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Directive-Based, High-Level Programming and Optimizations
for High-Performance Computing with FPGAs

ABSTRACT
Reconfigurable architectures like Field Programmable Gate Arrays
(FPGAs) have been used for accelerating computations from several
domains because of their unique combination of flexibility, per-
formance, and power efficiency. However, FPGAs have not been
widely used for high-performance computing (HPC), primarily
due to their programming complexity and difficulties in optimiz-
ing performance. In this Directed Research Project, we present a
directive-based, high-level optimization framework for HPC with
FPGAs, which is built on top of an OpenACC-to-FPGA transla-
tion framework called OpenARC. We propose directive extensions
and corresponding compile-time optimization techniques to enable
the compiler to generate more efficient FPGA hardware configura-
tion files. Empirical evaluation of the proposed framework on an
Intel Stratix V FPGA with five OpenACC benchmarks from vari-
ous application domains shows that FPGA-specific optimizations
can lead to significant increases in performance across all tested
applications. We also demonstrate that applying these high-level
directive-based optimizations can allow OpenACC applications to
perform similarly to lower-level OpenCL applications with hand-
written FPGA-specific optimizations, and offer runtime and power
performance benefits compared to CPUs and GPUs.
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1 INTRODUCTION
Heterogeneous computing using manycore processors (e.g., GPU
or Xeon Phi) is a popular solution to hardware performance con-
straints in current and upcoming architectures. Along these lines,
reconfigurable architectures like FPGAs have received renewed in-
terests due to their unique combination of flexibility, performance,
and energy efficiency. Their reconfigurable nature allows the FPGA
hardware to be customized for applications so that they can achieve
much higher energy efficiencies compared to conventional CPUs
and GPUs. Thus FPGAs have been increasingly adapted in various
industry and research platforms, such as datacenters [17], storage
systems [11], cloud systems [4], and research prototypes [22].

However, FPGAs have not been widely adapted for HPC, mainly
due to their programming complexity and difficulties in optimiz-
ing performance. Traditionally, programming FPGAs has required
substantial knowledge on the underlying hardware design and
low-level hardware description languages (HDLs) such as Verilog
and VHDL. To reduce FPGA programming complexities, several
High-Level Synthesis (HLS) programming models have been pro-
posed [2, 3, 5, 16, 20]. OpenCL is the first standard programming
model that is adapted by all major FPGA vendors (e.g., Intel [1] and
Xilinx [3]) and functionally portable across diverse heterogeneous
architectures.

Despite offering the potential for portability to GPUs and Xeon
Phis, programming FPGAs with OpenCL has two contradicting
problems: the semantic gap between the OpenCL abstraction and
the low-level hardware design is too wide, while the programming
abstraction offered by OpenCL is still considered too low for typi-
cal HPC programmers. Due to the first issue, the efficiency of the
OpenCL compiler is critical to achieve performance, since it syn-
thesizes all the hardware logic for the input program. However,
because of practical limits mainly caused by the semantic gap, ex-
isting OpenCL compilers targeting FPGAs tend to be very sensitive
to specific code patterns. For example, a study on manual port-
ing of OpenCL kernels to FPGAs showed that a minor change in
the OpenCL code may have huge effects on how the underlying
OpenCL compiler interprets the input code, and how resources are
used to implement the input algorithms, compile times, and per-
formance [24]. While lowering the programming abstraction level
offered by OpenCL could reduce the compiler’s sensitivity caused
by the semantic gap, this would negatively affect programmability.

To address these issues, we propose a directive-based, high-level
programming and optimization framework for efficient FPGA com-
puting, which is built on top of the existing OpenACC-to-FPGA
translation framework called OpenARC [15]. The directive-based,
high-level programming model offers better programmability, and
the semantic information offered by user directives can better in-
form the OpenARC compiler for OpenACC-to-OpenCL translation.
Here, specific OpenCL code patterns can be generated such that
the underlying OpenCL compiler can infer the intended semantics.

The main contributions of this Directed Research Project are the
following:

• We design, implement, and evaluate directive-based, high-
level FPGA-specific optimizations, exploiting known FPGA
programming paradigms such as shift registers and sliding
windows to reduce overall FPGA runtimes and resource
usage.

• We port two existing Intel OpenCL benchmarks to Ope-
nACC, apply proposed optimizations to the ported OpenACC
benchmarks and other existing OpenACC benchmarks, and
evaluate their performance on the Intel Stratix V FPGA.

• We compare the performance of OpenACC applications with
FPGA-specific optimizations against manual OpenCL appli-
cations with hand-tuned FPGA-specific optimizations.

• We compare the runtime and power usage of OpenACC
FPGA executions against OpenACC GPU executions and
OpenMP CPU executions.

2 BACKGROUND
2.1 OpenACC
OpenCL is the first standard, portable programming model adapted
by major FPGA vendors to provide ease of programming over
complex FPGA architectures. However, OpenCL has some criti-
cal issues to be settled; rewriting large legacy HPC applications
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that were written for traditional CPU-only machines for hetero-
geneous hardware accelerator-based systems using OpenCL can
be difficult and impractical. It requires significant rewriting and
restructuring of hundreds of thousands of code lines, and reorga-
nization of major data structures. Furthermore, OpenCL does not
provide performance-portability across different hardware accel-
erators, because it still exposes low-level hardware architecture
abstraction to the programmers [19]. The OpenACC programming
model addresses these challenges by providing a higher-level ap-
proach, relative to OpenCL. OpenACC has the potential to provide
better code- and performance-portability across a wide range of
hardware accelerators [18]. The OpenACC API contains a set of
directives that enable offloading of kernel code to accelerators. The
directives extend ANSI C, C++, and Fortran base languages in a
way that allows programmers to migrate applications incrementally
to accelerators and requires few modifications of the legacy HPC
application code, and little restructuring of the code, if any.

