
Volume xx (200y), Number z, pp. 1–12

Improving Flow Analysis Using In Situ Lagrangian Techniques

Directed Research Project Report

Sudhanshu Sane
Advisor: Hank Childs

Abstract
We introduce a new approach, consisting of two complimentary techniques, to perform in situ Lagrangian flow analysis. Previ-
ous work had placed constraints on the placement and duration of basis flows, namely putting them in regular positions, and
forcing all basis flows to terminate at the same time. With our work, we relax these constraints in order to achieve better accu-
racy. Our first technique guides the creation of basis flows. It differs from previous work in that we allow the duration of basis
flows to vary. The varying duration allows for us to create long-lived basis flows, which improves accuracy by preventing error
propagation when interpolating new particle trajectores during post hoc analysis. Our technique also differs from previous
work in that we identify regions of greatest need, via Delaunay triangulation, and then place basis flow seeds in these regions.
Our second technique is for interpolation of basis flows of arbitrary seed placement and durations: this technique is necessary
since our first technique generates such data and since there is no previous work on interpolation of basis flows with arbitrary
durations. We show that our complementary techniques produce improved accuracy and demonstrate the potential for reduced
data storage. This means we can provide improved accuracy with same or less storage, or same accuracy with less storage.

1. Introduction

1.1. The Two Flow Specifications

In fluid dynamics, two frames of references are typically consid-
ered: Eulerian and Lagrangian. The Eulerian frame of reference
describes the flow with respect to a fixed position and time. The
Lagrangian frame of reference describes a flow parcel as it moves
through space and time in the flow field.

Traditionally, the Eulerian specification is used in flow visual-
ization. It is usually stored in the form of a series of vector fields,
each representing one time slice. Many visualization techniques,
such as pathlines, path surfaces, and FTLE, require calculation of
particle trajectories. These trajectories can be calculated from the
vector field information through numerical integration, which re-
quires temporal interpolation between the stored time slices.

The Lagrangian specification stores information in the form of
a flow map. The flow map Ft

t0(x0) : Rd ×R×R→ Rd describes
where a particle starting at position x0 ∈Rd and time t0 ∈R moves
to in the time interval [t0, t] ⊂ R. In contrast to the traditional ap-
proach, the stored information represents a time interval and new
particle trajectories can be computed simply through interpolation
using the basis of known trajectories.

1.2. The I/O Bottleneck and In Situ Processsing

Fluid dynamics experiments are regularly simulated on high per-
formance supercomputers. To simulate the flow field accurately,
the scientific simulations are advanced in small discrete time steps.

Each of these time steps is called a cycle. Modern supercomputer
architectures demonstrate ever increasing computational capabili-
ties. However, I/O capabilities on these supercomputers have not
kept pace with their ability to generate data. Given the growing gap
between computational and I/O capability, the frequency of stor-
ing flow field information is reducing. Under this temporal spar-
sity, post hoc flow analysis using the Eulerian specification can be
adversely affected.

An emerging paradigm to counteract this temporal sparsity is the
use of in situ processing. In situ processing operates as the simu-
lation produces data, giving it the significant advantage of access
to all of the simulation data, i.e., the complete spatial data at full
temporal resolution. The Lagrangian paradigm is well suited for in
situ processing because the basis of known trajectories, represent-
ing an interval of time, can be calculated accurately in situ, where
all the simulation data is available. In contrast, storing a tempo-
rally sparse subset of the information in its Eulerian specification
and then integrating post hoc results in significant approximation
errors due to error propagation in the numerical integration. Thus,
the Lagrangian representation is capable of representing more in-
formation per byte stored.

1.3. State of In Situ Lagrangian Techniques

Agranovky et al. [ACG∗14] presented a two stage process to per-
form flow analysis using a Lagrangian-based approach. The first
stage involves extracting trajectories during the simulation (in situ).
These trajectories are called basis flows. The second stage involves

submitted to COMPUTER GRAPHICS Forum (1/2018).

2 S. Sane / Improving Flow Analysis Using In Situ Lagrangian Techniques

interpolating new trajectories from the basis flows after the simula-
tion (post hoc). In effect, the behavior of the flow field is approxi-
mated using the basis flows. This paradigm is useful for exploratory
flow analysis, i.e., analysis when the user does not know which par-
ticle trajectories are desired before the simulation is run.

For the in situ phase of Agranovsky et al.’s work, the basis flows
are calculated in batches. Particles are seeded along a uniform grid
to begin a batch. These particles advect for a fixed number of cycles
(e.g., 200 cycles), to form basis flows. The particles are then termi-
nated and the end points of the basis flows are stored to disk. The
cycle when data is stored to disk is referred to as a “write cycle.”
The process then repeats, introducing new particles again along a
uniform grid and terminating them after a fixed number of cycles,
until the simulation completes.

For the post hoc phase of Agranovsky et al.’s work, the basis
flows from the in situ phase are used to approximate the behavior of
the flow field. To begin, for a given particle, the algorithm identifies
a neighborhood of surrounding basis flows to follow. Specifically,
the neighborhood is the set of basis flows that form a minimum
convex hull around the particle in space and time. Interpolation of
the particle’s next position is determined by interpolating the ba-
sis flows via barycentric coordinate interpolation. This process ad-
vances the particle to the same time as when the current batch of
basis flows ends. To advance the particle further, the process is re-
peated with the next batch of basis flows. The process is repeated
until the particle reaches its desired termination time. Agranovsky
et al.’s study showed that using the Lagrangian approach is superior
to the Eulerian approach under sparse temporal settings.

For the remainder of the paper, we refer to the described Agra-
novsky et al. method as Uniform Seeding.

1.4. Our contribution

The Uniform Seeding approach has two constraints when calculat-
ing the basis of known trajectories. First, the placement of particles
to calculate basis flows is always along a uniform grid. Second, the
duration of each basis trajectory is fixed, resulting in a series of
short basis flows. The primary drawback of these constraints is that
it results in an approach that is prone to error propagation during
the post hoc calculation of trajectories [BJ15].

Our work aims to improve accuracy by reducing the occurrence
of error propagation events. A particle can be interpolated more
accurately when it is following the same neighborhood of basis
flows for a longer duration. With the goal of achieving improved
flow analysis, we relax the constraints of Uniform Seeding. Specif-
ically, our approach employs variable duration basis flows, includ-
ing the dynamic addition of helpful basis flows and termination of
unneeded basis flows. Further, the new basis flows are added intel-
ligently and do not need to lie along uniform locations.

All in all, with this work we present an end-to-end in situ La-
grangian technique which minimizes error propagation and accu-
mulation, resulting in improved accuracy of post hoc flow analysis
and visualization. Considered separately, the main contributions of
our work are as follows:

• An in situ seed placement strategy that is tailored towards mini-
mizing error propagation.

• A corresponding post hoc interpolation scheme to make optimal
usage of information generated in situ.

The rest of this paper is organized as follows. Section 2 covers
work related to Lagrangian techniques and seed placement strate-
gies for flow analysis. Section 3 motivates the issues we address
with our work, with Section 4 containing our proposed algorithm
details. The details of our study and our findings are presented in
Sections 5 and 6, respectively.

2. Related Work

2.1. Flow Analysis using Lagrangian Techniques

Particle trajectories are one of the fundamental elements of flow
visualization [LHD∗04, MLP∗09, PPF∗11]. They can be used di-
rectly as pathines to represent the behavior of flow in their vicinity,
or in more advanced ways like path surfaces [MLZ09], classify-
ing regions of different behavior [SGSM08,STH∗09,HKTH16], for
topological analysis [TWHS05, SW10], and as the basis for the fi-
nite time Lyapunov exponent [HY00,GGTH07,GLT∗09,KHH12].

