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Abstract—Distributed Denial-of-Service (DDoS) attacks are
simple to launch yet hard to defend against. For many DDoS
defense strategies, quickly finding the forwarding paths taken
by the attack packets is a critical step for attack mitigation.
Techniques such as IP traceback and autonomous system (AS)
path inference are used in DDoS defense systems to find the
path information for packets in question. Though IP traceback
and path inference are well-studied topics, they are not designed
toward finding the whole traffic footprint, which contains all
packet sources and forwarding paths.

We propose PathFinder, a log-based traffic footprint collection
scheme that allows a recipient to reconstruct the AS-level
forwarding path(s) that packets would take. PathFinder has
multiple advantages over the traffic footprint methods in the
existing DDoS defense solutions: it is scalable and friendly to
incremental deployment; it does not impose network overhead
when there are no user requests and little when there are;
and more importantly, PathFinder does not require hardware
or software changes to the existing equipment. Compared to
previous solutions, these advantages increase the deployment
feasibility for network providers to deploy PathFinder, with fewer
drawbacks.

Index Terms—Traffic footprint collection, DDoS defense

I. INTRODUCTION

Today’s Internet is vulnerable to distributed denial-of-
service (DDoS) attacks. During a DDoS attack, an attacker
controls many compromised machines to flood the victim with
unwanted traffic in order to exhaust the network or compu-
tation resources of the victim. DDoS attacks have become
more frequent and damaging to many network services [1]. An
attacker with ample resources can easily launch DDoS attacks
with the overwhelming traffic volume and take down most
web services. For example, a recent large-scale DDoS attack
on Dyn [2] disabled its DNS service, and crippled many major
web services that relied on it such as Twitter, Netflix, PayPal,
and over fifty others for hours. Similar incidents [3][4] have
well-demonstrated the devastating destructive power of DDoS
attacks over the Internet.

An attack with huge traffic volume can bring down the
victim’s network, and it could also congest the transit networks
sit between the victim and bots, which will further cause
damages to other edge networks. DDoS attacks with such
level of traffic volume pose huge challenge to the traditional
single-entity DDoS defense systems, which usually rely on
single organization to filter traffic. Distributed DDoS defense
systems (such as in [5][6][7][8][9][10]), on the other hand,

orchestrate collaboration among multiple autonomous systems
(ASes) in order to defend against large-scale DDoS attacks.
These systems try to filter attack traffic closer to the traffic
sources so as to reduce the load of the victim network and the
transit networks, thus being able to handle larger-scale DDoS
attacks.

A typical distributed DDoS defense system includes two
critical processes:

• finding the corresponding routers/ASes in the system that
are carrying the attack traffic;

• installing the traffic filtering rules at the routers/ASes as
close to the traffic sources as possible, if the downstream
links are inundated.

To filter DDoS attack flows, a distributed defense system
first needs to determine the locations for deployment, i.e.,
discovering the responsible ASes that carry DDoS traffic to the
victim. However, finding responsible ASes is not trivial for the
following reasons: First, the routing paths on the Internet are
asymmetric: for any pair of end hosts, it is likely that the traffic
forwarding paths will be different for each direction [11][12]; a
distributed DDoS defense system deploys traffic filtering rules
based on the forwarding path from the victim to the attack
source is inaccurate. To make things worse, some attackers
spoofs source addresses to avoid being filtered by defense
systems, further complicating the task of locating responsible
ASes.

To find the forwarding path information for each DDoS
attack packet, a collaborative defense system can choose one
of the following approaches:

• using IP traceback approach to figure out which routers
are on the path to the victim, that are carrying a certain
attack flow in question;

• inferring victim’s inbound traffic topology (AS-level path
inference).

However, none of these approaches appear to be both accurate
and deployable. The first approach, i.e., IP traceback, allows
a user to find the source network that generated the packet in
question hop-by-hop. We believe such a system should include
the following properties for practical deployment:

• The system should require a minimum amount of modifi-
cations to the hardware and software of routers/switches.

• The system should scale regardless of the deployment
rate.



• The system should be able to handle large-scale DDoS
attacks.

• The system should not downgrade the network through-
put.

To the best of our knowledge, there is no IP traceback system
that meets all the aspects listed above, and we believe these
are the major road blocks that prevent traceback systems from
being deployed. The second approach, AS-level path inference,
does not introduce deployment difficulties. However, the infer-
ence results’ accuracy varies greatly and it contains no realtime
traffic information to ensure whether a path is indeed carrying
certain traffic.

In this paper, we introduce PathFinder, a traffic footprint col-
lection system. PathFinder allows traffic destination networks
to retrieve latest traffic sources toward them, and the forward-
ing path(s) of each traffic source. A distributed DDoS defense
system can use PathFinder to generate a list of ASes that are
carrying DDoS traffic, including bandwidth consumption in-
formation, and topology information collected by PathFinder,
a DDoS defense system can utilize the information to install
traffic filtering rules at the right ASes. Network administrators
can use PathFinder to debug the network problems such as
reachability or to find the traffic forwarding routes.

The highlights of the system is as follows:
• The system is a practical, deployable solution for current

ASes in that no hardware or software changes of the
routers/switches are required.

• The system is resilient against large-scale DDoS attacks
with different patterns.

• The system allows the user to construct AS-level forward-
ing path locally without making extra connections to AS
participants.

In the remaining of this paper, we organize sections as
follows:

• Section II presents the usage models of PathFinder.
• Section III to VI introduce the basics of the system, as

well as a detailed view of each system component.
• Section VII presents our evaluation results of PathFinder.
• Section IX presents the related work, and we also com-

pare PathFinder with others.
• Section VIII and X discuss the potential issues of the

work and the conclusion.

II. USAGE MODELS

PathFinder provides three types of information to its users:
• Topology: AS-level forwarding path(s) observed from AS

monitors to the user.
• Traffic footprint: source or source-agnostic traffic foot-

print AS monitors have seen toward the user.
• Bandwidth information: average traffic bandwidth con-

sumption or PPS each AS carries for the user.
PathFinder users can utilize one or more types of the infor-
mation above for various of network applications. We define a
PathFinder Log (PFLog) as the message that includes one or
more types of the information defined above. In this section,

we introduce two practical applications in PathFinder system:
DDoS defense systems and network debugging.

A. PathFinder for Distributed DDoS Defense Systems

Depending on the type of a DDoS attack, a collaborative
DDoS defense system would require different information
of the attack to make effective traffic mitigation strategies.
Figure 1 shows a generic example of a collaborative DDoS
defense system. When an attack happens, the attack victim
will generate a set of traffic filters, and provide them to the
defense system. The DDoS defense system then processes the
filters from the victim and make decisions on where to install
these filtering rules. A defense system can locate the traffic
aggregation nodes, AS 2 and 3 in this case, and install traffic
filters at these two ASes in order to drop the attack traffic.
Before this system can make precise decisions, it needs to have
a way to gather latest information about the global network.
How does the defense system know that traffic aggregation
nodes are AS 2 and 3 in the first place?

