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Abstract

Social media websites face a constant barrage of spam,
unwanted messages that distract, annoy, and even de-
fraud honest users. These messages tend to be very
short, making them difficult to identify in isolation. Fur-
thermore, spammers disguise their messages to look le-
gitimate, tricking users into clicking on links and trick-
ing spam filters into tolerating their malicious behavior.
Thus, some spam filters examine relational structure in
the domain, such as connections among users and mes-
sages, to better identify deceptive content. However,
even when it is used, relational structure is often ex-
ploited in an incomplete or ad hoc manner.

In this paper, we present Extended Group-based
Graphical models for Spam (EGGS), a general-purpose
method for classifying spam in online social networks.
Rather than labeling each message independently, we
group related messages together when they have the
same author, the same content, or other domain-specific
connections. To reason about related messages, we com-
bine two popular methods: stacked graphical learning
(SGL) and probabilistic graphical models (PGM). Both
methods capture the idea that messages are more likely
to be spammy when related messages are also spammy,
but they do so in different ways – SGL uses sequential
classifier predictions and PGMs use probabilistic infer-
ence. We apply our method to three different social net-
work domains, each with millions of messages. EGGS
is more accurate than an independent model in most
experimental settings, especially when the correct label
is uncertain. For the PGM implementation, we com-
pare Markov logic networks to probabilistic soft logic
and find that both work well with neither one domi-
nating, and the combination of SGL and PGMs usually
performs better than either on its own.

1 Introduction

Social spam [10] is any unsolicited or unwanted action
by a user in a social network. Many methods have been
developed to detect spam based on the content of the
messages themselves [6,11,16,31,33,51,53,54], the graph

structure among users and messages [1, 7, 13, 20, 35, 38],
the timing of user actions [15, 47–49, 51, 55], and more.
This works well when there are clear patterns that
distinguish spam from non-spam, but can fail when
spammers obfuscate their behavior. A complementary
approach is to exploit relationships among different
users and messages, so that known spammers and
spam can be used to identify other spammers and
spam [1,9,13,27,29,38,52]. This works well when there
are strong predictive relationships linking entities, such
as textual similarity among messages or friendship in a
social network, but can fail when spammers start new
campaigns that are not connected to previously known
ones.

In this paper, we integrate these ideas into a flexible
method for classifying social spam: Extended Group-
based Graphical models for Spam (EGGS). EGGS be-
gins with predictions from an independent classifier,
which can use any number of domain-appropriate fea-
tures. To incorporate relationships among different
messages, EGGS defines groups of related messages
that have the same author, the same text, or other
domain-specific similarities such as the same hashtags.
A message can be in multiple groups representing differ-
ent types of relationships. Related messages are more
likely to have the same label, although this probabil-
ity may depend on the type of relationship. EGGS
models these relationships with a probabilistic graph-
ical model, using one of four different approaches:
stacked graphical learning (SGL) [26], Markov logic net-
works (MLNs) [39], probabilistic soft logic (PSL) [3], or
a new combination of SGL with either MLNs or PSL.
We show that this integrated approach can accurately
detect spam on large real-world datasets for multiple
domains, requiring very few modifications.

In spite of the breadth of prior work in this area,
most other methods fall short in one of three ways:

• They’re specialized for another domain, such as de-
tecting fake reviews or auction fraud. Social spam
has its own structures which are distinct from other
adversarial domains. Nonetheless, we can still gen-
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Figure 1: EGGS workflow, showing instantiations of
example relational rules (right).

eralize among different social spam domains. In
Section 3, we introduce a general framework for so-
cial spam and apply it to SoundCloud, Twitter, and
YouTube spam.

• They ignore content and other features, and only
use the relational structure plus a small number
of known labels. In Section 5, we show that new
social spam is often unconnected to previously seen
spam, and that social spam forms many distinct
connected components. This means that labels on
the training data or a small number of labels in the
test data will not cover most spam.

• They ignore relational structure and make predic-
tions for each message independently. Our empiri-
cal results show that exploiting relational structure
can lead to substantially improved performance
over independent predictions.

Our primary contributions are EGGS, a flexible
method for social network spam that overcomes all three
of the above limitations, and the application and evalua-
tion of EGGS on three different domains. As secondary
contributions, we show that stacked graphical learning
can be combined with other probabilistic models for im-
proved performance, and that relational modeling can
scale to large domains using simple methods.

2 Related Work

We give a brief overview of the many techniques used
to detect spam from both independent and relational
perspectives.

Spam Detection Much of the work done on social
spam filtering involves an analysis of some narrow set
of specific independent features. Bag-of-words models
have been popular ever since the rise of email spam,
and continue to see use in Youtube and Twitter mod-
els [32, 46, 53]. Word embeddings [41] and LDA topic
modeling [46] have also been effective. Numerous works

focus on URLs [4, 10, 18, 20, 32, 47, 50, 51], while oth-
ers look at hashtags [10, 16, 32, 33, 43, 50] and men-
tions [10,32,50]. Each of these have unique advantages,
but they can all be seen as content-related features, de-
rived directly from the messages themselves.

