
Static Program Analysis for Performance Modeling

Kewen Meng, Boyana Norris
Department of Computer and Information Science

University of Oregon
Eugene, Oregon

{kewen, norris}@cs.uoregon.edu

Abstract—The performance model of an application
can provide understanding about its runtime behavior on
particular hardware. Such information can be analyzed
by developers for performance tuning. However, model
building and analyzing is frequently ignored during
software development until performance problems arise
because they require significant expertise and can involve
many time-consuming application runs. In this paper,
we propose a faster, accurate, flexible and user-friendly
tool, Mira, for generating intuitive performance models
by applying static program analysis, targeting scientific
applications running on supercomputers. Our tool parses
both the source and binary to estimate performance
attributes with better accuracy than considering just
source or just binary code. Because our analysis is
static, the target program does not need to be exe-
cuted on the target architecture, which enables users to
perform analysis on available machines instead of con-
ducting expensive experiments on potentially expensive
resources. Moreover, statically generated models enable
performance prediction on non-existent or unavailable
architectures. In addition to flexibility, because model
generation time is significantly reduced compared to
dynamic analysis approaches, our method is suitable
for rapid application performance analysis and improve-
ment. We present several benchmark validation results
to demonstrate the current capabilities of our approach.

Keywords-HPC; performance; modeling; static analy-
sis

I. INTRODUCTION

Understanding application and system performance
plays a critical role in supercomputing software and
architecture design. Developers require a thorough
insight of the application and system to aid their devel-
opment and improvement. Performance modeling pro-
vides software developers with necessary information
about bottlenecks and can guide users in identifying

potential optimization opportunities.
As the development of new hardware and archi-

tectures progresses, the computing capability of high
performance computing (HPC) systems continues to
increase dramatically. However along with the rise
in computing capability, it is also true that many
applications cannot use the full available computing
potential, which wastes a considerable amount of com-
puting power. The inability to fully utilize available
computing resources or specific advantages of architec-
tures during application development partially accounts
for this waste. Hence, it is important to be able to
understand and model program behavior in order to
gain more information about its bottlenecks and per-
formance potential. Program analysis provides insight
on how exactly the instructions are executed in the
CPU and data are transferred in the memory, which can
be used for further optimization of a program. In my
directed research project, we developed an approach
for analyzing and modeling programs using primarily
static analysis techniques.

Current program performance analysis tools can
be categorized into two types: static and dynamic.
Dynamic analysis is performed with execution of
the target program. Runtime performance information
is collected through instrumentation or the hardware
counter sampling. PAPI [1] is a widely used platform-
independent interface to hardware performance coun-
ters. By contrast, static analysis operates on the source
code or binary code without actually executing it.
PBound [2] is one of the static analysis tools for
automatically modeling program performance. It parses
the source code and collects operation information
from it to automatically generate parameterized ex-
pressions. Combined with architectural information, it
can be used to estimate the program performance on
a particular platform. Because PBound solely relies on

1



the source code, dynamic behaviors like memory allo-
cation or recursion as well as the compiler optimization
would impact the accuracy of the analysis result.
However, compared with the high cost of resources and
time of dynamic analysis, static analysis is relatively
much faster and requires less resources.

While some past research efforts mix static and
dynamic analysis to create a performance tool, rel-
atively little effort has been put into pure static
performance analysis and increasing the accuracy of
static analysis. Our approach starts from object code
since the optimization behavior of compiler would
cause non-negligible effects on the analysis accuracy.
In addition, object code is language-independent and
much closer to its runtime situation. Although object
code could provide instruction-level information, it still
fails to offer some critical factors for understanding
the target program. For instance, it is impossible for
object code to provide detailed information about code
structures and variable names which will be used for
modeling the program. Therefore, source code will be
introduced in our project as a supplement to collect
necessary information. Combining source code and
object code, we are able to obtain a more precise
description of the program and its possible behavior
when running on a CPU, which will improve the
accuracy of modeling. The output of our project can be
used as a way to rapidly explore detailed information
of given programs. In addition, because the analysis
is machine-independent, our project provides users
valuable insight of how programs may run on particular
architecture without purchasing expensive machines.
Furthermore, the output of our project can also be
applied to create Roofline arithmetic intensity estimates
for performance modeling.

This report is organized as follows: Section II briefly
describes the ROSE compiler framework, the polyhe-
dral model for loop analysis, and performance mea-
surement and analysis tools background. In Section III,
we introduce related work about static performance
modeling. In Sections IV and V, we discuss our static
analysis approach and the tool implementation. Sec-
tion VI evaluates the accuracy of the generated models
on some benchmark codes. Section VII concludes with
a summary and future work discussion.