2.2 OpenARC as an OpenACC-to-FPGA
Translator

Our work uses OpenARC [15] as the baseline translation framework
of OpenACC to FPGA. OpenARC is an open-source compiler frame-
work for directive-based heterogeneous programming research,
and it is the first OpenACC compiler supporting FPGAs [13]. It per-
forms source-to-source translation and optimization of the input
OpenACC program into OpenCL code, which is further compiled
into a hardware image by a backend FPGA OpenCL compiler such
as the Intel Offline Compiler. OpenARC already supports several
FPGA-specific compiler optimizations prior to this work, which
assist the underlying FPGA compiler in generating more efficient
FPGA hardware configuration files [13]. Even though some opti-
mizations (e.g., dynamic memory-transfer alignment) are generally
applicable, most optimizations proposed in the previous work focus
on massively parallel compute regions executed by many threads,
which are a common high performance computing pattern pre-
ferred by both CPUs and GPUs. The deeply pipelined nature of
the FPGA architecture also offers an alternate, single-threaded, or
single work-item approach. The single work-item approach sequen-
tially executes the parallel region by pipelining the entire region,
which allows the compiler more opportunities to maximize the
parallel pipeline stages and may also enable true data pipelining
across loop iterations using built-in shift registerswhen applications
share or reuse data across work-items. To better exploit the fully
customizable pipelining, which is an essential component of the
FPGA-based accelerator computing, we propose several directive-
based, high-level FPGA-specific optimizations, which are explained
in the following section.

3 DIRECTIVE-BASED, HIGH-LEVEL
FPGA-SPECIFIC OPTIMIZATIONS

This section presents a directive-based, high-level FPGA-specific
optimization framework, which consists of directive extensions and
corresponding compiler optimizations to generate more efficient
FPGA hardware configuration files. The proposed directives are
designed for programmers either to provide key information nec-
essary for the compiler to automatically generate output OpenCL
code enabling FPGA-specific optimizations, or to control important
tuning parameters of those optimizations at a high level.

Listing 1: OpenACC nested loops with collapse clause
1 #pragma acc parallel loop num_gangs(1) num_workers(1) vector_length(1) collapse(2)
2 for (i = 0; i < M; i++)
3 for (j = 0; j < N; j++) { ... }

3.1 Single Work-Item Optimization
As explained in the previous section, a common approach in general
CPU- and GPU-based computing is to develop massively parallel ap-
plications that can be partitioned across multiple computation units.
While this approach can be effective when targeting FPGAs, FPGAs
alternatively offer a single-threaded approach, which is generally
preferred for efficient FPGA computing. In OpenCL terminology,
the massively parallel or multiple work-item approach is known as
an NDRange kernel, while the single-threaded approach is referred
to as a single work-item kernel [1]. To execute an OpenACC com-
pute region in a single work-item fashion, the numbers of gangs,
workers, and vectors should be explicitly set to 1, respectively. (The
latest OpenACC standard (V2.6) introduces a new serial construct,
which executes the region in the single work-item fashion.)We have
modified OpenARC to ensure that the presence of these directives
leads to single work-item executions.

Some applications, like embarrassingly parallel algorithms, are
well-suited to NDRange execution. For other algorithms with data
dependency or data reuse across work-items, the simple single
work-item optimization alone may increase performance when
executing on an FPGA. In addition to the stand-alone benefits, we
also mention this optimization because it is a prerequisite for the
following optimizations: collapse optimization (§3.2), reduction
optimization (§3.3), and sliding window optimization (§3.4).

3.2 Collapse Optimization
In a massively parallel computing approach, a loop collapse op-
timization is commonly used either to increase the amount of
computations to be parallelized or to change the mapping of it-
erations to the processing units. Loop collapsing is already a part
of the OpenACC standard, and OpenARC supports the collapse
clause. In Listing 1, we see a pair of perfectly nested loops with
a collapse clause and single work-item directives. In the current
OpenARC implementation (V0.11), collapsing of perfectly nested
loops is achieved by creating a new loop expression with a newly
defined iteration variable. OpenARC recalculates the values of the
original iteration variables at each iteration using division and mod-
ulus operators. However, both division and modulus are relatively
expensive operations on the FPGA in terms of both resource usage
and execution time [1]. In our FPGA-specific collapse optimization,
we can replace these expensive operations with row and column
counters. These counters are updated at each iteration with cheaper
addition operations, which allows us to more efficiently collapse
nested loops in an FPGA single work-item execution. We can see
the resulting OpenACC code after applying OpenARC’s collapse
transformation in Listing 2.

The FPGA-specific collapse optimization can be automatically
applied any time loop collapsing occurs within a single work-item
execution context. Because the row and column counters create
dependencies within the loop, in multi-threaded contexts we revert
to the traditional collapse transformation. We support application
of the collapse optimization in conjunction with our reduction
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Listing 2: OpenACC loop after collapse transformation
1 // Traditional transformation
2 #pragma acc parallel loop num_gangs(1) num_workers(1) vector_length(1)
3 for (iter = 0; iter < M∗N; iter++)
4 { i = iter / N; j = iter % N;
5 ...
6 }
7
8 // FPGA−specific transformation
9 i = 0; j = 0;
10 #pragma acc parallel loop num_gangs(1) num_workers(1) vector_length(1) firstprivate(i,j)
11 for (iter = 0; iter < M∗N; iter++)
12 { ...
13 j++; if (j == N) { j = 0; i++; }
14 }

(§3.3) and sliding window (§3.4) optimizations. Integrating these
optimizations allows application of the reduction (§3.3) and sliding
window (§3.4) optimizations to a wider variety of benchmarks
containing nested loops, without the performance penalty from
OpenARC’s traditional collapse transformation.

3.3 Reduction Optimization
Scalar reductions are common patterns used in many algorithms,
such as the Rodinia Benchmark SRAD [7], to compute averages, find
maximum values, and so on. Most high-performance approaches
to scalar reduction involve a multi-threaded, tree-based paralleliza-
tion scheme [14]. However, because a pipeline-parallel approach
is often more efficient than a massively parallel approach when
executing on an FPGA, an alternate FPGA-specific strategy to the
scalar reduction is required.

Our reduction optimization compiler technique allows users to
utilize single work-item kernels and shift registers in OpenACC
using only previously existing directives. Listing 3 demonstrates
an example of this approach. When using OpenACC to target an
FPGA device, the user must first indicate single work-item execu-
tion (§3.1). Within a single work-item compute region, the user
can then annotate any loop with the OpenACC reduction directive
and a supported reduction operation. Finally, to increase the perfor-
mance the user can also append an optional unroll annotation, at
the cost of additional FPGA-resources. Under these circumstances,
we can safely and efficiently apply our reduction optimization to
implement the FPGA-specific shift-register based reduction. We can
see an application of the OpenACC FPGA-specific sum reduction in
Listing 3, with N referring to the desired level of replication. Ope-
nARC currently supports addition, multiplication, and maximum
and minimum value operations for FPGA-specific reductions.

