
Dynamic Specification Mining with Out-of-Scope E�ect
Awareness and Result Classification

Ziyad Alsaeed
Computer Science Dept.

University of Oregon
Eugene, OR 97403-1202

zalsaeed@cs.uoregon.edu

ABSTRACT
Dynamic speci�cation mining techniques attempt to �ll gaps in
missing or decaying documentation of software systems to support
software maintenance tasks such as testing or bug �xing. Current
dynamic mining techniques are blind to common coding styles, and
in particular to design patterns that involve dynamic data structures
such as lists of listeners for event noti�cation. Because they cannot
recover properties involving these dynamic structures, they may
produce incomplete or misleading speci�cations (e.g., suggesting a
method may be “pure” because its e�ects are produced indirectly
through event noti�cation). We have devised an extension to cur-
rent dynamic speci�cation mining techniques that ameliorates this
shortcoming. The key insight is to monitor not only values dynami-
cally, but also properties to track dynamic data structures commonly
used in design patterns. We have implemented this approach as an
extension to the instrumentation component of Daikon, the leading
example of dynamic invariant mining in the research literature. We
have applied our tool to widely used software systems published
on GitHub to illustrate and evaluate the usefulness of this pliable
monitoring for elucidating the overall behavior of target systems.

KEYWORDS
dynamic analysis, speci�cation mining, dynamic data structure
analysis, design patterns

1 INTRODUCTION
So-called speci�cation miners and invariant detectors extract

potentially useful conjectures 1 about program behavior from pro-
gram source code [22, 24, 25], dynamic monitoring of behavior
[6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 23, 29], or both [8]. Ideally these
would be true speci�cations or design descriptions, as might be
produced by a human programmer with a deep understanding of a
program’s design. In practice, it is di�cult to infer complex rela-
tionships that would be most useful in maintaining, extending, or
evaluating a software system. Current software invariant detectors
are best at detecting simple relations in static structures, such as
relations among simple variables stored as �elds of an object or
local variables of a method. Such behavior describes objects in isola-
tion from others, but fails to capture complete object’s interactions
with other peer objects in the system. More speci�cally, they are
limited in detecting relations in dynamic data structures, including

1The mined speci�cations are called "conjectures" or "likely-invariants" because their
observation is highly dependent on the given unit tests. It is generally impossible for
given tests to explore all possible paths in a system.

InvocationNotifierHandler

- List<InvocationListener> invocationListeners;
etc ...

+ handle(Invocation invocation)
etc ...

<<interface>>
InvocationListener

+ reportInvocation(MethodInvocationReport)
etc ...

has a 
list of

fields ...

methods ...

fields ...

methods ...

VerboseMockInvocationLogger

fields ...

+ reportInvocation(MethodInvocationReport)
etc ...

implements

Figure 1: UML class diagram of listeners dynamically at-
tached to an object in the Mockito framework [4].

common design patterns such dynamically attached observers or
views.

We posit that dynamic invariant detectors can be extended
to recognize important relations among objects in dynamically
established relations, such as between an observer and its
subject in the observer pattern or a view and model in the
model-view-controller pattern. To do so requires characterizing
dynamic data structures (e.g. the list of observer objects to
be noti�ed by a subject object in the observer pattern) and
tracking relations that span variables among multiple objects.
For example, the method handle(Invocation) from [4]
(see Figure 1) loops through existing elements of its list of
listeners (invocationListeners) and calls the method
reportInvocation(MethodInvocationReport) on
each listener which on return alters some variables for each listener.
However, based on invariants reported by Daikon [12], one might
believe the method has no e�ect (pure). Such misleading inference
is not caused by a shortage in the given unit tests, rather by scope
limitation.

The given tests to drive a system observation could heavily
in�uence the accuracy of the speci�cation miner. Nevertheless, es-
tablished work to observe a target application symbolically (e.g.
Csallner et al. [10]) suggested a notable improvement in the in-
ference accuracy. However, such solution does not solve the issue
of describing the system as a whole because of complex relation-
ship among its objects. So, the actual challenge is to redesign the
instrumentation methodologies to establish pragmatic limits of
data structure exploration that are su�cient to recognize typical
relations without exploding the cost of monitoring or producing
excessive noise in inferred invariants.



We have designed and implemented a proof-of-principle pro-
totype instrumentation tool called eChicory (abbreviation of En-
hanced Chicory) for inferring invariants about objects in dynamic
relationships by extending the front end of Daikon (Chicory) dy-
namic invariant detector for Java [12]. With eChicory, we demon-
strate that our approach can recognize dynamic relationships that
are beyond the scope of a single class or object, including relation-
ships that arise in common design patterns such as the observer
and model-view-controller patterns mentioned above. We also de-
scribe limitations of our current prototype, distinguishing between
some that we believe could be straightforwardly overcome with
more time and engineering e�ort and others that we pose as open
problems for further research.

We also look at the results of the dynamic inference techniques
from an unusually embraced perspective for evaluation. Because we
are targeting larger test subjects compared to existing techniques,
and since most of them do not have associated up-to-date speci�-
cations (ground truth), we use existing static analysis techniques
to produce a partial ground truth for comparison. Method purity
(absence of side e�ects) is one such partial ground truth. Instead of
heavily depending on humans manually producing ground truths
about target applications, then measure the techniques’ precision
and recall, we simply measure weather a technique has captured
any sort of e�ect of a method or not.

We demonstrate our contribution in the context of the Java
library and the Daikon [12] invariant inference tool. Similar ob-
servations, nevertheless, are applicable on di�erent programming
languages to inference tools.

2 BACKGROUND AND EXAMPLE
This section provides necessary background for discussing cur-

rent speci�cation miners’ shortcomings in observing complex rela-
tionships of objects and establishes background for our proposed
solution. Section 2.1 reviews existing approaches potentials and
limitations and helps narrowing down the focus on the root cause
of the problem and the scope of our contribution. Section 2.2 estab-
lishes an example that would help in understanding the limitations
of current speci�cation miners, that would be also used later to
demonstrate out contribution. Section 2.3 shows limitation on re-
sults based on the evaluation of current techniques and how it is
incapable of showing the general behavior of complex system.

2.1 Potential and Limitations of Established
Speci�cation Miners

There are many established techniques to mine software spec-
i�cations dynamically. To some level, regardless of what is the
source for inference and what are they looking for, these tech-
niques should ensure software speci�cation being up-to-date and
accurate. Many dynamic inference techniques use the system’s
source code [8–10, 12, 13, 15, 16, 18, 21, 29]. Others infer speci�-
cations from delivered binaries [19, 23]. A few mine logs [6, 7].
These techniques di�er in terms of what are they looking for in
a target application. Daikon [12] and few others [9, 10, 15, 18, 29]
attempt to generate speci�cations in the form of likely invariants at
each method entrance and exit points. Other techniques [6, 7, 21]
attempt to construct state transition models that capture the target

system method calling sequences. These techniques intend to infer
speci�cation of objects in isolation from the other objects in the
application.

