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Abstract

Private query brings new challenges to the design of Database Man-
agement System (DBMS). A recent work of Blind Seer system intro-
duces a new setup which has an efficient sublinear search for arbitrary
boolean query. It splits an index server from server such that client can
communicate with index server to retrieve encrypted records. During
the query, the server learns nothing about the query.

The original system requires the server to stay online to wait for
the client to request for the decryption key. In this work, we design
a new protocol for client only communicate with the index server. In
addition, the communication rounds between client and index server
in the original protocol are linear to the depth of search tree. In our
protocol, we show how to reduce it to constant rounds.

1 Introduction

In multi-party secure computation, private database querying is an impor-
tant real-world application. This problem is a generalization of symmetric
private information retrieval where clients can make queries consisting of
boolean expressions on keyword, and retrieve records that satisfy those key-
words in a secure manner. For security, query privacy is one of the most
important properties. Roughly speaking, in a database management systems
(DBMS), private queries enable a client to retrieve results of its queries with-
out learning anything else about the database and the server learns nothing
about the client’s queries. Thus, privacy addresses both data and queries.
For example, a federal agent may query a hospital for all patients who have
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had a fever in the last three month. During the query, the federal agent does
not want the hospital to know the query he made to avoid panic, and the
hospital should not leak any information beyond the records which satisfy
the query.

An intuitive way to protect confidentiality is by encrypting the sensi-
tive data. However, performing queries not only becomes more challenging
but some important query information, such as access patterns, are leaked
to the server. Fortunately, there are some general solutions for the private
database query problem in the semi-honest model: the oblivious RAM pro-
gram [Gol87], Yao’s garbled circuit [Yao86], private information retrieval
(PIR) [CKGS98] et al. . We can also achieve malicious security with extra
cost: for example, the cut-and-choose technique for garbled circuits [Lin13]
[HKE13] and the ORAM method. The problem with these solutions is that
they either run in polynomial time or have very expensive basic steps.

1.1 Related work

Significant research effort has been spent on query privacy and many new
techniques have been presented. [BKL+13] proposes a new privacy defini-
tion for data analysis using secure multi-party computation and designs a
privacy preserving data sharing solution in federated database environments
based on secure MPC. [GHJR14] addresses private database query problem
based on the secure-computation using an ORAM architecture, implements
a system for symmetric private queries in the semi-honest adversary model,
supporting private database access by either index or keyword using modi-
fied Path-ORAM protocol and homomorphic encryption scheme. [BGH+13]
implements private database queries using somewhat-homomorphic encryp-
tion. The idea is to encode the database and the query as polynomials, with
the roots of such polynomials indicating the index of result records.

Blind Seer system. In recent work, a new type of system [PKV+14] was
introduced called the Blind Seer (BLoom filter INDex SEarch of Encrypted
Results) system. This system can implement efficient sublinear search for
arbitrary Boolean queries. Unlike the traditional client-server setting, Blind
Seer model has four parties: server S, client C, index server IS, and query
check QC. Here party QC is the external policy enforcement on queries to
ensure that queries are valid and legal to meet the specific requirement.
Notice that in the real world the server or index server usually play the role
of QC. Also, in their paper IS is split from the server so the system can
achieve better privacy-performance trade-offs. However, this setup is based
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on one crucial assumption: the server S and index server IS do not collude
with each other. Otherwise, privacy no longer exists. In fact, we assume
that in Blind seer system, no two parties are colluding with each other. An
overview of the Blind seer system setting is in figure 1.

We no give a high level description of the Blind seer system. The idea
behind the system is by traversing search tree. Each leaf in the tree is
associated with each database record and each tree node represents a bloom
filter. The bloom filter of node v contains all keywords of its descendants
and itself. To decide whether the data is in such bloom filter, C and IS
run secure function evaluation using Yao’s garbled circuit [Yao86]. The full
system is as follows, we skip all technical details here and just present the
high level idea. The technical details will be discussed in the later section.