We note that for FPGA-execution, scalar reductions are an ex-
ample of programming patterns where the single work-item op-
timization (§3.1) alone does not increase performance relative to
the traditional NDRange implementation. The single work-item
approach (§3.1) leads to poor performance due to the loop-carried
dependency on the reduction variable. This loop-carried depen-
dency leads to inefficient pipeline stalls, significantly degrading
performance. These pipeline stalls during loop execution are formal-
ized in the Intel FPGA SDK documentation by the term initiation
interval, or II [1]. The initiation interval specifically refers to the
number of FPGA clock cycles that a pipeline is stalled to launch
each successive iteration of a loop execution. A loop with several
loop-carried dependencies, like scalar reduction, may have a high
II, while a loop without dependencies may have a lower II. When

Listing 3: OpenACC sum reduction
1 #pragma acc parallel loop num_gangs(1) num_workers(1) vector_length(1) reduction(+:sum)
2 #pragma unroll N
3 for (int i = 0; i < SIZE; ++i)
4 { sum += input[i]; }

executing in a loop-pipeplined single work-item approach, an II of
1 leads to optimal performance, indicating that successive iterations
are launched every clock cycle.

Although the stand-alone single work-item approach does not
outperform traditional methods for scalar reductions on an FPGA,
by utilizing sufficiently sized shift registers in addition to this ap-
proach we can significantly improve performance. In the shift-
register approach to scalar reductions, we use the shift register to
accumulate partial results as we iterate over the input array. This
is followed by a standard reduction over the much smaller shift-
register array. This approach effectively removes the loop-carried
dependency on the reduction variable. As a result, the reduction
loop attains the desired II of 1. The exact shift-register size or depth
required depends on the data type, reduction operation, and un-
rolling or replication factor.

Fortunately the underlying Intel OpenCL compiler provides in-
formation about loop initiation intervals at compile time that can
be used to determine an appropriate shift-register depth. With this
information, we performed a number of tests with different reduc-
tion configurations, and made some general observations about the
relationships between the data type, reduction operation, unrolling
factor, and their effects on the shift register depth required to attain
the desired II of 1. For example, on the Stratix V FPGA, we observe
that without shift registers or loop unrolling, scalar reduction using
single precision floating point addition leads to an II of 8 cycles,
while using double-precision floating point multiplication leads to
an II of 16 cycles. We also observe that loop unrolling acts as a mul-
tiplier to the initiation interval. For example, an unroll factor of 4 in
the previous example leads to an II of 32 and 64 cycles respectively.
From these observations, we expect the following to be valid:

r eдister depth ≈ (operator latency) ∗ (unroll f actor ) (1)

In the equation above, reдister depth refers to the expected size
of the shift registers required to attain an II of 1, andoperator latency
refers to the device-specific cost of the data type and operation used.
This equation along with pre-calculated operator costs are used
in the reduction optimization to calculate efficient shift register
depths. However, after compiling reduction codes with different
configurations, we find that the following unexpected equation
holds true:

r eдister depth ≈
(operator latency) ∗ (unroll f actor )

2
(2)

That is, by halving the expectedminimum register depth required
for an II of 1, we still attain an II of 1. Because of the significant per-
formance advantages of launching successive iterations every cycle
and attaining an II of 1, under certain situations the underlying
compiler can force an II of 1 by intentionally throttling or reduc-
ing the maximum FPGA circuit frequency for the entire offloaded
kernel [1]. That is, to reduce the number of cycles stalled each
iteration, the compiler can increase the amount of time per cycle.
While the ability to successfully launch iterations every cycle may
benefit a specific loop, reducing the maximum circuit frequency
can negatively affect performance in other regions of the offloaded
kernel. Therefore by default in the Reduction Optimization we use
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Listing 4: OpenCL generated from OpenARC’s FPGA-
specific reduction transformation
1 #define REGISTER_DEPTH (8 ∗ N) // OpenARC calculated shift−register depth
2
3 float shift_reg[REGISTER_DEPTH + 1] = {0}; //Create and initialize shift registers.
4
5 #pragma unroll N
6 for (int i = 0; i < SIZE; ++i) {
7 shift_reg[REGISTER_DEPTH] = shift_reg[0] + input[i]; //Perform partial reduction.
8
9 for (int j = 0; j < REGISTER_DEPTH; ++j)
10 { shift_reg[j] = shift_reg[j + 1]; } //Shift values in shift registers.
11 }
12
13 #pragma unroll
14 for (int i = 0; i < REGISTER_DEPTH; ++i)
15 { sum += shift_reg[i]; } //Perform final reduction on shift registers.

the original equation (1) without halving to calculate the register
depth. We currently hard-code operator latencies specific to the
Stratix V, but these can easily be reconfigured for other devices.

In Listing 4 we see the OpenCL generated by applying the reduc-
tion optimization to the OpenACC scalar reduction code from List-
ing 3, targeting a Stratix V FPGA. We see the OpenARC-calculated
shift register depth is appropriately set to 8 ∗ N for floating point
addition and an unroll factor of N (line 1). We next declare and
initialize the shift registers, used for storing the accumulated partial
sums (line 3). In the main loop, we now add each successive value
to the oldest partial sum present in the shift registers (line 7), fol-
lowed by a shift of the entire shift register array (lines 9-10). In this
execution pattern, an assigned partial result is not accessed until it
has been shifted through the entire register array, which relaxes the
loop-carried dependency. After accumulating partial results over
the entire array, we perform a final traditional reduction over the
partial results in the shift registers (lines 13-15).

The OpenCL programming patterns generated by OpenARC
(Listing 4) direct the underlying Intel OpenCL compiler to imple-
ment scalar reduction using single work-item execution and shift
registers. With the FPGA-specific reduction optimization compiler
transformation, we allow users to use existing OpenACC directives
to generate these non-intuitive code patterns without specialized
knowledge of shift registers, initiation intervals, and operator la-
tencies.