The potentials of using automatically inferred speci�cations in
the form of invariants (pioneered by [10, 12]) are endless. For ex-
ample, many established tools such as [5, 11, 16, 17, 31] construct
di�erent interpretation and views of a given system based on the
automatically generated traces and invariants to build an architec-
tural view of the system. However, reported invariants are usually
noisy (many uninteresting or misleading invariants are reported)
or limited in scope, which could a�ect the results of these tools.
Thus, the accuracy of the invariant mining techniques is highly
important above all other current possible limitations.

Architecturally, di�erent people look at a system from di�erent
levels of abstraction to understand it. These levels of abstrac-
tion express speci�c scenarios of a system’s behavior. For example,
Lorenzoli et al. [21] address how di�erent data inputs could lead
to di�erent behaviors. Generalizations of the inferred model in
that case would lead to a less accurate result. Another factor is
initial state objects. For example, as Krka et al.[16] shows, a stack
initialized with size zero, will be behaving in a di�erent way than
any other stack of a positive size. Considering these e�ects during
target system analysis will constructs a more thorough description
of the target system. We do not attempt to address such data input
factors; instead, we address other abstraction limitations in Daikon.

Accuracy limitations and noise show their signi�cance when try-
ing to construct transition models based on the inferred invariants
[11, 16, 17] for complicated yet widely used applications. One can
ask two simple questions 1) do the inferred invariants describe all
objects interfaces? And 2) does the inferred speci�cation describe
the system as a whole? The answer to the �rst question will mostly
be yes (depending on the given driving test to observe the system),
while the answer to the second depends on how complicated the
system is. Current mining techniques are blind to the e�ect of ob-
jects on each other that are written according to common coding
styles or design patterns such as Observer Pattern, MVC, State Pat-
tern, or Command Pattern. In looking closely to the essence of the
problem and its common characteristics, we found that challenges
of observing dynamic data structures (DDS) caused the absence of
speci�cations that describes the system as a whole.

The nature of DDS makes them very useful for many functional
and non-functional requirements. For example, in the Observer
Pattern case keeping a list of observers allows for modi�ability
where an observer can be included at any point of time in the
program execution or removed. Yet, this very nature of �exibility is
what makes it di�cult to observe the e�ect on elements of a DDS an
object has. The e�ect could be anything like manipulating the state
of elements in a DDS (changing a value of an element’s variable)
or changing the size of the DDS (adding or removing an element).
Leading and recently published speci�cation miner techniques are
only observing a very limited set of well know Java’s library DDS
and they are only observed in terms of size. Any manipulation of the
state of complex elements (non-primitive) in a DDS or size changing
of an excluded DDS is unobserved. Thus, a complete view of how
the system modules are interacting with each other is absent.

2



Based on our observation of the result of current inference tech-
niques such as [12], we found that the issue is not the core func-
tionality of inference process; rather it is a limitation in providing
the inference engine with comprehensive traces to infer more ac-
curate invariants. The instrumentation process for most of the
inference systems lack any intelligence. This phase considered as
one that should blindly provides data (traces) about the target ap-
plications regardless of the data’s meaning or shape. However, it
is well understood that when the instrumentation phase includes
some understanding of the observed data and provides some clues
to the inference engine, better speci�cations are likely reported.
For example, Guo et al. [14] introduced a technique that groups
variables based on their abstract types (e.g. int time is in time
group and int temp is in temperature group, thus they should
not be compared against each other) before feeding it to the infer-
ence engine. This minor change allowed the inference engine to
report less noisy invariants of greater value to humans.

Current instrumentation techniques observe each object’s ar-
guments, �elds, and return variables trees with depth of two. A
tree �xed depth needs to be set to avoid loop references and ex-
tremely large trees. Despite it being arbitrary value, in practice
the given depth (depth = 2) proved to be good for inferring thor-
ough speci�cation compared to others. A violation, however, of
the given depth is observed on established instrumentation tools
(e.g. Chicory) when encountering any complex �eld (e.g. Dynamic
Data Structure). These tools settle for little information about the
given complex �eld such as the number or names of elements in
the DDS instead of constructing a comprehensive view of them. We
think that such behavior should only be acceptable if the observed
complex �eld (whether DDS or any other possible complex �eld)
is encountered at the deepest level of the given object information
tree, at which we only need to know general information about the
complex �eld rather than exploring its elements or sub-�elds that
introduce a new level in the information tree, thus violating the
depth value.

2.2 Application Example
Di�erent design patterns introduce di�erent complexities for

instrumentation tools. It is common, for example, in the observer
pattern for actions on objects to be triggered by a publisher that
would a�ect multiple listeners. Such �exibility is made possible by
the usage of DDS. To illustrate such behavior, we constructed an
example that demonstrates a real world and widely used coding
style. However, for space limitations, we present it in its simplest
form 2. Our example consists of two simple classes Modifier and
Receiver.

1 public class Modifier {
2 public List<Receiver> receivers = new ArrayList<Receiver>();
3
4 public void addReciver (Receiver rcv){
5 receivers.add(rcv);
6 }
7
8 public void modify (){
9 for(Receiver rcv:receivers)

10 rcv.increment();
11 }
12 }

Example 1: Class Modifier

2Actual examples from deployed software systems follow in section 4.

The Modifier as shown in Example 1 allows for adding un-
limited number of Receivers to its DDS of type ArrayList.
In addition, it allows for manipulating the set of receivers it has
at any moment in the program lifetime by calling the method
increment() on them through the interface modify.

1 public class Receiver {
2 public int internalValue = 0;
3
4 public void increment(){
5 internalValue+=1;
6 }
7 }

Example 2: Class Receiver
The Receiver class in Example 2 is even simpler. It has a

variable internalValue of type int that is always initialized
to 0. Moreover, it provides a public interface increment() to
modify its only variable value by incrementing it by one each time
the method is called.

2.3 Traditional Inference Results
Given the simple Modifier-Receiver example, it is easy to

see how each method of each class is interacting within the system
scope. Moreover, it is also easy to see the relationship between
the Modifier and Receiver. That is, at any time of calling
Modifier.modify(), any Receiver’s internalValue
available in the Modifier.receivers array list would be in-
cremented by 1.

