degradation i.e. SLA
(Service Level Agreement) violation. So, algorithms must
be designed in such a way that not only it reduces power
consumption but also serves desired QoS (such as SLA).
There are two types of VM consolidation; 1. Static VM
consolidation, and 2. Dynamic VM consolidation [2]. In the
first approach the consolidation is done in a single step using
the peak load demand of each workload and based on that,
virtual machine capacities are configured. This approach is
called static consolidation since the virtual machines stay in
the same physical servers during their lifetime. The utilization
of the peak load demand ensures that the virtual machine is
not overloaded, however it can also lead to idleness since the
workloads can present variable demand patterns. On the other
hand, in dynamic VM consolidation(DVMC), reevaluation of
workload demand is performed periodically and executing
the required configuration changes in VMs. The second one
usually results in better consolidation, since it dynamically
changes virtual machine capacities according to the current
workload demands. In real world, computation need is very



dynamic and therefore, DVMC is the best fit. However,DVMC
is more complex than the static one as it needs to deploy
efficient algorithms to ensure the reevaluation and re-sizing of
VM effectively with minimum time lags, otherwise, QoS is
compromised.

II. RELATED WORKS

Considerable number of researches has been conducted for
VM consolidation using various methods. In [3-5] Beloglazov
et al. proposed heuristic based approach to deduce thresholds
through different statistical measures. They divided the
VM Consolidation problem into sub-problems (1. Overload
detection, 2. VM selection from Overloaded host to migrate
to new host, 3. Under load detection and put a host to
sleeping mode and 4. VM placement). The authors proposed
algorithms for each sub-problem. Algorithms are designed
in such a way that they act, adapt and keep their threshold
changing based on different scenario in different time so
that they can still provide the functionality and consolidation
decision for the changed environment. This adaption process
allows the system to be dynamic. They designed threshold
based (e.g. IQR) and prediction based (e.g. LR) host overload
detection mechanisms. They treated VM placement problem
as a bin packing problem and devised a Power-aware Best fit
decreasing algorithm for efficient placement. They provided
an effective framework for VM consolidation. However,
there is no optimization phase for their VM placement and
under-load detection algorithms.

References [6-7] describe CloudSim which provides
various functionality of a cloud environment and facilitates
cloud simulation. CloudSim allows to work with different
sub problems and workload traces can be plugged to this
simulator. Reference [3-5] have also used CloudSim for
simulation. The main components of CloudSim are host,
Virtual Machine (VM) and cloudlet. Cloudlet can be data
from real cloud or can be randomly generated. The simulator
creates hosts, Virtual Machine and cloudlet based on defined
parameters. When the simulation starts, Virtual Machines
are placed in the hosts for processing. To extend the VM
consolidation , one needs to create new class and develop
new methods for sub-problems. In this research we used
CloudSim as simulator to develop and test our algorithms.

In [2], Ferreto et al. proposed VM consolidation with
migration control where they treated the VM placement
as bin packing problem and proposed heuristics for
solution. In this research, VMs with steady usage are not
migrated and non-steady VMs are migrated to ensure better
performance. The migrations are triggered and done by
heuristic approaches. But this research does not engage other
sub problems rather focuses on only the VM placement
problem. Farahnakian et al. [10] used ant colony system
to deduce a VM placement solution for VM consolidation
and in [21], they proposed prediction-aware VM placement
method and developed it in CloudSim. The prediction-aware

VM placement which is a modificaton of BFD algorithm
does not rearrange the VMs in active hosts. in [20], Feller
et al. also used ant colony based workload placement methods

Farahnakian et al. [22] proposed a Reinforcement
Learning-based Dynamic Consolidation method (RL-DC) to
minimize the number of active host considering the resource
requirement. The RL-DC utilizes an agent that uses the
past knowledge to take intelligent decision whether to keep
the host in active or sleep mode and improves itself as the
workload changes. It also dynamically adapts changes. In [12]
linear regression has been used to predict CPU utilization by
the same author. These researches are developed in CloudSim
and followed the distributed architecture which provides
opportunity to compare the results. However, the power-aware
BFD algorithm they used for VM placement does not have
optimization phase after allocation.

Cao et al. [13] proposed a redesigned energy-aware
heuristic framework for VM consolidation to achieve a better
energy-performance trade-off. They designed a Service Level
Agreement (SLA) violation decision algorithm which is used
to decide whether a host is overloaded with SLA violation or
not. This research is based on CloudSim and used the Power-
aware BFD VM placement approach. Mastroianni et al. [18]
presented ecoCloud, a self-organizing and adaptive approach
for the consolidation of VMs on CPU and RAM. Assignment
and migration decisions are driven by probabilistic processes
and based on local information. Focusing on the VM
placement problem, they experimented in real datacenter.
However, all the sub-problems are not addressed. Madani et
al. [17] focused on an architecture configuration to manage
virtual machines in a data center to optimize the consumption
of energy and meet SLA by grafting a tracing component of
multiple consolidation plans which ensure minimum number
of servers is switched on. In this research, the problem is seen
as scheduling problem and all sub problems are not discussed.

In [8], we worked with VM selection algorithm and intro-
duced migration control based VM selection approaches and
developed those in CloudSim. In [9], we worked on a mod-
ified Overload detection methods based on different heuristic
method. In [15], we have introduced a new overload detection
algorithm based on mean, median and standard deviation of
utilization of VMs. In this research, we are focused on VM
placement and SLA aware VM selection methods. Moreover
we have redesigned the Under-load detection method.

III. MOTIVATION

In our previous research work [8,9,15], we worked with
Fuzzy with migration control based VM selection method and
Overload detection method. In this research work our main
focus is to work on the VM placement, Underload detection
and QoS aware VM Selection method. The motivation factors
which are driving this research are given below.