User-based features attempt to characterize the
behavior of a user in the network with the hope that
this will distinguish normal users from malicious ones.
A popular approach is to capture the ‘burstiness’ of user
activity [15, 18, 25, 30, 46, 49]. Other approaches look at
the number of follows [4, 32], the types and sequences
of user actions [13, 49], the ratio of different types
of messages users send [18], and account profiles [10,
32]. Graph-based features are conceptually a subset of
user-based features, and are derived specifically from
a directed graph built using user interactions (e.g.
one user following another) on which graph features
such as pagerank, betweenness, in/out degree, etc. are
computed [13, 18, 32, 50, 51]. Similarly, works such
as CopyCatch [5] and Fraudar [21] use the subgraph
density of the graph topology from bipartite user-
pages/reviews/products graphs to detect anomalous
behavior.

Many of these works use a combination of ap-
proaches mentioned above, and Mateen et al. [32] in-
vestigate a more comprehensive hybrid approach com-
bining features from all three categories to detect spam
on Twitter.

Collective Filtering The works by Pandit et al. and
Akoglu et al. [1, 37], NetProbe and FraudEagle, use
Markov random fields (MRFs) with belief propaga-
tion (BP) to detect fraudsters on eBay and the Software
Market App Store using only the network structure of
users and products, with the edges between them rep-
resenting positive or negative reviews [23]; Akoglu et
al. [38] expand upon this with SpEagle, generating un-
supervised priors for users and products to propagate
in the network structure. Li et al. [29] use iterative
classification (ICA) between review, user, and IP nodes
to detect spammers on Dianping, a network similar to
Yelp. These are all unsupervised methods, which are es-
pecially useful for detecting opinion spam [23] because
true labels are often difficult to obtain for this prob-
lem domain; this has the added benefit of not having
to train an additional supervised classifier on separate
data to generate priors to propagate. For social spam,
labeled training data is more prevalent, allowing us to
build more powerful priors using supervised classifiers,
which are then propagated by our relational methods.

Works on social spam, such as Duan et al. [12],
experiment using ICA, BP, and relaxation labeling on
the message-message graph connected by similar URLs



and hashtags to classify topics on a small Twitter
dataset. Li et al. [28] use typed MRFs, connecting users
with URLs and tweet bursts to spot spam campaign
promoters on Twitter. Fakhraei et al. [13] leverage user
reports using PSL to find spammers in the on-line dating
network IfWe; however, the relational rules were only
relevant to a small proportion of users, reducing the
effectiveness of joint reasoning. Castillo et al. [8] use
stacked graphical learning (SGL) to introduce one new
relational feature in addition to their original features
to better detect spam hosts on the Webspam-UK2006
dataset.

Matrix factorization methods are a complementary
approach. Zhu et al. [55] encode user-user relations from
different user interaction types using collective matrix
factorization [45] to detect spammers on RenRen. Shen
et al. [44] extend this by adding a social interaction
coefficient to spot spammers on Twitter. Chen et al. [9]
tackle the spam and spammer problems simultaneously
using relations between users and bookmarks on the
website: delicious.com. Wu et al. [52] take the same
approach but use different relations (user-user, user-
message, and message-message connected by URLs and
hashtags) to work on the platform Sina Weibo.

3 Methodology

We now introduce Extended Group-based Graphical
models for Spam (EGGS), our framework for detecting
social network spam. The basic approach is to predict
the label of each message using standard classification
methods, and then refine those predictions using rela-
tional reasoning methods on groups of related messages.
EGGS is not a single, monolithic method, but a general
approach that can incorporate any domain-specific fea-
tures and relations, any type of classifier, and any type
of probabilistic graphical model. In the following, we
describe a set of features and methods that work well
for detecting social network spam in several domains.

3.1 Independent Modeling We begin with a stan-
dard classifier, which we refer to as the “independent
model,” since it makes predictions for each message sep-
arately. We highlight engineered features shown to work
well for spam classification in social networks based on
previous research. In addition to the features listed
here, it is easy to extend our method to add others for
different domains.

Content-based Features We use the text of each
message to generate content-based features such as:
the number of characters, hashtags, links, and the top
10,000 trigrams (selected based on term frequency) used
as binary features (Table 1: Content).

User-based Features We aggregate user actions
(although any relevant entity in the domain may be
used: users, URLs, tracks, videos, hashtags) to create
user-based features (Table 1: User). Features are com-
puted in sequential order of messages based on their
timestamp. For example, when computing the feature
UserUploads for message #100 posted by user x, we
record the number of tracks uploaded by user x up until
message #100. This creates a more realistic scenario as
features are computed only based on previous messages.

Graph-based Features As done in prior work
(e.g., [13]), we create graph features using a list of
follower actions. We can represent this list of affiliations
as a graph, where we construct a node for every user
in the list, and add a directed edge from user x to
user y whenever user x starts to follow user y. Then
we compute the following features on the resulting
graph: Pagerank [36], Triangle count [42], K-core [2],
In/Out-degree [34] (Table 1: Graph). Each feature
represents a different aspect of connectivity for a user
to the community, and capitalizes on the assumption
that spammers tend to be less connected than non-
spammers [13], or more connected with other suspicious
users.