Figure 1: ROSE overview

II. BACKGROUND

A. ROSE Compiler Framework

ROSE [3] is an open-source compiler framework
developed at Lawrence Livermore National Labora-
tory (LLNL). It supports the development of source-
to-source program transformation and analysis tools
for large-scale Fortran, C, C++, OpenMP and UPC
(Unified Parallel C) applications. As shown in Fig-
ure 1, ROSE uses the EDG (Edison Design Group)
parser and OPF (Open Fortran Parser) as the front-
ends to parse C/C++ and Fortran. The front-end pro-
duces ROSE intermediate representation (IR) that is
then converted into an abstract syntax tree (AST). It
provides users a number of APIs for program analysis
and transformation, such as call graph analysis, control
flow analysis, and data flow analysis. The wealth of
available analyses makes ROSE an ideal tools both for
experienced compiler researchers and tool developers
with minimal background to build custom tools for
static analysis, program optimization, and performance
analysis.

B. Polyhedral Model

The polyhedral model is an intuitive algebraic rep-
resentation that treats each loop iteration as lattice
point inside the polyhedral space produced by loop
bounds and conditions. Nested loops can be translated
into a polyhedral representation if and only if they
have affine bounds and conditional expressions, and
the polyhedral space generated from them is a convex
set. The polyhedral model is well suited for optimizing
the algorithms with complexity depending on the their
structure rather than the number of elements. More-
over, the polyhedral model can be used to generate
generic representation depending on loop parameters
to describe the loop iteration domain. In addition to
program transformation [4], the polyhedral model is

2



broadly used for automating optimization and paral-
lelization in compilers (e.g., GLooG [5]) and other
tools [6]–[8].

C. Performance Tools

Performance tools are capable of gathering per-
formance metrics either dynamically (instrumentation,
sampling) or statically. PAPI [1] is used to access
hardware performance counters through both high- and
low-level interfaces. The high-level interface supports
simple measurement and event-related functionality
such as start, stop or read, whereas the low-level
interface is designed to deal with more complicated
needs. The Tuning and Analysis Utilities (TAU) [9]
is another state-of-the-art performance tool that uses
PAPI as the low-level interface to gather hardware
counter data. TAU is able to monitor and collect
performance metrics by instrumentation or event-based
sampling. In addition, TAU also has a performance
database for data storage and analysis andvisualization
components, ParaProf. There are several similar perfor-
mance tools including HPCToolkit [10], Scalasca [11],
MIAMI [12], gprof [13], Byfl [14], which can also be
used to analyze application or systems performance.

III. RELATED WORK

There are two related tools that we are aware of
designed for static performance modeling, PBound [2]
and Kerncraft [15]. Narayanan et al. introduce PBound
for automatically estimating upper performance bounds
of C/C++ application by static compiler analysis. It
collects information and generates parametric expres-
sion for particular operations including memory ac-
cess, floating-point operation, which is combined with
user-provided architectural information to compute
machine-specific performance estimates. However, it
relies on source code analysis, and ignores the effects
of compiler behavior (e.g., compiler optimization).

Hammer et al. describe Kerncraft, a static perfor-
mance modeling tool with concentration on memory
hierarchy. It has capabilities of predicting performance
and scaling loop behavior based on Roofline [16] or
Execution-Cache-Memory (ECM) [17] model. It uses
YAML as the file format to describe low-level architec-
ture and Intel Architecture Code Analyzer (IACA) [18]
to operate on binaries in order to gather loop-relevant
information. However, the reliance on IACA limits the

Figure 2: Mira overview

applicability of the tool so that the binary analysis is
restricted by Intel architecture and compiler.

In addition, system simulators can also used for
modeling, for example, the Structural Simulation
Toolkit (SST) [19]. However, as a system simulator,
SST has a different focus—it simulates the whole
system instead of signle applications and it analyzes the
interaction among architecture, programming model
and communications system. Moreover, simulation is
computationally expensive and limits the size and
complexity of the applications that can be simulated.
Compared with PBound, Kerncraft and Mira, SST is
relatively heavyweight, complex, and focuses on hard-
ware, which is more suitable for exploring architecture,
rather than performance of the application.

