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Abstract—While online social networks (OSNs) provided Ap-
plication Programming Interfaces (APIs) to enable the develop-
ment of OSN applications, some of these applications, unfortu-
nately, can be malicious. They can be running on the devices for
OSN users throughout the Internet, causing security, privacy,
and liability concerns to the network service providers of these
OSN users.

In this paper, we study how a network service provider may
inspect its network traffic to detect network flows from malicious
OSN applications. In particular, we implement a deep learning
model to train and classify NetFlows that are generated by
emulated human OSN behaviors, benign OSN applications, and
malicious OSN applications on a testbed. We show that our
solution is effective and can accurately label 97.6% NetFlows
from the malicious OSN applications, with only 1.6% false
positives.

Index Terms—OSN; NetFlow; network flow; malicious OSN
application; OSN application; OSN API

I. INTRODUCTION

Online social networks (OSN) have become extremely pop-
ular with an ever-growing user base. At the time of the writing,
Facebook, Twitter, and WeChat each has 2.2 billion, 0.4
billion, and 0.5 billion users, respectively. In particuar, in order
to further enrich and improve user experience, OSNs have
provided public Application Programming Interfaces (APIs) to
enable the development of OSN applications that access OSN
data and functions. However, the provision of these APIs can
cause severe security concerns.

Whereas these public APIs make it easy and convenient for
OSN applications to provide various legitimate OSN services,
such as querying an OSN user’s profile information and friend
lists, retweeting certain tweets, or making automated com-
ments, they may also be abused or misused by malicious OSN
applications. For example, by using OSN APIs, a malicous
OSN application may control bot accounts to post or reply with
spam or fraudulent information, run a crawler to collect private
and sensitive OSN user data, or act as a third-party application
to obtain access to accounts of OSN users, followed by
collecting the profiles of these users and even their friends.
In a widely known case, Facebook was reported to leak data
of up to 87 million users through a third-part psychology quiz
application [1].

OSN providers can try to monitor API calls, obtain full
knowledge of user profiles and posts, as well as access the
entire OSN graph, in order to, such as, detect OSN spam
accounts [2], [3], [4], [5], limit large-scale crawling activities

[6], or detect malicious third-party OSN applications [7].
Even though OSN providers can detect misbehavior, there are
still a lot of spam posts/comments posted from OSN API-
based applications [8]. OSN providers cannot detect those
spam attacks originating from malicious OSN applications
effectively, or they do not want to detect them. Malicious OSN
applications still can cause various security problems.

Those malicious OSN application can be running on the de-
vices for OSN users throughout the Internet, causing security,
privacy, and liability concerns to the network service providers
(NSPs) for OSN users. If a malicious OSN application is
running inside a network, it can imply that one or multiple
machines in the network are compromised, the application can
subvert the privacy of OSN users, and the network may have
to be liable for the security and privacy violations.

However, an NSP is not at the same position as an OSN
provider to deal with malicious OSN applications. An OSN
provider can detect malicious OSN applications by monitoring
API calls, or analyzing full knowledge of user profiles, posts
and the entire OSN graph, but an NSP only has limited
knowledge of OSN data (such as user posts, profiles, social
behaviors, OSN graphs). An NSP can only access the traffic
across its network, thus not able to leverage the aforemen-
tioned existing work toward malicious OSN applications. We
therefore study how an NSP may monitor its traffic to detect
traffic flows from malicious OSN applications, then the NSP
knows better about what’s happening inside its network, and
this gives NSPs a choice in how to respond.

We make the following contributions:
1) We define a problem of detecting flows from malicious

OSN API applications, whereas the flow data we use
does not include traffic payload. In another words, our
problem assumes no knowledge of OSN topologies or
specific user profiles and data.

2) We propose a solution to detect flows from malicious
OSN API applications. We define three flows in this
project: flows from malicious OSN API applications,
flows from benign OSN API applications and flows from
human OSN behaviors. Our solution aggregates above
three category flows separately, then normalizes each
aggregated flows as the input to train a deep learning
model, which can learn features effectively from high-
dimensional network flows. For each machine in a NSP,
we extract and aggregate flows between this machine



and an OSN, then normalize aggregated flows and use
this normalized flows as the input of our previous trained
deep learning model, then the trained model can label
whether this normalized aggregated flows is generated
by a malicious OSN API application running on a
machine.

3) We implement our proposed solution on a test bed,
where we simulate and collect flows for five malicious
API-based applications, benign API-based applications
and human OSN behaviors. To make collected flows
cover as much malicious / benign flows as possible, we
change parameters to run each applications or simulate
human OSN behaviors by changing activity categories
and time intervals. The trained deep learning model is
able to detect flows generated by five malicious API-
based applications with high accuracy and low false
positive. In particular, the trained model is also able
to label flows from three real world benign API-based
applications and three real world malicious API-based
applications. Our research demonstrates that it is feasible
to detect flows from malicious API-based applications
on OSNs. What’s more, our proposed solution can
be apply to any other social networks e.g. Facebook,
Twitter.

The rest of this paper is organized as follows. After Sec-
tion II about related work, we first overview the problem and
our solution in Section III, followed by a formal description
of the problem in Section IV. We then generate flows on a
test bed in Section V to implement our solution, describe our
detailed solution in Section VI. evaluate the performance of
our solution in Section VII, and we conclude our work in
Section IX.

II. BACKGROUND AND RELATED WORK

Previous work related to this paper involves multiple topics.
We organize them mainly from two aspects . The first aspect
is how related work uses flow data to detect network attacks or
anomalies, or uses network traffic data to study OSNs. Since
most of current malicious API-based applications are used by
spam/bot accounts to spread spam contents, or by crawlers
crawling OSN data, the second aspect is how related work
detects malicious spam accounts on OSNs, or prevent crawlers
crawling OSN data.

To begin with, there are some related works that use
flow data to detect network attacks/anomalies or study social
networks by analyzing traffic data. Papers [8], [9], [10], [11],
[12], [13], and [14] explore how people use flow data to
detect network attacks or anomalies. Paper [8] uses campus
traffic flows as testbed to detect anomaly broadcast traffic,
while [9] extends the popular linkage algorithm PageRank
to detect botnet traffic. The work [10] and [11] both detect
network traffic flow anomalies by detecting flow-level anomaly
features. Since it’s feasible to detect network attacks and
anomalies by analyzing network flow traffic, papers [12],[13],
and [14] propose several real time intrusion detection systems
based on monitoring network flow traffic. Those attacks or

anomalies detection papers follow a similar idea: detect a
specific attack by detecting this attack’s flow-level features.
However, different attacks have different flow-level features,
so one attack detection method probably can not be applied
to detect another attack with different flow-level features.
Those specific attacks’ features are different with OSN attacks’
features, so their feature-based detection methods are probably
not effective in detecting OSN attacks. We should find a
method that can detect OSN attack features effectively.

Related work [15], [16], [17] and [18] introduces how
people use traffic analysis methods to study social networks.
These related research mainly focus on how to get a better
understanding of how users use or interact with online so-
cial networks. Most network traffic analyzed in those work
includes packet payloads, which carry much more information
than our used network flow data, because flow data only carries
aggregated packet header information. To sum up, both the
research analysis data and traffic analysis purposes in those
work are completely different from ours, so their research
methodologies can hardly be applied to solve our problem.

APIs released by OSNs are supposed to work for third
party developers to access OSN services, but they are widely
misused by crawlers crawling OSN data or spammers spread-
ing fraud or spam contents based on [19], [20] and [21].
Paper [19] crawls a large amount of sensitive OSN data by
using OSN exposed APIs, and [20] even designs an API-
based crawler which enables attackers crawling large amount
of Twitter network structure level information. At the same
time, malicious API application controlled spammer accounts
are very common on OSNs, and [21] points out that many
automated spam accounts on OSNs prefer use API rather than
a web browser to spread fraud or spam contents.

From another aspect, there are also some works that detect
malicious automated spam accounts or prevent crawling activ-
ities on OSNs.application In [22] and [6], the authors propose
countermeasures to prevent attackers crawling sensitive OSN
user data. Paper [22] proposes an "Online Social Honeynet"
concept by deploying a set of users on network to attract and
defend OSN crawler attackers, but it only proves the feasibility
of using this concept to prevent crawlers, not deploying it
in the real world. Paper [6] proposes a Genie system which
can be deployed at OSN provider sides to thwart crawlers by
detecting their different browsing patterns. This work need to
analyze each user’s trace of visiting their friends and non-
friends, and this information is sensitive and not accessible
from flow data, so their methodology can hardly be applied to
solve our problem.

Recent works [2], [3], [4] and [5] introduce how people
detect spam accounts on OSNs. In those papers, their spam
account detection work is mainly conducted by following
this logic: analyze spammer accounts’ post contents, user
profiles or user social behaviors, then detect those accounts
by detecting those features. However, those features are not
accessible in flow data, so we could not use their method to
detect flows generated by malicious API-based applications on
OSNs.



To sum up, there is no work detecting malicious flows from
malicious API-based applications on OSNs. We are the first to
detect malicious API-based applications generated for NSPs.
The flow data used does not carry any sensitive user data, and
our research demonstrates that it is feasible to detect flows
generated by malicious API applications for OSNs.

III. OVERVIEW

The goal of this project is to detect flows from malicious
API-based applications on OSNs. We assume that traffic flows
of human OSN behaviors, and benign API-based application
behaviors share some normal flow-level features, while traffic
flows of malicious API-based applications have some ma-
licious flow-level features. We propose a solution to detect
flows generated by malicious API-based applications. Our
solution first aggregate flow for above three category flows
separately, and normalize each aggregated flows, then use
normalized flows as the input to train a deep learning model.
The trained deep learning model can learn features effectively
from high-dimensional network flows, and it can label flows
from malicious API-based applications. We implement this
solution on a test bed.

Since there is no available dataset providing flow data gen-
erated by malicious API-based applications and other benign
OSN flows, we use emulation to generate flows for malicious
API-based applications and other benign social network flows.
We deploy a small social network WordPress as test bed
where users can browse and reply to each others’ posts. We
then collect flows for human OSN behaviors, benign API-
based applications, and malicious API-based applications on
this small social network. We perform these three behaviors
on a client which is installed with flow generation software
and flow collection software. In this way, when we simulate
three behaviors on this client, their corresponding flows will
be collected on the client side by flow collection software.

To simulate various and a large amount of human OSN
behaviors, we write scripts to emulate various possible human
behaviors on a social network website, and those operations
include login, post, comment, browse behaviors, and so on.
Human behaviors on social networks are driven by a series
of click events, we use script to emulate those click events
instead, and flows generated by script controlled click events
should be same with flows generated by human controlled
click events. For benign API-based applications, OSN APIs
should only be a tool used by human beings, they will post
content on social networks for human beings whenever peo-
ple want to. Therefore, those benign API-based applications
behavior time points should follow human post/comment/like
timing patterns on OSN, and human behave patterns can be
modeled as different Poisson process [21], so benign API-
based application behavior time points can be modeled as
different Poisson processes. We simulate various benign API-
based application behavior time points as different Poisson
processes by changing Poisson distribution parameters, and at
each behavior time points, the benign OSN application will

post some useful contents. For malicious API-based applica-
tions, we write 5 known malicious application scripts, and their
behavior time points are decide by 5 known malicious API-
based application behave patterns [21]. Each application posts
spam or malicious posts/comments following one of 5 known
malicious timing pattern. We model each malicious API-
based application behave timing pattern as a combination of
different probability distributions, and simulate each malicious
pattern by changing all related parameters. To collect flow
data generated by benign/malicious API-based applications
and human OSN behaviors, we collect corresponding flows
when we simulate those three behaviors on the client side.