In this section, we list possible parameters that a DDoS
defense system may need, and use two DDoS defense sce-
narios as examples to show readers the importance of these
parameters.

1) Parameters in DDoS Defense: As we mentioned above,
PathFinder provides topology, traffic footprint and bandwidth
information to the users. Each PathFinder user (or DDoS
defense systems in this context) may use the information
differently, and here is a list of options that PathFinder
provides:

• AS participants: users choose which ASes in PathFinder
to gather traffic footprint from;

• update frequency: how frequent defense systems need
to pull information from PathFinder;

• source-based footprint: do defense systems need traffic
footprint that contains source IP addresses or prefixes?
If enabled, each AS monitor needs to conclude what
source IP addresses/prefixes it has seen, otherwise, each
AS monitor simply state whether it has seen traffic toward
the victim or not.

Fig. 1: DDoS attack and distributed DDoS defense system
example



• footprint granularity: if defense systems require source-
based footprint, they can also choose what is the granular-
ity of the source information, e.g., a defense system can
choose to gather footprint represented by /20 prefixes.

• bandwidth information: do defense systems need band-
width related information? E.g., bandwidth per flow/AS,
packets per second (PPS) per flow/AS.

2) Source-based Defense: In the most recent large-scale
DDoS attack on Dyn, Inc., the company faced an excessive
amount of DDoS traffic from over 100,000 compromised
devices [13]. In this attack, the attacking devices sent bogus
traffic to Dyn servers without spoofing their source addresses.
Finding the footprints of these source addresses and filter
traffic that matches these addresses is a good defense strategy.

In a source-based defense, a DDoS defense system may
ask PathFinder to gather the source-based footprint at certain
footprint granularity. For example, an attack victim can an-
alyze the network logs, and it finds out the IP addresses of
attack sources can be described using multiple /24 subnets,
due to the high locality of the source IP addresses. The DDoS
defense system can use this knowledge, and ask PathFinder
system to record traffic footprint in /24 prefix form.

3) Source-agnostic Defense: In the above scenario, the
DDoS traffic does not utilize IP spoofing, a defense system can
filter attack traffic by IP source addresses. However, today’s
DDoS attacks utilizes IP spoofing as well, and DDoS defense
systems should not rely on source-based defense in such
scenario.

In a DDoS attack practices IP spoofing, the attacker com-
mands the bots to spoof the source address field of each packet
to be victim’s address, and send these packets to the amplifiers
such as public DNS or NTP servers. These amplifiers would
then send the replies back to the source address which points
to victim’s network, and eventually collapse the inbound link
of the victim’s network.

We list the defense to such attack as source-agnostic defense
because a DDoS defense system can block the traffic by
the protocols those amplifiers are using; if the amplifiers are
DNS servers, the defense system can install filters at different
ASes to block DNS traffic toward the victim. Topology or
bandwidth related information from PathFinder would be more
cost effective: the defense system simply need to install several
filters at the traffic aggregation ASes, and PathFinder can
provide such information with a low computational cost.

B. PathFinder for Network Debugging

Common tools such as traceroute and Looking Glass
(traceroute services provided by major ISPs) are used for
network diagnosis: destination reachability, traffic forwarding
routes. However, traceroute can only provide these information
from the machine made the request to the destination, and not
all ISPs provides looking glass services.

In PathFinder, users can get path information, latest snap-
shots of network footprint and traffic information from par-
ticipating PathFinder ASes, therefore, a more comprehensive
view of their networks’ visitors. For example, a web service

Fig. 2: PathFinder Architecture

administrator could use PathFinder to find out why the web
traffic has changed dramatically: could it be some AS on the
Internet is blocking the traffic to this web service? or a link
failure in the transit network?

III. OVERVIEW OF PATHFINDER

For PathFinder to be a practical solution, the design of the
system should adopt several basic principles. First, it must
be easy for ASes to deploy. A system that requires hardware
or software changes to the existing infrastructure would incur
a high operational cost which could hinder the deployability
of the system. Second, the system needs to be scalable. The
system’s performance should not be negatively affected by
either its level of deployment or the number of different packet
sources. Finally, the system should allow a user to determine
the possible forwarding path(s) for the realtime traffic in a
timely manner.

PathFinder is a log-based system that allows a user to
construct the possible AS-level path(s) for its inbound traffic.
Figure 2 shows a high-level architecture of the system. The
system involves three entities:

• PathFinder User who requests PathFinder service and
retrieves PFLogs.

• PathFinder Proxy who handles user requests and in-
forms ASes to produce PFLogs;

• PathFinder AS Monitor who performs computations on
the packets/flows toward users and generates PFLogs.

PathFinder requires each participating AS to connect every
edge router’s traffic monitoring port to the PathFinder AS
monitor (directly or indirectly). Popular monitoring techniques
such as sFlow, NetFlow/IPFIX or traffic mirroring can be
used in this case. Each AS monitor only communicates with
PathFinder proxies so that an AS monitor can produces
PFLogs without inter-AS collaboration.

Figure 2 shows a high-level view of PathFinder sys-
tem. First, a PathFinder user chooses and connects with a



PathFinder proxy. This proxy will broadcast the user’s request
to all AS monitors. AS monitors produce PFLogs based on
user’s request, and sends the log back to the proxy as soon as
the log is generated. Finally, the proxy will relay the PFLogs
back to the user, and the user can start to reconstruct the
inbound traffic topology, footprint and/or bandwidth informa-
tion.

A. PathFinder Workflow

When a PathFinder user requires PathFinder service, it will
first send out a request to the PathFinder proxy to ask for
help, which includes the information this user wants from
PathFinder.

Proxy allows only the authenticated users or prefix owners
to retrieve the path information. If the proxy verified the user
identity and ensured that the user does own the IP prefix block,
it will broadcast the user request to some or all AS monitors
depends on the user’s request. Meanwhile, the user will wait
for the proxy to relay the PFLogs.

After an AS monitor received the request from the proxy, the
AS monitor will check the information that the user wants. If
the user wants more than topology information, this monitor
will begin to capture the packets/flows toward the user’s IP
or prefix. Every AS monitor’s role is to produce a PFLog
that contains some/all information defined in the usage model
section II.

If the user requested source-based traffic footprint informa-
tion, the AS monitor will record each packet it has seen in a
traffic digest table, and the AS monitor could further use this
digest table to produce PFLogs. To produce a log with source
information is not easy; an AS monitor may need to process
packets from high bandwidth links, and recording packets
in such case would require the data structure to perform a
minimal number of operations per packet. We will elaborate
the design choice for the data structure in the next section IV.

When the PFLog is ready, the AS monitor will forward the
log to the proxy, and the proxy will then relay the log to the
user who made the request. User then can use the information
in the log to reconstruct the AS-level path.