In addition to error propagation issues due to the I/O constraints
described in Section 1, the abundance of Lagrangian-based visu-
alization techniques motivated the use of a flow map over a vector
field to represent a flow. In their work, Agranovsky et al. [ACG∗14]
introduced this technique in the context of reducing storage and er-
ror for in situ supercomputing environments. Earlier, Hlawatsch et
al. [HSW11] stored flow field data directly. They focused on pre-
computing Lagrangian-based trajectories and optimally selecting
which to use when calculating pathlines. They employed a hierar-
chical scheme to decrease the number of integration steps by con-
structing longer integral lines from previously computed partial so-
lutions. Agranovsky et al. [AGJ11] studied the use of Moving Least
Squares, barycentric coordinate interpolation, to optimize pathline
interpolation using scattered particles.

The traditional approach for computational fluid dynamics
simulations is based on finite elements and producing vector
data. An alternative method is Smooth Particle Hydrodynamics
(SPH) [GM77]. This method’s natural output is particle trajecto-
ries, which makes it well suited for Lagrangian techniques. Chan-
dler et al. [COJ15] proposed a modified k-d tree to store particle lo-
cations at a given time and an interpolation scheme that is tailored
towards the kernel native to the simulation. Sauer et al. [SXM16]
presented a new data representation which combines the Eulerian
and Lagrangian reference frames into a joint format.

Research has also been focused on identifying sources of er-
ror in advection methods used in the Lagrangian paradigm. Chan-
dler et al. [CBJ16] presented an error analysis of their interpola-
tion based pathline tracing system and experimentally found that
error roughly correlates with divergence in flow fields. Bujack
et al. [BJ15] derived theoretical error bounds for the Lagrangian
method and identified that the source of the error propagation is
neighborhood updates. Further, they suggested using parameter
curves, such as Bezier curves and cubic Hermite splines instead of
polygonal chains, to improve the aesthetics of flow visualizations.
Hummel et al. [HBJG16] extended this work by using upper error
bounds to visualize the uncertainty of the pathlines.

submitted to COMPUTER GRAPHICS Forum (1/2018).

S. Sane / Improving Flow Analysis Using In Situ Lagrangian Techniques 3

2.2. Seed Placement Techniques for Flow Analysis and
Visualization

Prior works related to seed or streamline placements for flow visu-
alization have had objectives such as coverage of interesting re-
gions in the vector field, uniformity in the distribution of visu-
alized streamlines over the field, and aesthetics of the visualiza-
tion [VKP00]. While the visualization of steady state flow fields
through intelligent placement of seeds and their resulting stream-
lines has been extensively researched, seed placement strategies for
unsteady state flow fields has been less explored [MLP∗10]. Visual-
izations of unsteady state flow fields is often done by the animation
of streamlines [JL00].

Turk and Banks [TB96] introduced an image guided streamline
placement algorithm to achieve a uniformly dense streamline cov-
erage. Jobard and Lefer [JL97] worked on a strategy which was
computationally more efficient and aimed to control the density
of streamlines via user defined parameters for distance between
streamlines. Mattausch et al. [MTHG03] extended this idea to 3D.
Verma et al. [VKP00] presented a method of streamline placement
that captures the flow patterns around critical points. They used a
set of predefined templates to handle each case of critical points
in 2D vector fields. After that, population of sparse regions of the
flow field was achieved by a Poisson disk distribution. This concept
was extended to 3D by Ye et al. [YKP05]. Mebarki et al. [MAD05]
adopted an approach, which used Delaunay triangulation to iden-
tify cavities in the field and then placed seeds at the centroid of the
triangle. This was followed by forward and backward integration to
draw a streamline. This process was repeated until a desired density
threshold is met. The approach ensured that visually appealing long
streamlines were produced. Liu et al. [LMG06] built on previous
works to present another evenly spaced streamline algorithm. They
used cubic Hermite polynomial interpolation to create fewer evenly
spaced streamline samples in the neighborhood of each previous
streamline, thus reducing the amount of distance checking. Zock-
ler et al. [ZSH96] used scalar values, such as velocity magnitude,
to determine the degree of interest of a cell. An equalization strat-
egy was then used to distribute seed points more homogeneously.
An image-based streamline placement strategy for 3D vector fields
was proposed by Li et al. [LS07].

Similarity measures have been used to avoid dense sets of
streamlines or to group similar streamlines together to cap-
ture important flow field features using a minimal repre-
sentation [YWSC12, CCK07, LHS08, MJL∗13]. Marchesin et
al. [MCHM10] introduced a view-dependent streamline placement
and selection algorithm for 3D vector fields which aimed at avoid-
ing occlusion. Wu et al. [WLZMI10] proposed a topology-aware
evenly spaced streamline placement algorithm for capturing singu-
larities and separatrices.

For 3D unsteady state flows, Wiebel and Scheuermann [WS05]
focused on regions of high activity and interest. They presented
a method involving bundles of streaklines and pathlines passing
through a single point in space, referred to as an eyelet, at differ-
ent times. Helgeland and Elbroth [HE06] focused on the visualiza-
tion of the 3D unsteady flow field while adopting a seeding algo-
rithm based on Jobard and Lefer’s even spaced streamline seeding
algorithm. Obermaieret et al. [OHBKH09] implemented distance-

and angle-based reseeding and removing strategies for improving
streakline- and timeline-based surfaces in gridless flows.

Seed placement strategies have been researched for improving
the accuracy of FTLE, since frequent renormalization becomes
necessary in highly divergent time-varying flow fields [Nes89,
HY00]. Two separate works, Garth et al. [GGTH07] and Sadlo et
al. [SP07], suggested adaptive reseeding methods that improved the
precision of the gradient of the flow map. Kuhn et al. [KRWT12]
compared different seed placement methods with respect to the ac-
curacy of FTLE. These works aimed to optimize the computation
of the gradient and are mainly restricted to orthogonal meshes.

With our own work, we look at seed placement strategies for
calculating basis flows, with the objective of accurate post hoc flow
field reconstruction, i.e., minimizing the linear error of barycen-
tric interpolation. Further, our technique is developed exclusively
for unsteady state flow fields. Agranovsky et al. [ACJC15] used
flow field information such as turbulence and vorticity in situ to
make an informed selection of vector field sample locations for
Eulerian post hoc particle advection. With regard to particle place-
ment strategies using the Lagrangian paradigm, as mentioned in
Section 1.3, Agranovsky et al. [ACG∗14] placed seeds along a uni-
form grid periodically to calculate basis flows.

3. Motivation

Problem: The Uniform Seeding approach suffers from error
propagation. As described in Section 1.3, Agranovsky et al.’s
approach [ACG∗14] is a numerical one-step integration method,
which suffers from error propagation. A particle is advanced in
time by following a neighborhood of basis flows. However, given
that the basis flows are calculated in batches for the Uniform Seed-
ing approach, the process requires identification of a new neigh-
borhood, i.e., a neighorbohood update, for each step (advancement
in time). To produce the final particle trajectory, interpolation steps
are stitched together as the particle is advanced forward in time.
Figure 1a illustrates how a small local truncation error occurs with
each interpolation step. Further, this local truncation error propa-
gates with each interpolation step resulting in an increase of the
global truncation error. The details of the error propagation and
accumulation have been shown by Bujack et al. [BJ15]. The final
accuracy is then dependent on the number of interpolation steps
stitched together, i.e., the number of neighborhood updates. When
the number of interpolation steps being stitched together is high,
as in the case for long simulation runs, the error propagation and
accumulation can lead to poor accuracy.

Proposed Solution: Extend the duration of basis flows for as
long as possible. The error propagation and accumulation occurs
for every instance of a stitching event (neighborhood update). We
can mitigate this issue if:

1. Basis flows live for the duration of the simulation.
2. The interpolation is done based on the initial neighborhood in-

formation. This is possible because having the basis flows live
for the duration of the simulation means a particle has the same
neighborhood for each interpolation step.