1. Assume there are n records in the database (r1, . . . , rn). The server S
randomly shuffles the records and receives records (R1, . . . , Rn). Then
S uses public key encryption system to encrypt the shuffled records.

2. S constructs standard bloom filter search tree T for (R1, . . . , Rn) and
encrypts all bloom filter. S sends encrypted records and the encrypted
bloom filter search tree to the index server IS.

3. To make a search query to the database, the client C and index server IS
run secure function evaluation from the root of the bloom filter search
tree by using Yao’s garbled circuit. If the circuit outputs true, then
do the computation for all its children until we reach the leaf node.

4. Index server IS sends all satisfied leaf nodes to the client C. Notice that
these leaf nodes are the associated encrypted records.

5. The server sends decryption key to the client. The client decrypts the
records and obtains the real output.

We notice that [PKV+14] does not guarantee perfect privacy as we de-
scribed in section 1. Indeed, in the real world, it would be too expensive
and cost to achieve full privacy. We have to make some tradeoff between
privacy and efficiency. Thus, to be practical it usually allows some trivial or
“unimportant” information to be leaked to achieve better efficiency. But the
data and query are still protected. We describe more detail later in section
3.1.
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Figure 1: An overview of Blind seer system setting [PKV+14]

1.2 Our contribution

We propose a new protocol for the Blind Seer system in which the server
is offline and the client only communicate with the index server. More
specifically, in the original protocol, the server needs to shuffle and encrypt
the records, constructs bloom filter search tree, and send them to index
server. After that, the server must stay online and wait for the client to
request the decryption key. In our setting, the server can be offline after
sending the records and search tree to the index server.

Our construction also has a constant number of rounds of communication
when client communicating with index server. Unlike the original protocol
in which the client and index server need to invoke secure function evaluation
and the client needs to send a garbled circuit for each satisfied node in the
search tree, our protocol only needs three rounds (assuming client only has
temporary storage).

We also give an explicit proof of security that against semi-honest ad-
versaries using a hybrid construction of simulators.

2 Preliminaries

Throughout the paper, for an integer n, we let [n] = {1, 2, . . . , n}. We say
a function ε : N → [0, 1] is negligible if for any polynomial p, there exists a
large enough x′ such that for all x > x′, ε(x) < 1/p(x).
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Parameters: l is the length of messages and n is the number of messages.
Private inputs: the sender has messages M = {m1, · · · ,mn} where
mi ← {0, 1}l; the receiver has a binary string b = b1 · · · bn.

• On input M from the sender and b from the receiver, give output
{mi}bi=1 to the reciver.

Figure 2: Ideal functionality for k-out-of-n oblivious transfer.

2.1 Secret Sharing

Secret sharing is an elementary cryptographic primitive. Generally speaking,
a t-out-of-n secret sharing scheme allows a party to split a secret x into n
shares. To recover the secret, a collection of t or more shares must be
presented. Any collection of less than t shares should leak no information
about the secret. One implementation of t-out-of-n secret sharing scheme is
Shamir’s secret sharing scheme using polynomial interpolation.

For the special case of n-out-of-n secret sharing, there is an efficient
scheme using the XOR operation [Sch95]. For example, to split x into n
shares such that x = s1 ⊕ · · · ⊕ sn, we can randomly pick s2, · · · , sn and set
s1 = x⊕ s2 ⊕ · · · ⊕ sn.

2.2 Oblivious Transfer

Oblivious transfer (OT) is also a very important primitive in cryptography.
It involves a sender and a receiver where the sender holds some messages
and the client wants to learn a subset of them. An ideal functionality of
k-out-of-n OT is described in figure 2.

Some possible implementations of k-out-of-n OT are [JH09], [Cho12],
[WZJ+16].