IV. FLOW LOGGING

A PathFinder AS monitor’s main task is to generate PFLogs
for users. This task includes finding the AS-level forwarding
path from routers to user, and recording packet sources it has
seen towards a particular destination. In PathFinder, recording
packet sources is a major problem we need to solve and we
call such process flow logging, as each AS monitor presents
the source-based footprint in an aggregated form to PathFinder
users.

To generate PFLogs, each AS monitor needs to perform the
following tasks:

• identifying the ingress routers in an AS when the AS has
multiple border routers;

• discovering the AS-level path(s) from the AS to the
packet destination;

• maintaining a data structure that helps to generate source-
based traffic footprint with low computational overhead.

Depending on the tier of an AS, it could have multiple
border routers, and each border router could be an ingress
or egress router. PathFinder AS monitors utilize the traffic
monitoring features on ingress routers to generate PFLogs.
For the AS monitor to determine which of the routers are the
ingress nodes, it needs to query the Routing Information Base
(RIB) on each edge router and ask what the next-hop router is
for it to forward traffic toward the user. If the next-hop router
is within the AS, the router in question is an ingress node.

Note that BGP router vendors such as Cisco, Juniper and
Brocade, all have their own network debugging interface to
query AS-level paths [14][15][16]. Thus, AS monitors only
need to read the path to determine whether a router is ingress
node or egress node, and AS monitors can discover the AS-
level path(s) by collecting the path(s) provided by egress
router(s).

Figure 3 shows an example of a PathFinder monitor setup
within an AS. For the sake of simplicity, we do not include the
technical details of what traffic monitoring technique an AS
uses. To generate source-based traffic footprint, an AS monitor

Fig. 3: An example of Flow Logging at an AS

can choose hardware telemetry solutions such as NetFlow,
which utilize specialized hardware to aggregate packet headers
into flow logs inside the router. However, NetFlow’s export
process takes time, and the capability varies based on different
router hardware design. On the other hand, a software/CPU-
bound solution is typically achieved by mirroring or tapping
the traffic of a router, and use a generic server to handle
the packets or packet headers directly. The software solution
allows the whole system to have faster response time, because
it can set arbitrary traffic monitoring window size. In this
paper, we assume an AS does not run hardware telemetry
solution but is capable of running software solution and
mirroring/tapping the network traffic. We developed a trie-
based data structure for AS monitors to generate source-based
traffic footprint at a minimal computational cost even when
facing high bandwidth traffic.

As soon as a PathFinder monitor of an AS can retrieve
packets or packet headers from its routers, it needs to record



them, and produce PFLogs for PathFinder users. Like log-
based IP traceback systems, finding a good data structure as a
traffic digest table is crucial to PathFinder. We use it to record
traffic sources and bandwidth information at each AS monitor.

Given a packet header, the data structure of PathFinder has
to provide three basic functions:

1) finding each packet source in the digest table;
2) inserting new packet source to the digest table;
3) updating packet source’s corresponding bandwidth in-

formation if required.

These functions should invoke the least amount of computation
possible, and minimize the storage cost.

As a user in PathFinder can request different informa-
tion from AS monitors, the time and space complexities for
recording different information vary. For example, a user
who requests topology information from PathFinder uses less
computation power than a user who requests source-based
traffic footprint information.

In the following subsections, we first cover the lightweight
scenario that does not require source-based user footprint
requests, and we then describe the use of PathFinder AS
Monitors to produce PFLog with source-based footprints.

A. PFLog without Source-based Footprint

From the usage model section II, we know a PFLog with-
out source-based footprint can still contain topology, source-
agnostic footprint and bandwidth information.

To produce topology information, the AS reports its AS-
level forwarding path from itself to the PathFinder user who
made the request; each AS monitor can either query router’s
RIB to get the AS-level path, or run traceroute program from
itself to the PathFinder user’s IP, and convert the result to
AS-level path.

In addition to topology information, an AS monitor pro-
duces source-agnostic footprint by checking whether there are
any packet traveling from its ingress routers to the PathFinder
user. If it sees any traffic, then this AS is part of the source-
agnostic footprint from user’s view; if a user requested source-
agnostic footprint, only AS monitors who see traffic toward
the user in their networks will send AS-level paths to this user.

As this scenario does not consider any source information of
the packets, producing bandwidth information in this scenario
would involve the AS monitor to extract the packet size in
the packet header and add this value to a summation variable.
The AS monitor could also count the number of packets it
has seen in a monitoring window, and later produce packet
per second information as per user’s request. Depends on
the user’s request, an AS monitor can record one or both
bandwidth related variables.

B. PFLog with Source-based Footprint

To produce source-based footprint, each AS monitor needs
a data structure to hold all the source addresses (IPs or IP
prefixes) it has seen toward the user. For example, if an

Fig. 4: /4 prefixes
in a bit trie Fig. 5: Partial flow logging trie

AS monitor sees traffic coming from three different IP ad-
dresses, and user requested source-based footprint with flow-
based bandwidth information, this AS monitor needs to record
these IPs in the data structure along with their corresponding
bandwidth-related information.

Since AS monitors need to work with high bandwidth links,
it is desirable to reduce the cost of the recording process of
the digest table, so that AS monitors can process more packets
at a time. The obvious solution for this is to use hash table for
recording unique addresses. However, AS monitors also need
to consider the size of the PFLog: if each AS monitor produces
an 1 MB PFLog on average and we assume full deployment
of PathFinder; it would cost a user to download more than
5,000 MB worth of PFLogs, and it is certainly not an ideal
solution when the user is under a DDoS attack, who wants to
gather traffic information as soon as possible.

We need a digest table that provides fast lookup and insert
speed, also, it needs to allow AS monitor to aggregate IP
addresses and reduce the PFLog size if necessary. Our choice
is to use a customized trie.

C. Trie-based Data Structure

Trie is similar to search tree, however, a trie does not contain
the key associated with each node as in a search tree, instead,
it uses the traversed path to represent a key.

Figure 4 shows an example of storing source addresses in a
trie, and we use /4 prefixes as source addresses to simply the
example.

When an AS monitor performs a source address lookup, it
will traverse the trie according to the key value. For example,
if an AS monitor were to lookup the source prefix 0011, it
starts with the first bit of the key, 0, and it then go to the left
child from the root. It then reads the second bit of the key,
0, again, it traverse to the left child. Eventually, it will hit the
bottom of this trie with four traversals. The AS monitor can
determine if there is an exact match by checking whether the
last node it traversed is a leaf node or not. If it is, it concludes
there is a prefix 0011 in the trie. In a trie, both lookup and
insert speed is in O(k) time, where k is the length of the
key. As a comparison, consider a balanced search tree, which
requires O(log n) time for both operations with n nodes, and
O(k) time for each node for key comparison. In this case,



Fig. 6: Aggregate source addresses during flow logging

the value of n is theoretically bounded by the size of the IP
space, while k is bounded by the length of the IP address.
(32 or 128 bits, depending on the IP version.) Clearly O(k)
is much improved over O(log n).