19 ===========================================================================

20 PaperExample.Modifier.addReciver(PaperExample.Receiver):::EXIT

21 this.receivers == orig(this.receivers)

22 rcv.internalValue == orig(rcv.internalValue)

23 size(this.receivers[])-1 == orig(size(this.receivers[]))

24 rcv.internalValue == 0

25 this.receivers[rcv.internalValue] has only one value

26 orig(rcv) in this.receivers[]

27 this.receivers.getClass().getName() ==

orig(this.receivers.getClass().getName())

28 ===========================================================================

29 PaperExample.Modifier.modify():::ENTER

30 this.receivers[] contains no nulls and has only one value, of length 4

31 this.receivers[].getClass().getName() == [PaperExample.Receiver,

PaperExample.Receiver, PaperExample.Receiver, PaperExample.Receiver]

32 size(this.receivers[]) == 4

33 ===========================================================================

34 PaperExample.Modifier.modify():::EXIT

35 this.receivers == orig(this.receivers)

36 this.receivers[] == orig(this.receivers[])

37 this.receivers[] contains no nulls and has only one value, of length 4

38 this.receivers[].getClass().getName() == [PaperExample.Receiver,

PaperExample.Receiver, PaperExample.Receiver, PaperExample.Receiver]

39 size(this.receivers[]) == 4

40 this.receivers.getClass().getName() ==

orig(this.receivers.getClass().getName())

49 ===========================================================================

50 PaperExample.Receiver.increment():::EXIT

51 this.internalValue >= 1

52 this.internalValue - orig(this.internalValue) - 1 == 0

Example 3: Inferred invariants of the
Modifier-Receiver example based on the Daikon’s
original instrumentation front-end Chicory.

We wrote an expressive and exhaustive test to help the inference
tools (in our case Daikon [12]) infer as accurate results as possi-
ble given its original instrumentation tool (Chicory). As shown
in Example 3, Daikon was able to report speci�cations that ex-
pressively describe the classes’ behavior and their interactions as
long as they are not contained within complex data structures.

3



For example, despite the noise, Daikon was able to infer that
Modifier.addReceiver(Receiver) has the general e�ect
of increasing the size of the ArrayList by one each time the
method is existed as shown in line-23. Line-52, also, shows that the
Receiver.increment() method has the e�ect of increment-
ing the internalValue by one. However, none of the inferred
invariants in lines 28-40, which describes Modifier.modify()
behavior at the observed entrance and exit points, can describe
the e�ect of the given method. In fact, those invariants suggest
that the Modifier.modify() method is side-e�ect free both
on its class scope and the system scope. This misleading inference
is caused by not looking at the internal �elds of the objects stored
in the Modifier.receiver array list.

3 INSTRUMENTATIONWITH DDS IN MIND
In this section, we demonstrate the challenge of tracking DDS

in its abstract form highlighting the obstacles and the way we
overcome them. Section 3.1 presents the challenges and the possible
bene�t we would gain by overcoming those challenges. In the
following two sections (3.2 and 3.3) we describe in detail how are
we observing the elements of possible DDS and the rationale behind
the once we report. The last section 3.4 discusses the possible DDS
that we could apply on our technique.

3.1 Challenges and Bene�ts
As we stated in the introduction, the very dynamic nature of the

well-known and widely used dynamic data structures is what makes
it useful to the programmer and at the same time challenging to
observe with inference tools. The usefulness of those kinds of data
structures is clear. However, to understand the challenges we need
to understand how current mining techniques are observing the
target application. Daikon [12], for example, expects a well-de�ned
structure of variables to track that de�nes a given method at an
entrance or exit point.

The variables tree structure in Figure 2 shows the ac-
tual tree structure Chicory (current instrumentation tool
for Daikon) will generate for the method Modifier.add-
Receiver(Receiver) from our last code example at an exit
point. Also, the �gure shows a potential possible branching repre-
sented in gray just to fully explore and understand the technique
(will elaborate on this in the following paragraph). The actual nodes,
as shown is the diagram, are constructed based on the passed ar-
guments and object �elds (another branch would be constructed
if the method addReceiver has a return value). User de�ned
objects are the only �elds or arguments that are further explored.
The variables receivers and internalValue are a DDS and
a primitive respectively, thus no further exploration conducted. The
exploration process in the case of the user-de�ned object thus halts
and no more variables to track added.

As the gray potential example shows, we are assuming that the
Modifier has a user-de�ned object a. The object a has another
user de�ned object b and b has an instance of c . Even though c also
has an instance of a the exploration process stops at c to avoid such
in�nite loop of references. At such case, it is clear why an arbitrary
�xed depth is necessary. Even though the depth 2 could result on
the loss of valuable insight about the system, it is a widely used

Actual

Potential

Legend

Figure 2: Illustrating the actual variables tree structure
of method addReceiver at an exit point using Chicory.
Also, because the object does not have user-de�ned object,
we show a potential construction of the variables tree by
Chicory assuming the object has a user-de�ned �eld a.

value and arguably helps exploring a target application thoroughly.
Thus, we can see that when Chicory encounters complex �elds (e.g.
DDS) it violates the given depth rule by discarding the exploration
process of that �eld.

In Chicory, the given structure is de�ned as soon as a method is
invoked and must never change. All future invocations of the given
method will use the given tree structure of the method to track traces
(values of variables). However, this established behavior is ignoring
the fact that the receivers DDS could hold some interesting
element to track at a future point in the program execution. Also,
it ignores the fact that an element could exist at a point in time
in a DDS and then be removed before the application halts. These
behaviors makes it challenging to track DDS’s elements.

Time in the instrumentation stage represented on the se-
quence in which a method is invoked. For example, consider
the method addReceiver, we can represent the invocation se-
quence as {addRecevier1,addRecevier2, ...,addReceviern }, where
addRecevier1 is the �rst time the method was invoked and
addReceviern is the last time the method was invoked. In our appli-
cation it is possible to have the DDS receivers = {e1, e2, ..., em } at
time addRecevier1 and the same DDS receivers = {e1, e2, ..., em+1}
at addReceviern . Hence, the given technique to observe variables
structure is limited.

Chicory records a dynamic sequence of values assigned to vari-
ables, but the system �elds structure (the set of variables it tracks)
is static. Dynamically tracking the values only, could be bene�cial
in observing behaviors like size change (e.g. observing that method
addReceiver increases the size of the given array list). How-
ever, in addition to violating the given max_depth value, Chicory
drives Daikon to miss the opportunity of observing the states of
the elements in a DDS (e.g. observing that the method modify is
incrementing each internalValue of the existing receivers
by one). A fully dynamic instrumentation tool is required to show
such e�ect.

4



... ... ...

...

Figure 3: A sequence of possible variable trees of a method at entrance or exit point.

3.2 Tracking System Flow
To overcome the challenge of the changes in variables structure of

a given method execution point, not only the values of the variables
should be evaluated each time a method is invoked, but also the
variables structure should be regularly evaluated. For example, each
time the method addReceiver is invoked a new variables tree
structure must be constructed and bu�ered. Each time a method
variable tree is constructed, we observer possible current elements
of a given DDS treating them as user-de�ned classes. For each
bu�ered method variable tree, we record traces (values).