2.3 Garbled Circuit

Yao’s garbled circuit was first introduced in [Yao86] as a general solution for
two party secure computation. It first expresses a function f as a boolean
circuit C. For each gate with input wire w1, w2 and output wire w3, pick
two random wire labels k0, k1 for each wire and associate them with the
real input 0 or 1. Then a garbled gate can be constructed according to the
truth table. To evaluate the circuit, we recursively evaluate garbled gates
and obtain the final output wire labels which are associated with the real
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output. We refer [LP09] for more details.
Yao’s garbled circuit can be efficiently constructed and evaluated in the

real world with state-of-art garbling schemes [KS08], [KMR14]. For example,
[HEKM11] shows that using garbled circuit, the secure evaluation of AES
with 33880 gates can be completed in 0.2 seconds. Even in the malicious
model, a recent result [WMK] demonstrates that with security parameter
κ = 128, it takes only 65 ms to evaluate AES and 438 ms for SHA256.

More generally, Yao’s garbled circuit can be abstracted and captured by
garbling schemes [BHR12] introduced by Bellare, Hoang and Rogaway. They
describe a garbing scheme as a five-tuple algorithm G = (Gb,En,De,Ev, ev).
Let f be the function we want to evaluate,let x be the original input, and
y = f(x) the final output. Then Gb is a randomized algorithm that trans-
forms f into a new triple of functions (F, e, d). En is an algorithm that
takes (e, x) as the input and outputs garbled input X = En(e, x). Ev takes
input (F,X) and outputs the garbled output Y = Ev(F,X). De is an al-
gorithm that transforms garbled output Y to the final output y = De(d, Y )
and we have De(d, Y ) = ev(f, x). That is, the correctness of the garbling
scheme is hold under the condition that De(d,Ev(F,En(e, x))) = ev(f, x).
Specifically, for a garbled circuit, we say G is a circuit garbling scheme if ev
interprets f as a circuit.

A secure garbling scheme should satisfy some secure properties such as
correctness, privacy, obliviousness and authenticity. The formal definitions
of secure properties can be found in [BHR12].

2.4 Bloom filter & Garbled Bloom Filter

A standard bloom filter (BF) [Blo70] is a probabilistic data structure for
membership testing. It is a m-bit array B which comes with k independent
hash functions H = {h1, · · · , hk}hi:{0,1}∗→[m].

Let S = {x1, · · · , xn} be a set of n elements. To construct a bloom filter
Bs, all bits in Bs are initialized to 0. To add an element x ∈ S into Bs, we
sets Bs[hi(x)] = 1 for all 1 ≤ i ≤ k. To check if an item x is present in Bs,
we check whether Bs[hi(x)] = 1 for all 1 ≤ i ≤ k. If any of these bits are 0,
then x is not in S. Otherwise, we say x is in S with some probability.

It is easy to see that if x is in S, then all associated bits must be 1
which means we will never have false negative. However, we may have false
positive such that, for an item x that is not in S, all associated bits are set
to 1. The probability of false positive is bounded by:(

1− (1− 1

m
)kn
)k
≈ (1− e−kn/m)k
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which is negligible in k.

Garbled Bloom Filter. Garbled Bloom Filter (GBF) [DCW13] is a vari-
ant of the standard BF. GBF supports the same functionality as BF. The
only difference is, instead of using a bit array, GBF uses an array of λ-bit
strings. To add an element x to a GBF, we first split x into k shares and
store one share in each corresponding location hi(x). To test whether x is
in the bloom filter, we just find its k shares at hi(x) in the GBF, recover x′

by doing a XOR operation of all shares and checking whether x = x′.
One issue with GBF here is, for two different elements x1, x2, they can be

hashed to the same location. In this case, GBF will reuse the shares in such
location. For example, let s1 = s11⊕s21⊕s31 and share s11 is stored in location j.
When adding element x2 to GBF and x2 also hashes to location j, then reuse
the share s11 and let x2 = s11 ⊕ s22 ⊕ s32. After adding all elements, generate
random strings for locations that have no share and store them in those
locations. Reusing shares will not cause security problems, [DCW13] shows
that when adding an element to the GBF, the probability that all locations
the element hashes to have been occupied by previously added elements
is negligible. In other words, the probability that successfully adding n
elements to the GBF is

1− pk × (1 +O(
k

p

√
lnm− k ln p

k
))

where p = 1− (1− 1/m)k(n−1).