D. Trie for Source-based Footprint

We have covered the basics of how trie works for flow
logging, and we now present details of AS monitors recording
source-based footprint.

For each source-based footprint request, each selected AS
monitor will create an empty trie to record source addresses.
Each AS monitor then start to retrieve packet headers from
ingress router(s), and search the trie with packet’s source
address as the key. As shown in the figure 5, if the AS monitor
sees a packet its source address ends with 101 (we assume
this source address traversed a same prefix to get to node in
the figure); the monitor will not be able to find it in the trie
to the left in the figure, it will then create two trie nodes,
and add them to the node that find function lastly traversed.
Next, the AS monitor increments the leaf counter for per-flow
bandwidth information, if the user has such requirement. Now,
assume the AS monitor sees a source address shares the same
prefix as the above example except its last three bits are 100,
the AS monitor will repeat the above steps, and proceed to
the last step, as shown in figure 6: the AS monitor checks
the newly inserted leaf’s neighbor, and it find out there is a
neighbor node and the neighbor node is a leaf, we then take the
summation of both nodes’ couters, and save it to their parent
node, and we set parent node as a leaf node (two nodes will
be freed from memory). Note that this last step will not only
apply to the IP address but prefixes as well; the new leaf node
in figure 6 may potentially be aggregated with its neighbor, if
its neighbor became a leaf node in the future.

From the above steps, we can tell if an AS monitor receives
packets with high locality in terms of source addresses, the
lookup time for each source address will become faster as they
get aggregated to higher levels; trie’s find function becomes
faster as the less nodes it needs to traverse. Listing 1 shows
a basic trie node that is being used in flow logging. Note that
a trie node does not necessarily need to include the counter
variable unless the user wants per flow bandwidth information.

struct {
struct Trie* children[2];
bool isLeaf;
int counter;

} Trie;

Listing 1: Basic Trie Node Structure in Flow Logging

The steps for flow logging is shown in algorithm 1, and
we assume the following functions exist:

Trie *find
(Trie *root, Trie *latestParent, SrcAddr key):

return a node that is either the node
with exact match or longest prefix match,
and keeps updating the parent pointer
for the latest traversed node.

void setLeaf
(Trie *node):

set this node as a leaf node and remove
both children from this node.

Listing 2: Functions in Flow Logging

Algorithm 1: Flow Logging with Lossless IP Aggregation

Trie *trie = initialize a trie;
Trie *parentNode;
for each packet P received from a router do

Source *src = extract source address from P;
Trie *node = find(trie, parentNode, src);
if (!node->isLeaf) then

node = insert(trie, parentNode, src);
end
node.counter++;
Trie *neighborNode = neighbor(parentNode, node);
if isLeaf(neighborNode) then

parentNode.counter = node.counter +
neighborNode.counter;

setLeaf(parentNode);
end

end

E. Trie Optimization

By using bit trie in our flow logging process, a lookup
operation requires 32 trie traversals for each 32-bit IP address,
and 64 trie traversals in the IPv6 network.

Traversing the trie is extremely fast as long as the source
addresses has high locality; top-level trie nodes in a trie will
be cached in CPU cache than main memory. However, an AS
in a real world may encounter packets from many different IP
prefixes, thus will use more cache space to save the top-level
nodes. Intuitively, we want to reduce number of top-level trie
nodes to be traversed, so to increase the lookup speed. As the
example shown in figure 7, we need a way to logically use 1
node in the trie to represent 24 nodes in the left trie.



Fig. 7: Trie optimization in flow logging process

We can solve this problem by indexing the prefixes of source
addresses; creating an array of trie pointers with its size as the
prefix length. As the example shown in figure 8, to reduce 24
top-level trie nodes, we would create an array of pointer with
the size of 224; a /24 prefix in figure 7 now became just one
pointer in this array. The lookup cost reduced from 24 trie
node traversals to one index lookup. The lookup operation

Fig. 8: Trie optimization with auxiliary pointer array

then has eight remaining traversals in the worst case, for an
IPv4 network.

To further accelerate the lookup speed, we can attach bit
arrays to the pointer array, if we do not wish to update the
value of the leaves. In such acceleration scheme, only two
pointer lookups are required.

Note that unix-like systems implement memory overcommit-
ment by default (virtual paging); if a program tries to allocate
a large pointer array in the system as in the example above,
instead of allocating the physical space that will use 128
Mbytes (224 ∗ pointerSize), the system will create a virtual
page table, which will only allocate space at the element being
accessed.

V. PROXY LOG COLLECTION

As soon as AS monitors logged traffic footprint, they
will need to transmit the footprint to the PathFinder proxy.
PathFinder proxies play a critical role in making sure users can
obtain PFLogs from the AS monitors, and it should evaluate
if it is possible to deliver the footprint in time. In this section,
we describe the PathFinder proxy design and justify the design
choice.

One of the main applications of PathFinder is to help DDoS
victims defend against DDoS attacks. The system should have
enough redundancies to protect itself before it can help others,
and each proxy can be protected by a DDoS solution as it can
be a PathFinder user by itself. To achieve this objective, we
place multiple proxy nodes distributed at different physical
locations, so that in the case of an attack on the proxy nodes,
the attack traffic volume has to be large enough to overwhelm
multiple routing paths. Thus, the system stands a high chance
to serve the user when needed.

Due to the traffic dynamics in the Internet, it is impossible
to know total PFLog size of each user. It is possible that the
total PFLog size is too big for user to retrieve in seconds.
Although flow logging uses leaf aggregation mechanism to
reduce PFLog size, it does not provide an upper bound of
the PFLog size. If an AS encounters packets to a destination
with sparse source addresses, leaf aggregation mechanism will
not be triggered at all. Thus, we need a different approach to
ensure the PFLog size is reasonable for both proxy and user
to fetch.

A PathFinder user can define the total PFLog transmission
threshhold value, Tlog. This value tells a PathFinder proxy
the maximum network data a user is willing to spend on
PFLogs, and the proxy will ensure the size of all PFLogs
from all participating AS monitors, Ptotal, is less than Tlog .
We developed a source-based PFLog aggregation scheme for
this purpose, and figure 9 shows an example of this scheme.
It requires each AS monitor to calculate the PFLog size

Fig. 9: Calculating ∆log

difference, ∆log, between the current trie’s prefix log and
the prefix log after aggregation; an AS monitor will count
how many leaves to calculate the prefix log size, and it
then assumes all leaves’ parents are now the new leaves and



calculate the prefix log again to get ∆log. Each AS monitor
will then send ∆log and the current log size to the proxy.