3.4 Sliding Window Optimization
3.4.1 Basic sliding window optimization. When executing cer-

tain applications using a single work-item approach on an FPGA,
there can be “neighbor” data used in the computation that must be
accessed. To avoid redundant memory accesses across iterations,
a sliding window approach can be used. In the sliding window
approach, we maintain the required neighborhood of relevant data
in shift registers, shifting a new value in and an old value out each
time we begin an iteration. This approach allows us to efficiently
forward data across iterations, allowing for data reuse. This also sig-
nificantly reduces the number of memory operations required each
iteration, as we are able to access the neighboring values stored in
the sliding window without pipeline delays.

Structured-grid applications that compute grid-cell values using
a surrounding neighborhood of cells, like stencil applications, can
under-perform in an FPGA execution environment due to redun-
dant and expensive memory accesses. We propose an OpenARC
directive extension implementing the sliding window approach to

Listing 5: OpenACC with window directive
1 #define ROWS ...
2 #define COLS ...
3
4 #pragma acc parallel loop num_gangs(1) num_workers(1) vector_length(1)
5 #pragma openarc transform window (input, output)
6 for (int index = 0; index < ROWS∗COLS; ++index) {
7 float N = input[index − COLS];
8 float S = input[index + COLS];
9 float E = input[index + 1];
10 float W = input[index − 1];
11 output[index] = input[index] + N + S + E + W;
12 }

address this performance issue. Thewindow directive can be applied
to loops within an OpenACC compute region, specifically where
the loop reads from an input array, performs some computations,
and writes to an output array. However, only certain types of loops
can benefit from application of the window directive, such as loops
where each iteration contains several non-contiguous input array
accesses, and loops where the same memory locations are redun-
dantly accessed across different loop iterations. These programming
patterns are common in stencil-based scientific codes.

The window directive imposes several restrictions for safe and
efficient application. The optimization requires that the neighbor-
hood of cells accessed each iteration is of a fixed size. This fixed
size is used to determine the size of the sliding window. The op-
timization also requires that the neighbor cells (array elements)
accessed each iteration have constant offsets relative to the current
iteration. For example, a loop that accesses a random assortment
of neighbors each iteration would not be appropriate. Finally, in
the current version of the sliding window optimization, the loop
iteration variable must increase monotonically and have a step size
of one. These requirements ensure that the underlying OpenCL
compiler can successfully and effectively infer and implement a
sliding window approach using shift registers. OpenARC enforces
these requirements by analyzing the loop control statement and
requiring the index expressions of the input array to be affine where
the coefficient of the index variable is either 1 or -1. Violations of
these requirements cause OpenARC to issue errors or warnings
depending on the offense.

In Listing 5, we show an example of a simple OpenACC stencil
code with the window directive applied, where each iteration in a
loop contains multiple non-contiguous input array accesses. Also,
each element in the input array is accessed several times over mul-
tiple iterations. Because this example code meets the requirements
mentioned above, it is safe to apply the window directive.

Using only the code provided in Listing 5, OpenARC can analyze
the input array index expressions to calculate the following values
needed to implement the sliding window transformation: neighbor-
hood size (NBD_SIZE), window offset (SW_OFFSET ), and reading
offset (READ_OFFSET ). The neighborhood size refers to the smallest
number of contiguous array elements needed to encapsulate the
neighbors required to compute one iteration. The window offset
refers to the difference between the current value of the iteration
variable and the minimum index value of neighbor cells for a given
iteration. This offset is used when replacing input array accesses
with accesses to the sliding window. Finally, the read offset refers
to difference between the maximum index of the current neighbors
and the current index. This offset determines the index used to read
from the input array each iteration, and to calculate the number
of initialization iterations required. These offsets are calculated
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internally using the following equations, where index refers to the
index of a given iteration, and max_index and min_index refer to
the largest and smallest values used to access the input array for
that same iteration.

NBD_SIZE =max_index −min_index + 1 (3)
SW _OF FSET = index −min_index (4)

READ_OF FSET =max_index − index (5)

In the proposed sliding window optimization, calculating the
above three equations is key; for this, we exploit the built-in sym-
bolic analysis tools in OpenARC [8]. If the target loop body does
not contain inner loops, the compiler symbolically calculates the
differences between any two index expressions used for the input
array accesses and derives the min_index and max_index expres-
sions by symbolically comparing those differences. If the target loop
body contains inner loops, the compiler applies a symbolic range
analysis [8], which computes integer variables’ value ranges at each
program point to find the symbolic ranges of index variables of the
inner loops. The calculated symbolic ranges are used to calculate
the symbolic differences between two index expressions for the
input array accesses. Once the above three values (neighborhood
size, window offset, and reading offset) are calculated and known
to be constant, the remaining step is to transform the target loop
into a specific programming pattern so that the underlying OpenCL
compiler is able to generate the hardware logic required for efficient
sliding window execution.

In Listing 6, we show the resulting OpenCL code after the pro-
posed sliding window optimization has been applied. We first see
the results of OpenARC’s calculations using the above equations
(lines 5-7), followed by a declaration for the sliding window array
(line 9). The initial value of the loop iteration variable is offset by
the read offset (line 11). This allows for additional iterations to
properly initialize the sliding window array, ensuring that the nec-
essary neighborhood of values are present in the sliding window
for the first non-initialization iteration. Within the loop, we first
shift the sliding window each iteration (lines 12-13). Although this
programming pattern is inefficient on non-FPGA platforms, it is
required by the underlying OpenCL compiler to infer a shift regis-
ter implementation of the intended sliding window array. We next
read one value from the designated input array into the sliding win-
dow array, using the pre-calculated read offset (lines 16-17). Finally
for every non-initialization iteration, we perform the calculations
from the original loop (lines 20-24). We see that each read from the
original input array has been replaced with a read from the sliding
window array, and in the sliding window array index expressions
the iteration variable has been replaced with the window offset.