Calculating a particle trajectory would then require only inter-
polation (i.e., from start time to current time using the same basis

submitted to COMPUTER GRAPHICS Forum (1/2018).

4 S. Sane / Improving Flow Analysis Using In Situ Lagrangian Techniques

(a) Basis flows are plotted in black, with the basis flow seed being a hollow
black circle and the basis flow end point being a solid black circle. The de-
sired trajectory to interpolate starts at the hollow green circle. The hollow
yellow and hollow red circles are the interpolated positions from using short
basis flows. In this case, the incorrect position at t = 1 (hollow yellow) leads
to an even more incorrect position at t = 2 (hollow red), i.e., error propaga-
tion. The solid green and solid yellow are the correct particle end locations
for each respective interpolation. The relatively small local error (distance
between solid green and hollow yellow, or solid yellow and holllow red) is
(1

2 h2
x‖ f ′′‖). The local error propagates with each interpolation. The global

error is enhanced by the Lipschitz constant ht L of f . Thus, at t = 2, the
global error is already 1

2 h2
x‖ f ′′‖(1+ht L) [HBJG16].

(b) Interpolation error when using longer basis flows. The local interpola-
tion error for each step is inevitable, but using the original neighborhood
prevents the incorrect intermediate results from influencing the future path
of the particle. The overall global error is then limited to the local interpo-
lation error 1

2 h2
x‖ f ′′‖.

Figure 1: A notional example to provide intuition of the advantage
of using longer basis flows to reduce error propagation.

flows) and there would be no error propagation events since there
is no need for a neighborhood update. Then, the error of this pure
interpolation approach is O(h2

x), where hx is the resolution in space.
Figure 1b illustrates a particle being interpolated by using the same
neighborhood.

The Uniform Seeding approach is a numerical one-step integra-
tion method, while the proposed approach uses purely interpola-
tion. To highlight the difference in error propagation and accumu-
lation between the two approaches, we consider an analytic flow
field — a distorted circular flow. Figure 2 shows that the pure in-
terpolation approach has absolutely no error propagation, while the
stitching together of trajectories shows a growth in error for every
advancement in time (cycle).

Problem: The interpolation error can become unbounded in di-
vergent areas. While using longer basis flows for interpolation re-

0 500 1000 1500 20000.
00

0
0.

00
4

0.
00

8

Error Propagation for Distorted Circular Flow

Cycle

L2
−

no
rm

Uniform Seeding
Pure Interpolation

Figure 2: We used a test analytic data set — a distorted circular
flow. The image on the left is the line integral convolution of the
flow field. The color encodes the velocity magnitude. The white
lines are the Uniform Seeding basis trajectories. The image on the
right is a plot of error propagation over 2000 cycles. In contrast
to Uniform Seeding, the pure interpolation has absolutely no error
propagation.

duces error propagation, generating longer basis flows may result
in certain regions having poor basis coverage, depending on the na-
ture of the flow field. Figure 3 shows the distribution of particles at
various stages when considering the Double Gyre. Figure 3a shows
the initial distribution of particles along a uniform grid. We can ob-
serve the divergence of the particles in Figures 3b and 3c. There are
observable regions in the field that are under and over represented
in Figure 3d. If the basis flows of a neighborhood diverge, then the
neighborhood size hx ∈ R can become unbounded. Using the pure
interpolation approach with divergent basis flows will result in a
high linear interpolation error (with overall performance then being
worse than Uniform Seeding). This is in accordance with Chandler
et al. [CBJ16], who show the correlation between using diverging
basis flows and post hoc interpolation error. If new particles are
not frequently introduced, then the post hoc analysis of the under
represented regions could be poor.

Proposed Solution: Extend the duration of basis flows for as
long as possible, but update the particle neighborhood if it ex-
ceeds a limit for hx. In this paper, we propose a hybrid approach
between the uniform case and the pure interpolation approach.
Thus, when performing post hoc interpolation, as long as a particle
lives in a non-divergent neighborhood, it uses the pure interpola-
tion approach. As soon as a particle’s neighborhood diverges, the
neighborhood of the particle is updated. In order to guarantee that
a small neighborhood can always be found, we evaluate the flow
field in situ to determine when new particles should be introduced
to prevent poor coverage of regions in the field. By introducing new
particles intelligently, we can guarantee a bounded interpolation er-
ror while minimizing error propagation and accumulation events,
i.e., particle neighborhood updates. The following section details
our proposed algorithm which includes an in situ basis flow seed
placement strategy and a post hoc interpolation scheme.

4. Lagrangian Flow Seeding Method

Our proposed in situ Lagrangian technique follows the same high
level approach as described in Section 1.3. It is a two stage pro-
cess. In the first stage, basis flows are calculated in situ and saved
to disk. Our solution is different from previous work in that it fo-
cuses on longer basis flows (to prevent error propagation), as well

submitted to COMPUTER GRAPHICS Forum (1/2018).

S. Sane / Improving Flow Analysis Using In Situ Lagrangian Techniques 5

(a) Cycle - 0 (b) Cycle - 100 (c) Cycle - 200 (d) Cycle - 1000

Figure 3: Particle distribution for the Double Gyre, with period set to 1000 cycles.

(a) Cycle - 0 (b) Cycle - 100 (c) Cycle - 200 (d) Cycle - 1000

Figure 4: Flow Seeding particle distribution for the Double Gyre, with period set to 1000 cycles. Many neighborhoods stay together over the
whole period and allow advection free of error propagation.

as addressing a problem that comes from longer basis flows, which
is the presence of under represented regions. In the second stage,
the basis flows are used to perform flow field analysis post hoc. Our
solution is again different, since we needed to design a viable inter-
polation technique that can effectively use the basis flows from our
first stage.

We refer to our proposed technique as Flow Seeding.

4.1. In Situ Seed Placement Strategy

When generating basis flows in situ, we have control over where
we want to place our particles. Additionally, we can choose how
long we allow a particle to exist. Our primary objective is to gener-
ate basis flows which enable accurate post hoc flow analysis. With
the Flow Seeding approach, we begin by placing particles along a
uniform grid in the volume. These particles are advected through
the time steps until a write cycle completes. At the end of a write
cycle, the particle positions are saved to disk. A particle is termi-
nated if it exits the volume. Advection continues for the remaining
particles from their last position. Thus, at write cycles (i.e., sim-
ulation cycles where data is saved to disk), intermediate locations
along a particle trajectory are saved to disk. This results in longer
basis flow trajectories.

To perform particle addition and removal, we consider all exist-
ing particles in the volume at the end of a write cycle. Let the set
of existing particle locations be S. We perform a Delaunay Trian-
gulation on S resulting in triangulation DT. Thus, each vertex in
DT represents a particle location. DT is a set of cells that are trian-
gles or tetrahedrons depending on whether the dataset is 2D or 3D,
respectively. By definition, the interior of each cell defined by the
Delaunay triangulation, contains no vertices., i.e., no particles. We
then modify DT to add and remove vertices (see Sections 4.1.1 and
4.1.2); the remaining vertices represent the particles that are valid
and can either continue as basis flows or form new basis flows. Fig-
ure 4 shows the distribution of particles, at various stages of the
Double Gyre, when using Flow Seeding.

4.1.1. Particle Addition

Particle addition means that new basis flows are introduced when
flows diverge. To identify large cells in the triangulation DT we
measure the circumradius of each cell in DT. Let R denote the
circumradius of a cell. Cells with large circumradius R represent
candidate regions for particle addition.