To save the data generation time for both human OSN
behaviors and benign/malicious API-based applications, we
synthesize flows for each of those three behaviors. When
people/applications are active and do various operations on
OSNs, there are some flows generated, otherwise no flows
are generated. To synthesize flows generated in a long time
period, we only need to combine flows generated when peo-
ple or applications are active on OSN together. Firstly, we
collect flows when applications or people are active on OSNs,
then combine those flows together with proper intervals, and
interval length indicates how long people/applications wait
between two active sessions. In this way, we can synthesize
flows generated in a long time period for benign and malicious
API-based applications, and human OSN behaviors.

We’ve generated flows for above three behaviors. After
that, we extract all flows generated by the communication
between the client and our small social network by extracting
those flows whose source IPs or destination IPs belong to
our deployed OSN server. We’ve found that even a very
single user operation behavior, such as a click behavior, can
generate several flows, so a single flow data only carries
very little information about how user behaves on a OSN.
Therefore, we aggregate flows that occurred in a pre-define
time window together, and those aggregated flows can carry
more information about how user behaves in pre-defined time
window. For each aggregated flow group, we transform it into
an image which carries main information of the aggregated
flow group. Those transformed images are acted as the input
to train deep learning model, and the deep learning model
can automatically find potential flow-level features for human
OSN behaviors, benign and malicious API-based applications.
After the model is well-trained, it is able to detect those
flows generated by malicious API-based applications with high
accuracy, precision and recall scores.

The methodology described above enables NSPs to obtain a
deep learning model with very good performance in detecting
flows generated by malicious API-based applications. We
build a small social network Wordpress blog system as a
testbed, and implement our proposed solution to detect flows
from malicious API-based applications on this testbed. What’s
more, our proposed methodology not only works on the
deployed testbed, but also can be applied on any other OSNs,
such as Twitter, Facebook, Instagram to detect flows from any
malicious API-based applications for any NSPs.



IV. PROBLEM FORMULATION

Now that we have introduced the background and motiva-
tion for this project, and given an overview of our work in
Section III, we now provide a more specific problem formula-
tion. In this section, to begin with, we introduce network flow
data. After that, we explain how we define malicious API-
based applications, benign API-based applications and human
OSN behaviors, and our purpose in this project is to detect
malicious API-based application behaviors based on network
flows. Finally, we summarize the problem to be solved in this
project.

A. Network flow
Current network communication is based on packet switch-

ing. Traffic flow is a sequence of aggregated packet headers
from a source computer to a destination computer. Flows are
identified by a five-tuple key, including the IP protocol, source
computer’s IP address and port number, and destination com-
puter’s IP address and port number. There several attributes
used to describe a flow, and those attributes are extracted
from packet headers, such as the flow start timestamp, end
timestamp, source IP and port number, destination IP and port
number, the IP protocol and the protocol’s attributes. If TCP
protocol is used, the flow may also include TCP flag as its
attribute. Flow attributes can also statical numbers for total
bytes and total packets received by each flow. A flow data can
have any attributes which can be read from packet headers.
Figure 1 shows several examples of flow data.

Based on our description, the flow data can carry very
limited sensitive social network user data, and it could be a
little challenging to detect malicious social network flows for
API-based applications. Our research proves that it’s feasible
to detect malicious API-based applications generated flows.

Fig. 1: Network flow traffic

B. Project framework
In this part, we will introduce the framework of this project,

and answer some basic questions, such as how malicious/be-
nign OSN applications, human communicate within a NSP
communicate with OSN servers, where OSN network flow
data inside a NSP can be caught, and where our proposed
malicious flows detection method should be deployed to detect
malicious flows for a NSP.

Figure 2 shows the framework of this project. Our purpose
is to detect flows generated by malicious OSN applications
for NSP. NSPs provide network services to their users, and a
NSP could be part of an Internet Services Provide (ISP). For
example, a company network is a NSP, because it can provide
network services all to workers in its company.

Fig. 2: Project framework

Human, benign OSN applications and malicious OSN ap-
plications in some NSP can send requests to OSN severs.
When OSN severs receive their requests, OSN severs will
reply responses to the people/applications who sent requests
in previous NSP. Both requests from the NSP to OSN servers
and responses from OSN servers to the NSP will go through
the NSP’s border router. Therefore, the border router can
collect flows generated between the application/human within
its network and the OSN severs. Our malicious flow detection
method can be deployed at the border router of the NSP. If
there are some malicious flows detected at the border router,
it can send some alerts to the NSP.

C. Malicious API-based applications, benign API-based ap-
plications and human OSN behaviors

1) Malicious API-based application behaviors: Attack-
ers usually run malicious API-based applications to fre-
quently collect private OSN data, or spread spam infor-
mation on OSNs. Whether crawling behavior is benign or
malicious only can be decided how people use or analyze
crawled data, and this is not our focus. In this project,
we do not classify them as malicious only based on their
crawling behaviors. This project mainly focus on detect-
ing malicious API-based spammer applications on OSNs.
The malicious behaviors to be detected is that malicious
OSN API-based applications post/comment spam contents
(post with malicious URLs for malwares, or spam advertise-
ments) on OSNs. E.g. "Free Business Links For Chemical
Suppliers at http://catalogs.indiamart.com/category/chemicals-
fertilizers.html".

Malicious API-based spam applications behave with ma-
licious purposes, so their controlled benign accounts behave
patterns probably be different from benign accounts. There
are 5 known malicious patterns for malicious API application
controlled spam/bot accounts on Twitter [21]. Those accounts
post/retweet/like behavior time points on Twitter follow 5
malicious patterns in figure 3 . Therefore, corresponding
malicious API-based applications post/retweet/like time points



(a) First malicious pattern (b) Second malicious pattern

(c) Third malicious pattern (d) Forth malicious pattern

(e) Fifth malicious pattern

Fig. 3: Malicious API-based application controlled OSN ac-
counts behave time points follow 5 malicious patterns

should also follow those 5 known malicious patterns. For those
5 malicious patterns in figure 3, x axis indicates minutes of the
hour for an account post/comment/like/retweet behavior time
point, while y axis indicates the seconds of the minute for this
account post/comment/like/retweet behavior time point.

Attackers usually use OSN APIs to spread spam informa-
tion by posting and commenting. In this project, we mainly
focus on detecting malicious OSN applications injecting spam
contents into the network. In this situation, we define two most
common malicious API-based behaviors in this project:

• API-based post/comment spam contents for a single ac-
count.

• API-based change accounts to post/comment spam con-
tents.

In this project, if any of those three API-based behaviors
post spam posts/comments following any of 5 known mali-
cious API usage patterns, we define it as malicious API-based
application behavior.

2) Benign API-based application behaviors: Some benign
OSN API-based applications may use OSN released APIs
provide people useful information, such as provide real time
weather warnings, earthquake information for a specific loca-
tions and news happening all around the worlds. In this project,
we define benign OSN application behaviors are that OSN
API-based applications post useful information to people.

When OSN released APIs are used with benign purpose,
public APIs are supposed to provide OSN services on those
benign applications, and work automatically for human beings
with benign purposes whenever people need. For example,
"Flow" is a Microsoft application which integrates Facebook
API, Twitter API and Instagram API. It can help people post
at Facebook, Twitter, Instagram at the same time when people
want to publish their stories on multiple social networks. Since
APIs are only tools for human beings to post and comment
on OSNs, benign API usage behaviors should follow human
being post and comment patterns. It has been found that human
post/comment/like time points on Twitter can be modeled
as different Poisson Processes [21]. This benign pattern can
be converted to the pattern in figure 4 which is drawn in
a similar way with 5 malicious patterns based on human
post/comment/like/retweet time points. The benign API-based
application behave time point patterns should also follow this
benign human post/comment pattern on OSNs.

Therefore, in this project, if a API-based application behav-
iors post benign posts/comments following this benign Poisson
pattern, we define it as a benign API-based application.

Fig. 4: Benign API-based application controlled OSN accounts
behave time points follow benign pattern

3) Human OSN behaviors: In most cases, users visit social
networks, and perform some normal operations using browsers
instead of using APIs. Human being usually access OSNs
on browsers to do various operations, such as login, post,
comment, browser and so on. Most OSN flows are generated
by human operations on OSNs. In this project, we define
various human based browser operations on OSNs as normal
behaviors, and define those flow data generated by human
operations as benign flows.

To sum up, we define three behaviors: malicious API-based
application behaviors, benign API-based application behaviors
and human OSN behaviors in Section IV. If APIs are used



by applications to spread malicious information, then their
behaviors follow five known bad timing patterns. If APIs
are used by applications to spread benign information, then
their behaviors follow the benign timing pattern. Human can
do various operations on OSNs, and we define all human
behaviors as benign. Our purpose is to detect flows for ma-
licious API-based application behaviors from flows generated
by all three behaviors. We assume that traffic flows of human
OSN behaviors and benign API-based application behaviors
share some benign flow-level features, while traffic flows of
malicious API-based applications have some malicious flow-
level features. We aims to detect flows of malicious API-based
applications by detecting flows with malicious features.

V. DATA GENERATION

Since there is no existing, available data set providing
flows for malicious API-based application behaviors nor other
benign OSN behaviors, we need to generate those data by
ourselves. As it’s described in problem formulation Section IV,
we define three OSN behaviors in this project: malicious API-
based application behaviors, benign API-based application
behaviors and human OSN behaviors. We will generate flows
for those three behaviors.

To generate flows for malicious API-based application be-
haviors, we have each malicious API-based OSN behaviors
follows 5 malicious API usage timing patterns to post/-
comment malicious contents separately, and change related
parameters to simulate various malicious API usage timing
patterns. To generate flows for benign API-based application
behaviors, we have different API-based OSN behaviors fol-
low benign API usage timing patterns to post with benign
information, and change related parameters to simulate various
benign timing patterns. In addition, we simulate all kinds of
human operations on OSNs using browsers, and collect those
behaviors generated flows as benign human OSN behavior
flows.

In this section, we will start by introducing data genera-
tion platform, then emulate malicious API-based application
behaviors, benign API-based application behaviors and human
OSN behaviors. After that, we will describe how we synthesize
flows for three behaviors respectively.

A. Data generation platform

As described in research method section, we deploy a small
social network WordPress in order to replay our synthesized
malicious API-based application behaviors, benign API-based
behaviors and human OSN behaviors on this small social
network.

The small social network is a blog WordPress, where people
can post and reply to each other. It is deployed on a reserved
server on DigitalOcean with a fixed IP address 165.227.20.24.
The server is configured with 512 MB Memory, 20 GB Disk,
and Ubuntu 16.04.3 x64 Operating System. The client is a Dell
laptop configured with 8GB Memory, 128GB Disk, Ubuntu
16.04 Operating System.

We simulate malicious API-based application behaviors,
benign API-based behaviors and human OSN behaviors on
the client. The client is installed with traffic flow generation
software softflowd and flow collection software nfdump. When
we are simulating malicious API-based application behaviors,
benign API-based behaviors and human OSN behaviors on the
client separately, the flow data generation software softflowd
and collection software nfdump are running on this client, and
collecting corresponding flow data for each behavior. In flow
data generation and collection process, we collect flows mainly
based on below 3 defaulted flow collection parameters.

• Maxlife value is set to 604800s. The value of this
parameter is the maximum lifetime that a flow may exist
for. The client and server may keep communicating to
each other for a long time longer than Maxlife. When
the connection duration reaches to Maxlife, the current
flow for the current connection will expire, and a new
flow will be generated for describing this connection.