If the condition Plog ≤ TLog is not true, proxy will select
AS monitors with largest ∆logs for further aggregation in order
to meet the condition; it is possible that all AS monitors will
be selected if proxy cannot meet the condition in the first
round. This scheme is beneficial to PathFinder AS monitors
that receive a wide range of source addresses due to the large-
scale IP spoofing scenarios, and PathFinder proxy would select
these AS monitors to run the aggregation in order to meet
Plog ≤ TLog .

VI. SOURCE-BASED PATH RECONSTRUCTION

As we mentioned in section II, when a DDoS defense sys-
tem needs to apply source-based filtering strategy, deploying
traffic filters at the ASes carrying corresponding traffic is
especially important; a defense system installs filters at other
ASes will be wasting precious hardware resources. In this
section, we propose a recommended scheme for PathFinder
users to reconstruct the AS-level paths when PFLogs contain
source-based footprint.

For each PFLog that contains source-based footprint, it in-
cludes a AS-level forwarding path from the AS who generated
the log to the user. It is important to map each source-based
footprint to the ASes who carry the corresponding traffic, and
users then have the ability to query the corresponding AS-level
path by source address/prefix; e.g., a PathFinder user may be
interested in finding ASes who can stop DDoS traffic with
source prefix as 10.10/16.

A. Constructing AS-level Topology

As Internet routing paths change all the time, we first
need to build the AS-level topology that can support routing
updates: if a user requires up-to-date topology information,
PathFinder AS monitors will forward the new route to this user
if the route to the user changes, it should be able to change
its local topology without heavy computation overhead.

One approach is to utilize a linked list to chain the topology
together with the help of a hash map. As shown in the
figure 10, each AS number is a key to the hash map, and
it is either mapped to an AS number or NIL.

Upon the user receives a PFLog, it extracts the AS-level
path from the log, and adds AS numbers to the hash map
if the number does not exist yet. The user then link each
AS number to the next-hop AS number. For each forwarding
path update from an AS monitor, the user updates each AS
number’s mapped value in this hash map. For example, if there
is a path update from AS 1 in the figure 10, and the AS path
from AS 1 to the PathFinder user is now 1→ 4→ 5. The user
will go through the hash map, and change the corresponding
mapping; key 1 will be mapped to 4 instead of 3 in the figure.

B. Mapping Source Footprints to the Topology

As soon as the user built the AS-level topology, it needs to
map each corresponding source address/prefix to the topology.

Note that we have two aggregation modes from flow logging
and log collection sections, the leaf aggregation mode from

Fig. 10: Represent AS-level topology using a hash map

flow logging section keeps an accurate representation of what
source addresses an AS monitor has seen. However, AS mon-
itors selected during log collection section do not ensure the
accuracy of the footprint. A PathFinder user should logically
separate footprints based on the aggregation mode, and use
the trie for loss aggregation mode as a secondary option to
locate the responsible ASes.

The user can rebuild the trie using the same data structure
defined in section IV for each mode, and each leaf node saves
the beginning AS numbers for all AS-level paths. For example,
if we assume AS paths 1 → 3 → 5 and 2 → 4 → 5 in
the figure 10 have seen traffic from source address A toward
the user, the trie should keep number 1 and 2 at address A’s
leaf node, and the user can then trace the forwarding path by
traverse the topology defined in the above section.

VII. EVALUATION

In this section, we present evaluation metrics, experiment
setup, evaluation results and result analysis. We answer the
following questions: (1) When does PathFinder provide good
accuracy results? (2) What is the performance of PathFinder?
(3) Is PathFinder trie data structure fast enough to keep up
with high bandwidth links? In this section, we only evaluate
the whole system under source-based footprint requests.

A. Metrics

We focus on the following metrics in our evaluation: PFLog
accuracy, system performance, and processing overhead of
trie-based data structure in PathFinder.

1) PFLog Accuracy: Although modern hardware and soft-
ware allow full packet capturing, AS monitors sometime have
to sample the traffic under certain scenarios. Such scenario
could be abnormal traffic shape that requires extreme process-
ing power, or administration policy that prevents full packet
capturing. Due to the reasons above, we want to understand
the system accuracy under different sampling scenarios. We
define PFLog accuracy as the ratio between user-restored
traffic sources and actual traffic sources in some monitoring
period.

2) Performance: The Internet has high traffic dynamics,
and the traffic sources one AS sees may change often. It
is crucial for PathFinder AS monitors to deliver the latest
PFLogs to PathFinder users as quickly as possible. We define
PathFinder performance as the total time elapsed from the time



a user issues the request to PathFinder proxy, to the point when
user collected all traffic footprint.

3) Flow Logging Overhead for Source-based Footprint
Generation: For AS monitors to produce source-based traffic
footprints, they need to process network packets from routers.
If an AS chooses software solution, the cost of such process
should not be neglected. We study such cost by analyzing
PathFinder trie-based data structure, specifically, we evaluate
its insertion speed, lookup speed and memory usage.

B. Experiment Setup

We evaluate PathFinder PFLog accuracy by simulations, for-
mulate the system response time as PathFinder performance,
and use emulation to evaluate trie-based data structure (flow
logging) overhead. We ran experiments on a desktop with Intel
i7-4790 (3.6 GHz, 8 MB L3 cache) and 32 GB RAM @
1600 MHz. We use two types of traffic source traces for our
evaluation:

1) A set of real DDoS traces that represents its attack peak
volume (Booter 9 from table I).

2) A set of synthetic DDoS traces contains traffic sources
ranges from 150K to 64M traffic sources.

PFLog Accuracy. To evaluate PFLog accuracy, We first
map each traffic source in Booter 9 DDoS traces to its AS
number, and find the AS number of the traffic destination.
We then build an inferred directed AS-level topology toward
traffic destination, as the base of our simulation, the topology
includes all AS numbers from the DDoS traces. We also assign
a network delay value to each AS in the topology to imitate
the real networks, and the value of each AS depends on its AS-
level distance to the traffic destination AS. For each simulation
in this experiment, we use a different combination of sampling
rate and monitoring window size. The sampling rates range
from 0.5% to 50%, and monitoring window sizes range from
0.5 seconds to 3 seconds.

Performance. To evaluate PathFinder system performance,
we first define system components that can introduce delays,
and the summation of each delay should represent the overall
system performance. We use 25 inferred AS-level topologies
to estimate the average network link overhead, in order to
estimate the general transmission delay. For each topology,
we assign 1 million of traffic sources (IP addresses) to all
ASes. We assign number of IPs to an AS based on how big
the IP block it owns, e.g., an AS owns a /16 prefix gains more
traffic sources than an AS owns a /24 prefix.