Although Listing 5 provides an ideal case for the window direc-
tive, the sliding window compiler transformation is robust enough
to handle more complex indexing expressions, including expres-
sions within nested loops containing multiple iteration variables.
Also, algorithms without a separate output array that write compu-
tation results back to the original input array, like the Rodinia Bench-
mark NW [7], are handled by the compiler transformation using
special-case code. The OpenARC window directive exemplifies the
need for high-level programming constructs to enable widespread
adoption of FPGA programming for HPC. This OpenACC directive
extension enables programmers to use the performance-critical
sliding window pattern on an FPGA without specific knowledge

Listing 6: Transformed OpenCL sliding window code
1 #define ROWS ...
2 #define COLS ...
3
4 // OpenARC calculated values
5 #define NBD_SIZE (2∗COLS + 1) // Neighborhood size
6 #define SW_OFFSET (COLS) // Window offset
7 #define READ_OFFSET (COLS) // Read offset
8
9 float sw[NBD_SIZE]; //Create a sliding window array.
10
11 for (int index = −(READ_OFFSET); index < ROWS∗COLS; ++index) {
12 for (int i = 0; i < NBD_SIZE − 1; ++i)
13 { sw[i] = sw[i + 1]; } //Shift values in the sliding window array.
14
15 //Load an input array element into the sliding window array.
16 if (index + READ_OFFSET < ROWS∗COLS)
17 { sw[NBD_SIZE − 1] = input[index + READ_OFFSET]; }
18
19 if (index >= 0) { //Main computation body which uses sliding window
20 float N = sw[SW_OFFSET − COLS];
21 float S = sw[SW_OFFSET + COLS];
22 float E = sw[SW_OFFSET + 1];
23 float W = sw[SW_OFFSET − 1];
24 output[index] = sw[SW_OFFSET] + N + S + E + W;
25 }
26 }

of shift registers, neighborhood sizes, and somewhat unintuitive
OpenCL programming patterns.

3.4.2 Sliding window optimization with loop unrolling. Like the
shift-register based reduction optimization, we can increase the per-
formance of the shift-register based sliding window optimization by
applying loop unrolling. This unrolling can effectively increase the
pipeline depth, allowing for a higher degree of pipeline parallelism
and reducing the number of iterations required. This can decrease
overall runtime, at the cost of increased FPGA resource usage. For
applications with a low base resource usage, loop unrolling can be
used to utilize unused resources while improving performance.

To enable loop unrolling in conjunction with the sliding win-
dow approach, users can add an additional #pragma unroll UN-
ROLL_FACTOR annotation to any loop annotated with a window
directive. Here UNROLL_FACTOR refers to the degree of unrolling
and the number of times the sliding window logic should be repli-
cated. We have integrated the sliding window approach with loop
unrolling by creating an extension to the sliding window compiler
transformation. Although we could simply lower the unroll pragma
to the underlying OpenCL compiler, we can further optimize this
approach by separating the shift registers and memory operations
from the primary computation operations. This separation allows
us to reduce the number of sliding window shifts and perform coa-
lesced memory reads and writes, while only replicating code used
in the primary computation. This models the approach used in the
Intel OpenCL SKD FD3D design example [1].

We see the resulting OpenCL code generated from applying an
optional loop unroll pragma along with the window directive in
Listing 7. In this transformation, the size of the sliding window
is dictated by a new compile-time constant SW_SIZE (line 8). The
increased size of the sliding window is needed to accommodate the
additional operations from loop unrolling. Because we now process
multiple values each iteration, the loop step size is increased to
UNROLL_FACTOR (line 12). Instead of shifting the sliding window
one position each iteration, we now shift UNROLL_FACTOR po-
sitions (lines 13-14), thus reducing the overall number of shifts
required. We then perform a coalesced read of UNROLL_FACTOR
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Listing 7: Transformed OpenCL sliding window code with
loop unrolling
1 #define ROWS ...
2 #define COLS ...
3
4 // OpenARC calculated values
5 #define NBD_SIZE (2∗COLS + 1) // Neighborhood size
6 #define SW_OFFSET (COLS) // Window offset
7 #define READ_OFFSET (COLS) // Read offset
8 #define SW_SIZE (NBD_SIZE + UNROLL_FACTOR − 1)
9
10 float sw[SW_SIZE]; //Create a sliding window array.
11
12 for (int index = −(READ_OFFSET); index < ROWS∗COLS; index += UNROLL_FACTOR) {
13 for (int i = 0; i < NBD_SIZE − 1; ++i)
14 { sw[i] = sw[i + UNROLL_FACTOR]; } //Shift UNROLL_FACTOR positions.
15 //Load UNROLL_FACTOR values to the sliding window.
16 for (int ss = 0; ss < UNROLL_FACTOR; ++ss) {
17 if (index + READ_OFFSET + ss < ROWS∗COLS)
18 { sw[NBD_SIZE − 1 + ss] = input[index + READ_OFFSET + ss]; }
19 }
20
21 float value[UNROLL_FACTOR]; //Temporary array storing outputs.
22 //Main body replicated by UNROLL_FACTOR
23 #pragma unroll
24 for (int ss = 0; ss < UNROLL_FACTOR; ++ss) {
25 if (index + ss >= 0) {
26 float N = sw[SW_OFFSET+ss − COLS];
27 float S = sw[SW_OFFSET+ss + COLS];
28 float E = sw[SW_OFFSET+ss + 1];
29 float W = sw[SW_OFFSET+ss − 1];
30 output[index] = sw[SW_OFFSET+ss] + N + S + E + W;
31 value[ss] = sw[SW_OFFSET+ss] + N + S + E + W;
32 }
33 }
34 //Store temporary outputs to the output array.
35 for (int ss = 0; ss < UNROLL_FACTOR; ++ss) {
36 if (index + ss >= 0)
37 { output[index + ss] = value[ss]; }
38 }
39 }

values from the input array (lines 16-19). We declare a statically
sized array to temporarily store output values (line 21). The pri-
mary computation is replicated by the enclosing fully unrolled loop
(lines 23-33), with each access to the sliding window offset by the
unrolled loop iteration index. Finally, we perform a coalesced write
from the temporary array to the output array (lines 35-38).

The loop unrolling pragma can be applied to any loop optimized
with the window directive as long as the unroll factor evenly di-
vides the iteration space of the original main loop. For example, in
Listing 7, the user provided unroll factor must divide ROWS ∗COLS .
Violation of the restriction results in either compiler warnings or
compiler errors, depending on the offense.

4 EXPERIMENTAL SETTING
4.1 Benchmarks
We use multiple benchmarks to test the viability, correctness, and
performance of our FPGA-specific optimizations. Table 1 provides
a summary of the benchmarks and their properties. The Sobel and
FD3D benchmarks are taken from the Intel FPGA SDK high per-
formance design examples [1], while the HotSpot, SRAD, and NW
benchmarks originate from the Rodinia Benchmark Suite 3.1 [7].
NW can be classified as a dynamic programming algorithm, while
the rest can be classified as structured grid algorithms. In most cases
we use the same input sizes and input parameters as the original
Intel or Rodinia source codes, with the exception of FD3D. The
original FD3D OpenCL code from Intel supports an input size of
504x504x504 points by dividing the input into 64x64x504 blocks.