• Expint value is set to 60s. This parameter of Expin
specifies the interval between expiry checks. This is to
say, when the client and server are sending packets to
each other, if the interval of two consecutive packets is
within Expint time, they will be classified into a same
flow. If the interval of two consecutive packets is larger
than Expint time, they will be classified into different
flows.

• Flows have two directions: from source to destination,
and from destination to source. If the traffic exceeds 2
Gib in either direction, then the corresponding flows will
expire, and a new flow will be generated for continuous
connections.

Based on above built testbed and its set up environment and
parameters, we collect flows for malicious OSN API-based
applications, benign OSN API-based applications and human
behaviors on this testbed.

B. Synthesize malicious API-based application behaviors, be-
nign API-based behaviors and human OSN behaviors

1) Synthesize human OSN being behaviors: Since most
OSN flows are generated by normal human operations on
OSNs, it is very important to synthesize normal human being
behaviors accurately, then can we collect human OSN behavior
flows accurately as ground truth.

In order to simulate normal human being behaviors compre-
hensively, we write scripts to simulate all kinds of human user
behaviors on WordPress, e.g. login, browse, post, comment
by browser. Table I shows all human basis operations on
WordPress. Human being operations on OSNs are actually
driven by a series of click events on the browser. To simulate
human being behaviors accurately, the click event stream
pattern in our scripts of human operations on WordPress
follows the click pattern summarized in a real Chinese social
network RenRen[23].

Human behaviors on OSN can be summarized as a series
of events switching to each other. Figure 2. visualizes the
logic of how different events switch to each other. We write



TABLE I: Aggregated flows data size for each malicious/be-
nign patterns

Category Event type
Account Login

Browse

View a post (go to the post webpage, then go back to
previous page or main page)
Browser feeds (scroll mouse, may go next page, or view
a post, then go back to previous page or main page)
Return to previous page
Go to main page
Go to next page
View a recent post
View a recent comment

Comment login then comment, no login and comment as a stranger
Post Login then post

scripts to simulate 27 streamlines of human behavior chains
based on event occurrence sequences, which almost cover all
possible user operation streamlines on WordPress in the real
word expect infinite looping browsing posts.

For each streamline, we simulate various possible streamline
implementations in the real world by changing parameters to
simulate its operation logic. For example, one of the streamline
is: login, then view page 0-10 separately. To simulate this
streamline, after a user finishes the login step, he or she
may browser page 0, pages 0 to 1, pages 0,1, 2,...., page
0,1,2 ...10 separately. In this way, we simulate nearly all
possible implementations for this streamline by changing page
parameters. For all remaining streamlines, we simulate various
theirs implementations by changing theirs related parameters,
so our simulation nearly cover all possible human behaviors
on this small social networks accurately and comprehensively.

Fig. 5: Streamline of how different events switch to each other
on WordPress

2) Synthesize benign API-based application behaviors:
We will introduce how we synthesize benign OSN API-based
application behaviors in this part. APIs provided by OSNs are
supposed to be used for third party developers, so they can
integrate OSN services to their own developed softwares. The
third party software are supposed to use API provided OSN
services serve human beings automatically when people need.
Therefore, the benign API third party applications behavior
timing patterns should follow human post/comment/like pat-

(a) example 1 (b) example 2

(c) example 3 (d) example 4

Fig. 6: Simulate 4 benign API-based applications by changing
Poisson parameters

terns on OSN. It’s known that the timing pattern of how human
post/comment/like on Twitter can be modeled as different
Poisson Processes [21], so benign API-based benign third
party application behavior time points should follow Poisson
Process. Except API-based benign third party applications,
there are some benign API-based bot applications on OSNs,
and those bots could provide helpful weather warnings or
broadcast useful news to general people. For those benign bot
applications, they will post contents on a social network when-
ever there is a news or warning, and those news and warnings
occurrence pattern also can be modeled as Poisson Process, so
benign API-based bot applications behave pattern can also be
modeled as Poisson Process. To sum up, all benign API-based
applications behaviors should follow Poisson Distribution.

If API-based application behaviors post benign contents
following this benign Poisson pattern in figure 4, we define it
as benign API usage behaviors. To simulate all possible benign
API-based application behaviors, we crawl benign posts data
from benign automatic accounts on Twitter, and simulate
posting benign information behaviors, and their behavior time
points follow various benign Poisson processes by changing
different parameters. Figure 6 shows 4 examples of our sim-
ulated benign API-based application behavior timing patterns
with four different Poisson parameters.

3) Synthesize malicious API-based application behaviors:
Malicious OSN API-based applications behave with malicious
purposes to post malicious data, and those application behavior
patterns probably be different from benign accounts. As we
discussed in IV Section, there are 5 known malicious API-
based application behave timing patterns, and we also have



defined two categories of most common API-based behav-
iors as API-based post/comment spam contents for a single
account, API-based change accounts to post/comment spam
contents.

We download a twitter dataset which provides malicious
contents posted or commented by malicious spam accounts. To
simulate various malicious API-based application behaviors,
for each API-based OSN behaviors, we have its behavior
time points decided by five known malicious timing patterns,
and it will post or comment malicious contents at its every
behavior time points. We model each malicious timing pattern
as combinations of different probability distributions, and
simulate each malicious timing patterns by changing related
parameters for corresponding probability distributions.

We take the first malicious API-based malicious pattern as
an example. Based on observations, the probability density
function of the first malicious timing pattern can be modeled
as the combination of a uniform distribution (P0) and a group
exponential distributions (�e��t) with same � value. There-
fore, we can get the first malicious timing pattern probability
density as formula 1. In formula 1, P0 is the possibility density
for the uniform distribution, while �e

��(t�dT⇤k�T0) indicates
probability densities for multiple exponential distributions.
The parameter M0 can adjust the weight of all exponential
distribution densities. dT is the time step length between
each two adjacent exponential distributions, while T0 is the
initialized time step length for the first exponential distribu-
tion. Parameter � can decide the shape for all exponential
distributions.

To simulate various implementations of first malicious API
usage timing patterns, we change parameters �, P0, M0, dT
and T0 in its density function, then use the density function
with various changed parameters to simulate different first
malicious API usage patterns. Figure 7 shows four simulation
results for the first malicious API usage timing pattern with
different parameters.

In a similar way, the probability density of the second
malicious timing pattern can be modeled as a combination
of a uniform distribution and a group normal distributions
with same �. The third malicious API usage timing pattern
probability density is a combination of a uniform distribution
and a group poisson distributions with same �. The forth
malicious API usage timing pattern can be modeled as a
combination of a uniform distribution and two group poisson
distributions with parameters �1 and �2 separately, while
the probability density for fifth malicious timing pattern can
be modeled as a combination of a uniform distribution and

two group normal distributions with parameters �1 and �2
separately. All probability density functions for five malicious
API usage patterns are shown in formula 1, 2, 3, 4 and 5
respectively.

As we described above, there are two categories of most
common API-based malicious behaviors, and each behavior
post/comment malicious contents, and theirs behavior time
points are decided by any of 5 malicious API usage timing
patterns. To simulate each malicious timing pattern accurately,
we build a probability function for it, and simulate various
implementations for this malicious timing pattern by changing
related parameters in its corresponding probability function.
We have each API-based behavior time points follow five
malicious patterns separately by changing corresponding prob-
ability function parameters for each malicious pattern. In this
way, we can simulate various malicious API-based application
behaviors post/comment various malicious contents with 5
known malicious patterns, and our simulation result is able
to cover nearly all possible 5 known malicious API-based
application behaviors.

(a) example 1 (b) example 2

(c) example 3 (d) example 4

Fig. 7: 4 simulation results for the first malicious API-based
application
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C. Synthesize flows for malicious API-based application, be-
nign API-based application and human OSN behaviors

In above V-B Section, we have introduced how we simulate
malicious API-based applications, benign API-based applica-
tions and human OSN behaviors to generate corresponding
flow-level data. In this part, we will describe how we syn-
thesize flows for malicious API-based applications, benign
API-based applications and human OSN behaviors. To begin
with, we explain why it’s necessary to synthesize flows for
those three behaviors. After that, more details about how to
synthesize flows for three behaviors will be introduced.

To speed up ground truth generation time, we synthesize
flows for malicious API-based applications, benign API-based
applications and human OSN behaviors. We simulate how
users behaviors both in user active time and user waiting time.
During user active time, users visit OSNs actively, and do
various of operations on OSNs. During user waiting time, users
don’t access OSNs and don’t do any operations on OSNs.
To generate ground truth, we write scripts to simulate user
behaviors both in their active time and in their waiting time.
However, for both benign user accounts and malicious user
accounts, their waiting time is much longer than their active
time. Therefore, ground truth generation speed is very slow
because of a lot of time wasted on simulating user waiting
time.

However, during user waiting time, there is no correspond-
ing flows generated, because users don’t communicate with
OSNs during waiting time. In addition, based on observations,
we find that a single API / human behavior on OSN can
generate several flows. Even if API / human behavior time
points are very close, a same API / human behavior occurred
at different time points can generate different flows. Not
only flow numbers generated by the same behavior could be
different, but also attribute values of each flow are different,
such as flow start time, flow number, flow duration, TCP flag,
packets number, bytes, and so on. Therefore, flows generated
by a single behavior at different time are independent and
different. Since there are no flows generated during waiting
time, we can synthesize flows for malicious/benign behaviors
by combining flows of different OSN behaviors together, and
only change flows’ generation time attributes.

The following paragraphs will discuss how to synthesize
flows for long time malicious and benign API-based applica-
tion behaviors, and human behaviors.

1) Synthesize flows for malicious API-based applications
and benign API-based applications: Our methodology of how
to synthesize flows for automated malicious and benign API
usage behaviors in a long time period follows below logic.

1) To begin with, collect flows generated by a single post/-
comment API operation. Benign applications will post
with benign contents, while malicious applications will
post/comment with malicious contents. Save those flows
into a file, then each file includes all flows generated by
this single API operation.

2) In a similar way, repeat multiple single API post/com-
ment operations, and save those flows into multiple flow
files.

3) For each malicious and benign API behavior, we com-
bine flow files generated by corresponding single API
operations with different intervals separately into a large
flow file by only changing each flow’s start time and end
time while keep all other attributes same. Time intervals
are generated based on which malicious timing pattern
and benign timing pattern this benign/malicious API-
based application follows.

Based on above method, the generated large flow file is
the synthesized flows for malicious/benign API behaviors in
a long time period, and we can generate flows for each
malicious/benign API-based application as long as needed.

2) Synthesize flows for human OSN behaviors: The method
of synthesizing human OSN flows is a little different from
synthesizing flows for malicious/benign API applications. For
API-based applications, their behaviors mainly consist of dif-
ferent API-based post, comment behaviors. However, human
operations on social networks are much different, so we collect
user follows based on single user session instead of a single
operation on social networks. A single user session includes all
activities from a user open a OSN webpage to close it, and the
user may do various operations on OSNs at each user Section
discussed in V-B1. The user session time duration distribution
and click event pattern follow the pattern summarized in a real
Chinese social network RenRen[23].

To generate flows for human behaviors in a long time
period, we combine flows generated by different user sessions
together, only changing each flow’s start time and end time,
Our methodology of how to synthesize flows for human
behaviors in a long time period follow below logic.

1) Firstly, collect flows generated by a single user session,
then save those flows into a file, then each file includes



all flows generated by this single user session.
2) In a similar way, save multiple flow files generated by

multiple user sessions.
3) Combine flow files generated by each user session with

different Poisson intervals into a large flow file by only
changing each flow’ start time and end time while keep
other attributes same. Human being uses social network
intervals follow Poisson distribution, so we use Poisson
intervals here.