• VM placement plays one of the most important role in
VM consolidation. An effective VM placement approach
will ensure that VMs will be placed in such a way so that
it will not change a sleeping host to active mode unless it
is absolutely necessary. There should be an optimization
phase which will try to rearrange the VMs between hosts
so that activating a sleeping host becomes the last resort.

• The Underload detection phase identifies the host which
can be put to sleeping mode by transferring all the
VMs to active hosts. While placing the VMs from the
underloaded hosts, optimization by rearranging is needed
to increase the probability of turning a host into sleep
mode.

• VM migration causes SLA violation. When a host is
found overloaded, VMs which are selected for migration
should be balanced. It can happen that some VMs are
selected for migration more than the other VMs. This
scenario will cause more SLA violation to those VMs.
To balance this impact, VM selection methods need to
balance the number of migration to all VMs.

• Consolidating VMs into host cause host overload hence
SLA violation take place and on the other hand, migration
of VMs also cause SLA violation. There should be a con-
trol mechanism based on SLA violation. SLA violation
can be set to a certain value and the rest of the algorithms
should be adapted so that no VM experience more SLA
violation that the set value.

Fig. 1. System Architecture

IV. PROPOSED METHODS

Dynamic Virtual Machine consolidation can be decom-
posed into several sub-problems[5]. The main advantage of
decomposing the problem is, it gives us opportunity to devise
separate algorithms for each sub problems.

A. Architecture and Flow

Our proposed cloud network architecture is depicted at
Fig.1. The system has two major components, local agent(LA)
and global agent(GA). The local agents reside on host side as a
module of the Virtual Machine Monitor(VMM) or hypervisor.
The objective of LA is continuous monitoring of the nodes

utilization, re-sizing the VMs according to their resource
needs, and send these information to global agent. The global
agent resides on the master node and collects information
from the local agents(LA) to maintain the overall view of
the resources utilization. VM consolidation algorithm runs at
global agent(GA) and it issues commands for the VMMs for
VM migration.

The VM consolidation algorithm that runs at global agent
is formulated at Algorithm 1. User puts workload on GA
and GA instructs VMM to create VM and assign cloudlets.
Based on dynamic consolidation technique, DVMC algorithm
runs every scheduled interval which is represented by the
while loop at step-2. For every scheduled interval, GA collects
utilization and status information from LA at step-3 and
prioritize VMs which crosses SLA violation threshold at step-
4. Then overload detection is executed, and overloaded hosts
are identified at step-5. To offload the overloaded hosts, at
step-6, VMs are selected to migrate and this step is elaborated
at Algorithm 5. Then at step-7, those VMs are placed into
available hosts or if needed a host is switched on from sleeping
mode and this step is described by Algorithm 2. Then at step-
8 under-load detection algorithm is executed and less utilized
hosts are put into sleeping mode by transferring all VMs to
other active hosts. This step is elaborated at Algorithm 4.
After each iteration QoS values are saved. At the end of the
simulation, Energy consumption and QoS is shown. Now in
the subsequent sections, each algorithms are detailed.

Algorithm 1: VM Consolidation
Data: Hosts, VMs
Result: QoS measurements

1 Assign VMs to Hosts;
2 while Run each DVMC interval do
3 Global Agent collects all data from Local Agents.
4 Priority assignment to VMs for QoS control
5 Overload detection
6 VM selection to selects VMs.
7 VM placement.
8 Underload detection and put hosts to sleep mode.
9 GA instructs the VMM to execute the changes.

10 Preserve history and calculate QoS.
11 end
12 Summarize the QoS parameters.

B. Pass-based BFD VM placement
In this segment we focus on the VM placement strategy.

Since this is a bin packing problem, we have used best fit
decreasing algorithm with a combination of an optimization
layer. Making a sleeping host on and active has some cost
and we have given least priority to wake a host from sleeping
mode. In order to do that, we have used a pass based
algorithm which will optimize the placement so that before
waking up a host, the VMs are rearranged between the active
hosts.



TABLE I
USED NOTATION

Description Notation
Available CPU in Host H ACPU (H)
Available CPU in VM V ACPU (V)
Utilized CPU in Host H UCPU (H)
Utilized CPU in VM V UCPU (V)
Total CPU in Host H TCPU (H)
Total CPU in VM V TCPU (V)

Migration Map Mmig(H,VM)
Overloaded Host OH

Sleeping Host SH

Migrating VM vM

Algorithm 2 represents the BFD VM placement algorithm.
This algorithm starts with the knowledge of the overloaded
hosts, sleeping hosts the and the VMs those need to be
migrated. This VMs may can be from overloaded hosts or
from the under-loaded host. This algorithm provides a migra-
tion map as a result. The migration map has two elements,
destination host and the migrating VM. from steps 1-4, a host
list is prepared where the overloaded hosts and sleeping hosts
are excluded. These are the hosts where we will try to put
VMs from the migrating VM list. At step-5 a loop is started
which iterates for all the VMs in migrating VMs list and
at step-6 a success variable is defined which will eventually
provide a mark for successful placement. Now, the algorithm
tries to find a suitable destination host for vi. At step-8, for
each host the Equation 1 is checked which ensures the host
has enough resource to be the destination host of vi. Here
ACPU (hi) indicates the available cpu of the host and UCPU (vi
) indicates the needed cpu resource of the VM.

ACPU (hi) > UCPU (vi) (1)

If the aforementioned condition satisfies then the VM is
logically assigned to the this host. Logically assigning means
the migration is not yet done but the the space is reserved in
host. But this assignment is only done if the destination host is
not overloaded by this assignment and this is checked at step-
10. If the host is not overloaded by the assignment then it’s a
successful assignment and the migration map is updated with
destination host and VM id. Now, if the the placement is not
successful for the total loop of hosts then it means there is no
viable space for this VM and then, optimize function is called
at step-17 to rearrange the VMs in host to make room for
the VM. The optimize algorithm is described in later portion.
After the optimization, if the placement is unsuccessful then
a sleeping host is activated and added to host list in steps 20-
23. In later steps, the VM is assigned into the newly activated
host.