This blocking is necessary to meet FPGA resource usage require-
ments. However, because OpenARC does not currently support this
type of custom blocking with OpenACC directives, we use an input
size of 64x64x64 single-precision floating-point values.

Base OpenACC versions of the Intel OpenCL SDK design exam-
ples were created directly from the OpenCL code by replacing the
low-level OpenCL constructs with their high-level OpenACC coun-
terparts and removing any FPGA-specific optimizations. A primary
goal of this study is to reintroduce these optimizations using di-
rectives. Base OpenACC versions of the Rodinia benchmarks were
sourced from the OpenARC repository. These benchmarks were
adapted from the Rodinia 1.0 OpenMP benchmarks [15], although
in this study we update them with any changes in Rodinia 3.1 The
OpenCL benchmarks evaluated in Section 5.5 are sourced directly
from [1] and [24] without modification. The OpenMP benchmarks
evaluated in Section 5.6 are sourced from the Rodinia repository
[7].

Sobel. The Sobel filter, or Sobel operator, is a popular image pro-
cessing method used for edge detection in image data. The method
uniformly applies gradient calculations across the input image, a
structured grid. Each calculation depends on a 3x3 neighborhood
of cells. We use a 1920x1080 8-bit image as input, and compute one
iteration.

FD3D. The 3-Dimensional Finite Difference Computation is a
numerical method used in solving differential equations. FD3D
iterates over a structured 3D grid and computes a difference calcu-
lation using RADIUS * 6 neighboring cells. We use a RADIUS of 3,
resulting in a 19-point 3D stencil. The original OpenCL code from
Intel supports an input size of 504x504x504 points by dividing the
input into 64x64x504 blocks. This blocking is necessary to meet
FPGA resource usage requirements. However, because OpenARC
does not currently support this type of custom blocking with Ope-
nACC directives, we use an input size of 64x64x64 single-precision
floating-point values in all experiments.

HotSpot. The HotSpot application is used to simulate the thermal
properties of a processor, given information about the processor’s
architecture and power measurements. The application takes a
2D grid of initial values and power measurements and outputs
simulated thermal values after a specified number of iterations.
Each iteration, all values in the 2D grid are updated based on 4
neighboring cells: north, east, south, and west. We use a 1024x1024
sized 2D grid of single-precision floating-point values as input in
our experiments, and perform 10,000 iterations.

SRAD. Speckle Reducing Anisotropic Diffusion is an iterative
image processing algorithm, used in applications such as medical
and ultrasonic imaging. Like HotSpot, SRAD operates over a 2D
structured grid. SRAD first performs a scalar reduction over the
input array each iteration. Subsequently, SRAD performs a 5-point
stencil computation similar to HotSpot. We use a 4096x4096 image
as input, where each pixel is cast to a single-precision floating-point
value, and compute 100 iterations.

NW. Needleman-Wunch is a dynamic programming optimiza-
tion algorithm used to performDNA sequence alignment. The input
to NW is a 2D matrix, and the computation begins at the top-left
corner, finishing at the bottom right corner. Each value is updated
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Table 1: Applications and optimizations (A: Collapse, B: Reduction, C: Sliding window , D: Sliding window with unrolling, E: Code motion)

Application Source Description Input Size Data Type Iterations A B C D E
Sobel Intel Image edge detection algorithm 1920 × 1080 integer 1 X X
FD3D Intel 3D finite difference computation 64 × 64 × 64 floating-point 100 X X X

HotSpot Rodinia Compact thermal modeling 1024 × 1024 floating-point 10000 X X X X
SRAD Rodinia Speckle reducing anisotropic diffusion 4096 × 4096 floating-point 100 X X X X
NW Rodinia Needleman-Wunsch algorithm 4096 × 4096 integer 1 X X

using three neighboring cells: north, northwest, and west. We use
a 4096x4096 integer array as input, and compute one iteration.

4.2 Hardware and Software Platform
On all platforms, OpenACC code is compiled using OpenARC V0.11
as the frontend. Also, we calculate energy (J) as runtime (s) x power
(watts). Rutimes reported are the average of five executions.

4.2.1 FPGA Platform. The FPGA platform consists of a Nallat-
ech 385 board containing a Stratix V 5SGSD5 FPGA. This FPGA has
172K ALMs, 690K registers, 2014 M20K blocks, 1590 DSP blocks,
and 8GB DDR3 device memory. Our host code executes on an
Intel(R) Xeon(R) E5520 CPU, with a clock frequency of 2.27GHz.
The Intel FPGA SDK for OpenCL Offline Compiler V16.1.0 as the
backend runtime and compiler for OpenACC code, and as the pri-
mary compiler for OpenCL code. We obtain FPGA power usage
estimations using the Quartus Power Analyzer [1] on fully com-
piled and routed applications. For a fair comparison with GPU and
CPU power calculations, like [24] we add 2.34 watts to the power
estimations to account for the FPGA memory modules. Resource
usage percentages are provided by the backend OpenCL compiler.

4.2.2 GPU Platform. For the GPU comparisons in Section 5.6,
we use an Nvidia Tesla K40c GPU. The OpenACC code relies on
the NVIDIA CUDA compiler V8.0 as the backend. We calculate
energy consumption using the Nvidia NVML library to sample
power usage every 10ms.

4.2.3 CPU Platform. For the CPU comparisons in Section 5.6,
we use a 16-core Intel(R) Xeon(R) CPU E5-2683 v4 CPU with 2-way
hardware multi-threading. We compile the OpenMP benchmarks
using GCC 4.8.5 with the -O2 flag, and execute using 32 OpenMP
threads. We collect CPU energy usage information using the Intel
"Running Average Power Limit" (RAPL) interface.