In this way, the generated large flow file is the synthesized
flows for human behaviors in a long time period, and we can
generate flows for human OSN behaviors as long as needed.

3) How we control flow attributes when generating syn-
thetic flows: For each flow, it includes several attributes, such
as flow start time, flow end time, flow duration, source IP,
source port, destination IP, destination port, TCP flag, packets
number in each flow, packets number in each flow. In this
section, we will discuss what attributes of flow are controlled
our synthesized flows, and how we control different attributes
for synthesized flows.

For both benign and malicious OSN applications, their
behavior can be defined from two aspects. The first is to
decide when OSN applications do post/comment behaviors,
the second is to decide what content they post/comment each
time. For malicious OSN applications, their post/comment
time points are decided by 5 malicious timing pattern by
varying all possible parameters in our proposed malicious pat-
tern formulations. The spam content (e.g. post with malicious
URL) that they post/comment is downloaded from a Twitter
spam dataset. The malicious OSN applications may use 1
or multiple accounts to post/comment spam information. For
benign OSN applications, their post/comment time points are
decided by a benign Poisson pattern by varying all possible
parameters in Poisson distribution. The benign content (e.g.
post for weather warnings) that they post is crawled from
online benign bot controlled Twitter accounts.

We have summarized how we simulate malicious/benign
OSN application behaviors. Now we will answer the question
how we control flow attributes for benign/malicious OSN
application behaviors. To begin with, for malicious OSN
applications, 5 malicious timing patterns decide flows’ start
time, and the behavior of "post/comment spam contents for 1
or multiple accounts" decides flows’ other features. After that,
for benign OSN applications, 1 benign timing pattern decides
flows’ start time, and the behavior of "post/comment benign
contents" decides flows’ other features.

For human behaviors, we use 27 streamlines of human
behavior chains based on different event occurrence sequences
to simulate all possible operations during each user session. A
user session includes all human activities from a user open a
OSN webpage to close it. In each user session, user behaviors
are actually driven by a series of click events, and the click
event interval distribution in a user session is decided by the
click pattern summarized in a real Chinese social network
RenRen[23]. Since a human user may visit social network
several times a day, a human user may generate several user

sessions. The intervals between different user sessions follow
Poisson distribution.

For human behaviors, the timing pattern of "Poisson distri-
bution for intervals between user sessions" and "click events
distribution within a user session" work together to decide
flows’ start time, and various human behavior streamlines
decide flows’ other features.

To sum up, in Section V, we introduce how we simulate
benign API-based application behaviors, malicious API-based
application behaviors and human behaviors. After that, to
speed up data generation, we synthesize flows for long time
benign/malicious API-based application behaviors and human
OSN behaviors. We also analyze how we control flow level
features for different synthesized flows.

VI. DEEP LEARNING BASED MODEL

We have discussed how to generate flows for malicious API-
based applications, benign API-based applications and human
OSN behaviors. Our purpose is to detect flows from malicious
API-based applications. In this session, we will introduce how
to use our generated ground truth to train a Convolutional
Neural Network (CNN) model. This section includes some
basis works, such as model selection, ground truth labeling,
dataset size, data preprocessing and model structure.

A. Model selection

Convolutional Neural Network (CNN) has been a very
popular tool to finish various of machine learning tasks in
recent years. It is particular powerful to learn hierarchical level
features from complex high dimension data automatically, then
finish classification task effectively. The aggregated flows in
our project are actually high dimension data, so CNN is a good
tool to classify malicious API flows and other benign flows.
CNN needs uniform input size, but each aggregated flows
in our project contains different number of flows. Therefore,
we normalize each aggregated flows by transforming each
aggregated flow into an image, while each image still reserves
the main and useful information of each aggregated flow
group, then use normalized images as the input to train the
CNN model.

B. Ground truth labeling

There are three OSN behaviors defined in this paper:
malicious API-based application behaviors, benign API-based
application and human OSN behaviors. Our purpose is to de-
tect flows of malicious API-based application behaviors from
flows generated by all three behaviors. For flows generated
by malicious API-based application behaviors, we label them
as malicious flows. For flows generated by benign API-based
application behaviors and human behaviors on social networks,
we label them as benign flows.

C. Dataset size

For flows generated by each malicious API-based applica-
tion behaviors and benign behaviors, we aggregate their flows,
convert each aggregated flow into an image, which can act



TABLE II: Aggregated flows data size for each behaviors

Data type Data size
Automated malicious API usage behaviors 15,000
Automated benign API usage behaviors 15,000
Human behaviors 10,000

TABLE III: Aggregated flows data size for applications with
each malicious/benign application pattern

Data type Data size
Malicious bad1 3,000
Malicious bad2 3,000
Malicious bad3 3,000
Malicious bad4 3,000
Malicious bad5 3,000
Benign good0 15,000
Human good1 10,000

as the normalized input of CNN model. We generate 40,000
aggregated flows for both benign behaviors and malicious
API application behaviors, and the date size of categorized
aggregated flows for each behavior is shown in table II.

As we talked about in data generation section, there are
five malicious API-based applications. They post/comment
spam contents, and behavior time points decided by five
malicious timing patterns.we represent malicious applications
with different malicious API usage timing patterns as bad1,
bad2, bad3, bad4, and bad5, and represent the benign API-
based applications with benign timing pattern as good1, human
behaviors as good0. Table III has shown generated aggregated
flows size for applications each malicious timing patterns and
benign timing patterns. The data set is split into training set
and test set. The training set has 80% of all labeled aggregated
data, while the test set includes 20% all labeled aggregated
data. The 32,000 training set are used to train the CNN model,
while we reserve 8,000 test data to evaluate the performance
of trained model.

D. Flow data preprocessing

For flows generated by each application/human behaviors,
we will preprocess flows first, then train deep learning model
using preprocessed flows instead raw flows. The flow pre-
processing process includes several steps: flow extraction,
aggregation, and normalized aggregated flows into images, and
normalized images will be act as the input of deep learning
model.

First, we need to extract the OSN generated flows. When
we visit the small social network Wordpress on the client
side, the client is actually communicating with the server
of our deployed small social network, and this process can
generate a lot of network packets. The client is installed
with flow data generation and collection softwares, so it can
generate and collect flow data based on current incoming and

outgoing packets on this client. However, when we simulate
our those three kinds of behaviors on our client, the client is
probably communicating with multiple network servers at the
same time, so our collected flow data not only contains flows
communicating with Wordpress sever, but also includes flows
generated by other applications on the client. Therefore, we
need to extract those flow data which generated by commu-
nication traffic between this client and Wordpress server. To
collect those flows generated by our synthesized behaviors, we
extract those flows whose source IPs or destination IPs belong
to the Wordpress server. Our IP address matching method
can also extract flows generated by any other OSNs, such as
Twitter and Facebook.

After extracting Wordpress traffic flows on client, we will
aggregation flow data. A single simple behavior on Wordpress
and any website can generate several traffic flows, so a single
traffic flow can carry very little information about how users
operate on a OSN. Therefore, we want to aggregate traffic
flows that occur in a relative long pre-specified time window,
then the aggregated traffic flows can carry how user behaves in
the pre-specified time window. Aggregated flows only collect
flows occurred in a time slot, and still preserve each flow’s
start time, end time and other attributes, so the timing and
other features are still peserved in aggregated flows. If the user
use API-based application with malicious purposes in this pre-
specified time window, we can detect those aggregated traffic
flows from this user.

Since aggregated flows have different number of flows,
and CNN model needs uniform input size, we normalize the
input of each aggregated flows by converting it to an image
which carries main and useful information for the aggregated
flows. Each aggregated flow group is converted into a scatter
image, and each point in this scatter image carries the main
information for a flow in this aggregated flow group. A flow
is converted to a point in the image, so the image consists all
points converted by all flows in an aggregated flow group.

A point carries four main attributes information from the
corresponding flow: flow start time, flow duration, packet
number and TCP flag. Those four attributes information of a
flow are converted to a point’s location and (R,G,B) color value
in the image. To be more specific, flow start time attribute
decides a point’s location (x, y) in this image: x axis is the
flow’s generated minute, while y axis is the flow’s generated
second. The flow duration attribute decides the point’s R
value, packet number attribute decides the point’s G value,
while TCP flag decides the point’s B value. In this way, the
four main useful attributes of a single flow data are carried
by corresponding point’s four features in the scatter image.
Each converted image can carry information for all flows
with their four attributes information in the aggregated flow
group. There are three examples of three converted images
of aggregated flows from malicious API-based application
behaviors, benign API-based application behaviors and human
behaviors separately in figure 8.



(a) Converted image for
benign API-based applications

(b) Converted image for
human behaviors

(c) Converted image for
malicious API-based

applications

Fig. 8: Converted images for human behaviors, malicious API-
based application and benign API-based application

E. CNN model structure
By changing all related parameters and layers, the CNN

model with structure in figure 9 can achieve the best perfor-
mance. Our trained CNN model consists of 10 layers. In the
CNN model, the output of previous layer is the input of next
layer as in figure 9. The first layer is the input of the model,
and the last layer is the prediction result of the model. Input
layer of the model takes 128*128*3 dimension matrixes as
input, which are read from images converted from aggregated
flows. For each input data, the CNN model can predict it
with label 0 or label 1 at output layer. If it’s predicted with
0, it indicates that the flows are generated by benign benign
API-based application behaviors or human being behaviors on
OSNs. If it’s predicted with 1, it indicates that the the flows
are generated by malicious API-based application behaviors.

To sum up, in this section, we describe how to label data,
preprocess flows into images to train CNN model, and trained
CNN model structure.

VII. EVALUATION

In this section, we evaluate the performance of our trained
CNN model. Four metrics accuracy, recall, precision and F1-
measure are used to evaluate the detection performance of
trained CNN model. To begin with, we evaluate the overall
detection result for all test set data. After that, we evaluate the
detection performance when malicious API-based applications
post/comment 10 times, 20 times, 30 times, 40 times, 50 times.
Afterwards, to get a better understanding of how can our
CNN model detect each malicious API-based application be-
haviors effectively, we evaluate CNN’s detection performance
when each malicious API-based application posts/comments
10 times, 20 times, 30 times, 40 times, 50 times. At last, we

Fig. 9: CNN model structure

evaluate the performance of trained CNN model by detecting
flows generated by 3 real world API-based malicious applica-
tions and 3 API-based benign applications.

A. Test set size and evaluation metrics
We reserve 8,000 (20% of generated ground truth data)

aggregated flows as test set. The test set includes aggregated
flows for malicious API-based application behaviors, benign
API-based application behaviors and human behaviors on
social networks, and their corresponding data size are shown
in table IV.

TABLE IV: Test set data size for each behaviors

Test set data type Data size
Malicious API-based applications 3,000
Benign API-based applications 3,000
Human OSN behaviors 2,000

We adopt four most common used metrics accuracy, recall,
precision and f1-measure to evaluate the performance of our
trained CNN model. Accuracy is the proportion of all predic-
tions that are correct. Recall is a measurement of how many
actual positive observations are predicted correctly. Precision
measures how many positive predictions are actual positive
observations. F1-Measure is the harmonic of precision and



recall. We have TP, TN,FP and FN indicating the number of
true positive, true negative, false positive and false negative in
prediction results. Those four metrics can be formulated based
on TP, TN, FP, and FN.