Now we will discuss about the optimizer function which
we have formulated as a Single Pass and Double optimizer
in Algorithm 3. The optimize function is called with the list
of host which excludes overloaded and sleeping host and
another input is the the VM that needs to be migrated. As

Algorithm 2: Pass-based BFD VM placement
Data: Hosts H, VMs V, Sleeping Host SH , Overloaded

Host OH , VMs to migrate VMig

Result: Migration Map Mmig(H,VM)
1 Mmig (H,VM) ← NULL
2 hostexcluded←OH+SH

3 H ← H- hostexcluded
4 H ← Sort in decreasing order(HCPU )
5 foreach vi in VM list VMig do
6 Success ← 0
7 foreach hi in Host list H do
8 if ACPU (hi) > UCPU (vi ) then
9 LogicalAssign vi to hi And Check if hi

overloaded or not
10 if !Overloaded(hi) then
11 Success ← 1
12 Update: Mmig (H,VM)← (hi, vi )
13 end
14 end
15 end
16 if Success == 0 then
17 Optimize (vi , H)
18 end
19 if Success == 0 then
20 hsleeping ← Assign(SH )
21 MakeActive(hsleeping)
22 Update H ← hsleeping
23 H ← Sort in decreasing order(HCPU )
24 LogicalAssign vi to hsleeping
25 Success ← 1
26 Update: Mmig (H,VM)← (hsleeping , vi )
27 end
28 end
29 return Mmig (H,VM)

an outcome it provides a migration map. At first we will
discuss about single pass which means the attempt to find
space for a VM can be created by passing a smaller VM in
new destination host. At step-3 a loop is started for all hosts.
Now in steps 4-7, VMs of the host is taken in one list and
from the list a VM is searched which satisfies Equation 2
and Equation 3. Equation 2 represnts that the space made
available by removing VM vi from host is enough to insert
vM . Equation 3 is making sure the new VM is smaller than
the migrating VM.

TCPU (hi) > UCPU (hi)− UCPU (vi) + UCPU (vM ) (2)

UCPU (vi) < UCPU (vM ) (3)

If no such VM is found then single pass is not possible
and we start double pass immediately. If found, we continue
to single pass at step-11. Then, we have made the problem
smaller and we need to find a new host for vi. Just like VM



placement the loop iterates over hosts and tries to match
Equation 1. If match found, VMs are logically assigned
to destination hosts only if they are not overloaded by the
assignments. In steps 18-20, success variable and migration
map is updated for both VMs.

Now if single pass is unsuccessful then from step-25 the
double pass begins. At step-26, the algorithm iterates over all
the hosts and at step-28, it tries to find a VM which satisfies
the double pass equations which are Equation 4, Equation 5
and Equation 6.

TCPU (hj) > UCPU (hj)− UCPU (vj) + UCPU (vi) (4)

UCPU (vj) < UCPU (vi) (5)

TCPU (hi) > UCPU (hi)−UCPU (vi)+UCPU (vi)+UCPU (vM
(6)

These Three equations ensures that there are two such hosts
and VMs, by interchanging those VMs, we can make space for
the the migrating VM (vM ). If such VMs are not found then
the optimizer returns as unsuccessful in step-33. If found, the
three VMs are assigned in two hosts and check for overload
in steps 35-39. If the hosts are not overloaded then placement
is declared successful and migration map is updated in steps
41-44 and map is returned. Interesting take-away from this
algorithm is that, every time there is a success, it prevents a
sleeping host from waking up. This ensures considerable gains.
If the optimizer runs for a large number migrating VMs then
the hosts are rearranged more efficiently.

C. Underload Detection

Underload detection is another important step in
Algorithm 1, which is at step-8. When all the overloaded
hosts are offloaded by transferring some VMs then comes
the part of Underload detection. The main objective is search
if there is any host that can be switched off by transferring
all it’s VMs to active hosts. We formulated this strategy in
Algorithm 4. The required data for this methods are the active
hosts and it will provide a migration map at the end. At the
beginning at step-4, all the hosts are sorted in increasing
order as the target is to put the low utilized host in sleeping
mode. At step-5 a loop is started for every host. In the loop
in steps 8-10, the algorithms calls the VM placement method
and counts the number of successful placement. In steps
13-18, the algorithm checks if all the VMs of a host are
successfully placed or not, if placed the host is set sleeping
mode. If placement for any VM is unsuccessful the all the
placement of the host is revoked. This is how the Underload
detection works.

D. Overload Detection

Overload detection plays it’s role at step-5 in Algorithm 1.
We have worked with overload detection in our previous
works [9][15]. Overload detection method finds out the host

Algorithm 3: SPDP Optimizer
Data: Hosts H, VM to migrate vM
Result: Migration Map Mmig(H,VM)

1 Success ← 0
2 H ← Sort in decreasing order(HCPU )
3 foreach hi in Host list H do
4 ViList ← AllVms (hi)
5 Find Vi from ViList where,
6 TCPU (hi) > UCPU (hi) - UCPU (vi) + UCPU (vM )
7 AND UCPU (vi) < UCPU (vM )
8 if Vi not found then
9 Break SinglePass and Start Doublepass