The invocation sequence shown in Figure 3 illustrate the steps of
constructing variable trees of a method at each possible invocation.
Given any method at its entrance or exit point, in addition to the
observation of user-de�ned �elds, we observe all the elements of
a possible DDS. As long as we are within the given max_depth,
we explore the elements’ �elds if they are non-primitives. Even if
the elements themselves are a type of DDS, we still observe them
by only exposing their elements (since at that point we are surely
exceeding the given depth).

3.3 Unifying the Knowledge about the System
The presented behavior in section 3.2 should ensure that we can

always observe elements of a possible DDS. Moreover, it ensures
that we keep track of the elements’ �elds values similar to any object
that is associated with the current method. However, such design
introduces issues like the inconsistency in the variable trees. Thus,
it is not possible to feed it to an inference tool designed for �xed
variable structures. To mitigate this, we introduce a unifying stage
to unify all the variable trees of a method considering elements
additions and removal from the DDS.

The essence of the issue is that it is possible to have (1) an
element be introduced that was not present at an earlier invocation
or (2) an element that exists before in the DDS but was removed
at a later point on time. For the �rst case, we found out that we
could treat a newly introduced but never later removed element
as a variable that is not instantiated yet. For example, from Figure
3 we can safely unify the variables tree from invocation1 with the

variables tree from invocation2 by considering the tree from the
latter invocation for both invocations. And updating the traces
generated for invocation1 by introducing a nonsensical trace for
the elements e3 and e3v . For these two variables, we can consider
the values at invocation1 as nonsensical, which is how Chicory
handles uninitialized variables. However, for the second case where
an element is present in an early variable tree then be removed in a
later one. Because Daikon was not designed to track an evolving set
of �elds, a variable cannot be removed or given a nonsensical value
once it is initialized. We believe that in such case the element’s
state is not as interesting as the fact that it was taken out (size
change). Thus, we take the variable out from all trees as well as
its traces for that particular method in which its existence is not
always guaranteed. Therefore, we only observe the size of the DDS
but not the state.

This behavior should guarantee that all uni�ed variable trees and
traces are readable by an inference tool. Moreover, the technique
should guarantee that the behavior of the target application is intact
(no values are wrongly changed or introduced).

3.4 Analysis of Applicable DDS
In building an instrumentation tool, a good e�ort needs to be fo-

cused on the language syntax and semantics to dynamically observe
any target application. Another aspect that needs to be focused
on is the commonly used libraries for the targeted language. For
Java, the Java Development Kit is the standard library that provides
many generic implementation of DDS. Chicory is implemented in a
way that partially takes advantage of the already known implemen-
tation of standard DDS. For example, when encountering a usage
of the List implementation of the JDK, Chicory is only designed
to look at how many elements are in the list and what are they. It
does not attempt to further analyze the elements of the list.

Embracing the prior knowledge we know about these libraries
to allow our instrumentation tools to provide better traces should
be the norm. Especially, that current instrumentation tools are
designed to take advantage of these libraries interfaces to derive
some knowledge about DDS (like the Chicory case with lists). It is

5



possible to know the generic type of the elements in the DDS using
the target application and re�ection from Java. Thus, using more
known interface to get, analyze and construct structure variable
trees of the DDS elements is feasible.

There are di�erent types of DDSs in the JDK. We analyze
all the concrete DDSs types that extends or implements the
Collection and Map interfaces. Given that we can identify
each element in the given DDS by recording its hashCode (the
possibility of collision is minimal), then it is safe if the order of
elements is changed from one observation time to another. Also,
given that the given interface insures we would be able to get the
elements as an array guarantees that all implementations provide
a known method for element retrieval. Thus, we believe that
most of the concrete classes that implements the List interface
(including Vector<T>, Stack<T>, ArrayList<T>,
LinkedList<T> and CopyOnWriteArrayList<T>), the
Set interface (including HashSet<T>, TreeSet<T>,
LinkedHashSet<T>, CopyOnWriteArraySet<T> and
ConcurrentSkipListSet<T>), the Queue interface
(including ArrayDeque<T>, PriorityQueue<T>, Con-
currentLinkedQueue<T>, ArrayBlockingQueue<T>,
PriorityBlockingQueue<T>, LinkedBlocking-
Deque<T>, LinkedBlockingDeque<T> and Linked-
TransferQueue<T>), and the Map interface (including
Hashtable<K, V>, HashMap<K, V>, TreeMap<K,
V>, WeakHashMap<K, V>, LinkedHashMap<K, V>
and IdentityHashMap<K, V>) are applicable cases. We
only exclude implementations that allow of concurrent access
of the DDS’s elements. For our prototype, we only implement
the observation mechanism of the List interface as a proof of
concept.

4 EVALUATION
This section presents the evaluation methods and results of apply-

ing our approach for invariants mining. We discuss the reasoning
behind the inapplicability of the precision and recall measurement
for our evaluation in Section 4.1 and describe the alternative method
for evaluating our approach in Section 4.2. Section 4.3 shows the
candidate target applications and the criteria for selecting them as
well the results from our evaluation.

4.1 Precision & Recall
In research literature on dynamic invariant mining, precision

and recall has being the main approach for evaluating accuracy of
existing techniques. In a nutshell, to evaluate precision and recall
for any target application humans would need to develop a set
of speci�cations manually and consider that as a ground truth.
Then, given the results from the introduced inference technique
the precision: how many of the reported invariant are relevant
compared to the given ground truth and recall: how many relevant
invariants are reported given the ground truth are measured.

Precision and recall common usage on evaluation made us con-
sider already established evaluation techniques [20, 27]. However,
these proposed techniques are either require human intervention
[20, 27], which we are trying to avoid, or focus on di�erent quality
dimensions such as scalability and robustness [20].

Such evaluation approach su�ers from multiple issues. First,
even if di�erent people revise the established ground truth, it is
still open for debate and can be biased for whatever perspective the
inference system is focusing on. Second, it involves a lot of human
e�ort when applied on large real world applications; in practice, this
limits evaluation of precision and recall to small examples. Third, we
prefer a ground truth that is not dependent on developer’s opinion,
which could di�er from developer to developer. An approach that
can be easily scaled and fully automatic to be used against real
world applications is necessary.

4.2 Purity with Dynamic Analysis
Although we do not have access to complete ground truth, we can

evaluate the extent to which invariant detection agrees with partial
ground truth that can be extended automatically by other means.
The notion of purity is already established and well de�ned in static
analysis domain. Finding pure methods has never being the goal
of dynamic analysis techniques. Rather, they report invariants that
highlights what is e�ected by a method in terms of �elds or passed
arguments. However, the essence of the problem we observed is the
lack of reported e�ect on non-pure methods. Thus, we believe that
it is fair to say if a given method is not pure and the given invariant
miner approach fails to capture any e�ect, then the invariant miner
is inaccurate. Such evaluation can be conducted automatically and
eliminate any biased.