Accuracy =
TP + TN

TP + TN + FP + FN

(6)

Recall =
TP

TP + FN

(7)

Precision =
TP

TP + FP

(8)

F1�measure =
2TP

2TP + FP + FN

(9)

B. Overall detection performance for all test set

To begin with, we evaluate the overall performance of
trained CNN model by predicting the whole test set. As it’s
shown in Fig 10, the overall performance of our model is very
good. It can achieve very high scores for accuracy, precision,
recall and f1-measure at the same time.

Fig. 10: Detection performance for predicting all test set

C. Detection performance for malicious API-based applica-
tions with different post/comment frequencies

In VII-B part, it’s shown that the trained CNN model overall
prediction performance is very good. In this part, we would
like to check if malicious API-based applications post/com-
ment times varying from 10 times to 50 times, whether our
trained model can detect those malicious API applications
effectively.

In figure 11, x axis indicates malicious API applications
post/comment total times in an aggregated flows, y axis shows
our model’s corresponding detection performance. Based on
observation, we find that when malicious applications post/-
comment less frequently, our model’s detection accuracy is
relatively low. The accuracy is nearly 89.9% when malicious
APIs post 10 times in a day. When malicious patterns post/-
comment more and more frequently, our model’s detection
accuracy is increasing, and it will reach up to nearly 99.3%
when malicious APIs post 50 times.

Fig. 11: Detection performance for malicious API usage with
different post/comment times

(a) First malicious API
application posts 10 times

(b) First malicious API
application posts 50 times

Fig. 12: Comparison for first malicious API application post-
ing 10 times and 50 times

When malicious API-based applications behave more and
more frequently, their malicious patterns are more and more
obvious, then their flows are more and more easily to be
detected by our model. Figure 12 compares two examples of
the first malicious API application with different post/comment
times. The figure 12a shows when the first malicious API
application posts only 10 times, and the malicious pattern
is not that obvious. In figure 12b, the malicious pattern is
much more obvious when it posts 50 times than in 10 times.
Therefore, we can find when malicious API-based applications
post times is increasing, their malicious patterns will be more
and more obvious. Our method can detect flows from frequent
behaved API-based applications more effectively.

D. Detection performance for each malicious API-based ap-
plication with different post/comment frequencies

To get a better understanding how our trained model
can detect each malicious API-based application generated
flows effectively when the application posts/comments times
changes, we display another group of detection result for each
malicious application with post/comment times changing from
10 times, 20 times, 30 times, 40 times to 50 times.

Figure 13 shows the performance of our trained model in
detecting flows of each malicious API applications when their
posting times change from 10 times to 50 times. Based on



(a) Detection results for first malicious
API-based application

(b) Detection results for second malicious
API-based application

(c) Detection results for third malicious
API-based application

(d) Detection results for forth malicious
API-based application

(e) Detection results for fifth malicious
API-based application

Fig. 13: Detection results for each malicious API-based application posting/commenting from 10 times to 50 times

our observation, we found that the detection result shows two
patterns. For malicious API-based application bad1 and bad3,
when their post/comment times is less frequently, our model’s
detection accuracy is very low. When their post/comment times
is becoming more frequently, our model’s detection accuracy
is increasing until very high. However, for malicious API-
based application bad2, bad4 and bad5, our model’s detection
accuracy is always very high.

The reason why those results show two different patterns
are related to of how different malicious API applications
post/comment. Let’s take bad1 and bad2 as an example in
figure 14. For bad1, its post/comment behavior time with
relatively long intervals. When it posts less, e.g. 10 times, the
bad1 pattern is not obvious, so our model’s detection accuracy
is low. For bad2, its post/comment behaviors mainly focus on
a short time period. Even if it posts less, e.g. 10 times, this
malicious pattern is still very obvious, so our model’s detection
accuracy for bad2 is always high.

We also observed another phenomenon: when bad1 and
bad3 post less frequently, even if our model’s detection ac-
curacy scores are low, the precision scores are still very high.
Precision a measurement of how many positive predictions
are actual positive observations. We represent malicious API
behaviors as positive, which is described in section VI. This
high precision result indicates that our model’s predicted
malicious flows are very likely to be actual malicious flows.
Our model may predict malicious flows as benign flows. When
the behavior pattern of some malicious API applications is not
obvious, our model can mistakenly predict those malicious
flows as benign.

(a) Bad1 application
posts/comments 10 times

(b) Bad2 application
posts/comments 50 times

Fig. 14: Comparison for bad1 application and bad2 application
for posting 10 times

E. Detection performance for detecting real world API-based
benign applications and malicious applications

Since we have evaluated the performance of trained model
based on five synthesized malicious applications, in this sec-
tion, to demonstrate that our synthetic flows are very close the
real world generated malicious and benign flows, we use our
trained CNN model to detect flows from 3 real world malicious
OSN API-based applications and 3 real world benign OSN
API-based applications.

The three real world benign OSN API-based applications
are a earthquake bot providing real time earthquakes happened
in specific locations, a news bot providing important news to
people, and a weather warning bot reporting weather warning
informations respectively. The three malicious OSN API-based
applications are all spams applications.

We collect and aggregated corresponding flows by running



Fig. 15: Detection results for flows generated by 3 real world
malicious OSN API-based applications

Fig. 16: Detection results for flows generated by 3 real world
benign OSN API-based applications

the those applications on our platform, then use our trained
model to detect aggregated flows generated by 3 malicious
applications and 3 benign applications. Figure 16 shows our
model’s performance for detecting flows for malicious API-
based application behaviors. As we can see, our detection
model performs well and can detect malicious flows with
accuracy as high as 99.7%, 98.8% and 99.1%. Figure 15
shows the performance for detecting flows for benign API-
based application behaviors. Our detection model performs
well and can detect benign application flows with accuracy
as high as 93.4%, 91.1% and 99.2%. The precision score is 0,
and recall and F1-measure can not be calculated because of
no true positive TP and false negative FN, while all samples
are correctly predicted as TN, and mistakenly predicted as FP.
The figure can show that our model can detect flows from real
world benign and malicious API-based applications well.

To sum up, our trained CNN model might be not able
to identify flows for some malicious API-based applications
very accurately when they post/comment 10 times. When
their post/comment times increase to 20 times, our model
shows very good prediction performance. In addition, our
model is also able to label flows generated by real world

Fig. 17: Detection result for predicting all test set for model
with only timing feature

benign and malicious OSN API-based applications with good
performance.

VIII. DISCUSSION

In this section, we are going to discuss some concerns
and the future work for this work. The first concern is
that some people are worried that a single timing pattern
feature is enough to detect flows generated by malicious OSN
applications, and we are not necessary to train a deep learning
model based on other features. The second is that people may
question that our project can only detect flows from malicious
OSN programs that demonstrate a similar timing patterns with
our used 5 malicious timing patterns. For the future work, we
are going to discuss how to use our work in reality to help
NSP detect flows from malicious OSN applications.

A. Is a single timing pattern feature enough to detect flows
generated by malicious OSN applications

Malicious OSN applications have malicious purpose of
spreading spam information, so their behavior pattern are
probably different with benign applications and human behav-
iors. It’s known malicious OSN applications behavior timing
patterns may be different with benign applications and human
behaviors based on previous paper, and some people may
concern that a single timing pattern feature is enough to
detect flows generated by malicious OSN applications. In this
project, we train a deep learning model based on four features:
flow start pattern, flow duration, packet number in each flow,
and TCP flag in each flow. To investigate this concern, in
this section, we train another CNN model only based timing
feature, and found that the detection result for the whole test
set is in figure 17.

As we can see, the detection accuracy of single timing
feature based CNN model can only reach to 82.5% percentage
accuracy and 70.2% precision. The 70.2% precision indicates
only 70.2% labeled malicious flows are actually malicious gen-
erated by malicious OSN applications, and many benign flows
may be mislabeled as malicious. The detection performance
of the single timing feature based model is much worse than



our trained four feature based deep learning model. In our
four feature based deep learning model, the detection result
for the whole test set achieve accuracy as high as 98.7% and
precision as high as 97.5%.

TABLE V: Detection accuracy result for different flows in
each timing based model

Malicious
application
detection
accuracy

Benign
application
detection
accuracy

Human
behavior
detection
accuracy

Model 1 96.0% 98.9% -
Model 2 99.6% - 75.8%
Model 3 0 99.6% 99.2%
Model 4 96.7% 98.9% 25.1%

To get a better understanding of why timing feature based
model gets overall low accuracy and low precision, we investi-
gate four questions, and train four timing feature based models
to answer those questions: (1) Can we distinguish malicious
application flows from benign application flows from just their
timing features? Model 1: trained under the presence of only
malicious and benign application flows (2) Can we distinguish
malicious application flows from human flows from just their
timing features? Model 2: trained under the presence of only
malicious application flows and human flows (3) Can we
distinguish benign application flows from human flows from
just their timing features? Model 3: trained under the presence
of only benign application flows and human flows (4) Can
we distinguish benign application flows, malicious application
flows, and human flows from just their timing features? Model
4: trained under the presence of all benign application flows,
malicious application, and human flows.

In the table V, timing feature based model 1 is trained by
malicious application flows and benign application flows. We
can find that model 1 can label flows from benign applications
with accuracy as high as 98.9%, and flows from malicious
applications with accuracy as high as 96.0%. This result indi-
cates that a single timing feature is enough to distinguish flows
generated by malicious applications or benign applications.
For timing feature based model 2 which is trained by flows
from malicious application and human behaviors, we can
find that our trained model 2 can label malicious application
flows with accuracy 99.6%, while label flows from human
behavior only with accuracy 75.8%. This indicates that a single
timing pattern is not enough to distinguish flows generated
by malicious applications or human behaviors. For model
3 trained by benign application flows and human flows, its
detection performance for labeling benign application flows
and human flows is very good, and a single timing feature is
enough to distinguish flows generated by benign applications
or human behaviors.

For timing feature based model 4 trained by human flows,
benign application flows and malicious application flows, we
can find that it can distinguish benign and malicious applica-
tion flows with very good performance, but human flows with

very low accuracy. Based on model 1, we know timing feature
is enough to distinguish benign application flows or malicious
application flows. From model 3, we know we know timing
feature is enough to distinguish benign application flows or
human flows. In model 2, human flows can be mislabeled
as malicious flows only by detecting timing feature. Model
4 gets a low accuracy in detecting human flows, and this is
also caused by some human flows mislabeled as malicious
application flows (we have checked the detection result in
labeling human flows, and many human flows are indeed
mislabeled as malicious in model 4), which is same with
model 2. In model 2, the model has already has already had
a very hard time to distinguish human flows from malicious
application flows only based on timing feature. It can be
understandable for model 4 having a bad performance to
distinguish bad flows from benign and malicious application
flows too.

We can conclude based on table V: timing feature can?t
distinguish between human and malicious applications, but
help distinguish between malicious and benign apps and be-
nign apps and humans. Timing feature is an important feature
to detect malicious flows, but a single timing feature is not
enough to detect flows from malicious application, because it
can mislabel human flows as malicious, and this will get a
high false positive rate.

TABLE VI: Detection accuracy result for different flows in
different feature based models

Human flow
detection ac-
curacy

Malicious applica-
tion detection ac-
curacy

Model 5: timing + feature 1 82.8% 99.5%
Model 6: timing + feature 2 92.4% 99.4%
Model 7: timing + feature 3 79.9% 99.1%
Model 8: timing + feature
1,2,3

99.8% 100.0%

We have already found that timing based model 4 with a low
detection accuracy and precision is mainly caused by labeling
some human flow as malicious, so the single timing pattern
is not enough to distinguish flows generated by malicious
applications or human behaviors. In this situation, we would
like to investigate whether other features help distinguish
between human flows or malicious application flows? Which
features are in particular helpful? Does a combination of all
useful features can further improve the detection result?