10 end
11 Begin Singlepass
12 foreach hj in Host list (H-hi) do
13 if ACPU (hj) > UCPU (vi ) then
14 LogicalAssign vi to hj
15 LogicalAssign vM to hi
16 And Check if hi hj overloaded or not
17 if !Overloaded(hi) and !Overloaded(hj) then
18 Success ← 1
19 Update: Mmig (H,VM)← (hi, vM )
20 Update: Mmig (H,VM)← (hj , vi )
21 return Mmig (H,VM)
22 end
23 end
24 end
25 Begin Doublepass
26 foreach hj in Host list (H-hi) do
27 VjList ← AllVms (hj)
28 Find Vj from VjList where,
29 TCPU (hj) > UCPU (hj) - UCPU (vj) + UCPU (vi)
30 AND UCPU (vj) < UCPU (vi)
31 AND TCPU (hi) > UCPU (hi) - UCPU (vi) +

UCPU (vi) + UCPU (vM )
32 if Vj not found then
33 return Mmig (H,VM)
34 end
35 LogicalAssign vi to hj
36 LogicalAssign vj to hi
37 LogicalAssign vM to hi
38 And Check if hi hj overloaded or not
39 if !Overloaded(hi) and !Overloaded(hj) then
40 Success ← 1
41 Update: Mmig (H,VM)← (hi, vM )
42 Update: Mmig (H,VM)← (hj , vi )
43 Update: Mmig (H,VM)← (hi, vj )
44 return Mmig (H,VM)
45 end
46 end
47 end
48 return Mmig (H,VM)



which are overloaded. We used a Mean, Median and Standard
Deviation(MMSD) based Overload detection method.

Algorithm 4: Underload Detection
Data: Hosts H, VMs V, Sleeping Host SH , Overloaded

Host OH

Result: Migration Map Mmig(H,VM)
1 Mmig (H,VM) ← NULL
2 hostexcluded←OH+SH

3 H ← H- hostexcluded
4 H ← Sort in increasing order(HCPU )
5 foreach hi in Host list H do
6 TotalSuccess ← 0
7 TotalNumVm ← NumOfVms(hi))
8 foreach vi in VM list VMig do
9 VMig ← vi

10 Call VM Placement(H, VMig)
11 TotalSuccess ← TotalSuccess + Success
12 end
13 if TotalSuccess == TotalNumVm then
14 UnderloadSuccess(hi)
15 SH ← hi
16 else
17 Underload Not Success
18 RevokeMap(Mmig (H,VM) upto TotalSuccess)
19 end
20 end
21 return Mmig (H,VM)

E. SLA aware VM selection
VM selection is the step-6 in Algorithm 1. The VM con-

soldiation algorthim identifes the overloaded hosts, then VM
selection method is deployed to select a VM, which should be
migrated from overloaded host to offload it. The input of a VM
seleciton method is the list of overloaded host and output is the
list of VMs those should be migrated to offload the overloaded
hosts. We have worked on VM selection methods in our
previous works [8][15]. We designed fuzzy logic based VM
selection. But those research works were not focused on SLA.
While providing cloud services, it is expected that no particular
VM is facing more SLA violation than the others. For example
in [5] one VM selection method is designed as minimum
migration time which selects a VM from the overloaded host
that has the smallest amount of memory associated with it. It
makes the transfer faster and hence reducing sla violation. But
if we deploy this strategy then it is possible that low memory
occupying VMs face more SLA violaiton due to excessive
migration. For this reason, a SLA aware VM selection method
is necessary. When a VM is in migration, the VM faces SLA
voilation since at the time of migration the VM can not serve
user needs. The Equation 11 provides the formula for SLA
violation for migration (SLAM). If Cdj

is degradation for
migration for a particular VM j and Crj is total requested
CPU then the SLA violation for VM j can be determined by
the Equation 11.

SLAMj =
Cdj

Crj

(7)

v ε Vj | ∀ a εVj , SLAMa ≥ SLAMv (8)

Equation 10. defines that if Vj is the set of all VMs in a
host then VM v is selected for migration if the SLA violation
of v is less then all other VMs a. This strategy is implemented
in Algorithm 5. In the SLA aware VM selection algorithm the
input is the overloaded hosts and in step-2 a loop is started
to iterate over all the overloaded hosts. For each VM it is
checked if the VM has high priority or not and in steps 7-12
minimum SLA violated VMs separately saved for high priority
and low priority. If there are low priority VMs in the host then
the minimum SLA violating low priority VM is selected for
migration. If there are only high priority VMs then the lowest
SLA violation VM is selected for migration. After selection,
the VM is logically removed from host and tests whether the
host is still overloaded or not. If the host is still overloaded
then another iteration for VM selection takes place and if host
is not overloaded then, next host is selected for offloading. In
this way a list of migrating VMs is created from the overloaded
hosts.

Algorithm 5: SLA aware VM selection
Data: Overloaded Host OH

Result: VMs to migrate VMig

1 VMig ← NULL
2 foreach hi in Overloaded Host list OH do
3 while Overloaded(hi) do
4 VMlist ← VmList(hi )
5 foreach vi ε VM list VMlist do
6 SLA(vi) ← MeasureCurrentSLA(vi)
7 if vi.Priority > 0 then
8 CountThrViolated()
9 UpdateMinSlaViolated(vminthrv)

10 else
11 CountNonViolated()
12 UpdateMinSlaViolated(vminnonv)
13 end
14 end
15 if CountThrViolated equals total counf of VMs

then
16 VMToMigrate ← vminthrv

17 else
18 VMToMigrate ← vminthrv

19 end
20 Update: VMs to migrate VMig ← VMToMigrate

21 LogicalRemove VMToMigrate from hi
22 end
23 end
24 return Priority(V)



F. Priority-based SLA violation control

Priority-based SLA violation control is the step-6 in Al-
gorithm 1. Here, our concern is to set a threshold on SLA
violation so that the algorithm restricts the SLA violation for
any VM. We propose a priority-based SLA violation control
which will be executed in every consolidation cycle and set
a priority based on the SLA violation status. When a VM
will reach upto certain percentage of SLA violation threshold
then maximum priority will be assigned so that this VM is
not be migrated and moreover the VM will be re-sized to
it’s maximum size. So in the subsequent cycle SLA violation
value will decreased. But the priority will not be set to lowest
immediately rather it will be decreased periodically to ensure
the VM is far from crossing SLA violation threshold. This is
implemented in Algorithm 6. Here in step-4, 80% of threshold
is considered as the trigger point and at step-11 when the
priority is reset to 0 then the utilized cpu is made normal. In
this way SLA violation constrain is imposed.