In looking for a tool that would establish the ground truth using
static analysis, we found two candidates [26, 28]. Both applications
are research-based tools. Thus, in our decision making for which
one to use, we focused mainly on which one is more likely to work
against all target applications. Given that Jpp [28] has not being
update since 2006 and that it failed against minor examples, we
decided to go with the jPure [26] even though it is too has not
being updated lately (last update was in 2011). In our evaluation,
we observe each target class using jPure. Given the results from
eChicory and the results from Chicory, we say the technique that
is closer in agreement to the number of pure method to the one
from jPure is more accurate.

4.3 Experiment
4.3.1 Artifact Selection Criteria.
In selecting target applications, we selected GitHub as the source

of artifacts. We considered Java applications of the size between 2K
and 10K LOC. The given size increases the probability of encounter-
ing interesting implementation that adapts common design patters.
Moreover, it ensures that we are targeting modest but non-trivial
applications. Evaluation of dynamic invariant detection with large
software systems is rare to nonexistent in the research literature.
Ernst et al. [12] in the original Daikon paper evaluate their ap-
proach against an application of size no larger than 563 LOC. Krka
et al. [16], evaluate their approach against examples of smaller size
than the original StackAr example that is widely used to evaluate
speci�cation miners.

In addition to the size of the target application, we depended on
the issues tracker, pull requests, and wiki of the given repository
looking for insight that the given artifact implements one of the
design patterns we are targeting. This technique does not guarantee

6



Application Description Class # of Methods Targeted Design Pattern
Mockito [4] Mocking framework for unit

tests in Java
InvocationNoti�erHandler 7 Observer Pattern

Apache Struts [1]
Framework for creating Java
web applications

DefaultActionInvocation 29

MVC

DefaultUnknownHandlerManager 7
Con�gurationManager 16
VelocityManager 18
SimpleTextNode 17
SimpleAdapterDocument 43

JabRef [3]
BibTeX Management
application

EntryEditor 22

MVCCleanupActionsListModel 8
UndoableModifySubtree 4
ImportInspectionDialog 21

Zeppelin [2]
A web based interactive data
analytic tool

Folder 23
Observer PatternNotebook 45

NotebookRepoSync 31
Table 1: Selected target applications, their classes and the number of observed methods on them.

that we can �nd a useful implementation or it actually re�ects
the available source code. However, we mitigate that by looking
at artifacts with more stars (GitHub indicator of popularity) or
maintained by a well-known organizations (e.g. Apache Software
Foundation). We also targeted applications with high test coverage
(if reported) to avoid test incompleteness.

The given search criteria resulted in four di�erent artifacts thus
far (see Table 1). When observing a given application we do not
attempt to run eChicory (or Chicory) against all available classes
in the target application. Instead, we look for classes that would
express our contribution and test them. Our technique should re-
sult in similar results as in original Chicory for all other classes.
Any change could be in reporting invariants that are true but not
interesting (e.g., a variable in a DDS has not changed after invoking
a method).

4.3.2 Artifacts Analysis.
To evaluate our approach we ran eChicory and Chicory against

each class from Table 1 alone. Ideally, each class should have its
own designated unit test. However, in practice this is often not the
case. Thus, in the case where a class has no designated unit tests we
ran all available unit tests within a module or the whole application
to increase the probability of testing the given class thoroughly. We
then feed the given traces from eChicory and Chicory to the same
version of Daikon (released January 5, 2017). From the resulting
invariants we look at whether a method has any e�ect of any sort
(e.g. a variable value is changed) for each given invariant. A method
that has invariants shows an e�ect is non-pure. Otherwise, the given
method appears pure based on the given instrumentation technique.

We conducted our experiment on a Linux virtual machine that
has 5GB of memory and uses the Intel i7-3667U CPU on the host
machine. In the only example from Mockito there exists seven
methods. A constructor, which clearly sets the only two �elds of the
class, two expectedly pure getters, a setter for one of the �elds, and
three special purposes methods (handle, notifyMethodCall,
and notifyMethodCallException). Each one of the three

special purpose methods are iterating over the DDS elements call-
ing methods that eventually changes the elements’ status. Based on
jPure, the class has no pure methods at all. Both instrumentation
tools detect that the constructor is not pure. Moreover, both agree
on showing that the getters are pure. However, neither Chicory nor
eChicory is able to show the e�ect of the only setter and thus con-
sider it pure. Most importantly, to the contrary of Chicory, eChicory
was able to help Daikon infer the e�ect of the three special purpose
methods. Thus, all of the three methods are non-pure according to
eChicory, which is closer to the result report by jPure.

For the other applications, our testing was not fruitful for many
di�erent reasons. Inadequate unit tests of these applications is
the general issue. In Apache Struts for example, the classes
DefaultUnknownHandlerManager, VelocityManager,
SimpleTextNode and SimpleAdapterDocument are all ei-
ther not hit at all as a class when we ran all the available unit
tests or partially hit (small portion of the available methods). For
JabRef the issue is even worse where all the unit tests related to
the package we are interested in (the GUI package) are broken. The
application’s development team con�rmed that the GUI related tests
are pixel sensitive and currently unmaintained. Zeppelin also
has inadequate tests for the class NotebookRepoSync where
two of the interesting methods are missed, while the third one is
observed but in a naive inexpressive way.

Another less common issue is the possibility of having trivial
implementations of the DDS element’s type or even using a mock
representation of the elements type when testing a class. In such
case the methods of the classes were su�ciently hit, but the ele-
ments of DDS do not have any interesting �elds as they would when
used in production. Sometimes the interesting behavior was hidden
because of the usage of a mock representation of the DDS elements.
For example, the class ConfigurationManager from Apache
Struts has a DDS of type ContainerProvider, which is
an interface. Two di�erent classes implement the given type. In
both implementations, the method destroy(), which the subject
class ConfigurationManager calls, is not implemented. Thus,
in any scenario in which the class ConfigurationManager

7



In
vo

ca
tio

nN
oti

�e
rH

an
dle

r

(ov
er

6 UTs
)

Defa
ult

Acti
on

In
vo

ca
tio

n

(ov
er

10
UTs

)

Defa
ult

Unk
no

wnH
an

dle
rM

an
ag

er

(ov
er

15
UTs

)

Fo
lde

r (ov
er

28
0 UTs

)

Note
bo

ok
Rep

oS
yn

c

(ov
er

28
0 UTs

)

Ve
loc

ity
M

an
ag

er
(ov

er
93

1 UTs
)

Sim
ple

Te
xtN

od
e (ov

er
93

1 UTs
)

Sim
ple

Ada
pte

rD
oc

um
en

t

(ov
er

93
1 UTs

)

0

20

40

60

80

100

120

140

160

180

200

220

3.
51 2.

98

1.
35

49
.7

9

17
.0

8

5.
57

7.
22

21
.0

8

Ti
m

e
(s

ec
on

ds
)

eChicory

Chicory

Figure 4: Traces collection performance di�erence between
eChicory and Chicory over each class and the number of
unit tests (UTs) used to observe it.

would be tested the traces will not result in any interesting in-
sight. Similar observation is applicable on the Folder class from
Zeppelin.