5 EVALUATION RESULTS
5.1 Single Work-Item Optimization
By using directives to dictate a single work-item execution context,
we can transform a traditional multi-threaded approach into an
FPGA-specific pipeline-parallel single-work item approach. We
evaluate the effectiveness of the single-work item approach by
comparing against the multi-threaded approach, both programmed
using OpenACC and executed on an FPGA. Figure 1 shows the
FPGA performance of the two approaches across each benchmark.
In this figure, the multi-threaded approach (NDRange) is used as a
baseline, and the single work-item approach is compared in terms of
speedup. We can see that for two applications (Sobel and HotSpot),
applying the single work-item alone improves runtime performance.
For the other applications (FD3D, SRAD, and NW) this optimization
can actually degrade performance. However, in both cases the single

work-item optimization enables us to apply the more advanced
collapse, reduction, and sliding window optimizations, ultimately
leading to higher performance than the multi-threaded approach.
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Figure 1: Multi-threaded and pipelined parallel approaches on an FPGA

5.2 Collapse Optimization
The FD3D, HotSpot, SRAD, and NW benchmarks all contain nested
loops within their main computation kernels. In order to apply the
sliding window and unrolling optimizations, we first need to apply
loop collapsing to remove the nested loops. Traditional loop collaps-
ing techniques can be used to remove the nested loops. However,
because the slidingwindow and optimizations require a single work-
item context, we can apply the single work-item FPGA-specific loop
collapse optimization, replacing the division and modulus opera-
tions with more efficient addition operations along with row and
column counters. Table 2 demonstrates themodest performance and
resource usage improvements realized when applying the FPGA-
specific collapse optimization in single work-item executions.

Table 2: FPGA-specific collapse clause performance comparison.

Application Collapse Type Runtime Resource Usage (%)
FD3D Standard 190.935 (ms) 39
FD3D FPGA-specific 180.149 (ms) 36

HotSpot Standard 47.371 (s) 30
HotSpot FPGA-specific 47.882 (s) 32

5.3 Reduction Optimization
In order to experimentally verify the observations in 3.3, we use the
SRAD benchmark as an example, the only benchmark in this study
containing a scalar reduction. First, we evaluate the relationships
between different programmable parameters in the FPGA-specific
single-work item scalar reduction.We isolate the reduction in SRAD,
removing other computations in the benchmark. This results in a
single-precision floating-point sum reduction over an input array
of size 4096x4096. Removing the non-reduction code allows us to
better observe the relationships between shift register depth, initia-
tion interval, resource usage, and runtime. In the initial experiment,
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we use a constant unroll factor of eight and manually vary the shift
register depth.

In Figure 2, we see that increasing the shift register depth reduces
the initiation interval, at the cost of increased resource usage. This
reinforces observations about relationship between shift register
depth and initiation interval introduced by Equation 1. As we in-
crease the shift register depth, for certain depth values we observe
an unexpected increase in circuit frequency and a corresponding
unexpected decrease in the initiation interval. These specific values
indicate instances where the compiler has intentionally sacrificed
or throttled the circuit frequency to attain a lower initiation in-
terval. For example, in Figure 2, at a register depths 16 and 32 we
notice a decrease in II and a corresponding significant drop in cir-
cuit frequency. As the shift register depth continues to increase,
the circuit frequency re-stabilizes, steadily increasing while the
initiation interval remains unchanged.
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Figure 2: Relationships between initialization interval (II), circuit fre-
quency runtime, resource usage, and shift-register depth.

In the second experiment, we evaluate the performance improve-
ments by applying the single work-item FPGA-specific reduction
optimization, compared to traditional approaches to scalar reduc-
tion. For this experiment we use the entire SRAD benchmark, as
changes in the reduction implementation can also affect execution
in other code regions. We compare three different approaches to
scalar reduction : a tree-based reduction, a basic single-threaded
reduction, and the FPGA-specific shift register reduction.

In Table 3, we see the basic single-threaded approach performs
poorly compared to the hardware-agnostic multi-threaded tree-
based reduction. Consequently, scalar reduction represents a code
patternwhere the singlework-item optimization alone does not lead
to improvements in performance. However, by combining the single
work-item approach with the FPGA-specific shift-register based
optimization, we can significantly outperform the other approaches
to scalar reduction, at the cost of increased resource usage.

5.4 Sliding Window Optimization
5.4.1 Basic sliding window optimization. The sliding window

optimization (§3.4) can safely be applied to non-nested loops in a

Table 3: SRAD FPGA reduction performance comparison.

Reduction Type Runtime (s) Resource Usage (%)
Multi-threaded Tree-based 31.053 45

Single Work-item 78.307 38
Single Work-item Shift Register 23.239 50

single work-item execution context. Therefore, by first applying
the single work-item optimization (§3.1) and, when appropriate, the
collapse optimization (§3.2), we can then apply the sliding window
optimization to all five benchmarks.

We evaluate the effectiveness of the sliding window optimiza-
tion for each benchmark by comparing: a massively parallel multi-
threaded approach, a basic pipeline-parallel single work-item ap-
proach, and a pipeline-parallel single work-item approach using
a sliding window. We see significant performance improvements
across all benchmarks when applying the sliding window optimiza-
tion. The results of the sliding window evaluation are presented in
Figure 3. The runtime for OpenACC implementation with only the
single work-item optimization applied is used as a baseline, and
the performance of the same OpenACC implementation with both
the single work-item and sliding window optimizations applied is
compared in terms of speedup.
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Figure 3: Comparison of Single work-item and Single work-itemwith shift-
register based sliding window approaches on an FPGA

We see that the performance of the NW benchmark improves ex-
ceptionally after applying the sliding window optimization. Unlike
the other applications, NW reads from and writes to the same array,
instead of writing to a separate output array. When executing in a
single work-item context, this creates a memory dependency on
the load and store operations to and from this array. This memory
dependency causes successive iterations to be launched only once
every 328 cycles, severely degrading performance, as we see in
NW’s basic single work-item approach. Applying the sliding win-
dow optimization to the single work-item implementation of NW
shifts the memory dependency to a local data dependency. The slid-
ing window allows successive iterations to be launched every cycle,
significantly improving performance. Additionally, the expensive
load operations for neighboring array elements are replaced with
sliding window, or shift register, accesses.

5.4.2 Sliding window optimization with loop unrolling. We evalu-
ate the effectiveness of using loop unrolling in conjunction with the
sliding window optimization (§3.4.2) in each benchmark by com-
paring the performance of the single work-item sliding window
approach with various degrees of loop unrolling applied.