In our project, the malicious application flows detection
model is trained based on timing pattern and another three
features: TCP flag, packet number in each flow, and flow
duration. We represent feature TCP flag, packet number in
each flow, flow duration as feature 1, feature 2, feature 3
respectively. To check whether other three features (feature1,
feature 2, and feature 3) are helpful to distinguish flows
generated by human behaviors or malicious OSN applications,
we train another 4 models by the timing feature and other



feature: (1) model 5: trained based on timing and feature 1
to distinguish human flows or malicious application flows. (2)
model 6: trained based on timing and feature 2 to distinguish
human flows or malicious application flows. (3) model 7:
trained based on timing and feature 3 to distinguish human
flows or malicious application flows. (4) model 8: trained
based on timing and feature 1,2,3 to distinguish human flows
or malicious application flows.

To distinguish human flows and malicious application flows,
if we train a model only based on timing pattern, its accuracy
for detecting human flows is 75.6% in model 2. If we train the
model with timing and one of another 3 features, the detection
accuracy for human flows can be improved in table VI. If
feature 2 is added with timing pattern to train model 6, the
accuracy of labeling human flows can be increased largest to
92.4%. If feature 1 is added in model 5, the accuracy will
increase to 82.8%. Feature 3 is the least useful feature, and it
can help improve accuracy to 79.9% in model 7. Model 8 is
trained based on timing pattern and all the other three features,
and this four-feature based model 8 can detect the human flow
detection with accuracy as high as 99.8%. This result indicates
that all the other 3 features can help distinguish human flows
from malicious application flows independently.

A combination of three other features improves accuracy for
distinguishing human flows and malicious applications with
best detection accuracy for human flows.

TABLE VII: Detection accuracy result for different flows in
each four-feature based model

Malicious
application
detection
accuracy

Benign
application
detection
accuracy

Human
behavior
detection
accuracy

Model 9 97.9% 96.6% -
Model 8 99.8% - 100.0%
Model 10 0 100.0% 100.0%
Model 11 97.0% 98.8% 99.5%

Based on above analysis, for model 2 trained under the
presence of only malicious and benign application flows, it
can’t achieve good performance when it?s only trained based
on a single timing pattern. If we train it with timing and all
other 3 features in model 8, the detection performance is very
good.

We also train a model with timing and other 3 features
to distinguish flows from malicious or benign applications in
model 9 in table VII, and model 9?s detection performance
in table VII is also very good. Model 10 is trained by timing
and other three features to distinguish human flows and benign
application flows, and the detection performance.

Therefore, if we train models based timing and other three
features, the detection performance will not hurt for distin-
guishing between human flows and benign applications, and
not hurt for distinguishing between malicious application flows
and benign applications flows.

At last, model 11 is trained based on timing and another
3 features to distinguish malicious application flows, benign
application flows and human flows, the detection performance
for all flows is also very good. Therefore, a timing feature is
not enough to distinguish all three flows, and timing and the
other three features are enough.

B. Can our project only detect flows from malicious OSN
programs that demonstrate a similar timing patterns with our
used 5 malicious timing patterns

We used four features to detect flows from malicious
applications in this project: flow start time, TCP flag, flow
duration, packet number in each flow. As we can see in VIII-A
section, timing feature could be an important feature for us
to detect flows generated by malicious OSN applications.
However, to achieve a high detection precision result, other
three features are also helpful. In a more accurate way, this
project is to identify applications that exhibit both 5 malicious
timing patterns and other flow-level malicious features, instead
of identifying applications that only exhibit 5 malicious timing
patterns.

In this project, we have 5 malicious timing patterns decide
when malicious OSN applications post/comment with spam
contents, so our trained model is indeed supposed to detect
flows from malicious applications showing a similar timing
patterns with our used 5 malicious timing patterns.

In order to create an expressive set of malicious timing
patterns, we extend the findings of paper [21]. They present
five malicious timing patterns of real-life spam accounts.
These timing patterns are a good basis to describe possi-
ble malicious timing behaviors, but they are not complete.
For example, the paper suggests that posting once a minute
throughout a day is an example of malicious behavior, but
one can also further infer that posting twice a minute is also
a reasonable example of malicious behavior. Therefore, we
create an extensive set of possible malicious timing behaviors
through slight modifications of the timing behaviors presented
by this paper. In order to extend one of the five malicious
timing patterns presented in that paper, we first create a model
that describes the presented malicious timing pattern, and then
we further add variances to this model, which creates an
extensive set of possible malicious temporal patterns.

In particular, the parameters of our model are each given a
range of realistic values, and each derived malicious temporal
pattern is a specific instance of possible parameter values
of our model. This process creates a comprehensive set of
malicious timing behaviors. Based on this comprehensive set,
we trained a CNN to classify future flows that exhibit similar
timing patterns as malicious. In fact, we found and downloaded
three malicious spam programs, and for each downloaded
program, a specific instance of possible parameter values of
our model describes its timing pattern, so it is no surprise that
our CNN successfully detected the flows generated by these
spam programs as malicious.

To sum up, we vary all related parameters to simulate all
possible malicious timing pattern instances, and our simulated



instances can cover some timing patterns in the real-world
malicious programs. If the real world malicious program
behavior timing pattern is covered in our dataset, our trained
model can detect this malicious application generated flows.

C. Future work
Our project is proposed to detect flows generated by mali-

cious OSN API-based applications for NSPs. In this session,
we will discuss how to use our work in reality to help NSPs
to detect flows generated by malicious OSN applications.

To make use of our work in the real world, NSPs should
deployed a OSN flow collector running continuously at its
border router where all incoming and outgoing traffic can
be caught in this network. This process should not cost that
much efforts, because flows data only aggregated packet head
information, and the flow data size is much small than all
packets size. If a flow caught by the NSP has its source IP
address or destination IP address belong to a OSN, then this
flow is generated by a connection between a machine inside
the NSP and a OSN. There are real time online router tables
that can provide IP blocks for a OSN, so NSP can decide
whether a flow’s source or destination address belongs to a
OSN by IP prefix matching. In this way, NSPs can get all
traffic flows generated between machines inside its network
and a OSN. The flow data are aggregated packet headers,

When NSPs collect all OSN flows for each machine (as-
sociated with an IP) inside the network, NSPs can use our
proposed method to detect whether flows generated between
an IP and OSN servers are malicious. If flows are detected
malicious, it indicates that the machine with this IP is running
malicious OSN applications, then the NSP can decide to block
the bad traffic, block this compromised IP, or just don’t do
anything.

To use our proposed method to train a deep learning model
for detecting malicious flows, NSPs need to get the ground
truth by labeling malicious OSN application flows, benign
OSN application flows and human OSN flows for a particular
OSN, then train the malicious flow detection model based on
ground truth for this OSN, and they cannot train this model
automatically. This could be a disadvantage of our work.

IX. CONCLUSION

Most social network providers release some APIs for third
party developers to integrate OSN services to their own soft-
wares. However, those APIs are misused widely by malicious
applications, such as bot applications, crawler applications,
even third-party applications to spread spam information or
secretly collect private user data. It is important and necessary
to monitor and detect flows generated by those malicious API-
based applications for NSPs. This paper is the first research
to enable the detection of flows for OSN malicious API-based
applications for NSPs at the network flow level. This paper
aims to detect flows generated by 5 known malicious API-
based application behaviors. To achieve this goal, we collect
flows various human behaviors, various benign API-based
application behaviors, and 5 malicious API-based application

behaviors, then aggregate and label network flows for each
behaviors, and train a deep learning model based on labeled
ground truth. Our evaluation result shows that the trained deep
learning model is able to detect flows generated by malicious
API-based applications with 97.6% accuracy, and 1.6% false
positive.
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Abstract—While online social networks (OSNs) provide Appli-
cation Programming Interfaces (APIs) to enable the development
of OSN applications, some of these applications, unfortunately,
can be malicious. They can be running on the devices for OSN
users throughout the Internet, causing security, privacy, and
liability concerns to the network service providers of these OSN
users.

In this paper, we study how a network service provider
may inspect its network traffic to detect network flows from
malicious API-based OSN applications. In particular, we devise
a deep learning based methodology to detect NetFlows generated
by malicious API-based OSN applications. We implement this
methodology on a testbed, and show that our solution is effective
and can accurately label 97.6% NetFlows from the malicious
OSN applications, with only 1.6% false positives.

Index Terms—online social network (OSN); NetFlow; network
flow; malicious OSN application; OSN application; OSN API

I. INTRODUCTION

Online social networks (OSN) have become extremely pop-
ular with an ever-growing user base. At the time of writing
this paper, Facebook, Twitter, and WeChat each has 2.2 billion,
0.4 billion, and 0.5 billion users, respectively. In particular, in
order to further enrich and improve the user experience, OSNs
have provided public Application Programming Interfaces
(APIs) to enable the development of OSN applications that
can access OSN data and functions. However, the provision
of these APIs can cause severe security concerns.

Whereas these public APIs make it easy and convenient for
OSN applications to provide various legitimate OSN services,
such as querying an OSN user’s profile information and
friend lists, retweeting certain tweets, or making automated
comments, they may also be abused or misused by malicious
OSN applications. They can be running on the devices for
OSN users throughout the Internet, causing security, privacy,
and liability concerns to the network service providers of these
OSN users. Very often, by using OSN APIs, a malicious OSN
application may control bot accounts to post or reply with
spam or fraudulent information, run a crawler to collect private
and sensitive OSN user data, or act as a third-party application
to obtain access to accounts of OSN users, followed by
collecting the profiles of these users and even their friends.
In a widely known case, Facebook was reported to leak data

of up to 87 million users through a third-part psychology quiz
application [1].

While abusing OSN APIs, these malicious OSN ap-
plications particularly cause concerns to network service
providers (NSPs) for OSN users. It could be an Internet service
provider (ISP), an enterprise or campus network. If a malicious
OSN application is running inside a network, it can imply that
one or multiple machines in the network are compromised,
the application can subvert the privacy of OSN users, and the
network may have to be liable for the security and privacy
violations.

However, an NSP is not at the same position as an OSN
provider to deal with malicious OSN applications. An OSN
provider can can try to monitor API calls, obtain full knowl-
edge of user profiles and posts, as well as access the entire
OSN graph, in order to, detect OSN spam accounts [2]–[5],
limit large-scale crawling activities [6], detect malicious third-
party OSN applications [7], and so on. On the other hand,
an NSP only has limited knowledge of OSN data (such as
user posts, profiles, social behaviors, OSN graphs). It can only
access the traffic across its network, thus not able to leverage
the aforementioned existing work toward detecting malicious
OSN applications.

We therefore study how an NSP may monitor its traffic to
detect traffic flows from malicious OSN applications. We make
the following contributions:

1) We define a problem of detecting flows from malicious
API-based OSN applications, whereas the flow data used
do not include traffic payload. In another words, the
problem assumes no knowledge of OSN topologies or
specific user profiles and data.

2) We propose a solution to detect flows from malicious
API-based OSN applications. First, we train a deep
learning model for malicious OSN flow detection based
on three types of OSN flows: flows from malicious
API-based OSN applications, flows from benign API-
based OSN applications, and flows from human user
operations on the OSN. For each machine running inside
an NSP, we extract, aggregate, normalize and visualize
flows generated between the machine and an OSN,
then apply our trained model to determine whether the



normalized flows are generated by a malicious OSN
application running on a machine inside the NSP.