We use barycentric coordinate interpolation post hoc to interpo-
late the trajectory of a particle. Barycentric coordinates interpola-
tion error is bounded from above through the circumradius R ∈ R
of the corresponding cell. The interpolation error is given by the
equation:

‖ f (x)−L f (x)‖ ≤ 1
2

R2‖ f ′′‖∞ (1)

where f (x) is the ground truth location, L f (x) is the barycentric co-
ordinates interpolated location, and ‖ f ′′‖∞ is the maximum func-
tion space norm of the second derivative of f [Wal98].

Thus, a large circumradius corresponds to a possibly large post
hoc interpolation error while using the particles forming that cell.
We iterate over all cells of DT to determine the cell with the largest
circumradius. If the largest circumradius is greater than a predeter-
mined threshold U pperT hreshold, we insert a vertex into DT as
the seed location of the new particle. The seed location is deter-
mined as follows:

• If the circumcenter is located inside the cell, then the seed loca-
tion is at the circumcenter of the cell.

• If the circumcenter is located outside the cell, then the seed loca-
tion is the point on the boundary of the cell that is closest to the
circumcenter.

A local Delaunay triangulation insert is performed on DT to in-
clude the new particle before further iterations. This process is con-
tinued until there are no cells in DT with a circumradius greater
than the threshold. Algorithm 1 shows the steps involved for parti-
cle addition.

submitted to COMPUTER GRAPHICS Forum (1/2018).

6 S. Sane / Improving Flow Analysis Using In Situ Lagrangian Techniques

Function ParticleAddition(DT,U pperT hreshold)
AddParticles = true;
MaxCircumradius = 0;
MaxCell;
while AddParticles do

foreach Cell c ∈ DT do
if c.circumradius > MaxCircumradius then

MaxCell = c;
MaxCircumradius = c.circumradius;

end
end
if MaxCell.circumradius > UpperThreshold then

Seed = calculateLocationOfSeed(MaxCell);
DT.insertVertex(Seed);

else
AddParticles = false;

end
end

Algorithm 1: Particle Addition Algorithm

4.1.2. Particle Removal

For particle removal, we determine if a particle must be removed by
iterating over all vertices of DT and calculating the average of the
circumradii of all the cells that the vertex, representing the particle,
is a member of. If the lowest calculated average circumradius is
below a predetermined threshold LowerT hreshold, the associated
vertex is removed from DT. This process is continued until there
are no vertices with an average circumradius lower than the thresh-
old. Particle removal results in the basis flow ending. Algorithm 2
shows the steps involved for particle removal.

Function ParticleRemoval(DT,LowerT hreshold)
RemoveParticles = true;
MinVertex;
MinAvgCircumradius = inf;
while RemoveParticles do

foreach Vertex v ∈ DT do
Cells = DT.getCellsContainingVertex(v);
SumCircumradius = 0;
foreach Cell c ∈Cells do

SumCircumradius += c.circumradius;
end
AvgCircumradius = SumCircumradius/Cells.size();
if AvgCircumradius < MinAvgCircumradius then

MinVertex = v;
MinAvgCircumradius = AvgCircumradius;

end
end
if MinAvgCircumradius < LowerThreshold then

DT.deleteVertex(MinVertex);
else

RemoveParticle = false;
end

end
Algorithm 2: Particle Removal Algorithm

4.2. Post Hoc Interpolation Scheme

We propose a new interpolation scheme that can make use of vari-
able duration basis flows. Each individual basis flow is represented
as a starting location at time Ti, zero or more intermediate loca-
tions, and an end location at time Ti+ j, where j ≥ 1. A basis flow
can exist for as short as a single step, or for as long as the length
of the simulation. For a given particle location P0 at time T0, our
interpolation scheme starts by identifying a neighborhood of basis
flows B1, B2, ... , Bn surrounding P0. Given a neighborhood of basis
flows to follow, we interpolate each particle trajectory location us-
ing barycentric coordinates interpolation. In an ideal case, we can
follow the same neighborhood of basis flows, performing each in-
terpolation from the starting location, to calculate an entire particle
trajectory with no error propagation.

To begin, an interpolation step is performed using the neighbor-
hood of basis flows of P0 at time T0, to calculate the next location
P1 at time T1. After the interpolation step, we evaluate the neigh-
borhood of basis flows at T1. We perform a neighborhood update
if:

• A basis flow Bi of the particle neighborhood terminates. In
this case we need to identify a new neighborhood of basis flows
to continue particle trajectory interpolation.

• Basis flows of particle neighborhood diverge. We evaluate
the neighborhood of basis flows to keep the interpolation error
bounded. If the basis flows are deemed to have diverged, we per-
form a neighborhood update.

If a neighborhood update is not required, then we use the same
neighborhood of basis flows of P0 at time T0, to calculate the next
location P2 at time T2. The process is then repeated by evaluating
the neighborhood of basis flows at time T2 and so on.

If a neighborhood update is performed, then we use the new
neighborhood of basis flows of P1 at time T1, to calculate the next
location P2 at time T2. The process is then repeated by evaluating
the neighborhood of basis flows at time T2 and so on.

To identify a particle neighborhood at time Ti, we first perform
a Delaunay triangulation over basis flow particle locations at time
Ti. A particle neighborhood is then identified as the cell contain-
ing the particle location Pi at time Ti. A particle neighborhood is
deemed to have diverged if the circumradius of the cell, represent-
ing the particle neighborhood, is greater than a user-defined param-
eter, U pperT hreshold.

Using the proposed interpolation scheme, a particle can follow
the same neighborhood of basis flows for a longer duration if they
meet certain criteria. A neighborhood is only updated if a member
basis flow is terminated or the cell formed by the neighborhood has
a circumradius exceeding U pperT hreshold. Additionally, we use
U pperT hreshold when determining whether to add a new particle
during the in situ phase of Flow Seeding, meaning we guarantee
a neighborhood with circumradius below U pperT hreshold can al-
ways be found.

5. Study Overview

We designed a study to evaluate our Flow Seeding approach. Fur-
ther, we performed the same experiments using the Uniform Seed-
ing approach and use the results as a baseline for comparison. For

submitted to COMPUTER GRAPHICS Forum (1/2018).

S. Sane / Improving Flow Analysis Using In Situ Lagrangian Techniques 7

our study, the in situ environment was theoretical, evaluating an-
alytic data sets on the fly or loading simulation results that were
precalculated for each cycle from disk. Our study consists of con-
figurations which vary over five parameters:

1. Lagrangian techniques
2. Data sets
3. Data storage targets
4. Number of cycles saved (write cycles)
5. Number of basis flows saved per write cycle

We ran a total of 192 test configurations. We performed all the
tests on a Xeon E5-2667v3 CPU. We used 12 cores at 3.2GHz and
256 GB DDR4 memory. In situ basis flow calculation and post hoc
particle trajectory calculation were performed in parallel. To we
used the CGAL library to serially calculate the Delaunay triangu-
lation, and to perform vertex insertion and deletion.

5.1. Configuration Parameters

5.1.1. Lagrangian techniques

A test is configured to use either Flow Seeding (our technique) or
Uniform Seeding (the technique from Agranovsky et al.) as its in
situ Lagrangian technique. To allow for comparison, we ran each
test configuration with each technique.

5.1.2. Data Sets

We considered three data sets to evaluate our method:

Double Gyre — This data set is an analytic two-dimensional
flow field that is commonly used to study flow visualization tech-
niques. It consists of two counter-rotating gyres with a time depen-
dent perturbation. The data set is simulated for 2048 cycles at a
base resolution of 512×256. We set the period of the Double Gyre
flow to 1000 cycles.

Arnold-Beltrami-Childress (ABC) — This data set is a time-
dependent variant of the three-dimensional ABC analytic vector
field [BCT01]. The data set is simulated for 2048 cycles at a base
resolution of 128× 128× 128. We set the period of the ABC flow
to 1000 cycles.