3 Technical Overview

We start by describing the detailed protocol of the Blind Seer system. Then
we will present a brief discussion of our contribution of how to achieve a
server offline model and reduce the communication rounds to a constant
number.

3.1 The Blind Seer System Paradigm

Now we give a detailed description of the Blind Seer system.

Bloom Filter Search Tree. To understand a Bloom Filter Search Tree
(BFST), consider figure 3, for a b-ary balance tree T with height logb n, each
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Figure 3: An overview of Blind seer system setting [PKV+14]

leaf node is associated with a database record and each internal node v is as-
sociated with a bloom filter Bv. The filter Bv contains all the keywords from
the records that the node v has. For example, if a node contains a record
that has Jeff in the fname field, then we set a keyword e = ’fname=Jeff’ and
insert it to the bloom filter Bv. Notice that a bloom filter BFa,b contains all
keywords of records from Ra to Rb and all bloom filters at the same level
have the same length depending on the upper bound of number of keywords
at that level.

Therefore, for an incoming query with keyword (e1, · · · , et) wanting to
search (e1∧, · · · ,∧et), we start from the root of the bloom filter search tree
and check if it contains all keywords. If so, we continue checking all of its
children. We do this recursively until we reach the leaf nodes and the records
are the expected results with all the keywords.

Detailed Protocol Π. The functionality consist two phases, initialization
and query. Protocol Π [PKV+14]:

• Init: The server encrypts the database, shuffles all records and con-
struct the encrypted bloom filter. Then S sends everything to the
index server IS. Also, IS will hide the decryption key and shuffle them.
When the client ask the server for the decryption keys, S learns noth-
ing about which keys are sent to the client. Let n be the number of
records in the database.

1. The server generates a key pair (pk, sk) for a public-key semi-
homomorphic encryption scheme (Gen, Enc, Dec). Then the
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server S randomly shuffles the database and obtains the shuf-
fled database R = (R1, . . . , Rn) where Ri is a record. To encrypt
the database, for each record Ri, S picks a random string si, com-
putes s̃i ← Encpk(si) and set encrypted record R̃i = G(si) ⊕ Ri
where G is a pseudorandom generator (PRG).

2. The server constructs a bloom filter as we described above for
database R. S picks a random key k for pseudorandom function
(PRF) F . For each bloom filter Bv, S computes B̃v = Bv⊕Fk(v).

3. The server sends (pk, (s̃i, R̃i)), i ∈ [n] and the encrypted bloom
filter search tree Bv, v ∈ T to the index server. Also, S sends k
and the bloom filter hash functions H to the client.

4. The index server picks a random permutation: π : [n]→ [n]. For
each i ∈ [n], it picks a random string ri and computes s̃′π(i) ←
s̃i · Encpk(ri). IS sends all s̃i

′, i ∈ [n] to the server. S decrypts s̃i
′

and obtains s′i. Notice that s′π(i) = si · ri.

• Query: In this phase, the client and the index server will run a secure
function evaluation protocol to traverse the tree T . At the end, the
client obtains the expected encrypted records. Then the client gets
the corresponding secret key from the server and decrypts the records
to obtain the final output.

1. Starting from the root, the client constructs a query garbled cir-
cuit corresponding to the given SQL query. The client and index
server run the circuit to check whether it contains the query key-
words. If so, both parties run the secure function evaluation for
its all children.

2. If the search reaches the leaf node i, the index server returns
(π(i), ri, R̃i) to the client.

3. The client sends π(i) to the server and S returns s′π(i). Since

s′π(i) = siri and the client receives ri from IS, it can compute si

and decrypt R̃i to obtain the plain record.