The results of this evaluation are presented Figure 4. For each
benchmark, the runtime of the application with the sliding window
optimization without unrolling (§3.4) is used as a baseline. These
times are annotated with a 1 above the bar. We compare each base-
line against the same benchmark with different unrolling factors
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applied, visible over each respective bar. In general, we see that
we can utilize previously unused FPGA resources to increase run-
time performance. We can also see that performance improvements
diminish with high unroll factors, as resources become scarce.
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Figure 4: Slidingwindow optimizationwith different unroll factors applied

We see in Figure 4 that the Sobel benchmark is an ideal candidate
for loop unrolling. Due to the benchmark’s low base resource usage,
we can apply a high unrolling factor without exhausting FPGA re-
sources. In contrast, applying loop unrolling to the NW benchmark
actually degrades performance. As previously mentioned, the NW
benchmark is unique in that the same array is used for both input
and output values. This creates a dependency between loop itera-
tions. We see performance benefits by using the sliding window
optimization due to the replacement of expensive memory opera-
tions with shift register operations. However, we cannot increase
the level of pipeline parallelism by unrolling the inner loop. Because
of the loop dependency the operations are serialized.

5.5 OpenACC and OpenCL Performance
Comparison

To explore the viability of using a high-level language like Ope-
nACC for FPGA programming, we compare the performance of all
5 benchmarks against the performance of those same benchmarks
implemented directly in OpenCL. The OpenCL versions manually
implement several of the same optimizations generated by the Ope-
nARC compiler, but also contain other FPGA-specific optimizations
not currently supported by OpenARC, such as blocking and halo
regions with sliding window arrays.

We can see the comparison between the best-performing Ope-
nACC implementation and the manual OpenCL implementations in
Figure 5. In this figure, the OpenACC runtimes are used as baselines,
and the OpenCL runtimes are compared in terms of speedup. We
can see that the OpenACC applications FD3D, HotSpot, and SRAD
perform comparably to the manual OpenCL versions.

The OpenACC version of the NW benchmark is around 10x
slower than the OpenCL version. This is because Rodinia’s OpenCL
version of NW, on which the FPGA-specific OpenCL version in is
based, employs a significantly different programming pattern than
the straightforward serial version used to develop our OpenACC
version. These patterns are currently unreproducible using our
OpenACC directives for FPGA-specific optimizations, and thus
NW represents a class of applications where our current FPGA-
specific optimizations fail to realize the performance of manually
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Figure 5: OpenACC and OpenCL, both with FPGA-specific optimizations

tuned OpenCL. In contrast, the OpenACC version of the Sobel
Filter actually outperforms the OpenCL version from the Intel SDK
design examples. Although the manual code also utilizes a sliding
window approach, it does not perform loop unrolling, resulting in
the performance differences we observe.

5.6 Performance and Power Comparisons of
FPGAs, GPUs, and CPUs

To evaluate the viability of OpenACC FPGA programming, we
compare OpenMP CPU programs and OpenACC GPU programs
against OpenACC FPGAprograms. The results of this evaluation are
shown in Figure 6. In this figure we compare runtimes, measured in
terms of speedup from the CPU baseline, and energy consumption,
measured in Joules and normalized to a CPU baseline of 1 J.
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Figure 6: Comparison of OpenMP CPU executions, OpenACC GPU execu-
tions, and OpenACC FPGA executions

The NW benchmark performs relatively poorly both in terms
of runtime and power usage on the FPGA. This stems from the
same algorithmic differences mentioned in Section 5.5. However
for every other benchmark, the FPGA outperforms at least one of
the other newer devices in either runtime or power usage.

6 RELATEDWORK
High-level programmingmodels for FPGAs. Several high-level
programming models have been proposed to lower the barrier pre-
venting wide-spread adaption of FPGAs further. The SRC-6 recon-
figurable computer consists of multiple general-purpose CPUs and
user-programmable Xilinx FPGAs [20]. The SRC compiler trans-
lates the users’ functions written in high-level programming lan-
guages, such as C and FORTRAN, directly into VHDL. Handel-C [5],
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SystemC [16], and LegUp [6] are C and C++ based programming
languages designed to enable the compilation of high-level algo-
rithms directly into hardware description languages. Mentor DK
Design Suite [2] directly synthesizes from Handel-C to VHDL or
Verilog for Intel and Xilinx FPGAs. Xilinx SDSoC [3] supports com-
pilation from a behavioral description written in C/C++/OpenCL to
VHDL/Verilog RTL. Xilinx SDSoC provides a set of high-level direc-
tives including loop flattening, loop unrolling, loop pipelining, and
etc, to improve performance by exploiting the parallelism between
loop iterations. However, the programmers have to write additional
code manually to exploit the shift registers in their reduction or
sliding window codes, while our compiler automatically generates
the shift register-friendly codes.

Loop pipelining. Loop pipelining is one an important compiler
optimizations in the HLS context used to fully exploit the deeply
pipelined nature of the FPGA architecture [1, 3, 23]. Typically, the
HLS tools [3, 6, 10] make use of software pipelining technique for
hardware pipelining synthesis. It schedules the iterations of a loop
to be continuously initiated at constant intervals, there are no inter-
iteration dependencies and resource conflicts [12]. Sliding window
applications are a subdomain of digital signal processing and highly
amenable to loop pipelining on FPGAs [21]. Fowers et al [9] and
Zohouri et al [24] perform extensive analyses of sliding window
applications for different use cases by considering performance and
energy.

7 CONCLUSION
This Directed Research Project presents a directive-based, high-
level FPGA-specific optimization framework, consisting of a set
of user directives and corresponding compiler optimizations, for
more efficient FPGA computing. The proposed framework enables
directive-based interactive programming by allowing users to pro-
vide important information to the compiler using directives. These
directives instruct the compiler to automate FPGA-specific opti-
mizations and allow control of important tuning options at a high
level. We have developed several FPGA-specific optimizations in the
OpenARC compiler framework, such as a reduction optimization
to exploit shift registers, sliding window optimizations to enable
more efficient pipelining, and branch-variant code motion optimiza-
tion to reduce overall resource usage. We evaluate the proposed
framework by porting five OpenACC benchmarks and comparing
them against manually optimized OpenCL versions. The prelim-
inary results show that our directive-based, semi-automatic opti-
mizations can successfully realize performance comparable to the
hand-written, low-level codes in many cases, and that OpenACC
FPGA programs can have performance benefits over OpenACC
GPU programs and OpenMP CPU programs in terms of runtime
and power usage.
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