Tornado — This data set is a real-world simulation of the
dynamics of an F5 tornado [OWW15]. The base resolution is
490×490×280. A mature tornado vertex exists in the domain dur-
ing the 512 simulation seconds we considered for our experiments.
Our collaborating scientist normally uses a frequency of “every two
simulation seconds" for his studies. Thus, we considered 257 time
slices, with the time-steps evenly distributed from t0 = 8502s to
t256 = 9014s.

5.1.3. Data Storage Targets, Number of Cycles Saved, and
Number of Basis Flows Saved per Cycle

With the Uniform Seeding approach, the number of basis flows
saved every write cycle can be fixed. However, for the Flow Seed-
ing method, the number of basis flows should be viewed as a target,
as the number of basis flows fluctuates over time. First, basis flow
particles are terminated if the trajectory of the particle exits the do-
main space. Further, basis flows are added or removed based on
user-defined thresholds.

Thus, for each test configuration we give the Uniform Seeding
approach a fixed data storage target for the entire simulation. Let
P denote the number of basis flow particles stored during a write
cycle. Let NC denote the number of cycles saved, i.e., the number
of write cycles. Then, if X denotes the data storage target, we select
combinations of P and NC such that P×NC = X .

We give the Flow Seeding approach the same number of initial
basis flow particles P as the Uniform Seeding approach. Thus, both
approaches begin with the same number of basis flow seed parti-
cles. We can then evaluate the performance of the Flow Seeding
approach with regard to data storage costs.

For our study, we consider four data storage targets for each data
set. We believe the results should be representative for other data
storage targets. For each data storage target of each data set, we
select multiple configurations that are combinations of P and NC.
The Double Gyre and ABC data sets each have nine configurations
for a given target, while the Tornado data set has six configurations
for each target.

Let the targets for each data set be represented as 1X , 2X , 4X
and 8X , with X varying depending on the data set. For the Double
Gyre data set, X = 512×256 = 131,072 points. For the ABC data
set, X = 128×128×128 = 2.1M points. For the Tornado data set,
X = 490×490×280 = 67.2M points.

The Uniform Seeding approach will use 100% of the data stor-
age target each time, while the Flow Seeding approach data storage
costs are expected to vary. As previously mentioned, particle ad-
dition and removal influences the total data storage costs. Let R
denote the circumradius of a cell after the initial placement of par-
ticles along a uniform grid. Then, we define U pperT hreshold and
LowerT hreshold as follows:

U pperT hreshold =CR (2)

LowerT hreshold =
R
C

(3)

where C is a user-defined value to control particle addition and re-
moval. For our study, we use C = 2 for the two-dimensional Double
Gyre data set, and C = 8 for the three-dimensional ABC and Tor-
nado data sets.

5.2. Error Evaluation

We calculate particle trajectory using three different methods.

• Ground Truth — The particle trajectory is calculated with a
fourth-order Runge Kutta scheme [CK90]. The ground truth uses
the full spatial and temporal resolution available to calculate the
trajectory. The ground truth is considered to be perfectly accu-
rate, i.e., it has 0% error.

• Uniform Seeding — These Lagrangian trajectories are interpo-
lated using second order Barycentric coordinate interpolation for
each configuration of NC and P. In this case, P is the number of
basis flow particles placed along a uniform grid in the volume
initially and at the end of each write cycle.

• Flow Seeding — These Lagrangian trajectories are interpolated
using second order Barycentric coordinate interpolation for each

submitted to COMPUTER GRAPHICS Forum (1/2018).

8 S. Sane / Improving Flow Analysis Using In Situ Lagrangian Techniques

configuration of NC and P. In this case, P is only the initial num-
ber of basis flow particles seeded in the volume.

Every test configuration generates a set of trajectories using either
the Uniform or Flow Seeding approach. We evaluate the accuracy
of trajectories calculated from a test configuration by comparing
it to the calculated ground truth. For both the Double Gyre and
ABC data set we randomly seed 1000 particles in the volume. For
the Tornado data set, we place 144 particles along rakes at loca-
tions used by our collaborating scientist to study the phenomena.
We then calculate the set of trajectories for each test configuration.

To compare two trajectories we measure the L2-norm. As previ-
ously defined, NC is the number of cycles saved. Furthermore, NC
is the number of particle positions used to represent a Lagrangian
trajectory.

The average L2-norm is calculated as follows —

1
p

p

∑
i=0

1
n

n

∑
t=0
||xi,t −gi,t || (4)

where p is the total number of particles, n is equal to NC, xi,t is the
location of a Lagrangian interpolated particle i at time t and gi,t is
the location of the ground truth particle i at time t.

Thus, we evaluate the distance between the ground truth and a
Lagrangian trajectory at every known point of the Lagrangian tra-
jectory. The known points of the Lagrangian trajectory can be con-
nected using linear interpolation or curve fitting. Representation of
a Lagrangian trajectory as a whole has been studied by Bujack et
al. [BJ15]. For our study, we focus on the accuracy of the interpo-
lated locations of a particle trajectory.

6. Results

We evaluated the Flow Seeding approach on three axes: data stor-
age costs, interpolated trajectories accuracy, and computation time
of each phase.

6.1. Data Storage

To evaluate the data storage costs of the Flow Seeding approach,
we account for all the basis flow information saved during the in
situ phase. We compare these results to the data storage targets set.
We used the data storage targets to determine the test configura-
tions of both the Flow Seeding and Uniform Seeding approach. Ta-
ble 1 shows the data storage costs of the Flow Seeding approach in
terms of average percentage usage of the data storage target. Data
storage costs for the Flow Seeding approach depend on the nature
of the flow field and is influenced by the particle addition and re-
moval thresholds: U pperT hreshold and LowerT hreshold respec-
tively. The Uniform Seeding approach always uses 100% of the
data storage target.

Double Gyre — The first row in Table 1 shows the data storage
costs for the Double Gyre data set. On average, the Flow Seed-
ing approach uses more data storage than the set target. For our
study, for a constant data storage target, NC and P are inversely
proportional to each other, We observed that data storage cost is
high when NC is high and P is low, and the data storage cost is low

Data Set Data Storage Costs

Double Gyre
Target 1X 2X 4X 8X

% Usage 144% 124% 113% 106%

ABC
Target 1X 2X 4X 8X

% Usage 86% 80% 77% 75%

Tornado
Target 1X 2X 4X 8X

% Usage 53% 50% 50% 49%

Table 1: Average percentage usage of the data storage target by
Flow Seeding. Uniform Seeding uses 100% of the data storage tar-
get.

when NC is low and P is high. The overall high data storage costs
are largely attributed to the nature of the flow field: no particles exit
the boundaries of the flow field. However, we do observe that as the
data storage target increases, the Flow Seeding approach gets closer
to achieving the target. Thus, given a larger data storage allowance
for the Double Gyre, we expect the Flow Seeding approach to use
the same or lesser storage than Uniform Seeding.

ABC — The second row of Table 1 shows the data storage costs for
the ABC data set. Given the nature of the ABC field, initially placed
basis flow particles will eventually exit the volume. This character-
istic of the ABC flow contributes to the reduced data storage costs
while using the Flow Seeding approach. We observe that for ev-
ery data storage target considered, the Flow Seeding approach uses
lesser storage on average than the set target. Once again, the per-
centage usage decreases as the overall data storage target increases.
On average, for all data storage targets considered, it uses approxi-
mately 20% less storage than Uniform Seeding.

Tornado — The third row of Table 1 shows the data storage costs
for the Tornado data set. The Flow Seeding approach uses less
storage than every considered data storage target. On average, for
all data storage targets considered, it uses approximately 50% less
storage than Uniform Seeding. Similar to the ABC field, basis flow
particles exit the volume and our in situ placement technique adds
particles to prevent poor coverage of the field.