One thing that needs to be mentioned here is that the server sends the
encrypted bloom filter to the index server and associated key k to the client.
Thus, when client and index runs the SFE protocol, they need to decrypt
the bloom filter first. Since we use state-of-art Yao’s garbled circuit to
implement the SFE protocol, it can be achieved by hardcoding key k into
the circuit and let the index server just use the encrypted bloom filter as
input. The circuit will decrypt the bloom filter during the evaluation.
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Leaked information. The allowed information leakage includes:

1. The size of the database (i.e.the number of records) are leaked to client
C and index server IS.

2. The client C knows the traversal path of the bloom filter search tree.

3. Anything about the garbled circuit can be leaked (i.e. topology of the
circuit).

4. Index server IS knows the bloom filter indices.

3.2 Sever offline model

Now we give a high level overview of the sever offline model where the client
only communicates with the index server to make private queries.

Construct GBF In [PKV+14], the server encrypts records and BF search
tree and sends them to the index server, also sends the PRF key k and hash
functions H to the client. After preparing the record decryption keys s′i
with index server, the server needs to stay online to wait for the request of
s′i from client and send it back to client. Our observation here is that we
can use a secret sharing scheme to recover the original records rather than
using a public key encryption system.

Consider how Π encrypts record Ri using a pseudo-one time pad, it
generates a random string s and computes encrypted R̃i using PRG G:

R̃i = G(si)⊕Ri

Instead of encrypting the original record, we secret sharing Ri and use
pseudo-random function to encrypt each share, then constructs a GBF to
store encrypted shares according to its keywords. In our protocol, the con-
struction of the BF search tree is the same as in protocol Π except for the
leaf nodes. When the server constructs the bloom filter Bv for each leaf node,
we also construct a corresponding GBFv to recover the original record. In
particular, for each keyword e in record Ri, secret sharing Ri into η shares
where η is the number of hash function that we use to construct BF.

Ri = s1 ⊕ s2 ⊕ · · · ⊕ sη

The encryption of each share is also mapped into η index numbers and we
store shares in each location at hi(e). Let PRF be a pseudo-random function
and sd be a seed to a PRF. Suppose a share si is mapped to location j, the
encryption is s̃i = PRF(sd, v‖j)⊕ si and stores s̃i at location j.
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Recover the original record The client and index server run the secure
function evaluation using garbled circuit for Bi. If Bi contains keyword e,
the client calls hash functions H on input e to compute the corresponding
indices of Bi for record Ri

1. Then client and sever invoke a η−out−of−m
oblivious transfer, with input η indices from the client and m strings from
the index server. At the end, the client receives η encrypted shares {s̃i}i∈[η],
decrypts each share using PRF(sd, v‖j)⊕ s̃i and recover the original record.

3.3 Constant Communication Rounds

In the naive blind seer system, the client and index server need to run secure
function evaluation at each level using a garbled circuit. The Yao’s garbled
circuit has a privacy guaranteed and efficient implemented. Start from the
root of BF search tree, for each internal node Bv, if it contains the query
keywords, then the circuit outputs all of its children of Bv. We recursively
search those children to check if they contain the query keywords. For the
leaf node, then the circuit outputs index v.

It is easy to see that the number of communication rounds between
client and index server in this phase is sublinear to the depth of the BF
search tree since we need to generate garbled circuits for BF at each level.
To reduce the communication rounds, our construction is inspired by the
idea from the recent TWORAM technique [GMP16]. The general idea is
that for the search tree in an ORAM, we can hardcode bucket information,
input wire labels for the next circuit and other necessary parameters in the
garbled circuits. Thus, the output of the circuit includes the next node to
be evaluated along with its garbled wire labels.

In our protocol, if the current node is not a leaf, we make the circuit out-
put all nodes whose parent contains the query keywords. If it is a leaf node,
output node ID and output wire labels 2 to index server. Index server sends
output wire labels to the client and the client calls the decoding algorithm
to obtain the plaintext.