3) We implement our proposed solution on a testbed, where
we simulate and collect flows for various malicious OSN
applications, benign OSN applications, and human user
operations. The trained deep learning model is able to
detect flows generated by malicious OSN applications
with high accuracy and low false positive. In particular,
the trained model is able to label flows from three real-
world benign OSN applications and three real-world
malicious OSN applications with high accuracy. Our
research demonstrates that it is feasible to detect flows
from malicious API-based applications on OSNs. What’s
more, our proposed solution can apply to any other
social networks. e.g. Facebook, Twitter.

The rest of this paper is organized as follows. We first cover
related work in Section II, then describe the problem and
solution in Section III, followed by Section IV that illustrates
the data (the traffic flows) used in this study. We evaluate the
performance of our solution in Section V and conclude our
work in Section VI.

II. BACKGROUND AND RELATED WORK

While APIs released by OSNs are supposed to work for
third-party developers to access OSN services, researchers
have shown they can be easily misused by crawlers to crawl
OSN data or by spammers to spread fraud or spam content (
[8], [9] and [10]). The work in [8] crawled a large amount of
sensitive OSN data by using OSN APIs, and research in [9]
even designed an API-based crawler that attackers can use to
crawl a large amount of Twitter network structural information.
At the same time, spam accounts controlled by malicious API
applications are common on OSNs; as the research in [10]
points out that, many automated spam accounts on OSNs
prefer to use API rather than a web browser to spread fraud
or spam content.

There are certain proposed methods that detect malicious
automated spam accounts on OSNs, including recent work
in [2], [3], [4] and [5]. Basically, they all analyze the post
content, user profiles, or social behaviors of spam accounts
and rely on these features to detect spam accounts. However,
a network service provider that usually only collect network
flow data can hardly have access to such features, thus not
able to employ such a method to detect OSN spam accounts
inside their network.

Methods are also proposed to prevent crawling activities on
OSNs. Research in [11] and [6] proposed countermeasures to
prevent attackers from crawling sensitive OSN user data. Re-
search in [11] proposes an “Online Social Honeynet” concept
by deploying a set of users on network to attract and defend
OSN crawler attackers, but it only proves the feasibility of
using this concept to prevent crawlers, not about deploying it
in the real world. Research in [6] proposes a Genie system
which is deployed at OSN providers to thwart crawlers by
detecting their different browsing patterns. This work analyzes
user traces of visiting their friends and non-friends, which is

sensitive and, again, not accessible in network flow data, so
their methodology is not usable by a network service provider
to detect malicious OSN activities.

On the other hand, many methods have been proposed to
analyze flow data to detect network attacks or anomalies.
Research in [12] uses campus traffic flows to detect anomaly
broadcast traffic, while [13] extends the popular PageRank
algorithm to detect botnet traffic. The work [14] and [15] both
detect network traffic flow anomalies by analyzing flow-level
anomaly features. And research in [16], [17], and [18] also
proposes several real-time intrusion detection systems based
on monitoring network flow traffic. These papers all follow a
similar idea by detecting a specific attack based on the flow-
level features of the attack. However, the specific attack fea-
tures explored in these existing methods are different from the
features of OSN attacks, making their feature-based detection
methods basically ineffective in detecting OSN attacks.

In obtaining a better understanding how users use or interact
with online social networks, research in [19]–[22] investigated
how to use traffic analysis methods to study social networks.
However, these methods analyze network traffic that includes
packet payload in general, which is different from our work
that uses the network flow data that only carry aggregated
packet header information.

III. METHODOLOGY

In this section, we describe our proposed methodology
which enables an NSP to detect flows generated by malicious
OSN applications from within its network.

We first describe the settings of this problem. As shown
in Fig. 1, a network service provider (NSP) can have human
users, benign OSN applications, and malicious OSN applica-
tions send requests to OSN severs. When an OSN sever receive
such requests, it will then respond the requests. Both requests
from an NSP to an OSN server and responses from an OSN
server to the NSP will go through the NSP’s border router.
In this situation, the border router can collect flows generated
by the applications and human users from within the NSP
network, and we thus assume that our malicious OSN flow
detection method is deployed at the border router of the NSP.
Once it detects some malicious flows at the border router, it
then can send alerts to the NSP.

We hypothesize that traffic flows of human users of OSN,
benign API-based OSN applications, and malicious API-based
OSN applications have different flow-level features. We now
describe how we extract, aggregate, and visualize OSN flow
data and train a deep learning model to detect flows from
malicious OSN applications.

A. Flow Extraction
When a machine inside an NSP visits an OSN, typically

this machine also runs other applications at the same time.
Therefore, the border router of the NSP not only collects
network flows from this machine visiting an OSN, but also
those flows from other applications on this machine (e.g.,
communications with other web servers). We thus need to



Fig. 1: Setting of a network service provider (NSP) in detecting
malicious OSN network flows

extract those flows generated by traffic between this machine
and OSN servers, in order to further decide which those flows
is malicious.

The procedure is as follows. We first extract all flows
generated by a single machine in an NSP by extracting all
flows whose source or destination IP address belongs to this
machine. From these flows, we then further extract all flows
between this machine and specific OSN providers. We obtain
the real-time IP address blocks of an OSN provider by sending
requests to BGPstream [23] to check real-time router tables. If
a flow’s source IP or destination IP belongs to the IP blocks of
the OSN provider, this flow is an OSN flow generated between
this machine and this OSN provider. As a result, we can extract
all flows generated between a machine in an NSP and an OSN
provider.

B. Flow Aggregation

After extracting OSN traffic flows for a machine, we ag-
gregate flow data. A single simple operation on an OSN can
generate several traffic flows, so a single traffic flow could
hardly carry any information about how a user operates on
an OSN. Therefore, we aggregate traffic flows that occur
in a relative long pre-specified time window, such that the
aggregated flows can indicate how user behaved in the time
window. If an API-based application is running in this pre-
specified time window, we will detect those aggregated traffic
flows from this application as malicious.

C. Flow Visualization and Model Training

Deep learning is a popular tool to automatically learn hier-
archical features from complex, high-dimension data and then
conduct a classification task effectively. As aggregated flows
in our research are high-dimension data, deep learning is a
suitable tool to classify malicious API flows from benign flows
and human user flows. We visualize each aggregated flow and
transform it into an image, where each image preserves the
main and useful information of each aggregated flow group,

and then use images as the input to train a Convolutional
Neural Network (CNN) model.

Each aggregated flows is converted into a scatter image,
where each point in the image carries information about four
main useful attributes from a flow by analyzing real-world
campus flow traffic: flow start time, flow duration, packet
number, and TCP flag. Flow start time decides the location
(x, y) of a point in this image: x-axis is the time of minutes
when the flow is generated, while y-axis is the time of seconds
when the flow is generated. The flow duration decides the
point’s R value, and the packet number determines the point’s
G value, and the TCP flag determines the point’s B value.
In the end, these four main attributes of a flow are converted
to a point’s location and (R,G,B) color value in the image,
and the image eventually carries all the points converted from
all flows in each aggregated flow group, so the image can
carry all useful information from all flows in an aggregated
flow group. Fig. 2 shows three converted images of aggregated
flows from malicious API-based applications, benign API-
based applications, and human operations separately.

For each transformed image, we import its information into
a 128*128*3 dimension matrix as input to train the CNN
model. By changing all related parameters and layers, we can
obtain a CNN model that can achieve best flow classification
results. For each input data, the trained CNN model can predict
it with label zero or label one at output layer. If label zero,
it indicates that flows are generated by benign applications or
human users on OSNs; otherwise, it is label one and flows are
generated by malicious applications.

IV. DATA

Since there is no available dataset of network flow data
generated by malicious API-based OSN applications and other
benign OSN flows, we emulate and collect flows for human
user operations, malicious OSN applications, and benign OSN
application on a small social network testbed WordPress, and
implement our proposed solution based on flows collected
from this testbed. Our proposed methodology not only works
on the deployed testbed, but can also be applied to detect
flows generated by malicious applications on any other OSNs,
such as Twitter, Facebook, Instagram. Below we first introduce
our data generation platform, then define, emulate, and collect
flows for the above three types of flows, and lastly, describe
how we optimize flow generation.

A. OSN Testbed

We deploy a small social network WordPress system as our
testbed where people can post and reply to each other. It is
deployed on a reserved server on DigitalOcean with a fixed
IP address 165.227.20.24. The server is configured with 512
MB Memory, 20 GB Disk, and Ubuntu 16.04.3 x64 Operating
System. The client is a Dell machine configured with 8GB
Memory, 128GB Disk, and Ubuntu 16.04 Operating System.
The client is installed with a traffic flow generation software
softflowd and a flow collection software nfdump to generate



(a) Converted image for
benign application flows

(b) Converted image for
human user flows

(c) Converted image for
malicious application flows

Fig. 2: Converted images for human, malicious application and benign application flows

Fig. 3: How human user operations switch to each other on
FSM

and collect, respectively, the flows from malicious OSN ap-
plication behaviors, benign OSN application behaviors, and
human user operations on OSN on the client.

B. Flow Generation

To collect flows for malicious OSN applications, benign
OSN applications and human behaviors, we emulate various
types of those behaviors on testbed, then collect corresponding
flows.

1) Human User OSN Flows: People usually access OSNs
on browsers to do various operations, such as login, post, com-
ment, browse and so on. Their behaviors can be summarized as
a series of different events. In order to simulate normal human
user operations on the OSN comprehensively, we use a finite-
state machine, visualized in Fig. 3 to simulate all possible
human user operations on WordPress.

Human user operations on OSNs are actually driven by
a series of click events on the browser. To simulate various
human user operations with accurate click event intervals, the
click event intervals of human operation events in the FSM
follow the click pattern summarized in a real Chinese social
network RenRen [24]. In this way, our collected human flows
can cover all possible human user operations on this social
network driven by proper human click intervals.

2) Benign OSN Application Flows: Benign API-based OSN
applications use OSN released APIs to provide people useful
information, such as real time weather warnings, earthquake
events and news happening all around the world. In this paper,

we define benign OSN application behaviors as API-based
applications posting useful information on OSNs.

APIs provided by OSNs are supposed to be used for
third party developers, so they can integrate OSN services to
their own developed softwares, and use OSN APIs to serve
people automatically when needed. Therefore, benign API-
based third party applications behavior timing patterns should
follow human post/comment/like patterns on OSNs. It’s known
that the timing pattern of when humans post/comment/like on
Twitter can be modeled as different Poisson Processes [10], so
benign API-based third party application behavior time points
should follow Poisson Processes. Except API-based benign
third party applications, there are some benign API-based
bot applications on OSNs, which provide helpful weather
warnings or news to people. For those benign bot applications,
they will post content on a OSN whenever there is news or
a warning, and those news and warnings occurrence patterns
also can be modeled as Poisson Processes, so benign API-
based bot applications behavior pattern can also be modeled
as Poisson Processes. To sum up, all benign OSN applications
behavior time points should follow Poisson Distribution.

To collect flows for all possible benign OSN application
behaviors, we crawl benign posts/comments data from benign
automatic accounts on Twitter, then have our benign appli-
cations posting or commenting with those benign contents,
and their behavior time points are decided by various benign
Poisson processes by changing different parameters.

3) Malicious OSN Application Flows: Attackers usually
run malicious API-based applications to frequently collect
private OSN data, or spread spam information on OSNs.
Whether crawling behavior is benign or malicious only can
be decided based on how people use or analyze crawled data,
and this is not our focus. In this paper, we do not classify
them as malicious only based on their crawling behaviors.
We mainly focus on detecting malicious API-based spammer
applications on OSNs. Those malicious API-based OSN ap-
plications post/comment spam contents (URLs for malwares,
or spam advertisements) on OSNs.