Flow Logging Overhead. Since the Booter network traces
only have thousands of traffic sources, these traces can not
represent flow logging overhead accurately; the lookup cost
for such small-scale DDoS traces is not representative; tries
are CPU cache friendly, thosand-level of traffic sources can be
easily cached in a modern CPU. To avoid CPU cache playing
a significant role in our evaluation, we generate several sets
of synthetic traffic sources to better estimate the overhead. We
use different number of traffic sources and source distribution
profiles to evaluate insertion, lookup and storage cost of
PathFinder trie and two other tries. We implement our data

structure in C, and we use LLVM compiler with optimization-
level 2 for compiling.

C. PFLog Accuracy

In this section, we present PathFinder PFLog accuracy
results with the method described in previous section.

Figure 11 shows the trend of PFLog accuracy under two
variables: packet sampling rate, denoted as s, and monitoring
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Fig. 11: PFLog accuracy trend under different variables

window size, denoted as w. From this figure, we see in general,
PFLog accuracy goes up when either of these two variables
increases. We notice that the benefit of increasing s became
insignificant once s hits 10%, and the benefit of increasing w
reduces as it approaches 2 seconds.

What is interesting from the simulation results is how s
and w affect the PFLog accuracy: logically speaking, an AS
monitor needs to process a same amount of the packets as long
as s1 ∗w1 = s2 ∗w2, and our hypothesis is that both cases are
likely to have a similar PFLog accuracy level. In other words,
if an AS monitor records traffic sources with 1% sampling rate
and 2 second monitoring window, the monitor should produce
a similar result as if it records traffic sources with 2% sampling
rate and 1 second monitoring window. Figure 12 shows PFLog
accuracy comparisons for several sets of (si, wj), and the
results have validated our hypothesis. We notice that the result
with higher sampling rate always outperforms the one with
lower sampling rate but longer monitoring window size.

We find the overall PFLog accuracy is sound but the figure
does not inform us the details of where traffic sources are being
captured. Which AS-level hop captures a certain traffic source
directly affects whether a full AS-level can be reconstructed
for the traffic source. We thus reformat our simulation data,
and use figure 13, 14, 15 and 16 to show readers a detailed
breakdown of where traffic sources are being captured. Each
figure represents the percentage of captured traffic sources
versus total possible traffic sources, i.e., figure 13 shows the
the percentage at traffic source ASes (hop 1). From the
figures, we see when s ∗ w is small, second-hop and third-
hop ASes are helpful to capture traffic sources that were not
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Fig. 13: Source being captured at first-hop ASes

captured at first-hop ASes. And we also see the fourth-hop
ASes generally have much less chance to capture new sources
that are not captured in previous hops. As soon as the first-
hop ASes start to use some larger s ∗w values, the rest of the
ASes in the topology became less effective in capturing new
sources.

At this point, we conclude that PathFinder system has good
PFLog accuracy when it encounters a DDoS attack similar to
Booter attacks or DNS reflection attacks. For AS monitors to
achieve high fidelity traffic footprint results, in general they
need to set sampling rate at 10% on traffic towards the same
destination network.

D. Performance

To capture the system performance, we define the variables
that generate delays in PathFinder system:

• N : network delay, time to transmit PFLogs.
• P : traffic footprint processing delay, time to monitor

traffic and record IP sources.
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Fig. 15: Source being captured at third-hop ASes

For N , it consists of service request time, Nsrv , between
proxy and AS monitors, negotiation time Nneg between proxy
and AS monitors to ensure total PFLog size is below user’s
requirement, and data transmission time that moves data from
AS monitors to proxy, Ndata. For P , it consists of insertion
delay Pins and lookup delay Plook.

To calculate the response time for each AS monitor, TASi ,
we need the link bandwidth between PathFinder proxy and
ASi, denoted as bASi

, link delay between PathFinder proxy
and ASi, denoted as lASi

, number of unique attack sources
per second rate at ASi, denoted as sASi

and packet per
second (pps) rate towards the PathFinder user ppsASi . Thus,
the response time for ASi is:

TASi =Nsrc−ASi + Nneg−ASi + Ndata−ASi

+ Pins−ASi + Plook−ASi

(1)

Since the request packet and negotiation packet are ne-
glectable, we can substitue both Nsrc−ASi and Nneg−ASi with
link delay lASi only, and we then use data

bASi
to represent PFLog
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Fig. 16: Source being captured at fourth-hop ASes

transmission time Ndata−ASi :

tasi =lasi + lasi +
data

basi
+ pins−asi + plook−asi

(2)

Finally, we denote the AS monitor’s insertion speed as
insertASi

and lookup speed as lookupASi
, and we can re-

place Pins−ASi
and Plook−ASi

with sASi

insertASi
and ppsASi

lookupASi
,

respectively. And the final formulation for TASi is:

tasi =lasi + lasi +
data

basi

+
sASi

insertASi

+
ppsASi

lookupASi

(3)

From this formula, we can see that N and P are both important
to the performance. And if the system do not have good
performance in P , the system can either choose to reduce
monitoring window and sacrifice PFLog accuracy or increase
monitoring window to makeup the accuracy due to the packet
drop.

Figure 17 shows average network link overhead with a total
of 1M traffic sources. We calculated link overhead based on
AS-hop distance toward a destination. We see the further away
an AS is from the traffic destination, the smaller network
overhead it introduces. This figure gives us high confidence
to say that PFLogs from most ASes are so small that we can
use the link delay time to estimate their network delay in
PathFinder.

E. Flow Logging Overhead

In this section, we evaluate and compare PFTrie with
Adaptive Radix Tree (ART) [17] under different network
source profiles; according to [17], ART in general, has better
performance than Generalized Prefix Tree and hash table.
As we mentioned in section VII-B, the attack sources from
Booter attacks are too small for us to evaluate tries accu-
rately. Therefore, we generated multiple sets of traffic sources
ranges from 150K to 64 millions of IP sources, with different
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Fig. 17: Average network overhead based on AS-hop distance

source density settings. We use the traffic sources to evaluate
insertion/lookup speed and memory usage of PFTrie. As we
compare the results for insertion and lookup speed under
different source, we find high similarity of the results. Thus,
we only include one figure each for insertion and lookup
operations.

PFTrie uses a more excessive memory allocation scheme
than ART, and we expect it has faster insertion speed than
ART. Figure 18 presents trie insertion speed of the two data
structures, and we see PFTrie performs better than ART in
both figures: It costs around 700 ms for PFTrie to insert 16
millions of IP sources for both dense and sparse IP profiles,
while it takes more than 1300 ms for ART to insert the same
number of IP sources. In general, PFTrie uses 50% less time
than ART to insert a same amount of IP sources.
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Figure 19 compares the lookup speed of PFTrie and ART,
and we measure the time that each data structure takes to
finish 15M lookups. As a result, PFTrie performs almost 10
times faster than ART when they both have more than 1M of



sources, and the lookup speed of PFTrie is virtually constant.
This is because a lookup operation in PFTrie only requires two
lookups: one for the prefix array of the data structure, and one
for bit array lookup to confirm whether an IP is in the trie.
ART on the other hand, has a trie node management scheme,
and the scheme helps to manage the height of the trie within a
bound. The lookup speed of ART reduced by half at 1 million
sources, and we believe the node management scheme reduces
the trie height near this data point.
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In a real network environment, we expect flow logging
process to involve a mix of insertion and lookup operations.
We analyzed 9 sets of DDoS attack traces from Booter attacks,
and we organized the insertion/lookup ratios in table I. We see
a wide range of insertion/lookup ratios from 1/2.5 to 1/370,
but in every trace the ratio is less than one. Although the scale
of Booter attacks are not comparable to the Tbps-Level attacks
such as the IoT attack to Dyn, these ratios still indicate that
lookup speed is more important than insertion speed during
the flow logging process.