Figure 4 is a formal description of the garbled circuit. The inputs to
such circuit include keyword statement e, garbled wire labels Labelprev from
its parent (from client if it is root), bloom filter Bv and its ID v. The
outputs of the circuit are all of its children that will be evaluated next along
with garbled input wire labels. Also, we need to hardcode kb which will be

1If we search for more than one keyword, such as e1 and e2, the client only needs one
of them to recover the record

2The output wire labels of leaf node also contains node ID, which indicates that the
BF contains the query keyword. Otherwise, wire labels can just indicate ⊥.
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Inputs: (e, Labelprev,Bv, v)
Outputs: {u}u∈children of v and Labelnext of u
Hardcode: BF decryption key kb, Label for all of its children

• v is not a leaf node. Return ({u}u∈children of v, Labelu) if Bv contains e. If
Bv does not contain e, Return ⊥.

• v is a leaf node. Return outputLabels.

Figure 4: Formal description of circuit Cv for BF Bv

used to decrypt Bv and all garbled wire labels Label which will be used as
garbled inputs for the circuit at the next level. Notice we use outputLabels
to represent the output wire labels for the circuit of the leaf nodes.

4 Main Construction

In this section, we present our main construction, which is a semi-honest
secure protocol for the functionality described in [PKV+14].

4.1 Protocol notations

We use e to denote the query statement and N be the number of records.
Let the length of each record be λ and the size of GBF is `.

4.2 Detailed protocol

Now we present the full protocol π. We refer to the client as C, the index
server as IS and the server as S.

Input of S: Database records D of size N , hash functions H = {hi :
{0, 1}∗ → [`]}i∈[η].

Server:

1. On input D = {D1, · · ·DN} and H, S shuffles the records. Let R =
{R1, · · · , RN} be the shuffled records.

2. S constructs BF search tree T as in protocol Π for shuffled records R.
Let Bleaf = {B1, · · · ,Bl} be all leaf nodes in T . S randomly chooses a
key kp for a pseudo-random function F . For each bloom filter Bv in
each node v of T , encrypt Bv as B̃v = Bv ⊕ F (kp, v).
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3. S randomly chooses a seed sd for PRF. For each leaf node Bt ∈ Bleaf ,
construct a corresponding garbled bloom filter GBt as in section 3.2:

• For each keyword e in record Ri, use XOR secret sharing scheme:
Ri = s1 ⊕ · · · ⊕ sη. Each share corresponds to a location in GBt,
i.e., si corresponds to location j = hi(e).

• S encrypts each share as s̃i ← PRF(sd, t‖j) ⊕ si and stores s̃i at
location j in GBt, GBt[j] = s̃i.

• After S inserts all shares, if there exists some location j in GBi is
empty, fill it with a random string: GBt[j]←R {0, 1}λ

4. Finally, S sends ({Bv}v∈T , {GBt}t∈[l]) to the index server and (kp, sd, topoT )
to the client.

Record Retrieval:

1. On input topoT and query statement e, the client invokes a garbling
scheme as we described in section 2.3 to construct the garbled circuit
for each Bv in T . The hardcoded parameters are defined in section
3.3. C sends all circuits in topological order. Also, C sends input wire
labels of the root circuit to IS.

2. IS evaluates the root circuit: ({u}u∈children of root, Label)← Ev(Croot, Labelroot).
If it outputs ⊥, send ⊥ to C. Otherwise, traverse the BF search tree
and recursively evaluate each ui ∈ {u}u∈children of root.

3. If IS obtains outputLabels, it sends {outputLabelsv}v∈[l] to C. Otherwise
send ⊥.

4. C calls De(outputLabels) and obtains {v}v∈[l].

5. C computes H(e) = {hi(e)}i∈η. For each v, C and IS invokes η-out-
of-` OT, with input {hi(e)}i∈η from C and GBv from IS. C receives
encrypted shares {s̃i}i∈[`]. C then decrypts each si = PRF(sd, v‖j)⊕ s̃i
where j ∈ {hi(e)}i∈η and recovers the output record Ri =

⊕
i∈η si.