Overall, we observed potential for improved data storage costs
with the Flow Seeding approach, especially when considering
higher data storage allowance. Further, we believe there are sev-
eral ways to control data storage costs, such as: placing an abso-
lute upper bound on particles addition, enforcing an equal num-
ber of additions and removals, adjusting U pperT hreshold and
LowerT hreshold to influence particle addition and removal, and
so on. With our work, we chose to place an upper bound on post
hoc interpolation error.

6.2. Accuracy

As mentioned in Section 5.2, our accuracy measurements use the
L2-norm. Figure 5 plots accuracy measurements for all the data
sets considered. Overall, for all data sets, we observe trends consis-
tent across the parameter space. Flow Seeding has lower error than
every corresponding Uniform Seeding result. Further, for high NC
configurations, we observe the Flow Seeding approach performs
significantly better than the Uniform approach. In particular, these
configurations demonstrate the improved accuracy from reduced
error propagation.

submitted to COMPUTER GRAPHICS Forum (1/2018).

S. Sane / Improving Flow Analysis Using In Situ Lagrangian Techniques 9

2048 1024 512 256 128 64 32 16 8

Double Gyre L2−norm Error

Number of Cycles Saved

A
ve

ra
ge

 L
2−

no
rm

 E
rr

or
0.

00
0.

05
0.

10
0.

15
0.

20

Uniform Seeding − 1X
Uniform Seeding − 2X
Uniform Seeding − 4X
Uniform Seeding − 8X

Flow Seeding − 1X
Flow Seeding − 2X
Flow Seeding − 4X
Flow Seeding − 8X

(a) Double Gyre - L2-norm. X = 131,072 points.

2048 1024 512 256 128 64 32 16 8

ABC L2−norm Error

Number of Cycles Saved

A
ve

ra
ge

 L
2−

no
rm

 E
rr

or
0.

00
0.

02
0.

04
0.

06

Uniform Seeding − 1X
Uniform Seeding − 2X
Uniform Seeding − 4X
Uniform Seeding − 8X

Flow Seeding − 1X
Flow Seeding − 2X
Flow Seeding − 4X
Flow Seeding − 8X

(b) ABC - L2-norm. X = 2.1M points.

256 128 64 32 16 8

Tornado L2−norm Error

Number of Cycles Saved

A
ve

ra
ge

 L
2−

no
rm

 E
rr

or
0

10
0

20
0

30
0

40
0

Uniform Seeding − 1X
Uniform Seeding − 2X
Uniform Seeding − 4X
Uniform Seeding − 8X

Flow Seeding − 1X
Flow Seeding − 2X
Flow Seeding − 4X
Flow Seeding − 8X

(c) Tornado - L2-norm. X = 67.2M points.

Figure 5: Evaluation results using L2-norm. Legends indicate the
total data storage target information.

Double Gyre — When observing the accuracy measurements
shown in Figure 5a, we must take the data storage costs into consid-
eration. We find several instances where accuracy of Flow Seeding
is better than Uniform Seeding while using less data storage. For
example, Flow Seeding initialized with 4X data storage target is
on average approximately 10% more accurate than Uniform Seed-
ing using 8X data storage. Similarly, Flow Seeding initialized with
a 2X data storage target, achieves better accuracy (approximately
5% more accurate on average) than Uniform Seeding using 4X data
storage for several configurations. Flow Seeding initialized with 8X
data storage target only used 6% more basis flows on average than

its corresponding Uniform Seeding configuration, while producing
Lagrangian trajectories that are approximately 52% more accurate.

ABC — We notice several instances of Flow Seeding achiev-
ing accuracy similar to Uniform Seeding, while using half the data
storage. For example, when considering NC = 256 in Figure 5b,
we observe Flow Seeding 1X has error similar to Uniform Seeding
2X, Flow Seeding 2X has error similar to Uniform Seeding 4X, and
so on. On average, for the ABC data set, Flow Seeding is approxi-
mately 20% more accurate than Uniform Seeding, while using 20%
less data storage.

Tornado — For this real-world data set, the Flow Seeding ap-
proach performs better than the Uniform Seeding approach for ev-
ery configuration. In Figure 5c, we observe that Flow Seeding is on
average 27% more accurate than Uniform Seeding, while being ini-
tialized with half the data storage target. Taking data storage costs
into account, we can say that Flow Seeding is 27% more accurate

on average while using 1
4

th
the amount of data (i.e., one fourth the

number of basis flows).

In Figure 5c, the Flow Seeding approach has comparable accu-
racy to Uniform Seeding, when initialized to use a quarter of the
data storage target. For example, Flow Seeding initialized with 1X
data storage target, has similar accuracy to Uniform Seeding us-
ing 4X data storage. Taking data storage costs into account, Flow
Seeding can achieve the same accuracy as Uniform Seeding, while

using 1
8

th
the amount of data (i.e., one eigth the number of basis

flows).

Thus, when considering data storage and accuracy results for all
data sets, Flow Seeding was able to achieve better accuracy for
same or reduced data storage, and same accuracy for reduced data
storage, than the Uniform Seeding approach.

6.3. Computation Time

We measure the computation time of each phase, i.e., in situ and
post hoc, to evaluate performance. For the Flow Seeding approach,
the simulation overhead (in situ phase) consists of calculation of ba-
sis flows and performing steps involved for particle addition and re-
moval. For the Uniform Seeding approach, the simulation overhead
only consists of calculating basis flows. For the post hoc phase, for
each interpolation step, we measure the time taken to perform a tri-
angulation to identify particle neighborhoods and to perform parti-
cle trajectory interpolations. Computation time of any operation (in
situ or post hoc) is dependent on the amount of data being operated
on. For each data set, we select configurations representative of the
trends observed for computation times.

Double Gyre — Table 2 shows the results for the Double Gyre data
set. From Section 6.1 we know that Flow Seeding on average used
more data storage than Uniform Seeding. When NC is high (and P
is low), Flow Seeding used more data storage than Uniform Seed-
ing. When NC is low (and P is high), Flow Seeding used less data
storage than Uniform Seeding. For all NC considered, Flow Seed-
ing used more data storage on average. When comparing post hoc
interpolation times, Flow Seeding was between 4x and 35x faster
than Uniform Seeding for NC = 8. However, given the increased
data storage costs for high NC, Flow Seeding was between 8x and

submitted to COMPUTER GRAPHICS Forum (1/2018).

10 S. Sane / Improving Flow Analysis Using In Situ Lagrangian Techniques

Configuration Uniform Seeding Flow Seeding
NC Data Storage Target Sim Overhead Post Hoc Total Sim Overhead Post Hoc Total

2048
1X 0.88 20.35 21.23 1.83 267.81 269.64
8X 1.54 43.68 45.22 3.05 363.44 366.49

128
1X 1.66 5.28 6.94 2.28 17.17 19.45
8X 7.39 34.37 41.76 24.84 22.73 47.57

8
1X 7.16 4.52 11.68 37.01 1.11 38.12
8X 40.04 73.95 113.99 1911.33 2.17 1913.5

Table 2: Timing results for the Double Gyre data set and X = 131,072 points. All timing measurements are reported in seconds.

Configuration Uniform Seeding Flow Seeding
NC Data Storage Target Sim Overhead Post Hoc Total Sim Overhead Post Hoc Total

2048
1X 1.87 1141.85 1143.72 20.70 927.46 948.16
8X 8.63 1565.21 1573.84 195.54 1161.21 1356.75

128
1X 15.38 135.29 150.67 105.42 70.10 175.52
8X 80.84 548.74 629.58 1386.54 134.85 1521.39

8
1X 145.76 61.18 206.94 256.34 18.06 274.40
8X 891.52 455.05 1346.57 2569.54 129.82 2699.36

Table 3: Timing results for the ABC data set and X = 2.1M points. All timing measurements are reported in seconds.