IV. METHODOLOGY AND IMPLEMENTATION

Our Mira static performance modeling tool is built
on top of ROSE compiler framework, which provides
several useful lower-level APIs as front-ends for pars-
ing the source file and disassembling the ELF file. Mira
is implemented in C++ and is able to process C/C++
source code as input. The entire tool can be divided
into three parts:

3



Figure 3: Loop structure in AST

• Input Processor - Input parsing and disassem-
bling

• Metric Generator - AST traversal and metric
generation

• Model Generator - Model generation in Python

A. Source code and binary representations

The Input Processor is the front-end of our mod-
eling tool, and its primary goal is to process input and
build an AST (Abstract Syntax Tree). It accepts the
source code and ELF file as the input to generating
the ASTs which are the representation of the source
code and ELF. The AST represents the structure of
the program, and enables the modeling tool to locate
critical structures such as function bodies, loops, and
branches. Furthermore, because the AST also preserves
high-level source information, such as variable names,
types, the order of statements and the right/left hand
side of assignment, it is convenient for the tool to re-
trieve necessary information and perform analysis. For
instance, by knowing the AST, it is possible to query
all information about the static control part (SCoP) of
the loop to model a loop, including loop initialization,
loop condition, and step. In addition, because variable
names are preserved, it makes identification of loop
indexes much easier and processing of the variables
inside the loop more accurate.

B. Bridge between source and binary

1) Difference in AST: The AST is the output of the
frond end part of our modeling tool. After processing
the inputs, two ASTs are generated separately from

Figure 4: Partial binary AST

source and binary representing the structures of the
two inputs. Our tool is designed to use information
retrieved from these trees to improve the accuracy
of the generated models. Therefore, it is necessary
to build connections between the two ASTs so that
for a structure in source it is able to instantly locate
corresponding nodes in the binary one.

Although both ASTs are representations of the in-
puts, they have totally different shapes, node organi-
zations and meaning of nodes. A partial binary AST
(representing a function) is shown in Figure 4.Each
node of the binary AST describes the syntax el-
ement of assembly code, such as SgAsmFunction,
SgAsmX86Instruction. As shown in Figure 4, a func-
tion in binary AST is comprised of multiple instruc-
tions while a functions is made up of statements in
source AST, hence it is highly possible that one source
AST node corresponds to several nodes in binary AST,
which complicates the building of connection between
them.

2) Line number: Because the differences between
the two AST structures make it difficult to connect
source to binary, an alternate way is needed to make
the connection between ASTs more precise. Inspired
by debuggers, line numbers are used in our tool as
the bridge to associate source to binary. When we
are debugging a program, the debugger knows exactly
the source line and column to locate errors. In fact,
when using the -g option during program compilation,
the compiler will insert debug-related information into
the object file for future reference. Most compilers

4



Table I: DWARF Section and its description

Section Description
.debug info The core DWARF information section
.debug loc Location lists used in DW AT location attributes
.debug frame Call frame information
.debug abbrev Abbreviations used in the .debug info section
.debug aranges Lookup table for mapping addresses to compilation units
.debug line Line number information
.debug macinfo Macro information
.debug pubnames Lookup table for mapping object and function names to compilation units
.debug pubtypes Lookup table for mapping type names to compilation units
.debug ranges Address ranges used in DW AT ranges attributes
.debug str String table used in .debug info

and debuggers use DWARF (debugging with attributed
record format) as the debugging file format to orga-
nize the information for source-level debugging. As
shown in Table I, DWARF categories data into several
sections, such as .debug info, .debug frame, etc. The
.debug line section stores the line number information.

Knowing the location of line number information
allows us to decode the specific DWARF section to
map the line number to the corresponding instruction
address. Because line number information in the source
AST is already preserved in each node, unlike the
binary AST, it can be retrieved directly. After line
numbers are obtained from both source and binary,
connections are built in each direction. As it is men-
tioned in the previous section, a source AST node
normally links to several binary AST nodes due to the
different meaning of nodes. Specifically, a statement
contains several instructions, but an instruction only
has one connected source location. Once the node in
binary AST is associated to the source location, more
analysis can be performed. For instance, it is possible
to narrow the analysis to a small scope and collect data
such as the instruction count and type in a particular
block such as function body, loop body, and even a
single statement.

C. Generating metrics

The Metric Generator is an important part of
the entire tool, which has significant impact on the
accuracy of the generated model. It receives the ASTs
as inputs from the Input Processor and to produce pa-
rameterized operation counts that are output as Python
code. An AST traversal is needed to collect and propa-
gate necessary information about the specific structures
in the program for appropriate organization of the

program representation to precisely guide model gener-
ation. During the AST traversal, additional information
is attached to the particular tree node as a supplement
used for analysis and modeling. For example, if it is
too long, one statement is probably located in several
lines. In this case, all the line numbers will be collected
together and stored as extra information attached to the
statement node.