Malicious OSN spam applications behave with malicious
purposes, so their controlled spam accounts behavior pat-
terns are probably different from benign accounts. It’s been
found that malicious API application controlled accounts
post/retweet/like behavior time points on Twitter demonstrate
five malicious patterns [10] in Fig. 4. This indicates that



corresponding malicious API applications post/retweet/like
time points should also follow those five known malicious
patterns. For malicious patterns in Fig. 4, x axis indicates
minutes of the hour for an account post/comment/like/retweet
behavior time points, while y axis indicates seconds of the
minute for this account post/comment/like/retweet behavior
time points.

To simulate various malicious OSN application behaviors,
we implement five malicious OSN applications to post/com-
ment spam for a single or multiple accounts. Those malicious
applications behavior time points are decided by five known
malicious timing patterns, and they post or comment malicious
contents at each of their behavior time points. The malicious
contents posted are downloaded from a Twitter dataset which
provides contents posted or commented by malicious applica-
tion controlled spam accounts.

We model each malicious timing pattern as combination of
different probability distributions, and simulate each malicious
timing pattern by changing related parameters in correspond-
ing probability distribution. We take the fixed malicious second
pattern in Fig. 4a as an example to show how we model its
probability density function and change related parameters to
implement various timing instances for fixed malicious second
pattern. Based on observations, the probability density function
of the fixed malicious second pattern can be modeled as the
combination of a uniform distribution (P0) and a group expo-
nential distributions (�e��t) with same � value in formula 1.
P0 is the possibility density for uniform distribution, while
�e

��(t�dT⇤k�T0) indicates probability densities for multiple
exponential distributions. dT is the time step length between
every two adjacent exponential distributions, while T0 is the
initialized time step length for the first exponential distribution.
The parameter M0 adjusts the weight for all exponential
distribution densities. Parameter � decides the shape for all
exponential distributions.

To simulate various timing pattern instances for the fixed
malicious second pattern in Fig. 4a, we vary all related
parameters �, P0, M0, dT and T0 in its density function. Fig. 5
shows two timing pattern instances.

In a similar way, the four probability density functions for
the other four malicious API usage patterns are shown in
formula 2, 3, 4 and 5 respectively, and we simulate numerous
timing pattern instances for those four malicious patterns
by varying corresponding related parameters with different
values. In this way, our simulated timing pattern instances can
cover many possible timing patterns for real world malicious
applications. We can simulate all possible malicious applica-
tion posting/commenting spam behaviors, and collect flows for
those malicious application behaviors.

C. Optimizing Flow Generation

To speed up flow generation time for the above three
categories, we optimize the flow generation strategy. We
simulate how users behave both in user active time and user
waiting time. During the user active time, users visit OSNs

(a) Fixed malicious second
pattern

(b) Fixed malicious interval
pattern

(c) Fixed malicious minute
pattern

(d) Two fixed malicious
minutes pattern

(e) Hybrid malicious pattern

Fig. 4: Malicious OSN applications controlled accounts behave
time points show five malicious patterns

Fig. 5: Two timing instances for fixed malicious second pattern



f1(t,�) = P0 +M0

k=nX

k=0

�e

��(t�dT⇤k�T0) (1)

f2(t, �) = P0 +M0

k=nX

k=0

1

�

p
2⇡

e

� (t�dT⇤k�T0)2

2�2 (2)

f3(t,�) = P0 +M0

k=nX

k=0

e

��
�

(t�dT⇤k�T0)

(t� dT ⇤ k � T0)!
(3)

f4(t,�1,�2) = P0 +M1

k=nX

k=0

e

��1
�

(t�dT1⇤k�T1)
1

(t� dT1 ⇤ k � T1)!
+M2

k=nX

k=0

e

��2
�

(t�dT2⇤k�T2)
2

(t� dT2 ⇤ k � T2)!
(4)

f5(t, �1, �2) = P0 +M1

k=nX

k=0

1

�1

p
2⇡

e

� (t�dT1⇤k�T1)2

2�21 +M2

k=nX

k=0

1

�2

p
2⇡

e

� (t�dT2⇤k�T2)2

2�22 (5)

actively, and do various operations on OSNs. During the user
waiting time, users do not access OSNs and do not do any
operations on OSNs. To generate ground truth, we write scripts
to simulate user behaviors both in their active time and in
their waiting time. However, for both benign user accounts and
malicious user accounts, their waiting time is much longer than
their active time. Therefore, ground truth generation speed is
very slow because a lot of time is wasted on simulating user
waiting time.

However, during user waiting time, there are no flows
generated, because users do not communicate with OSNs
during waiting time. We thus simulate malicious and benign
operations with short intervals, and collect flows for them,
then combine flows of different OSN behaviors together, only
changing each flow’s start time and end time while keeping all
other attributes the same. In this way, we can optimize flow
generation time, while all flows still preserve their original
attributes.

V. EVALUATION

Based on flow data generated in section IV, we implement
the solution and obtain the trained CNN model to detect flows
from malicious OSN applications in section III. In this section,
we first introduce the dataset size and evaluation metrics,
then evaluate the performance of the trained CNN model on
the test set. Last, we evaluate the model’s performance by
detecting flows generated by three real world malicious OSN
applications and three benign OSN applications.

A. Dataset Size and Evaluation Metrics
In data generation section, we generate 40,000 aggregated

flows for human user operations, benign OSN applications
and malicious OSN applications in TABLE I. The dataset is
split into training set and test set. Training set has 80% of all
labeled aggregated data, while test set includes 20% labeled
data. Training set data are used to train CNN model, while

TABLE I: Aggregated flows number for each OSN behaviors

Aggregated flow type # of aggregated flows
Aggregated malicious OSN application flows 15,000
Aggregated benign OSN application flows 15,000
Aggregated human user operations flows 10,000

test data are to evaluate the performance of trained model. To
evaluate performance of trained CNN model, we adopt four
most commonly used metrics, accuracy, recall, precision and
f1-measure, to evaluate the performance of our trained CNN
model. Accuracy is the proportion of all predictions that are
correct. Recall is a measurement of how many actual positive
observations are predicted correctly. Precision measures how
many positive predictions are actual positive observations. F1-
Measure is the harmonic of precision and recall.

B. Detection Performance on Test Set
To begin with, we evaluate the overall detection perfor-

mance of CNN model on the whole test set. The overall
performance of our model is satisfactory. It can achieve high
scores for accuracy, precision, recall and f1-measure with the
value of 0.976,0.963, 0.984, and 0.974 separately, and those
four metrics can achieve high scores at the same time.

In this situation, we would like to check if those malicious
applications post/comment with different frequencies, whether
trained model can detect flows effectively. In Fig. 6, x axis
indicates malicious OSN applications behavior frequencies
varying from 10 times to 50 times a day, y axis shows cor-
responding detection results. As we can see, when malicious
applications post less frequently, the detection accuracy is rela-
tively low. The accuracy is 89.9% when malicious applications
post 10 times a day. When malicious patterns post/comment
more frequently, our model detection accuracy is increasing,
and it reaches to 99.3% when malicious applications post 50
times.



Fig. 6: Detection performance for malicious applications with
different frequency

When malicious OSN applications behave more frequently,
their malicious patterns are becoming obvious, then their flows
are easier to be detected. Fig. 7 compares two examples for a
malicious application with different behavior frequencies. In
Fig. 7a, a malicious application with fixed malicious second
pattern posts 10 times, and its malicious pattern is not obvious.
In Fig. 7b, this malicious pattern is obvious when it posts 50
times. Therefore, when malicious applications post frequency
increases, their malicious patterns are more obvious, and
model can detect flows from frequent behavior applications
more efficiently.

(a) Application posts 10 times (b) Application posts 50 times

Fig. 7: Comparison for fixed malicious second pattern based
application posting 10 times and 50 times

Malicious applications behavior time points show five pat-
terns in Fig. 4. To investigate whether our trained model can
detect flows generated by applications with each malicious
pattern effectively when their behavior frequency changes, we
display a group of detection results for applications with each
malicious pattern behavior frequency changing from 10 times
to 50 times a day in Fig. 8. The detection results show two
patterns. In Fig 8a and Fig 8c, when applications post times is
less frequent, the detection accuracy is low. When applications
post times is becoming more frequent, the detection accuracy
is increasing until high. However, in Fig 8b, Fig 8d and Fig 8e,
the detection accuracy is always high.

The reason why those results show two different patterns are
related to how different malicious applications post. Let’s take
fixed malicious second pattern and fixed malicious interval
pattern as examples in Fig. 9. For application with fixed

malicious second pattern, it posts with relative long intervals.
When it posts less, e.g. 10 times, its pattern is not obvious, so
the detection accuracy is low. For application fixed malicious
interval pattern, it posts a lot in a short time period. Even
if it posts 10 times, its malicious pattern is obvious, so our
detection accuracy is always high.

We also find another phenomenon: in Fig 8a and Fig 8c,
when applications post less frequently, even if the detection
accuracy scores are low, the precision scores are still high.
Precision a measurement of how many positive predictions
are actual positive observations. We represent malicious OSN
application flows as positive. This high precision result indi-
cates that our model’s predicted malicious flows are likely to
be actual malicious flows. When the behavior pattern of some
malicious OSN applications is not obvious, our model can
mistakenly predict those malicious flows as benign.

C. Detection Performance for Real World OSN Applications

Since we have evaluated CNN model performance based on
synthesized flows on test set, to demonstrate that our synthetic
flows are very close the real world generated malicious and
benign flows, we use trained CNN model to detect flows from
three real world malicious API-based OSN applications and
three real world benign API-based OSN applications.

The three real world benign OSN applications are a real
time earthquakes bot, a news bot providing important news
to people, and a weather warning bot respectively. The three
malicious OSN applications are all spam applications. Fig. 11
shows model performance for detecting flows from three ma-
licious OSN applications. Our detection model performs well
and can detect malicious flows with accuracy as high as 99.7%,
98.8% and 99.1%. Fig. 10 shows the performance for detecting
flows from three benign OSN application. Our detection model
can detect benign application flows with accuracy as high
as 93.4%, 91.1% and 99.2%. The precision score is 0, and
recall and F1-measure can not be calculated because of no
true positive and false negative, and all samples are correctly
predicted as true negative or mistakenly predicted as false
positive. The two figures show that our model can detect flows
from real world benign and malicious OSN applications well.

VI. CONCLUSION

While most social network providers release some APIs for
third-party developers to integrate OSN services to their own
software, these APIs can be misused widely by malicious OSN
applications, causing security, privacy and liability concerns to
OSN providers, network service providers (NSPs), and users.
This work mainly studies how NSPs may apply a deep learning
methodology to detect network flows from malicious API-
based OSN applications. The evaluation results show that via
this methodology, we can detect flows generated by malicious
OSN applications with 97.6% accuracy and only 1.6% false
positive.



(a) Applications with fixed malicious
second pattern

(b) Applications with fixed malicious
interval pattern

(c) Applications with fixed malicious
minute pattern

(d) Applications with two fixed malicious
minutes pattern

(e) Applications with hybrid malicious
pattern

Fig. 8: Detection results for each malicious pattern posting/commenting frequency changing from 10 times to 50 times a day

(a) Application with fixed
malicious second pattern

(b) Application with fixed
malicious interval pattern

Fig. 9: Comparison for fixed malicious second application and
fixed malicious interval application posting 10 times

Fig. 10: Detection results for flows generated by 3 real world
malicious API-based OSN applications

Fig. 11: Detection results for flows generated by 3 real world
benign API-based OSN applications
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