A di�erent issue could be the complete absence of ele-
ments in the DDS when a class is tested. For example, in the
DefaultActionInvocation class from Apache Struts
case, the test did not attempt to add any elements to the �eld
preResultListeners. Such testing behavior would hit the
given class but would not demonstrate our approach, making the
resulting trace from eChicory and Chicory identical.

Finally, in a rare case our prototype fails against some classes. For
example, when running our tool against the class Notebook from
Zeppelin traces were generated successfully. However, when
feeding those traces to Daikon, an exception is thrown by Daikon
with no clear message. We �xed many of these types of problems
and rarely see them lately, but the Notebook case is one of those
that are still not solved.

4.3.3 Performance Insight.
We believe that accuracy of dynamic software analysis tech-

niques is the major issue in the �eld. Performance in Daikon [12] is
in�uenced by many factors (e.g. number of variables in scope, num-
ber of times a method is observed, and number of de�ned program
points (method exist or entrance)). Improving the performance
would usually mean a trade o� on accuracy. However, even if a
technique is performing very well, if the reported invariants are not
useful because of inaccuracy issues, then it would not be relevant
whether a technique is performing well or not. Nevertheless, we
wanted to give a brief insight into how our approach is a�ecting

0 10 20 30 40 50

DefaultActionInvocation

DefaultUnknownHandlerManager

VelocityManager

SimpleTextNode

SimpleAdapterDocument

Folder

NotebookRepoSync

InvocationNoti�erHandler

5.32

3.72

1.5

2.9

3.31

41.62

12.21

5.09

6.4

3.3

1.59

2.79

3.83

13.24

8.69

3.9

Time (seconds)

eChicory
Chicory

Figure 5: Time taken by Daikon to read and generates invari-
ants from traces provided by eChicory and Chicory

the performance of the system analysis process. We show this from
two di�erent perspectives, 1) the e�ect of our approach on the trace
collection process 2) the e�ect of collected traces on the invariants
inference engine.

The trace collection on eChicory is broken into two di�er-
ent stages (trace collection and trace uni�cation) as explained
before. We combine the time taken by these two di�erent pro-
cessing stages to show the performance of eChicory. In Fig-
ure 4, we show the wall clock time taken by eChicory and
Chicory when observing each class of each candidate applica-
tion. We only omit Struts.ConfigurationManager and
Zeppelin.Notebook since the �rst one is not worth test-
ing given that methods are not implemented and we fail for
the second one. From the chart, it is clear that the perfor-
mance of eChicory is generally acceptable. The only signi�-
cant di�erence can be seen when testing the classes Folder
and SimpleAdapterDocument from Zeppelin and Apache
Struts respectively. The di�erence in performance for the
Folder class is less than 50 seconds, while it is slightly over
21 seconds for the SimpleAdapterDocument class. The large
number of observed elements in the DDS causes this observable
di�erence. Thus, we can say that the performance of our approach
directly in�uenced by how many elements in a given DDS and how
many �elds are there for each element.

The e�ect of our approach on the invariant inference process
could be seen in Figure 5. From the �gure, the e�ect on performance
is negligible except for the Folder class traces. The signi�cant
di�erent that is shown when observing the Folder class is ex-
plained by the same reason as performance de�cit when generating
the traces. The more elements in DDS we get during testing the

8



more time it would be required to generate traces or use them for
invariants inference.

The shown performance records are not fully representative yet
of our approach. This is because the majority of the given classes
eventually considered as limited. For example, when testing the
classVelocityManager, there were no traces observed by either
instrumentation tools. Similarly, for classes SimpleTextNode
and SimpleAdapterDocument the given unit test were not
useful as they did not access any DDS elements. The only class
that could give us an acceptable indication of performance is the
InvocationNotifierHandler class. Yet, even this class is
trivial; we are working on observing additional test subjects to
have better evaluation of our contribution.

5 THREATS TO VALIDITY
In this paper, we discussed the bene�ts of observing DDS when

dynamically analyzing a system for more comprehensive and ac-
curate results. It is important to highlight that we do not attempt
to discover DDS implemented by users. We only take advantage of
the prior knowledge we know about well-known and widely used
libraries implementations of di�erent types of DDS to adopt an in-
strumentation tool to it. Any new type of data structure would need
to be thoroughly analyzed to see if it is applicable for observation.
Only then, we would need to enhance the instrumentation tool to
be able to identify the new type of DDS, check its properties and
assimilate its elements. Observing any unknown implementation
of DDS models is beyond or goals and is covered in Section 6 in
more depth.

Another threat to the validity of our contribution is the intro-
duction of more noisy speci�cations. In dynamic inference systems,
reported invariants that are true but not useful are noisy invari-
ants. For example, each time the method addReceiver from
our earlier example is called, the size of the DDS receivers in-
creases by one. However, the value of all the other variables (e.g.
receivers[0].internalValue of each already existing re-
ceivers) are not changed. Thus, the inference system will report
for each variable that when the method is exited, the variables are
not changed. This is a true invariant but is considered noise since it
could be inferred easily by developers. An e�ective solution should
be applied to the inference engine rather than the instrumentation
tools. Noise does not only arise from variables that are seen in DDS.
Rather it could be introduced by any simple �eld of a given object.
Variables found on DDS elements only make such issue stand out
because of the increased number of tracked variables.

If a solution would be introduced at the instrumentation stage,
it would by analyzing the behavior of variables between a method
entrance and exit, then make a decision about reporting it to the
inference engine. For example, if a variable’s value never changes
between the method entrance and exist throughout the whole given
traces it could be removed. However, this could interfere with
the object level invariants and mislead the inference engine. We
decided to keep the instrumentation phase of the inference process
unchanged and consider this an opportunity for future work.

6 RELATEDWORK
Mining speci�cation and dealing with dynamic data structure

have being explored by many di�erent people. However, consider-
ing both at the same time is not heavily explored.

In their work, White et al. [30] established a very interesting
technique to identify dynamic data structures in C. Their work
is focused on observing user-de�ned objects that implement an
already established and well-de�ned DDS. Even though the value of
this work is clear, they do not attempt to report an understanding of
the system given those de�ned dynamic data structure. We believe
that if our work is merged with their, in that we can de�ne user
implemented dynamic data structure while at the same time explore
how these a�ect other paths of the system, then a very generic
solution would exist. A generic solution would means we are not
limited by the well-de�ned DDSs in the Java standard library or
any other library for any other programming language.

7 FUTUREWORK
We believe there is much room for enhancement in the �eld of

dynamic program analysis in general. However, in relation to the
work we presented, we would like to tackle two important problems
in the future.