To best model the program, Model Builder traverses
the source AST twice in different manners, bottom-up
and then top-down. The upward traversal propagates
detailed information about specific structures up to the
head node of the sub-tree. For instance, as shown in
Figure 3, SgForStatement is the head node for the loop
sub-tree; however, this node itself does not store any
information about the loop. Instead, the loop informa-
tion such as loop initialization, loop condition and step
are stored in SgForInitStatement, SgExprStatement and
SgPlusPlusOp separately as child nodes. In this case,
the bottom-up traversal recursively collects information
from leaves to root and organizes it as extra data
attached to the head node for the loop. The attached
information will serve as context in modeling.

After upward traversal, top-down traversal is ap-
plied to the AST. Because information about sub-
tree structure has been collected and attached, the
downward traversal primarily focuses on the head node
of sub-tree and those of interest, for example the loop
head node, if head node, function head node, and
assignment node, etc. Moreover, it is of significant
importance for the top-down traversal to pass down
necessary information from parent to child node in
order to model complicated structures correctly. For
example, in nested loop and branch inside loop the

5



Table II: Loop coverage in high-performance applications

Application Number of loops Number of statements Statements in loops Percentage
applu 19 757 633 84%
apsi 80 2192 1839 84%
mdg 17 530 464 88%
lucas 4 2070 2050 99%
mgrid 12 369 369 100%
quake 20 639 489 77%
swim 6 123 123 100%
adm 80 2260 1899 84%
dyfesm 75 1497 1280 86%
mg3d 39 1442 1242 86%

inner structure requires the information from parent
node as the outer context to model itself, otherwise
these complicated structures can not be correctly han-
dled. Also, instruction information from ELF AST is
connected and associated to correspond structures in
top-down traversal.

V. GENERATING MODELS

The Model Generator is built on the Metric Gener-
ator, which consumes the intermediate analysis result
of the model builder and generates an easy-to-use
model. To achieve the flexibility, the generated model
is coded in Python so that the result of the model can
be directly applied to various scientific libraries for
further analysis and visualization. In some cases, the
model is in ready-to-execute condition for which users
are able to run it directly without providing any input.
However, users are required to feed extra input in order
to run the model when the model contains parametric
expressions. The parametric expression exists in the
model because our static analysis is not able to handle
some cases. For example, when user input is expected
in the source code or the value of a variable comes
from the returning of a call, the variables are preserved
in the model as parameters that will be specified by the
users before running the model.

A. Loop modeling

Loops are common in HPC codes and are typically
at the heart of the most time-consuming computations.
A loop executes a block of code repeatedly until certain
conditions are satisfied. Bastoul et al. [20] surveyed
multiple high-performance applications and summa-
rized the results in Table II. The first column shows
the number of loops contained in the application. The
second column lists the total number of statements

in the applications and the third column counts the
number of statements covered by loop scope. The ratio
of in-loop statements to the total number of statements
are calculated in the last column. In the data shown in
the table, the lowest loop coverage is 77% for quake
and the coverage rates for the rest of applications are
above 80%. This survey data also indicates that the in-
loop statements make up a large majority portion of
the total statements in the selected high-performance
applications.

B. Using the polyhedral model

Listing 1: Basic loop

for (i = 0; i < 10; i++)
{

statements;
}

Whether loops can be precisely described and modeled
has a direct impact on the accuracy of the generated
model because the information about loops will be
provided as context for further in-loop analysis. The
term “loop modeling” refers to analysis of the static
control parts (SCoP) of a loop to obtain the information
about the loop iteration domain, which includes under-
standing of the initialization, termination condition and
step. Unlike dynamic analysis tools which may collect
runtime information during execution, our approach
runs statically so the loop modeling primarily relies
on SCoP parsing and analyzing. Usually to model a
loop, it is necessary to take several factors into con-
sideration, such as depth, variable dependency, bounds,
etc. Listing 1 shows a basic loop structure, the SCoP
is complete and simple without any unknown variable.