Configuration Uniform Seeding Flow Seeding
NC Data Storage Target Sim Overhead Post Hoc Total Sim Overhead Post Hoc Total

128
1X 149.82 1659.43 1809.25 8255.41 247.65 8503.06
8X 1044.15 13701.6 14745.75 79909.46 1872.28 81781.74

32
1X 527.60 1732.32 2259.92 5402.78 161.10 5563.88
8X 4476.33 17331.6 21807.93 75245.11 1614.49 76859.6

8
1X 1702.15 1697.15 3399.3 3735.39 162.39 3897.78
8X 12395.2 13542.2 25937.4 67951.8 1473.55 69425.35

Table 4: Timing results for the Tornado data set and X = 67.2M points. All timing measurements are reported in seconds.

10x slower than Uniform Seeding for NC = 2048. The simulation
overhead of Flow Seeding is greater in every instance resulting in
the overall computation time also being greater.

ABC — Table 3 shows the results for the ABC data set. From
Section 6.1 we know that Flow Seeding has lower data storage
costs than Uniform Seeding for this data set. Consequentially, Flow
Seeding requires less post hoc interpolation computation time than
Uniform Seeding for every configuration. The simulation overhead
of Flow Seeding is greater than Uniform Seeding in every instance.
Even though the simulation overhead is greater, when the number
of post hoc interpolation steps is large (for example, NC = 2048),
Flow Seeding has better total computation time than Uniform Seed-
ing.

Tornado — Table 4 shows the results for the Tornado data set.
From Section 6.1 we know that Flow Seeding stores approximately
half the data compared to Uniform Seeding. This results in post hoc
interpolation computation time being between 6x and 11x faster
for Flow Seeding. However, the in situ phase operates on a large
number on particles resulting in Flow Seeding having significantly
higher simulation overhead.

Overall, the total computation time required by the Flow Seeding
approach is greater due to the greater simulation overhead.

7. Conclusion

In this paper, we introduced an alternate approach for using La-
grangian analysis in situ. Our approach is an end-to-end in situ La-
grangian technique, consisting of two phases, which together min-
imize error propagation and accumulation. For the first phase, we
presented an in situ seed placement strategy to generate variable
duration basis flows. Our seed placement strategy introduced new
particles to prevent poor coverage of the flow field and removed
particles to handle dense clustering of particles. For the second
phase, we presented a post hoc interpolation technique to make
optimal usage of the basis flows generated in situ. Our findings
showed that, for all data sets considered, Flow Seeding achieved
better accuracy than Uniform Seeding, while using the same or less
number of basis flows. Further, Flow Seeding demonstrated the po-
tential for reduced data storage costs depending on the nature of the
flow.

While our study did not focus on reducing data storage, and in-
stead focused on minimizing error propagation by putting an upper
bound on interpolation error, we believe there is potential for fu-
ture research to look at various options for controlling the number
of basis flows present at any given time. Additionally, our study
did not focus on optimizing the performance of the Flow Seeding

submitted to COMPUTER GRAPHICS Forum (1/2018).

S. Sane / Improving Flow Analysis Using In Situ Lagrangian Techniques 11

approach. We expect parallel algorithms for operations involving
the Delaunay triangulation to significantly improve the overall per-
formance of the Flow Seeding approach. We aim to pursue these
directions of research in the future.

References
[ACG∗14] AGRANOVSKY A., CAMP D., GARTH C., BETHEL E. W.,

JOY K. I., CHILDS H.: Improved post hoc flow analysis via lagrangian
representations. In Large Data Analysis and Visualization (LDAV), 2014
IEEE 4th Symposium on (2014), IEEE, pp. 67–75.

[ACJC15] AGRANOVSKY A., CAMP D., JOY I., CHILDS H.:
Subsampling-based compression and flow visualization. Tech. rep.,
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United
States), 2015.

[AGJ11] AGRANOVSKY A., GARTH C., JOY K. I.: Extracting flow
structures using sparse particles. In VMV (2011), pp. 153–160.

[BCT01] BRUMMELL N., CATTANEO F., TOBIAS S.: Linear and non-
linear dynamo properties of time-dependent abc flows. Fluid Dynamics
Research 28, 4 (2001), 237–265.

[BJ15] BUJACK R., JOY K. I.: Lagrangian representations of flow
fields with parameter curves. In Large Data Analysis and Visualization
(LDAV), 2015 IEEE 5th Symposium on (2015), IEEE, pp. 41–48.

[CBJ16] CHANDLER J., BUJACK R., JOY K. I.: Analysis of error in
interpolation-based pathline tracing. In Proceedings of the Eurograph-
ics/IEEE VGTC Conference on Visualization: Short Papers (2016), Eu-
rographics Association, pp. 1–5.

[CCK07] CHEN Y., COHEN J., KROLIK J.: Similarity-guided streamline
placement with error evaluation. IEEE Transactions on Visualization and
Computer Graphics 13, 6 (2007), 1448–1455.

[CK90] CASH J. R., KARP A. H.: A variable order runge-kutta method
for initial value problems with rapidly varying right-hand sides. ACM
Transactions on Mathematical Software (TOMS) 16, 3 (1990), 201–222.

[COJ15] CHANDLER J., OBERMAIER H., JOY K. I.: Interpolation-based
pathline tracing in particle-based flow visualization. IEEE transactions
on visualization and computer graphics 21, 1 (2015), 68–80.

[GGTH07] GARTH C., GERHARDT F., TRICOCHE X., HANS H.: Effi-
cient computation and visualization of coherent structures in fluid flow
applications. IEEE Transactions on Visualization and Computer Graph-
ics 13, 6 (2007), 1464–1471.

[GLT∗09] GARTH C., LI G.-S., TRICOCHE X., HANSEN C. D., HA-
GEN H.: Visualization of coherent structures in transient 2d flows. In
Topology-Based Methods in Visualization II. Springer, 2009, pp. 1–13.

[GM77] GINGOLD R. A., MONAGHAN J. J.: Smoothed particle
hydrodynamics-theory and application to non-spherical stars. Monthly
notices of the royal astronomical society 181 (1977), 375–389.

[HBJG16] HUMMEL M., BUJACK R., JOY K. I., GARTH C.: Error es-
timates for lagrangian flow field representations. In Proceedings of the
Eurographics/IEEE VGTC Conference on Visualization: Short Papers
(2016), Eurographics Association, pp. 7–11.

[HE06] HELGELAND A., ELBOTH T.: High-quality and interactive ani-
mations of 3d time-varying vector fields. IEEE Transactions on Visual-
ization and Computer Graphics 12, 6 (2006), 1535–1546.

[HKTH16] HADJIGHASEM A., KARRASCH D., TERAMOTO H.,
HALLER G.: Spectral-clustering approach to lagrangian vortex detec-
tion. Physical Review E 93, 6 (2016), 063107.

[HSW11] HLAWATSCH M., SADLO F., WEISKOPF D.: Hierarchical line
integration. IEEE transactions on visualization and computer graphics
17, 8 (2011), 1148–1163.

[HY00] HALLER G., YUAN G.: Lagrangian coherent structures and mix-
ing in two-dimensional turbulence. Physica D: Nonlinear Phenomena
147, 3 (2000), 352–370.

[JL97] JOBARD B., LEFER W.: Creating evenly-spaced streamlines of
arbitrary density. In Visualization in Scientific Computing?97. Springer,
1997, pp. 43–55.

[JL00] JOBARD B., LEFER W.: Unsteady flow visualization by animat-
ing evenly-spaced streamlines. In Computer Graphics Forum (2000),
vol. 19, Wiley Online Library, pp. 31–39.

[KHH12] KASTEN J., HOTZ I., HEGE H.-C.: On the Elusive Con-
cept of Lagrangian Coherent Structures. In Topological Methods in
Data Analysis and Visualization II. Theory, Algorithms, and Applica-
tions. (TopoInVis’11) (2012), pp. 207–220.