Algorithm 6: Priority-based SLA violation control
Data: VMs V, SLA Limit Threshold
Result: VMs Priority Priority(V)

1 VMlist ← AllVms(V)
2 foreach vi ε VM list VMlist do
3 SLA(vi) ← MeasureCurrentSLA(vi)
4 if SLA(vi) >= 0.8 X (Threshold) then
5 Priority(vi) ← Priority 1
6 Set CPU to Max: UCPU (vi) ← TCPU (vi)
7 else
8 Priority(vi) ← Priority - 0.1
9 if Priority(vi) <=0 then

10 Priority(vi) ← Priority 0
11 Set CPU to Normal: UCPU (vi) ← UCPU (vi)
12 end
13 end
14 end
15 return Priority(V)

V. EXPERIMENT SETUP

In this experiment, we have implemented our algorithms
in CloudSim 3.0.3 to analyze performance and behaviour of
our proposed methods.

A. Physical nodes and VM configuration

For the experiment of real cloud traces, we have considered
800 heterogeneous nodes, half of which are HP ProLiant
G4 and the rest are HP ProLiant G5 servers. For Random
load we have considered 200 hosts. Energy consumption
is calculated based on HP ProLiant G4 and HP ProLiant
G5 CPU usage and power consumption that is represented
in Table II [5]. These servers are assigned with 1860MIPS
(Million instruction per second) and 2660 MIPS for each
core of G4 and G5 servers respectively. Network bandwidth

TABLE II
POWER CONSUMPTION FOR DIFFERENT LEVEL OF UTILIZATION

Machine Type 0% 20% 40% 60% 80% 100%
HP G4 (Watt) 86 92.6 99 106 112 117
HP G5 (Watt) 93.7 101 93.7 121 129 135

TABLE III
DAY WISE PLANETLAB DATA

Date Number of VM Mean
3/3/2011 1052 12.31%
6/3/2011 898 11.44%
9/3/2011 1061 10.70%

22/03/2011 1516 9.26%
25/03/2011 1078 10.56%

3/4/2011 1463 12.39%
9/4/2011 1358 11.12%
11/4/2011 1233 11.56%
12/4/2011 1054 11.54%

20/04/2011 1033 10.43%

is considered as 1GB/s. The VMs which were created were
single core. VM were of 4 types, for example, High-CPU
Medium Instance (2500 MIPS, 0.85 GB); Extra Large
Instance (2000 MIPS, 3.75 GB); Small Instance (1000 MIPS,
1.7 GB); and Micro Instance (500 MIPS, 613 MB).

B. PlanetLab trace data

In this work we have used real world work load data that is
provided from CoMon project, a monitoring infrastructure for
PlanetLab [16]. This data is collected from more than thousand
VMs of different servers that are located in 500 different
locations. The workload is representative of an IaaS cloud
environment such as Amazon EC2, where VMs are created
and managed by several independent users. Table III presents
the day wise VM number for this data. These real world traces
contain VM utilization records in every 5-minute interval. 10
days data of year 2011 have been used in this experiment.
Each VM contains 288 (=24*(5/60)) data of CPU utilization.
The simulation checks CPU data every 5 minute interval and
those trace data is plugged into dynamic VM consolidation.

C. Performance measurement metrics

The main target of VM consolidation is to reduce energy
consumption and at the same time the QoS should be at an
acceptable level. The energy consumption metric is discussed
below and for QoS parameter, several metrics are stated which
are used in different researches [4,5]. The main QoS is SLA
violation. In VM consolidation, SLA violation occurs due to
host overload and VM migration. Moreover, the number of
VM migration indicates the efficiency of the consolidation
method which is also described as a metric. But the main
objective of our research is to obtain Energy-QoS trade off
and that is defined by the metric ESV which is the product
of energy consumption and SLA violation (SLAV). So the



method providing the lowest ESV and at the same, the
lowest energy consumption and the lowest SLA violation,
is undoubtedly the best method. Based on these six metrics
proposed method will be verified and they are described below.

1) Energy Consumption: This is the main metric as the
target of VM consolidation is to reduce energy consumption.
Energy consumption is computed by taking all hosts into
account throughout the simulation and by mapping CPU value,
energy consumption deduced from Table II. At each iteration,
the CPU utilization is measured and power consumption is
calculated from Table II. And at the end of the simulation
energy consumption is measured by accumulating energy
consumption all hosts. From Equation 9, power is a function
of utilization.

E =

∫
P (U(t))dt (9)

2) SLA violation: Service level agreement violation, SLAV,
can take place for two reasons, 1. SLA violation due to
overloaded host(SLAO) and 2. SLA violation for migra-
tion(SLAM). And SLA violation SLAV, is the combined
impact of SLAO and SLAV. Equation 10,11 and 12 provides
the calculation criteria for SLA violation.

SLAO =
1

M

M∑
i=1

Tsi
Tai

(10)

SLAM =
1

N

N∑
j=1

Cdj

Crj

(11)

SLAV = SLAO ∗ SLAM (12)

At Equation 10, SLAO provides a measure of the fraction
of time a host experienced 100% CPU utilization leading to
SLA violation. Here N is the number of hosts, Tsi is the
total time when host i experienced 100% utilization leading
SLA Violation, Tai is the total active time of host i. At
Equation 11, SLAM provides the measure of the total SLA
violation due to VM migration. When a host is overloaded,
VMs are migrated from that host to non-overloaded host. At
the time of migration, it causes SLA violation. This metric
calculates the SLA violation caused by migration. Here M is
the number of total VMs adn Cdj stands for the CPU request
at the time of migration of VM j and Crj stands for total CPU
requested by VM j.