6



(a) Polyhedral representation for double-nested loop (b) Polyhedral representation with if constraint

(c) if constraint causing holes in the polyhedral area (d) Exceptions in polyhedral modeling

Figure 5: Modeling double-nested loop

For this case, it is possible to retrieve the initial value,
upper bound and steps from the AST, then calculate
the number of iterations. The iteration count is used as
context when analyzing the loop body. For example, if
corresponding instructions are obtained the from binary
AST for the statements in Listing 1, the actual count
of these instructions is expected to be multiplied by
the iteration count to describe the real situation during
runtime.

Listing 2: Double-nested loop

for(i = 1; i <= 4; i++)

for(j = i + 1; j <= 6; j++)
{

statements;
}

However, loops in real application are more com-
plicated, which requires our tool to handle as many
scenarios as possible. Therefore, the challenge for
modeling the loop is to create a general method for
various cases. To address this problem, we use the
polyhedral model in Mira to accurately model the loop.
The polyhedral model is capable of handling an N-

7



dimensional nested loop and represents the iteration
domain in an N-dimensional polyhedral space. For
some cases, the index of inner loop has a dependency
with the outer loop index. As shown in Listing 2, the
initial value of the inner index j is based on the value of
the outer index i. For this case, it is possible to derive
a formula as the mathematical model to represent this
loop, but it would be difficult and time-consuming.
Most importantly, it is not general; the derived formula
may not fit for other scenarios. To use the polyhedral
model for this loop, the first step is to represent loop
bounds in affine functions. The bounds for the outer
and inner loop are 1 ≤ i ≤ 4 and i+1 ≤ j ≤ 6, which
can be written as two equations separately:[

1 0
−1 0

]
×

[
i
j

]
+

[
−1
4

]
≥ 0

[
−1 1
0 −1

]
×

[
i
j

]
+

[
−1
6

]
≥ 0

In Figure 5(a), the two-dimensional polyhedral area
presenting the loop iteration domain is created based
on the two linear equations. Each dot in the figure rep-
resents a pair of loop indexes (i, j), which corresponds
to one iteration of the loop. Therefore, by counting
the integer in the polyhedral space, we are able to
parse the loop iteration domain and obtain the iteration
times. Besides, for loops with more complicated SCoP,
such as the ones contain variables instead of concrete
numerical values, the polyhedral model is also able to
handle. When modeling loops with unknown variables,
Mira uses the polyhedral model to generate a para-
metric expression representing the iteration domain
which can be changed by specifying different values
to the input. Mira maintains the generated paramet-
ric expressions and uses as context in the following
analysis. In addition, the unknown variables in loop
SCoP are preserved as parameters until the parametric
model is generated. With the parametric model, it is
not necessary for the users to re-generate the model
for different values of the parameters. Instead, they
just have to adjust the inputs for the model and run
the Python to produce a concrete value.

Listing 3: Exception in polyhedral modeling

for(i = 1; i <= 5; i++)
for(j = min(6 - i, 3);

j <= max(8 - i, i); j++)
{
statements;
}

There are exceptions that the polyhedral model cannot
handle. For the code snippet in Listing 3, the SCoP of
the loop forms a non-convex set (Figure 5(d)) to which
polyhedral model can not apply. Another problem
in this code is that the loop initial value and loop
bound depend on the returning value of function calls.
For static analysis to track and obtain the returning
value of function calls, more complex interprocedural
analysis is required. For such scenarios, we need more
sophisticated approach that will be a part of our future
work.

C. Branches

Listing 4: Loop with if constraint

for(i = 1; i <= 4; i++)
for(j = i + 1; j <= 6; j++)
{
if(j > 4)
{
statements;

}
}

In addition to loops, branch statements are common
structures. In scientific applications, branch statements
are frequently used to verify the intermediate out-
put during the computing. Branch statements can be
handled by the information retrieved from the AST.
However, it complicates the analysis when the branch
statements reside in a loop. In Listing 4, the if con-
straint j > 4 is introduced into the previous code snip-
pet. The number of execution times of the statement
inside the if depends on the branch condition. In our
analysis, the polyhedral model of a loop is kept and
passed down to the inner scope. Thus the if node has
the information of its outer scope. Because the loop
conditions combined with branch conditions form a
polyhedral space as well, shown in Figure 5(b), the
polyhedral representation is still able to model this
scenario by adding the branch constraint and regenerate
a new polyhedral model for the if node. Comparing
Figure 5(b) with Figure 5(a), it is obvious that the

8



iteration domain becomes smaller and the number
of integers decreases after introducing the constraint,
which indicates the execution times of statements in
the branch is limited by the if condition.