Figure 20 presents the memory usage for PFTrie under
different traffic source profiles. We see the memory cost
is manageable even when we insert 64M sources to the
data structure, and the bottom-up aggregation scheme helps
reducing the memory usage when we have high percentage of
consecutive IP sources.

Dataset # of Atk. Srcs Traffic Volume Insertion/Lookup
Booter 1 4486 700 Mbps 1/72
Booter 2 78 250 Mbps 1/230
Booter 3 54 330 Mbps 1/370
Booter 4 2970 1.19 Gbps 1/14
Booter 5 8281 6 Mbps 1/2.5
Booter 6 7379 150 Mbps 1/5.5
Booter 7 6075 320 Mbps 1/3.6
Booter 8 281 990 Mbps 1/157
Booter 9 3779 5.48 Gbps 1/57

TABLE I: Average number of packets sent from a same source
per second
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Finally, PFTrie supports a feature that ART does not:
source address aggregation. PFTrie maintains the traffic source
addresses that have been aggregated during the entire flow
logging process. This feature helps PathFinder AS monitors
to reduce transmission overhead so they can deliver PFLogs
to users faster. On the other hand, for ART to achieve the same
transmission overhead, it needs to go through a series of steps
to manipulate the internal trie nodes to aggregate IP sources
correctly. Although ART uses less memory space than PFTrie,
such scheme does not allow us to aggregate traffic sources with
highest granularity. Data structures that apply similar memory
management schemes need to consider such fact as well. In
conclusion, PFTrie provides decent insertion and lookup speed
when AS monitors need to process high bandwidth links.

VIII. DISCUSSION

A. Assumptions

We made several assumptions for this work, all of which
we believe to be reasonable assumptions for both an AS and
a user:

• An AS participant has control over its edge routers.
• Packet or flow sampling rate of routers can be adjusted.
• The links between the AS logger and proxy will not be

congested.
• There exists an out-of-band link between the user and the

proxy that is not congested.
• For the same flow, an AS only has one egress router at

a time.
• The forwarding path for an destination prefix is an

accurate representation of all the IP addresses it covers.

B. Deployability of PathFinder

In this section, we conclude a list of deployment require-
ments for an AS to deploy PathFinder: 1). the routers need
to have either traffic mirroring or NetFlow/IPFIX capability;
a majority of the network routers nowadays support at least
traffic mirroring if not NetFlow/IPFIX [18][19]; 2). the AS



needs to have a generic server to run PathFinder AS monitor
software; if the AS has been analyzing its network status, it
implies there is a server which can run PathFinder AS monitor
software; 3). the machine with processing power similar to
the one in the PFTrie experiment is sufficient to handle high
bandwidth link; 4). the monitor needs the access to each
edge router’s management interface to query the AS-level
forwarding path from the RIB; the implementation of this work
is straightforward, and we do not consider it as a road block
to the deployment of PathFinder.

Unlike previous traceback systems, PathFinder has no hard-
ware or software modifications on the routers, and each AS
does not need to coordinate with other ASes in the Internet.

C. Network Overhead Optimization

Although PathFinder has an efficient flow logging scheme,
it does not determine the system response time; The size of
PFLog can also affect the response time, and in this project,
we have a contemporary solution to control the total size of
PFLogs. Thus, reducing the network overhead is a task we
would like to explore on in the future.

D. AS Privacy

ASes are less likely to divulge their private information
such as internal network topology to others. In the previous
traceback systems, strong collaboration between routers is
necessary for producing accurate path information. However,
router-level collaboration implies inter-AS collaboration, and
it is normally a road block for ASes to overcome. The router-
level forwarding path also gives the user the ability to infer
the real topology of any AS that is part of a traceback system.

In PathFinder, there are two pieces of information an AS
needs to share to the proxy and the user:

• Source IPs/prefixes were seen by an AS
• AS-level forwarding path

Each AS participant only exposes its forwarding decisions and
source IPs/prefixes to each user’s request. PathFinder does
not require any inter-AS collaboration in the system; thus it
eliminates the possibility that a malicious AS could acquire
sensitive topology or traffic information.

Additionally, each PathFinder user can only obtain the AS-
level path information and traffic source prefixes that are
related to itself, and cannot know other users’ information.

IX. BACKGROUND AND RELATED WORK

There are many approaches to determining the forwarding
path of a packet. We group previous packet forwarding path
traceback papers into three categories: IP traceback, AS-path
inference and Reverse traceroute. Most existing IP traceback
solutions are specifically designed to help DDoS victims
reconstruct the router-level forwarding path of a packet to
defend against DDoS attacks. This approach generally requires
modifications to the hardware and/or software of routers. On
the other hand, although AS-level path inference systems
do not require changes to the network equipment, they may
impose a limit on the accuracy of the inferred result. Finally,

the reverse traceroute approach combines path inference and
traceroute, allowing the packet forwarding path to be recon-
structed with a high degree of accuracy. The design of such
systems, however, limits their scalability when dealing with
large-scale DDoS attacks.

We then introduce how a packet’s forwarding path is deter-
mined, in existings distributed DDoS defense system.

A. IP Traceback

IP traceback was first introduced by Burch and
Cheswick [20], who propose that tracing packets back
to the source hop-by-hop is a necessary step to address DDoS
attacks, since the source IP of a packet might be spoofed.
Many IP traceback systems have been proposed over the
years, and several approaches have been attempted, e.g.
link testing, messaging (ICMP), marking, logging, overlay,
etc [21]. Two of these IP traceback approaches, marking and
logging, are most developed over the years.

1) Marking Approaches: The main idea behind a packet
marking scheme is to let the participating routers add different
segments of the forwarding path to each packet header fields
that are less frequently used. The host that requested the
traceback service can then examine the modified packets, and
can thereby acquire the forwarding path for this packet. Savage
et al. proposed a probabilistic packet-marking system that adds
route information to the IP identification field [22], and the
system does not simply mark all the packets all the time,
instead, marking a packet is determined by a probability value.
Yaar et al. proposed FIT [23], which is also a probabilistic
packet-marking system. FIT mainly focuses on a partial-
deployment scenario and requires little hardware change on
routers.