3) ESV: Energy consumption and SLA are already defined.
It is perceivable that if we try to reduce too much energy
consumption the SLA violation will be increased, because
consolidating many VMs in a host will increase the probability
of overload. So it is desirable to obtain a method which will
consume less power and still incur less SLA violation. To
measure this, ESV is introduced in Equation 13. It is the
combination of Energy consumption and SLA violation. So
this can be treated as one metric to make an overall judgment.

ESV = Energy ∗ SLAV (13)

4) Number of Host Shutdown: This metric counts the
number of host shutdown. Its a measure of defining how
efficiently VM consolidation is working. If we have poor
consolidation algorithm that will make the hosts on and off in
great numbers which means the algorithms are not efficient.

5) Number of VM migration: This metric counts the num-
ber of VMs migrated during the simulation. VM migration
is an important factor because unnecessary migration causes
SLA violation and increases network traffic.

VI. EXPERIMENTAL RESUTLS

We have implemented our algorithms in CloudSim. To
provide a fair comparison, we have carried out our experiments
with real cloud workload and also with randomly generated
workload data. We have also compared for different sizes of
network and with different traffic scenarios.

A. Comparison Benchmark

Every VM consolidation has four sub problems, 1. Overload
Detection, 2. VM selection, 3. VM placement and 4. Under-
load detection. From different literature we have three VM se-
lection approaches, 1. Minimum Migration time policy(MMT)
[5] which selects a VM with minimum migration time, 2. Max-
imum Correlation(MC) [5,19] which selects a VM which has
highest correlation and 3. Random Selection (RS) [4], where
VMs are selected randomly. Moreover, in this research, we
proposed one VM Selection approach which is SLA aware VM
Selection. There are several Overload detection approaches,
1. Threshold Based Overload detection(THR) [4,5], it uses
threshold to declare a host is overloaded, 2. Regression based
overload detection (LR, LRR) where regression is used predict
the host load [4, 12] 3. Interquartile range method (IQR) where
quartile measures are used to declare a host is overloaded[5]. 4.
Median Absolute Deviation [4,5] is used to determine a host is
overloaded. From our previous research there is one overload
detection method, MMSD,[15] which uses mean, median and
standard deviation for overload detection. For VM placement,
there are power-aware best fit decreasing algorithm proposed
in [4,5,23] and there is underload detection algorithm in [4,5]
without the optimization phase. Since we have not worked
on overload detection in this research we will combine other
proposed overload detection method with our algorithms. So
we will compare with five Overload detection algorithms (IQR,
LR, LRR, MAD and THR) and three VM selection (MC,
MMT, RS) methods. So in combination there are 15 methods
(IQR MC, IQR MMT, IQR RS, LR MC, LR MMT, LR RS,
LRR MC, LRR MMT, LRR RS, MAD MC, MAD MMT,
MAD RS, THR MC, THR MMT, THR RS ). With each
combination, there are power-aware best fit decreasing method
as VM placement and underload detection from [4,5] are be
used to make them a complete VM consolidation packages
and a set of benchmarks to compare with. On the other
hand, we have Pass-based VM placement with optimization as
VM placement algorithm, SLA-aware VM selection and our
underload detection algorithm. We will combine our method
with five Overload detection algorithms (IQR, LR, LRR,



Fig. 2. Energy, ESV, Number of host shutdown, SLA, and Number of migration for planetlab traces

MAD and THR) from other research and with our MMSD
algorithm. So we we will have six complete set of VM consol-
idation approaches (NEW MMSD, NEW IQR, NEW THR,
NEW LR, NEW LRR and NEW MAD) against 15 complete
set of consolidation approaches from other research. So We
will compare NEW IQR with IQR MC, IQR MMT, IQR RS
methods and NEW MMSD method having all new approaches
integrated and these can be compared to any method of 15
methods.

B. Result with PlanetLab traces

We have 10 days of PlanetLab data which we simulate for
our 6 yellow colored consolidation approaches and 15 other
consolidation approaches which are colored green. Based on
the result for 10 days Box plots have been prepared to compare
the results in Fig.2. In this experiment we have used 800 hosts
and more than 1000 VMs. We have compared our results for
five metrics.

1) Energy Consumption: Main objective of this research is
to design a VM consolidation algorithm so that the energy con-
sumption is reduced. By comparing the proposed and existing

methods in the Fig.2, it is found that energy consumption is
significantly reduced in all six combinations in comparison to
their counterparts and as well as in total. Therefore, we can
infer, the basic objective of this research is achieved by saving
energy consumption.

2) SLA Violation: SLA violation is one of the key indicators
of QoS. SLA Violation is calculated by keeping two scenarios
into consideration, i) SLA violation for overload, and ii)
The SLA violation incurred for migration. A method having
low SLA violation ensures the desired QoS. From Fig.2,
SLA violation is decreased in three methods NEW MMSD,
NEW LR and NEW LRR. Remaining three approaches are
threshold based overload detection methods and the improved
ones are prediction based methods. It means, the overload
detection method we have used, predicted the overloaded host
efficiently and as an outcome, SLA violation has dropped
significantly. If host overload is predicted successfully then
there will be less number of migration which will reduce SLA
violation like a cycle.