Noise is an issue we need to address. Whether the reported in-
variants are based on Chicory or eChicory, the existence of noise
makes invariants hard to follow for people whom are looking to
understand the system (have no prior knowledge about it). Intro-
ducing a solution at the instrumentation stage can negatively a�ect
the accuracy of the inference engine results as discussed in section
5. Thus, applying a solution to avoid reporting noisy invariants
on the inference engine is one issue we would like to tackle in the
future.

Second, current instrumentation techniques are not only blind
to common coding styles or design patterns because of not observ-
ing DDS. There are di�erent design patterns such as Command
and State patterns that does not involve DDS, yet instrumentation
tools fail to provide comprehensive trace to allow inference engines
report accurate results. One possible cause of limitation is the in-
terchangeable ability of a �eld in an object. For example, a �eld
in a target class can be of an interface implemented by multiple
concrete classes. The given �eld can be pointing at any of the con-
crete classes at any given time. Thus, it is di�cult to know which
variables of which concrete class to track. In such case, current
speci�cation miners violate the given depth to observe variables
in favor of determinism. We aim at further analyzing and applying
a solution for each of the given design patterns in the instrumen-
tation side to allow for more accurate and system level reported
invariants.

8 CONCLUSION
In this paper, we highlighted the issue of out-of-scope e�ect

that current mining techniques su�er from. These are not corner
cases. Rather these are cases show up by using well-known and
widely used design patterns. In a deeper look into the problem, we
identi�ed that lack of good methodologies of observing already
de�ned DDS is one cause of the accuracy issue. We proposed a
methodology to expand the scope of exploration and the number

9



of properties to track on a system dynamically instead of statically
track variables.

We implemented a prototype of a solution for observing DDS
as proof of concept each time a method in the target application
is invoked. Moreover, we introduced a solution to unify collected
variable trees to make it possible to use the generated traces with
existing inference engine.

Finally, we showed by example that our solution �nds useful
invariants missed by current techniques. Current instrumentation
techniques are blind to the e�ect of some very basic coding styles.
We also attempted to test our solution against more applications,
which led us to reach the conclusion that the testing state in the
open source community is not ideal. Further, we provided an insight
about the performance of our approach against current state of the
art techniques.

REFERENCES
[1] 2017. Apache Struts. (2017). https://struts.apache.org/
[2] 2017. Apache Zeppelin. (2017). https://zeppelin.apache.org/
[3] 2017. JabRef. (2017). https://www.jabref.org/
[4] 2017. Mocking Framework for Unit Tests in Java. (2017). http://site.mockito.org/
[5] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A Learning-

to-rank Based Fault Localization Approach Using Likely Invariants. In Proceedings
of the 25th International Symposium on Software Testing and Analysis (ISSTA 2016).
ACM, New York, NY, USA, 177–188. DOI:http://dx.doi.org/10.1145/2931037.
2931049

[6] Ivan Beschastnikh, Yuriy Brun, Jenny Abrahamson, Michael D. Ernst, and Arvind
Krishnamurthy. 2013. Unifying FSM-inference Algorithms Through Declarative
Speci�cation. In Proceedings of the 2013 International Conference on Software
Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 252–261. http://dl.acm.
org/citation.cfm?id=2486788.2486822

[7] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D.
Ernst. 2011. Leveraging Existing Instrumentation to Automatically Infer
Invariant-constrained Models. In Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software Engineering
(ESEC/FSE ’11). ACM, Szeged, Hungary, 267–277. DOI:http://dx.doi.org/10.1145/
2025113.2025151

[8] Christoph Csallner and Yannis Smaragdakis. 2006. DSD-Crasher: A Hybrid
Analysis Tool for Bug Finding. In Proceedings of the 2006 International Symposium
on Software Testing and Analysis (ISSTA ’06). ACM, New York, NY, USA, 245–254.
DOI:http://dx.doi.org/10.1145/1146238.1146267

[9] Christoph Csallner and Yannis Smaragdakis. 2006. Dynamically Discovering
Likely Interface Invariants. In Proceedings of the 28th International Conference
on Software Engineering (ICSE ’06). ACM, New York, NY, USA, 861–864. DOI:
http://dx.doi.org/10.1145/1134285.1134435

[10] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008. DySy:
Dynamic Symbolic Execution for Invariant Inference. In Proceedings of the 30th
International Conference on Software Engineering (ICSE ’08). ACM, Leipzig, Ger-
many, 281–290. DOI:http://dx.doi.org/10.1145/1368088.1368127

[11] Guido de Caso, V. Braberman, D. Garbervetsky, and S. Uchitel. 2012. Automated
Abstractions for Contract Validation. Software Engineering, IEEE Transactions on
38, 1 (Jan 2012), 141–162. DOI:http://dx.doi.org/10.1109/TSE.2010.98

[12] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999.
Dynamically Discovering Likely Program Invariants to Support Program Evo-
lution. In Proceedings of the 21st International Conference on Software Engi-
neering (ICSE ’99). ACM, Los Angeles, California, USA, 213–224. DOI:http:
//dx.doi.org/10.1145/302405.302467

[13] Michael D. Ernst, Je� H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon System for
Dynamic Detection of Likely Invariants. Sci. Comput. Program. 69, 1-3 (Dec.
2007), 35–45. DOI:http://dx.doi.org/10.1016/j.scico.2007.01.015

[14] Philip J. Guo, Je� H. Perkins, Stephen McCamant, and Michael D. Ernst. 2006.
Dynamic Inference of Abstract Types. In Proceedings of the 2006 International
Symposium on Software Testing and Analysis (ISSTA ’06). ACM, New York, NY,
USA, 255–265. DOI:http://dx.doi.org/10.1145/1146238.1146268

[15] Sudheendra Hangal and Monica S. Lam. 2002. Tracking Down Software Bugs
Using Automatic Anomaly Detection. In Proceedings of the 24th International
Conference on Software Engineering (ICSE ’02). ACM, New York, NY, USA, 291–301.
DOI:http://dx.doi.org/10.1145/581339.581377

[16] Ivo Krka, Yuriy Brun, and Nenad Medvidovic. 2014. Automatic Mining of
Speci�cations from Invocation Traces and Method Invariants. In Proceedings

of the 22nd ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (FSE 2014). ACM, Hong Kong, China, 178–189. DOI:http:
//dx.doi.org/10.1145/2635868.2635890

[17] Ivo Krka, Yuriy Brun, Daniel Popescu, Joshua Garcia, and Nenad Medvidovic.
2010. Using Dynamic Execution Traces and Program Invariants to Enhance
Behavioral Model Inference. In Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 2 (ICSE ’10). ACM, New York, NY,
USA, 179–182. DOI:http://dx.doi.org/10.1145/1810295.1810324

[18] Kaituo Li, Christoph Reichenbach, Yannis Smaragdakis, and Michal Young. 2013.
Second-order Constraints in Dynamic Invariant Inference. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013).
ACM, New York, NY, USA, 103–113. DOI:http://dx.doi.org/10.1145/2491411.
2491457