Other discussion. Our protocol needs to construct garbled circuits for
all BFs in T , even if some circuits will not be used during the traversal of
the BF search tree. This is because we can not have the pre-knowledge of
the size of query statement e. Assume for queries that have return records,
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in the worst case, we construct N − (1 + b · dlogbNe) extra circuits where b
indicates the search tree is a b-ary tree with height logbN .

Consider the situation that a client has a bunch of queries that can
be sorted by the size of query statements. For those circuits that are not
consumed during the evaluation, we can reuse them for the next query that
has the same statement size. However, due to the security nature of garbled
circuit, it can be used only once. In other words, once the index server
evaluates the circuit, the client needs to refresh that circuit for the next
use. To solve this problem, the client needs to download all circuits that
are evaluated, decode the hardcoded value, update the garbled circuits and
send them back to index server. Notice that the refresh procedure causes
extra communication rounds between the client and index server.

Another possible improvement from recent work [HKK+14] addresses
the situation that when we want to evaluate the same circuit multiple times,
both in parallel and sequentially. It uses LEGO-based cut-and-choose tech-
nique to obtain lower amortized overhead in the multiple-execution setting
even in the malicious model.

4.3 Security Analysis

We now analysis the security of our protocol. But before we prove the
security against semi-honest adversary, first we need to specify the leakage
information for each party. The leakage profile is described in 5.

Leakage to S. S has all records and does not communicate with C or IS after
sending all messages to IS. Therefore, nothing is leaked to S.
Leakage to C. C needs to refresh all used circuits so the traversal pattern of BF
search tree is leaked.
Leakage to IS. IS learns some access pattern after multiple queries. Also, IS
learns whatever the garbled circuits leak during secure function evaluation.

Figure 5: Leakage profile Φ of protocol π

Now we prove protocol π is secure against semi-honest adversary under
the leakage profile.

Definition 1. Let f = (f1, f2) be a deterministic function. We say that
protocol π securely computes function f in the presence of static semi-honest
adversaries if there exists probabilistic polynomial-time algorithms S1 and S2
such that:

{S1(x, f1(x, y))}x,y
c≡ {Viewπ1 (x, y)}x,y

{S2(y, f2(x, y))}x,y
c≡ {Viewπ2 (x, y)}x,y
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In other words, whatever can be computed by an adversary in the pro-
tocol can be simulated by a probabilistic polynomial time simulator from
the party’s input and output only. Notice that in our protocol S is offline
after sending all messages to IS. Thus, we can consider out protocol as a
two-party secure computation between C and IS.

Theorem 2. The protocol π implements the Blind Seer DBMS in the pres-
ence of static semi-honest adversaries under the leakage profile Φ.

Proof. We describe two simulators S1, S2, w.r.t C, IS, to simulate the view
of each party.

Client is corrupted. Client’s view consists of PRF key (kp, sd), GBF
indices, output wire labels, the view in the oblivious transfer protocols, and
the corresponding encrypted shares.

We start by describing simulator S1: On input (e,Re) where Re denotes
the desired records corresponding to the query statement e, S1 uniformly
chooses random (kp′, sd′), secret sharing Re = s′1⊕, · · · ,⊕s′η 3. Then, S1 ran-
domly chooses t′, (j′1, · · · , j′η) and encrypt each share s̃i

′ ← PRF(sd′, t′‖j′)⊕
s′i. Also, S1 generates all garbled circuits and let SOT1 be the simulator to
obtains C’s view in oblivious transfer. We guarantee that SOT1 exists because
the security of the oblivious transfer protocol. In other words, S1 can sim-
ulate client’s view in the oblivious transfer without knowing IS’s input. By
the correctness of garbled circuit, C obtains the final output v, except only
with negligible probability. Notice that C receives outputLabels rather than
the real output v, but the decoding of these distributions of outputLabels is
equal to v. So we can generate outputLabels′ from the garbled circuits that
are generated from S1. Also, S1 call hash function H(e) which concludes
our description of S1:

(e,Re, kp
′, sd′, {s̃i′}i∈[η], SOT1 (e,Re),H(e), outputLabels′})

We now prove that

{S1(x, f1(x, y))}x,y
c≡ {Viewπ1 (x, y)}x,y

in a hybrid model 4.