Listing 5: if constraint breaks polyhedral space

for(i = 1; i <= 4; i++)
for(j = i + 1; j <= 6; j++)
{
if(j % 4 != 0)
{
statements;

}
}

However, some branch constraints might break the
definition of a convex set that the polyhedral model
is not applicable. For the code in Listing 5, the if
condition excludes several integers in the polyhedral
space causing ”holes” in the iteration space as shown
in Figure (c). The excluded integers break the integrity
of the space so that it no longer satisfies the definition
of the convex set, thus the polyhedral model is not
available for this particular circumstance. In this case,
the true branch of the if statement raises the problem
but the false branch still satisfies the polyhedral model.
Thus we can use:

Counttrue branch = Countloop total − Countfalse branch

Since the counter of the outer loop and false branch
both can be expressed by the polyhedral model, using
either concrete value or parametric expression, so the
count of the true branch is obtained. The generality
of the polyhedral model makes it suitable for most
common cases in real applications, however there are
some cases that cannot be handled by the model
or even static analysis, such as loop-index irrelevant
variables or function call located inside the branch
condition. For such circumstances, we provide users
an option to annotate branches inside loops. The pro-
cedure of annotation requires users to give an estimated
percentage that the branch may take in the particular
loop iteration or indication of skipping the branch. The
annotation is written in the source code as a comment,
and processed during the generation of the AST.

Listing 6: User annotation for if statement

for(i = 1; i <= 4; i++)
for(j = i + 1; j <= 6; j++)
{
if(foo(i) > 10)
/* @Annotation {p:skip} */
{
statements;

}
}

In order to improve the applicability, an option is
provided to the users for annotation of the branch that
is not able to handle by Mira. As the example shown
in Listing 6, the if condition contains a function call
which cannot be modeled by Mira at present because it
is difficult for a static tool to obtain the returning value
of a function call. To address such problem, users could
specify an annotation in the comment to guide Mira’s
modeling. In the given example, the whole branch will
be skipped when using polyhedral model. In addition
to skip of the branch, a numeric value in the annotation
represents the percentage of iteration times of this
branch in the whole loop. For instance, @Annotation
{p:0.8} means the body of the branch is executed 80%
of the total iterations of the loop.

D. Functions

In the generated model, the function header is
modified for two reasons: flexibility and usability.
Specifically, each user-defined function in the source
code is modeled into a corresponding Python function
with a different function signature, which only includes
the arguments that are used by the model. In addition,
the generated model makes a minor modification in
the function name in order to avoid potential conflict
due to function overwrite or other special cases. In the
body of the generated Python function, statements are
replaced with corresponding performance metrics data
retrieved from binary. These data are stored in Python
dictionaries and organized in the same order as the
statements. Each function is executable and returns the
aggregate result within its scope. The advantage of this
design is to provide the user the freedom to separate
and obtain the overview of the particular functions with
only minor changes to the model.

Another design goal is to appropriately handle func-
tion calls. For modeling function calls, because all
of the user-defined functions are generated in Python

9



(a) Source code (b) Generated foo function (c) Generated main function

Figure 6: Generated Model

but with modified names, the first step is to search
the function-name mapping record maintained in the
model and obtain the modified name. For instance
Python function with name foo 223 represents that
the original name is foo and location in the source
code is line 223. Since the callee function from the
source named as foo, it is necessary for the callee
function to recover its original name. Then in the
function signature, the actual parameters are retrieved
from the source AST and combined with function name
to generate a function call statement in the Python
model.

E. Architecture configuration file

Because Mira provides a parameterized performance
model of the performance of the target application
running on different architectures and no architectural
information is collected during modeling, it is neces-
sary for the users to provide information about the
target architectures, such as number of CPU cores,
size of cache line, and vector length, etc (in future,
we will use microbenchmarks to obtain these values
automatically). For instance, in data-parallel (SIMD)
processors, it is of importance to know how much data
is processed simultaneously. These hardware-related
metrics are used to describe the target architectures,
and Mira reads them from a user configurable file to
apply to the model evaluation. By giving the detail
information of the hardware, it improves the accuracy
and extendability of the generated model.