[19] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Automatic Reverse
Engineering of Data Structures from Binary Execution. In Proceedings of the
11th Annual Information Security Symposium (CERIAS ’10). CERIAS - Purdue
University, West Lafayette, IN, Article 5, 1 pages. http://dl.acm.org/citation.cfm?
id=2788959.2788964

[20] D. Lo and S. c. Khoo. 2006. QUARK: Empirical Assessment of Automaton-based
Speci�cation Miners. In 2006 13th Working Conference on Reverse Engineering.
51–60. DOI:http://dx.doi.org/10.1109/WCRE.2006.47

[21] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. 2008. Automatic Gen-
eration of Software Behavioral Models. In Proceedings of the 30th International
Conference on Software Engineering (ICSE ’08). ACM, New York, NY, USA, 501–510.
DOI:http://dx.doi.org/10.1145/1368088.1368157

[22] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid
Mining: Helping to Navigate the API Jungle. SIGPLAN Not. 40, 6 (June 2005),
48–61. DOI:http://dx.doi.org/10.1145/1064978.1065018

[23] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. SIGPLAN Not. 42, 6 (June 2007), 89–100.
DOI:http://dx.doi.org/10.1145/1273442.1250746

[24] Tam The Nguyen, Hung Viet Pham, Phong Minh Vu, and Tung Thanh Nguyen.
2016. Learning API Usages from Bytecode: A Statistical Approach. In Proceedings
of the 38th International Conference on Software Engineering (ICSE ’16). ACM,
New York, NY, USA, 416–427. DOI:http://dx.doi.org/10.1145/2884781.2884873

[25] Robert O’Callahan, Robert O’Callahan, and Daniel" Jackson. 1997. Lackwit:
A Program Understanding Tool Based on Type Inference. IN PROCEEDINGS
OF THE 19TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
(1997), 338–348. DOI:http://dx.doi.org/10.1.1.36.9375

[26] David J. Pearce. 2011. JPure: A Modular Purity System for Java. Springer
Berlin Heidelberg, Berlin, Heidelberg, 104–123. DOI:http://dx.doi.org/10.1007/
978-3-642-19861-8_7

[27] M. Pradel, P. Bichsel, and T.R. Gross. 2010. A framework for the evaluation of
speci�cation miners based on �nite state machines. In Software Maintenance
(ICSM), 2010 IEEE International Conference on. 1–10. DOI:http://dx.doi.org/10.
1109/ICSM.2010.5609576

[28] Alexandru Sălcianu and Martin Rinard. 2005. Purity and Side E�ect Analysis for
Java Programs. In Proceedings of the 6th International Conference on Veri�cation,
Model Checking, and Abstract Interpretation (VMCAI’05). Springer-Verlag, Berlin,
Heidelberg, 199–215. DOI:http://dx.doi.org/10.1007/978-3-540-30579-8_14

[29] Yi Wei, Carlo A. Furia, Nikolay Kazmin, and Bertrand Meyer. 2011. Inferring
Better Contracts. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE ’11). ACM, New York, NY, USA, 191–200. DOI:http://dx.doi.
org/10.1145/1985793.1985820

[30] David H. White, Thomas Rupprecht, and Gerald Lüttgen. 2016. DSI: An Evidence-
based Approach to Identify Dynamic Data Structures in C Programs. In Pro-
ceedings of the 25th International Symposium on Software Testing and Analysis
(ISSTA 2016). ACM, New York, NY, USA, 259–269. DOI:http://dx.doi.org/10.
1145/2931037.2931071

[31] T. Ziadi, M.A.A. Da Silva, L.M. Hillah, and M. Ziane. 2011. A Fully Dynamic
Approach to the Reverse Engineering of UML Sequence Diagrams. In Engineering
of Complex Computer Systems (ICECCS), 2011 16th IEEE International Conference
on. 107–116. DOI:http://dx.doi.org/10.1109/ICECCS.2011.18

10

https://struts.apache.org/
https://zeppelin.apache.org/
https://www.jabref.org/
http://site.mockito.org/
http://dx.doi.org/10.1145/2931037.2931049
http://dx.doi.org/10.1145/2931037.2931049
http://dl.acm.org/citation.cfm?id=2486788.2486822
http://dl.acm.org/citation.cfm?id=2486788.2486822
http://dx.doi.org/10.1145/2025113.2025151
http://dx.doi.org/10.1145/2025113.2025151
http://dx.doi.org/10.1145/1146238.1146267
http://dx.doi.org/10.1145/1134285.1134435
http://dx.doi.org/10.1145/1368088.1368127
http://dx.doi.org/10.1109/TSE.2010.98
http://dx.doi.org/10.1145/302405.302467
http://dx.doi.org/10.1145/302405.302467
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1145/1146238.1146268
http://dx.doi.org/10.1145/581339.581377
http://dx.doi.org/10.1145/2635868.2635890
http://dx.doi.org/10.1145/2635868.2635890
http://dx.doi.org/10.1145/1810295.1810324
http://dx.doi.org/10.1145/2491411.2491457
http://dx.doi.org/10.1145/2491411.2491457
http://dl.acm.org/citation.cfm?id=2788959.2788964
http://dl.acm.org/citation.cfm?id=2788959.2788964
http://dx.doi.org/10.1109/WCRE.2006.47
http://dx.doi.org/10.1145/1368088.1368157
http://dx.doi.org/10.1145/1064978.1065018
http://dx.doi.org/10.1145/1273442.1250746
http://dx.doi.org/10.1145/2884781.2884873
http://dx.doi.org/10.1.1.36.9375
http://dx.doi.org/10.1007/978-3-642-19861-8_7
http://dx.doi.org/10.1007/978-3-642-19861-8_7
http://dx.doi.org/10.1109/ICSM.2010.5609576
http://dx.doi.org/10.1109/ICSM.2010.5609576
http://dx.doi.org/10.1007/978-3-540-30579-8_14
http://dx.doi.org/10.1145/1985793.1985820
http://dx.doi.org/10.1145/1985793.1985820
http://dx.doi.org/10.1145/2931037.2931071
http://dx.doi.org/10.1145/2931037.2931071
http://dx.doi.org/10.1109/ICECCS.2011.18

	Abstract
	1 Introduction
	2 Background and Example
	2.1 Potential and Limitations of Established Specification Miners
	2.2 Application Example
	2.3 Traditional Inference Results

	3 Instrumentation with DDS in mind
	3.1 Challenges and Benefits
	3.2 Tracking System Flow
	3.3 Unifying the Knowledge about the System
	3.4 Analysis of Applicable DDS

	4 Evaluation
	4.1 Precision & Recall
	4.2 Purity with Dynamic Analysis
	4.3 Experiment

	5 Threats to Validity
	6 Related Work
	7 Future Work
	8 Conclusion
	References