The packet-marking approach has a simple operational
model, and path information is included in the packets. How-
ever, the drawback of such approach is that the traceback
accuracy greatly depends on how many marked packets a user
can receive. E.g. in a high-volume DDoS attack, it is incredibly
hard for a user to examine each packet for path information,
and reconstruct the packet forwarding path.

2) Logging Approaches: The packet logging approach re-
quires participating routers to store packet digests in their
memory, and then determines if a router has seen a certain
packet in the past. For every user’s packet forwarding path
query, the routers will use the stored digests to produce the
path collaboratively. Snoeren et al. proposed a hash-based IP
traceback scheme called SPIE [24]. SPIE requires a moderate
amount of changes to participating routers, and uses a space-
efficient Bloom filter to log each packet in the network. Li
et al. also use a Bloom filter to implement a digest table in
[25], and further apply a packet-sampling technique to deal
with high-speed links.

A packet logging approach imposes virtually no network
throughput overhead, as the control plane does not stall packet
forwarding behavior. Additionally, as long as the monitoring
hardware is capable of processing packet headers at line rate,
the accuracy of the approach remains extremely high. This



approach does require both a moderate amount of hardware
changes and inter-AS collaboration. And inter-AS collabora-
tion introduces extra network overhead and decreases overall
system response time.

3) Hybrid Approaches: In addition to the two aforemen-
tioned methods, there are many other hybrid approaches which
combine elements of different traceback approaches [26], [27].
These solutions contribute more efficient traceback systems,
however they also inherit the drawbacks from their parent
schemes.

4) PathFinder vs. IP Traceback: An IP traceback system
is used to locate the source network that generated the packet
in question. This system allows a user to contact the source
network to filter the traffic. PathFinder is different from an
IP traceback system for two reasons: First, PathFinder is
not an always on system like IP traceback, which constantly
recording or marking packets. Second, PathFinder only keeps
records of the packet source prefixes and traffic information as
traffic footprint, as opposed to a log-based IP traceback system
that uses a combination of IP packet header fields.

As a result, PathFinder does not trace a particular packet
back to the source network, since it only uses the source
IP address during the flow logging process. PathFinder may
produce path information such as one source prefix maps to
multiple AS-level paths, due to IP spoofing or route changes.
This information helps a user to quickly narrow down the
possible AS-level traffic forwarding paths for each received
packet in question.

In general, traceback systems have deployability issues such
as fixed network throughput loss in packet-marking scheme or
high computational cost in packet-logging scheme. PathFinder,
on the other hand, has lower deployability requirement but it
also has higher chances to produce multiple AS-level paths
for an IP source/prefix.

B. AS-Path Inference

Unlike the router-level IP traceback approaches, AS-level
path inference takes a different approach to discover the AS-
level forwarding path between two edge networks. AS-level
path inference does not require any changes in the network
infrastructure, and allows the user to infer the path using
merely the BGP information.

According to Mao et al. [28], over 60% of all AS paths are
asymmetric. To address this problem without having control
over either the network infrastructure or the network edges
is particularly challenging. The authors use multiple vantage
points of the BGP routers to build an AS graph in order to
infer the correct AS-level forwarding path. Authors developed
a new AS relationship inference algorithm and a technique
to infer the first AS hop. The evaluation shows that the
work achieves 70%-88% accuracy in AS path inference. This
approach is useful for finding critical ASes for forwarding
traffic to a particular destination. However, this approach does
not include realtime traffic information, thus made it a less
attractive solution to help defend against DDoS attack:

C. Reverse Traceroute

As the most used network debugging tool on the Internet
today, traceroute provides a user with a very detailed router-
level path from the user to an IP address. However, Internet
routing is asymmetric, and traceroute does not provide the
reverse path from the IP address to the user.

Katz-Bassett et al. proposed a reverse traceroute
scheme [29] that enables the user to query the packet
forwarding path even when the user has no control of
the packet source. Reverse traceroute schemes employ
both measurement studies and probes that are physically
distributed on the network to stitch together the forwarding
path piece-by-piece. The authors claim that in the median
case they can find 87% of the router-level hops, versus 38%
accuracy if we trust the traceroute result.

Much like AS-level path inference systems, reverse tracer-
oute is not an appealing solution for DDoS defense, for the
following reasons: the response time of the reverse traceroute
is simply too long; the cost to perform one reverse traceroute
is too high, since during a DDoS attack the number of attack
sources can be large, and it is not reasonable for the user to
do a query for each attack source during a large-scale DDoS
attack which could involve more a million of bots.

D. Approaches in Distributed DDoS Defense Systems

StopIt [10] uses a topology-based approach that utilizes
BGP updates between the routers for locating the correspond-
ing routers given a packet identifiers. Authors assume that the
IP spoofing problem will be taken care of by their IP spoofing
project Passport [30], thus the source address precisely maps
to the traffic source network. However, given the asymmetric
routing of the Internet, the topology-based approach introduces
a flaw in this work: If the traffic source network is not part
of the StopIt system, the system will have a hard time finding
the next-hop network, since the forwarding path can be very
different from the traffic source to the victim than the other
way around.

AITF [7] uses a traffic-based approach for finding the
responsible routers; an approach similar to packet-marking
IP traceback. The routers in the system mark the router
information directly to each packet, and the victim can see
exactly what are the routers on the path for forwarding a
particular packet. This approach however reduces the network
throughput by 10% according to the AITF evaluation.

FireCol [9] assumes a full deployment of the system,
therefore, filtering rules could be pushed from victim-side
network in the beginning, then all the way up to the traffic
source networks.

Both StopIt and AITF have major issues for finding the
right place to install traffic filtering rules, and the need for
a better solution is necessary to improve these collaborative
DDoS defense systems. This new solution should not degrade
the network throughput, and when a distributed DDoS defense
system is under partial deployment scenario, this solution
should allow the defense system to find the paths (ASes) that
are most likely to carry the attack traffic.



X. CONCLUSION

In this paper, we introduced PathFinder, a traffic footprint
collection system. We explored its use cases for both DDoS
defense and network debugging purposes, and we believe
PathFinder provides useful information to aid the problems.
We proposed a flow logging scheme to produce source-
based traffic footprint, and we demonstrated this scheme has
the ability to work with high bandwidth traffic links. Both
lookup and insertion speed of IP sources are faster than other
data structures we tested, and it produces smallest PFLog
without losing IP source accuracy. We then presented a log
collection scheme that controls the total network overhead for
all PFLogs, and it helps to control and reduce system response
time.

In our future work, we plan to explore the possibility to
shrink the total network overhead for PFLogs while maintain-
ing or reducing the system response time. We also like to
setup a testbed to have an AS monitor machine to get packets
from real switches/routers, and see how fast the flow logging
process is in a real word setting.
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