F. Generated model

In this section, we describe the model generated
(output) by Mira with an example. In Figure 6, it shows
the source code (input) and generated Python model
separately. Source code (Figure 6(a)) contains two
functions: function foo with three parameters including
two array variables and one integer used as loop
upper bound. The main function is the entry point
of the whole program. In addition, the function foo
is called two times in main with different values for
parameter size. Figure 6(b) shows part of the generated
Python function foo in which the new function name
is comprised of original function name and its line
number in order to avoid possible naming conflicts.
The body of the generated function foo 1 contains
Python statements for keeping track of performance
metrics. Similarly, the main function is also modeled
shown as Figure 6(c) which includes two function
calls. It is noted that the only difference between
the two function calls is the third parameter. Since
Mira recognizes that size is a loop-relevant variable,
therefore it should be preserved as a parameter in
the generated model whose value can be specified by
the user. Two parameters in the function calls named
differently because function call is separate to each
other in the generated model.

G. Evaluating the model

In this section, we evaluate the correctness of the
model derived by our tool with TAU in instrumentation
mode. Two benchmarks are separately executed stati-
cally and dynamically on two different machines. Since

10



Table III: FLOP count in STREAM benchmark

Tool / Array size 2M 50M 100M
TAU 8.239E7 4.108E9 2.055E10
Mira 8.20E7 4.100E9 2.050E10

Table IV: FLOP count in DGEMM benchmark

Tool / Matrix size 256 512 1024
TAU 1.013E9 8.077E9 6.452E10
Mira 1.0125E9 8.0769E9 6.4519E10

(a) FLOP count in STREAM benchmark with different array size(b) FLOP count in DGEMM benchmark with different matrix
size

Figure 7: Validation results

the our performance tool currently concentrates on
floating-point operations, the validation is performed
on comparison of the floating-point operation counting
between our tool and TAU measurements.

1) Experiment environment: Mira is able to gen-
erate performance model of the target machines with
different architectures. Therefore the validation is con-
ducted on two different machines. The details of the
two machines are as follows:

• Arya - It is equipped with two Intel Xeon
E5-2699v3 2.30GHz 18-core Haswell micro-
architecture CPUs and 256GB of memory.

• Frankenstein - It has two Intel Xeon E5620
2.40GHz 4-core Nehalem micro-architecture
CPUs and 22GB of memory.

2) Benchmarks: Two benchmarks are chosen for
validation, STREAM and DGEMM. STREAM is de-
signed for the measurement of sustainable memory

bandwidth and corresponded computation rate for sim-
ple vector kernels. DEGMM is a widely used bench-
mark for measuring the floating-point rate on a single
CPU. It uses double-precision real matrix-matrix mul-
tiplication to calculate the floating-point rate. For both
benchmarks, the non-OpenMP version is selected and
executed serially with one thread.

VI. RESULTS

In this section, we present the validation results and
discuss the primary features in on our tool which have
significant impact on users for evaluating the tradeoff
between static and dynamic methods for performance
analysis and modeling.

Table III and IV shows the results of FLOP counting
in two benchmarks separately. The metrics are gathered
by the calculation of the model generated by our tool,
and instrumentation by TAU. In Figure 7(a), the X
axis is the size of the array which represents the

11



problem size, and we choose 20 million, 50 million
and 100 million respectively as the inputs. To make
the graph clear enough, the FLOP counts is scaled
logarithmically and shown on the Y axis. Similarly,
in Figure 7(b), the X axis is for input size and the
Y for FLOP counts. From the tables and graphs, we
can see the result from our model is close to the
one instrumented by TAU. Moreover, the difference
of results increases along with the growth of problem
size. It is possibly due to the function calls inside of
loops. TAU conducts a whole program instrumentation,
which records every floating-point operation in every
routine of the program. However, our static modeling
tool is not able to handle non-user-defined function
calls, such as a function defined in mathematical li-
brary. For such scenarios, Mira can only track the
function call statements that may just contain several
stack manipulation instructions while the function itself
involves the floating-point operations.

Besides correctness, we compare the execution time
of the two methods. To analyze a program, the source
code must be recompiled after adjustment of the inputs.
Because the analysis works on every single instruction,
it spends a large amount of time on uninteresting
instructions, thus it can be time-consuming. However,
our model only needs to be generated once, and
then can be used to obtain the corresponding results
based on different inputs, which saves many efforts
and avoids duplicated work. Most importantly, the
performance analysis by a parametric model achieves
higher coverage than repeatedly conducting of the
experiments.

Furthermore, availability is a another factor needed
to take into account. Due to the changes on the later
models of Intel CPUs, PAPI-based performance tools
are not able to gather some particular performance
metrics (e.g. FLOP counts) by hardware counters.
Hence, static performance analysis may be a solution
to such cases.