3For simplicity, we assume the final result contains only one record.
4In the proof, we omit the random tape rC that is used for S1 to generate the garbled

circuits
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• H0 : Simulator plays exactly like an honest client and all ideal func-
tionalities except that S1 generates its own randomness of kp′ and sd′.
It is easy to see that this hybrid is identical to the real interaction with
π.

• H1 : Same as H1 except that call its own secret sharing scheme and
encrypt each share to obtain {s̃i′}i∈[η]. We have H1 ≈ H0 by the
security of the secret sharing scheme and PRF, the adversary can
distinguish the distributions only with negligible probability.

• H2 : S1 generates all garbled circuits and obtains outputLabels’ from
the decoding of v. By the correctness and authenticity of garbled
circuits, we have H2 ≈ H1

• H3 : Since S1 has all garbled circuits, S1 replace the real view in
oblivious transfer in protocol π by the simulated view of SOT1 (e,Re).
And we claim that H3 ≈ H2 because the security of oblivious transfer.

Hence, the simulator in H3 is our final simulator S1 and the proof of this
case is concluded.

Index server is corrupted. In this case, we also construct a simulator
S2 that generates the view of IS in protocol π.

The view of IS consists messages from S and messages from C. It re-
ceives ({Bv}v∈T , {GBt}t∈[l]). However, these messages does not leak any
information, thanks to the security of PRF and secret sharing scheme. In
other words, we can consider the messages between S and IS as initialization
phase. In the following, we only construct S2 that simulates the messages
that IS receives from C.

First observe the view of IS. It consists garbled circuits, garbled wire
labels for all inputs, and the view in the oblivious transfer protocol.

Now we describing the simulator S2: On input ({Bv}v∈T , {GBt}t∈[l]),
S2 needs to simulates all garbled circuits. However, S2 can not construct
garbled circuits honestly since it does not know the real input from C. There-
fore, S2 construct “fake” garbled circuits that always evaluate to the correct
outputs. This can be achieved by letting the garbled tables in which all
ciphertexts are the encryption of the same key. During the evaluation, no
matter what keys IS receives, it always evaluate to the same output wire. As
this is done in most prior work, we skip the details here. The construction
details of “fake” garbled circuit and the simulation of garbled input wire la-
bels refer to [LP04]. For the the view of IS in the oblivious transfer protocol,
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as in the case that C is corrupted, the security properties of oblivious trans-
fer protocol guarantee that there exists a simulator SOT2 that can simulate
such view. Therefore, the formal description of S2 is as follows:

(GC ′, Label′, SOT2 ({Bv}v∈T , {GBt}t∈[l]))

And we now prove that

{S2(y, f2(x, y))}x,y
c≡ {Viewπ2 (x, y)}x,y

• H0 : S2 plays the role of an honest IS as in the real protocol π. All
messages are from C.

• H1 : H1 is the same as H0 except that, rather than letting C generates
all garbled circuits honestly, S2 generates “fake” garbled circuits GC ′

as we described above. Also, S2 generates Label’ which are from GC ′.
Due to the correctness and obliviousness of garbled circuits, we have
H1 ≈ H0.

• H2 : In H2, S2 replace the real view in oblivious transfer in protocol
π by the simulated view of SOT2 ({Bv}v∈T , {GBt}t∈[l]). And we claim
that H2 ≈ H1 because the security of oblivious transfer.

In H2, we have our simulator S2 that can construct the view of IS without
knowing C’s real input and the proof of this case is concluded.
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