3) ESV: As energy consumption has been successfully
reduced by the proposed method, now energy-QoS trade off



Fig. 3. Power, SLA and Host shutdown with Random traces

needs to be checked. ESV is the metric which is a product
of Energy consumption and SLA violation; hence, provides a
trade-off visibility of the proposed method with other existing
methods. From previous two sub-sections, we have observed
that both energy and SLA violation is reduced for most of the
proposed methods, so it is inevitable that ESV will also be
reduced. From the Fig.2, ESV is found to be reduced which
is clearly visible for all six new methods. If ESV reduces it
means that this approach saves energy and at the same time
SLA violation is controlled. As ESV is reduced significantly,
it means that Energy and SLA trade-off has been achieved.

4) Number of Host Shutdown: From Fig.2, it is easy to
observe that the number of host shutdown in the new methods
reduced significant. That means when a host is put to sleep
mode it stays there for long time hence proves the efficiency
of our algorithms.

5) Number of Migration: Less number of VM migrations
means efficient consolidation, less traffic in cloud network and
less SLA violation for VM migration. Reduction in Number
of VM migration is also visible from Fig.2 for three new
methods which is just an echo of the SLAV graph. Again it is
proven that, prediction based overload detection works better.
However our proposed solution beats all other. From this
results it is evident that the proposed method provides better
VM consolidation compared to the existing VM consolidation
approaches.

C. Result random traces

For PlanetLab real workload data it has been proven that
our methods outperforms other VM Consolidation strategies.
Now we want to compare the performance for randomly
generated load and we also want to see the performance when
we increase the number VMs in the same size network. For
this section we are using a network of 200 hosts and there are
five different number of VMs allocated to it (200, 250, 300,
350, 400). For this experiment the Old method is considered
IQR MC method and the New Method is NEW IQR with
new VM placement, VM selection and Underload detection
algorithm. The result is given at Fig.3.

1) Energy Consumption for Random load: From Fig.3,
power graph, we observe the energy consumption is increasing
with the number of VMs. This is logical as more VMs will

keep more host active and active hosts consumes power. But
the main take away is that, even if the power consumption is
increasing the new methods is outperforming the old method
for every size of the VM population.

2) SLA for Random load: From Fig.3, we observe that
the SLA violation is increasing with the number of VMs in a
slow rate. However for all number of VMs, the new method
has less SLA violation from old one which just supports
previous graphs of PlanetLab data.

3) Number of Host shutdown: From Fig.3, we observe the
the number of Host shutdown is increasing in the beginning
and is decreasing when the number of VMs reaches near 400.
However for every number of VMs the host shutdown has a
high difference where the new method is outperforming the
old one by large margin.

Considering the results of PlanetLab load and the result
of Random load we can infer that, these algorithms will
perform better in different kinds of load with respect to the
old methods.

D. A deep dive

From the above analysis, we have found that the proposed
methods are sowing better results in all metrics and
for some metrics new methods are showing significant
improvement. Drastic improvement found for SLA violation
when prediction based overload methods are used and also
significant improvement observed for the number of host
shutdown which provides testimony of an efficient VM
consolidation. Now we want to investigate what is the reason
for this improvement and what is happening in root level

For this experiment, we have used 200 hosts and 200 VMs
and random load. We have generated two heat maps for the
new method and the old method and that is presented at
Fig.4. For the old method, IQR MC is used and for the
new method NEW IQR is used. So the Overload detection
method is same but methods for other three sub problems are
different. In the heat map, if a host is in sleeping mode i.e., 0%
utilization, then it is marked by blue color and red color is for
highest utilization. In the X-axis time is portrayed. As iteration



Fig. 4. Heat map of old and new method

Fig. 5. Zoomed view of Heat maps

duration is 5 minutes, there are total 288(starting from 0 sec
to 8600 sec) iterations are there since the simulation is done
for one-day data. Y-axis represents 200 hosts. Each horizontal
line in the graph represents a host in different time. From
Fig.4, it is visible that for the old method, hosts are used in
a scattered fasione and occupying most of the graph. On the
other hand, the new method shows the heat map not much
scattered and the hosts which are active are remaining active
and the hosts are in sleeping mode are still in sleeping. Overall
we can observe a consistency in new method.

We have seen the bigger picture, now we will zoom in to
get more insight. The Fig.5 shows some zoomed portion of
Fig.4. The left map depicts the zoomed view of the old method
whereas the right map is portraying the new method. From

the zoomed map of the old method shows that the hosts re
experiencing frequent ON/OFF scenario. This means, a host
is kept in sleep mode and waked up again for VM placement
and this keeps going for all over the simulation and resulting
high number of host shutdown value, more SLA violation and
more energy consumption. On the other hand, the right map
shows completely different picture. The new method shows
that when a host is in active mode it stays in active mode for
longer time and when a host is put to sleeping mode than it
stays in sleeping mode for long. For these reasons, the number
of host shutdown, SLA violation and energy consumption is
lower than the old method.We can deduce that main reason
behind this consistent performance is the VM placement and
Underload detection method with optimization phase.



Fig. 6. SLA violation control

E. SLA Aware VM selection method

The objective for this section is to design a SLA aware
VM selection method which will distribute the SLA violation
among the VMs in such way so that the no VMs suffer
from extra SLA violation while some VMs are not affected.
For this reason we compare the Maximum correlation VM
selection method which the old method with our SLA aware
VM selection method. For this experiment we have chosen a
network size of 200 hosts and 400 VMs and we used random
load.

From Fig.6, the graph for old method shows different range
of SLA violation for different VMs. In some portion the SLA
violation is very high and in some portion the SLA violation
is very small. So for this VM selection approach different user
will face different SLA violation regardless the CPU load that
the user is generating. On the other hand, the graph for new
methods shows a different picture where all the VMs shows
consistent behavior in terms of SLA violation and it seems the
SLA violation due to migration is distributed by All. Hence
objective of the SLA aware VM selection method is fulfilled.