VII. CONCLUSION

In this report, we present our work about perfor-
mance modeling by static analysis. We aim at design-
ing a faster, accurate and flexible method for perfor-
mance modeling as a supplement to existing tools in
order to address problems that cannot solved by current
tools. Our method focuses on floating-point operations
and achieves good accuracy for benchmarks. These

preliminary results suggest that this can be an effective
method for performance analysis.

However, much work remains to be done. In our
future work, the first problem we eager to tackle
is to appropriately handling of more function calls,
especially those from system or third-party libraries.
We also consider combining dynamic analysis and in-
troducing more performance metrics into the model to
accommodate more complicated scenarios. To enhance
the scalability is also a significant mission for us in
order to enable Mira to model the programs running
in the distributed environment.

REFERENCES

[1] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A
portable interface to hardware performance counters,”
in Proceedings of the department of defense HPCMP
users group conference, 1999, pp. 7–10.

[2] S. H. K. Narayanan, B. Norris, and P. D. Hovland,
“Generating performance bounds from source code,”
in Parallel Processing Workshops (ICPPW), 2010 39th
International Conference on. IEEE, 2010, pp. 197–
206.

[3] D. Quinlan, “Rose homepage,” http://rosecompiler.org.

[4] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen,
J. Ramanujam, P. Sadayappan, and N. Vasilache, “Loop
transformations: Convexity, pruning and optimization,”
in 38th ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL’11). Austin,
TX: ACM Press, Jan. 2011, pp. 549–562.

[5] C. Bastoul, “Code generation in the polyhedral model
is easier than you think,” in PACT’13 IEEE Interna-
tional Conference on Parallel Architecture and Com-
pilation Techniques, Juan-les-Pins, France, September
2004, pp. 7–16.

[6] M. Griebl, “Automatic parallelization of loop programs
for distributed memory architectures,” 2004.

[7] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sa-
dayappan, “A practical automatic polyhedral paral-
lelizer and locality optimizer,” in ACM SIGPLAN No-
tices, vol. 43, no. 6. ACM, 2008, pp. 101–113.

[8] T. Grosser, A. Groesslinger, and C. Lengauer, “Pol-
lyperforming polyhedral optimizations on a low-level
intermediate representation,” Parallel Processing Let-
ters, vol. 22, no. 04, p. 1250010, 2012.

12



[9] S. S. Shende and A. D. Malony, “The tau parallel
performance system,” International Journal of High
Performance Computing Applications, vol. 20, no. 2,
pp. 287–311, 2006.

[10] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel,
G. Marin, J. Mellor-Crummey, and N. R. Tallent, “Hpc-
toolkit: Tools for performance analysis of optimized
parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701,
2010.

[11] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám,
D. Becker, and B. Mohr, “The scalasca performance
toolset architecture,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 702–719,
2010.

[12] G. Marin, J. Dongarra, and D. Terpstra, “Miami: A
framework for application performance diagnosis,” in
Performance Analysis of Systems and Software (IS-
PASS), 2014 IEEE International Symposium on. IEEE,
2014, pp. 158–168.

[13] S. L. Graham, P. B. Kessler, and M. K. Mckusick,
“Gprof: A call graph execution profiler,” in ACM
Sigplan Notices, vol. 17, no. 6. ACM, 1982, pp. 120–
126.

[14] S. Pakin and P. McCormick, “Hardware-independent
application characterization,” in Workload Character-
ization (IISWC), 2013 IEEE International Symposium
on. IEEE, 2013, pp. 111–112.

[15] J. Hammer, G. Hager, J. Eitzinger, and G. Wellein,
“Automatic loop kernel analysis and performance mod-
eling with kerncraft,” in Proceedings of the 6th Inter-
national Workshop on Performance Modeling, Bench-
marking, and Simulation of High Performance Com-
puting Systems. ACM, 2015, p. 4.

[16] S. Williams, A. Waterman, and D. Patterson, “Roofline:
an insightful visual performance model for multicore
architectures,” Communications of the ACM, vol. 52,
no. 4, pp. 65–76, 2009.

[17] J. Hofmann, J. Eitzinger, and D. Fey, “Execution-
cache-memory performance model: Introduction and
validation,” arXiv preprint arXiv:1509.03118, 2015.

[18] Intel, “Intel architecture code analyzer homepage,”
https://software.intel.com/en-us/articles/intel-
architecture-code-analyzer.

[19] SNL, “Sst homepage,” http://sst-simulator.org.

[20] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and
O. Temam, “Putting polyhedral loop transformations
to work,” in International Workshop on Languages and
Compilers for Parallel Computing. Springer, 2003, pp.
209–225.

13