[KRWT12] KUHN A., RÖSSL C., WEINKAUF T., THEISEL H.: A
benchmark for evaluating ftle computations. In Pacific Visualization
Symposium (PacificVis), 2012 IEEE (2012), IEEE, pp. 121–128.

[LHD∗04] LARAMEE R. S., HAUSER H., DOLEISCH H., VROLIJK B.,
POST F. H., WEISKOPF D.: The State of the Art in Flow Visualization:
Dense and Texture-Based Techniques. Computer Graphics Forum 23
(2004), 2004.

[LHS08] LI L., HSIEH H.-H., SHEN H.-W.: Illustrative streamline
placement and visualization. In Visualization Symposium, 2008. Paci-
ficVIS’08. IEEE Pacific (2008), IEEE, pp. 79–86.

[LMG06] LIU Z., MOORHEAD R., GRONER J.: An advanced evenly-
spaced streamline placement algorithm. IEEE Transactions on Visual-
ization and Computer Graphics 12, 5 (2006), 965–972.

[LS07] LI L., SHEN H.-W.: Image-based streamline generation and ren-
dering. IEEE Transactions on Visualization & Computer Graphics, 3
(2007), 630–640.

[MAD05] MEBARKI A., ALLIEZ P., DEVILLERS O.: Farthest point
seeding for efficient placement of streamlines. In Visualization, 2005.
VIS 05. IEEE (2005), IEEE, pp. 479–486.

[MCHM10] MARCHESIN S., CHEN C.-K., HO C., MA K.-L.: View-
dependent streamlines for 3d vector fields. IEEE Transactions on Visu-
alization and Computer Graphics 16, 6 (2010), 1578–1586.

[MJL∗13] MCLOUGHLIN T., JONES M. W., LARAMEE R. S., MALKI
R., MASTERS I., HANSEN C. D.: Similarity measures for enhancing
interactive streamline seeding. IEEE Transactions on Visualization and
Computer Graphics 19, 8 (2013), 1342–1353.

[MLP∗09] MCLOUGHLIN T., LARAMEE R. S., PEIKERT R., POST
F. H., CHEN M.: Over Two Decades of Integration-Based, Geomet-
ric Flow Visualization. In EG 2009 - State of the Art Reports (2009),
pp. 73–92.

[MLP∗10] MCLOUGHLIN T., LARAMEE R. S., PEIKERT R., POST
F. H., CHEN M.: Over two decades of integration-based, geometric
flow visualization. In Computer Graphics Forum (2010), vol. 29, Wiley
Online Library, pp. 1807–1829.

[MLZ09] MCLOUGHLIN T., LARAMEE R. S., ZHANG E.: Easy inte-
gral surfaces: a fast, quad-based stream and path surface algorithm. In
Proceedings of the 2009 Computer Graphics International Conference
(2009), ACM, pp. 73–82.

[MTHG03] MATTAUSCH O., THEUSSL T., HAUSER H., GRÖLLER E.:
Strategies for interactive exploration of 3d flow using evenly-spaced il-
luminated streamlines. In Proceedings of the 19th spring conference on
Computer graphics (2003), ACM, pp. 213–222.

[Nes89] NESE J. M.: Quantifying local predictability in phase space.
Physica D: Nonlinear Phenomena 35, 1-2 (1989), 237–250.

[OHBKH09] OBERMAIER H., HERING-BERTRAM M., KUHNERT J.,
HAGEN H.: Volume deformations in grid-less flow simulations. In Com-
puter Graphics Forum (2009), vol. 28, Wiley Online Library, pp. 879–
886.

[OWW15] ORF L., WILHELMSON R., WICKER L.: Visualization of a
simulated Long-Track EF5 tornado embedded within a supercell thun-
derstorm. Parallel Comput. 0, 0 (2015). in press.

[PPF∗11] POBITZER A., PEIKERT R., FUCHS R., SCHINDLER B.,
KUHN A., THEISEL H., MATKOVIC K., HAUSER H.: The State of

submitted to COMPUTER GRAPHICS Forum (1/2018).

12 S. Sane / Improving Flow Analysis Using In Situ Lagrangian Techniques

the Art in Topology-based Visualization of Unsteady Flow. Computer
Graphics Forum 30, 6 (September 2011), 1789–1811. URL: http:
//dx.doi.org/10.1111/j.1467-8659.2011.01901.x.

[SGSM08] SALZBRUNN T., GARTH C., SCHEUERMANN G., MEYER
J.: Pathline predicates and unsteady flow structures. The Visual Com-
puter 24, 12 (2008), 1039–1051.

[SP07] SADLO F., PEIKERT R.: Efficient visualization of lagrangian co-
herent structures by filtered amr ridge extraction. IEEE Transactions on
Visualization and Computer Graphics 13, 6 (2007), 1456–1463.

[STH∗09] SHI K., THEISEL H., HAUSER H., WEINKAUF T.,
MATKOVIC K., HEGE H.-C., SEIDEL H.-P.: Path line attributes-an in-
formation visualization approach to analyzing the dynamic behavior of
3d time-dependent flow fields. Topology-Based Methods in Visualization
II (2009), 75–88.

[SW10] SADLO F., WEISKOPF D.: Time-dependent 2-d vector field
topology: An approach inspired by lagrangian coherent structures. In
Computer Graphics Forum (2010), vol. 29, Wiley Online Library,
pp. 88–100.

[SXM16] SAUER F., XIE J., MA K.-L.: A combined eulerian-lagrangian
data representation for large-scale applications. IEEE Transactions on
Visualization and Computer Graphics (2016).

[TB96] TURK G., BANKS D.: Image-guided streamline placement. In
Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques (1996), ACM, pp. 453–460.

[TWHS05] THEISEL H., WEINKAUF T., HEGE H.-C., SEIDEL H.-
P.: Topological methods for 2D time-dependent vector fields based on
stream lines and path lines. Visualization and Computer Graphics, IEEE
Transactions on 11, 4 (July 2005), 383–394. doi:10.1109/TVCG.
2005.68.

[VKP00] VERMA V., KAO D., PANG A.: A flow-guided streamline
seeding strategy. In Proceedings of the conference on Visualization’00
(2000), IEEE Computer Society Press, pp. 163–170.

[Wal98] WALDRON S.: The error in linear interpolation at the vertices
of a simplex. SIAM Journal on Numerical Analysis 35, 3 (1998), 1191–
1200.

[WLZMI10] WU K., LIU Z., ZHANG S., MOORHEAD II R. J.:
Topology-aware evenly spaced streamline placement. IEEE Transac-
tions on Visualization and Computer Graphics 16, 5 (2010), 791–801.

[WS05] WIEBEL A., SCHEUERMANN G.: Eyelet particle tracing-steady
visualization of unsteady flow. In Visualization, 2005. VIS 05. IEEE
(2005), IEEE, pp. 607–614.

[YKP05] YE X., KAO D., PANG A.: Strategy for seeding 3d streamlines.
In Visualization, 2005. VIS 05. IEEE (2005), IEEE, pp. 471–478.

[YWSC12] YU H., WANG C., SHENE C.-K., CHEN J. H.: Hierarchical
streamline bundles. IEEE Transactions on Visualization and Computer
Graphics 18, 8 (2012), 1353–1367.

[ZSH96] ZOCKLER M., STALLING D., HEGE H.-C.: Interactive visual-
ization of 3d-vector fields using illuminated stream lines. In Visualiza-
tion’96. Proceedings. (1996), IEEE, pp. 107–113.

submitted to COMPUTER GRAPHICS Forum (1/2018).

http://dx.doi.org/10.1111/j.1467-8659.2011.01901.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01901.x
http://dx.doi.org/10.1109/TVCG.2005.68
http://dx.doi.org/10.1109/TVCG.2005.68