VII. CONCLUSION

In this research we have devised an algorithm for pass-
based VM Placement method using best fit decreasing strat-
egy and introduced an extra phase which will optimize the
placement further. The optimizer algorithm improves VM
placement using single and double pass method. Then we
designed Underload detection algorithm which also uses the

VM placement and the SPDP optimizer function to improve
it’s performance. Then we have devised algorithms for SLA
aware VM selection mechanism to ensure control on SLA
violation so that no VM suffer from high SLA violation where
others do not. After simulation and making comparison with
existing methods, it has been found that the proposed methods
outperformed other previous methods in both perspectives, i.e.,
more energy saving and less SLA violation. Therefore, it can
be inferred that the objective, energy-SLA tradeoff has been
achieved in this work in an efficient manner. As a future work
we have plan to improve the overload detection mechanism
and develop in CloudSim to achieve more energy saving and
less SLA violation.

REFERENCES

[1] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, A taxonomy and
survey of energy-efficient data centers and Cloud computing systems,
Advances in Computers, M. Zelkowitz (ed.), vol. 82, pp. 47111, 2011.

[2] T. C. Ferreto , M. A. S. Netto , R. N. Calheiros and C. A. F. De Rose,
Server consolidation with migration control for virtualized data centers,
Future Generation Computer Systems, v.27 n.8, pp.1027-1034, 2011.

[3] A. Beloglazov, J. Abawajy, and R. Buyya, Energy-aware resource al-
location heuristics for efficient management of data centers for Cloud
computing, Future Generation Computer Systems (FGCS), vol. 28, no.
5, pp. 755768, 2011.

[4] A. Beloglazov and R. Buyya, Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in Cloud data centers, Concurrency
and Computation: Practice and Experience (CCPE), vol. 24, no. 13, pp.
13971420, 2012.

[5] A. A. Beloglazov, PhD Thesis: Energy-Efficient Management of Vir-
tual Machines in Data Centers for Cloud Computing, 2013. Link:
http://beloglazov.info/thesis.pdf.



[6] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R.
Buyya, CloudSim: A toolkit for modeling and simulation of Cloud com-
puting environments and evaluation of resource provisioning algorithms,
Software: Practice and Experience, vol. 41, no. 1, pp. 2350, 2011.

[7] CloudSim link:, http://code.google.com/p/CloudSim/
[8] M. A. H. Monil, R. Qasim and R. M. Rahman, Energy-aware VM

consolidation approach using combination of heuristics and migration
control, 9th IEEE International Conference on Digital Information
Management, pp. 74-79, 2014.

[9] M. A. H. Monil and R. M. Rahman, Implementation of modified overload
detection technique with VM selection strategies based on heuristics
and migration control, IEEE/ACIS 14th International Conference on
Computer and Information Science (ICIS), pp. 74-79, 2015.

[10] F. Farahnakian, A. Ashraf, P. Liljeberg, T. Pahikkala, J. Plosila, I.
Porres and H. Tenhunen,, Energy-Aware Dynamic VM Consolidation in
Cloud Data Centers Using Ant Colony System, IEEE 7th International
Conference on Cloud Computing (CLOUD), pp. 104 - 111, 2014.

[11] S. Di, D. Kondo, W. Cirne, Host load prediction in a Google compute
cloud with a Bayesian model, International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), Salt
Lake City, UT, Nov. pp. 10-16, 2012.

[12] F. Farahnakian, P. Liljeberg, and J. Plosila, LiRCUP: Linear regression
based CPU usage prediction algorithm for live migration of virtual
machines in data centers, 39th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), pp. 357364, 2013.

[13] Z. Cao and S Dong, Energy-Aware framework for virtual vachine
vonsolidation in cloud computing, IEEE 10th International Conference
on High Performance Computing and Communications and 2013 IEEE
International Conference on Embedded and Ubiquitous Computing, pp.
1890 1895, 2013.

[14] G. S. Akula and A. Potluri, Heuristics for migration with consolidation

of ensembles of Virtual Machines, Communication Systems and
Networks (COMSNETS), pp. 1 4, 2014.

[15] M. A. H. Monil and Rashedur M Rahman, Fuzzy Logic Based Energy
Aware VM Consolidation, 8th International Conference on Internet and
Distributed Computing Systems (IDCS 2015), Windsor, U.K., September
2-4, pp.223-227, 2015.

[16] K. S. Park and V. S. Pai, CoMon: a mostly-scalable monitoring system
for Planet- Lab, ACM SIGOPS Operating Systems Review, vol. 40,
no. 1, pp. 6574, 2006.

[17] N. Madani, A. Lebbat, S. Tallal and H. Medromi, New cloud con-
solidation architecture for electrical energy consumption management,
AFRICON, pp. 1 3, 2013.

[18] C. Mastroianni, M. Meo adn G. Papuzzo, Probabilistic Consolidation
of Virtual Machines in Self-Organizing Cloud Data Centers, IEEE
Transactions on Cloud Computing,(Volume:1 , Issue: 2 ), July-December
2013, pp. 215 228, 2013.

[19] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, Server
workload analysis for power minimization using consolidation, in
Proceedings of the 2009 USENIX Annual Technical Conference, pp.
2828, 2009.

[20] E. Feller, L. Rilling and C. Morin, Energy-aware ant colony based work-
load placement in clouds, International Conference on Grid Computing,
International Conference on Grid Computing, 2011, pp.26-33.

[21] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila and H. Tenhunen,
Utilization Prediction Aware VM Consolidation Approach for Green
Cloud Computing, 2015 IEEE 8th International Conference on Cloud
Computing, Athens, pp.381 - 388, 2015.

[22] F. Farahnakian, P. Liljeberg and J. Plosila, Energy-efficient virtual ma-
chines consolidation in cloud data centers using reinforcement learning,
Parallel, Distributed and Network-Based Processing (PDP), pp. 500 507,
2014.