Table 1: Independent Model Features

Content

NumChars # of chars in msg [40]

NumHashtags # of hashtags in msg [32]
NumLinks # of links in msg [18,32].

NumMentions # of mentions in msg [10].

IsRetweet 1 if msg is a retweet else 0 [22].
Polarity Msg. polarity [40].

Subjectivity Msg. subjectivity [40].

N-grams Top 10,000 tri-grams [46].

User

UMsgs # of msgs posted by each user [32].
UHRatio Frac. of user msgs with a hashtag [32].

UMRatio Frac. of user msgs with a mention [10].

ULRatio Frac. of user msgs with a URL [18,32].
UBlacklist 1 if user posts 3+ spam msgs else 0 [10].
UWhitelist 1 if user posts 10+ ham msgs else 0 [10].

UMsgMax Max msg length posted by user [40].
UMsgMin Min msg length posted by user [40].

UMsgMean Mean msg length posted by user [40].

TMsgs # of msgs per track.

Graph

Pagerank Pagerank of each node in the
follower graph G [36].

TriCnt # of triangles per node in G [42].
KCore Iteration a node in G was pruned [2].

InDegree # edges entering a node in G [32,34].

OutDegree # edges leaving a node in G [32,34].



Table 2: Stacking Features

MMSRatio Frac. of spammy matching msgs.

USRatio Frac. of spammy msgs per user.
TSRatio Frac. of spammy msgs per track.

HSRatio Frac. of spammy msgs per hashtag.
MSRatio Frac. of spammy msgs per mention.

LSRatio Frac. of spammy msgs per link.

HSRatio Frac. of spammy msgs per user hashtag.

3.2 Relational Modeling EGGS uses several types
of relational modeling, separately or in combination, to
improve on the independent model.

3.2.1 Stacked Graphical Learning Stacked
graphical learning (SGL) [26] is a simple approach to
performing collective classification, in which the label of
each entity depends on the labels of its neighbors. Since
the true labels of the neighbors are often unknown,
SGL first uses an independent classifier to predict the
label of every entity. The predicted labels can then be
used to derive features for a second classifier, which
makes a refined prediction for each entity. This process
can be repeated multiple times, “stacking” classifiers
on top of classifiers to any depth.

We apply this idea to social network spam by
defining “pseudo-relational” features, each of which
summarizes the predicted labels of related messages
(Table 2. For example, “USRatio” is the fraction of
messages written by the same user which are predicted
to be spam. Since most spammers send multiple spam
messages, a higher value of USRatio indicates that the
message is more likely to be spam. We create pseudo-
relational features based on each relation, contrary to
the previous application of SGL on webspam where they
create only one additional feature: the average predicted
label of its neighbors. The learning procedure is similar
to previous approaches [8, 26], except we use a holdout
method instead of cross-validation when building the
sub-model for each stack (Figure 2).
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j
k )

DK

...

D1

D0

Tr
ai

ni
ng

 S
et

f0

S
eq

ue
nt

ia
l O

rd
er

f1

...

fK

Figure 2: Stacked graphical learning with K stacks using
the holdout method.

where

Ŷ j
k =

{
fk(Xj

g) j > 0, k = 0

fk(Xj
g + S(Xj

g , Ŷ
j
k−1)) j > 1, k > 0, k < j

Then given test data, X ′, inference is the same as the
original SGL [26]:

Ŷ ′0 = f0(X ′g)
For k = 1...K:

X ′pk
= S(X ′g, Ŷ

′
k−1)

Ŷ ′k = fk(X ′g +X ′pk
)

return Ŷ ′k

This holdout method builds submodels in sequential
order of the data, while also computing the pseudo-
relational features in sequential order. This makes
the problem more realistic since we do not ignore
the temporal component of the data, contrary to the
cross-validation technique. However, this comes with a
cost; the cross-validation technique [8, 26] trains each
submodel on the entire training set. Thus, more stacks
generally does not decrease performance. In our case,
the higher K becomes, the less data each submodel
has to train on, introducing the possibility of underfit
models. In practice, we find that 1-2 stacks works best,
which is consistent with previous works [8, 14, 26], even
though they use the cross-validation method.

3.2.2 Flexible Joint Inference The growing field
of statistical relational learning (SRL) has developed
various methods for doing collective classification [19],
most promisingly using probabilistic graphical models
(PGMs). We experiment with Markov logic networks
(MLNs) [39] and probabilistic soft logic (PSL) [3], both
of which use weighted formulas in first-order logic to
define a template for a PGM. Like stacking, the goal
is to improve the predicted label for each message
by reasoning about the labels of related messages.
However, instead of a sequential pipeline of classifiers,
MLNs and PSL define a joint probability distribution
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¬spam(e)

indPred(e)→ spam(e)

hasRel(r, e) ∧ spam(e)→ spamRel(r)

hasRel(r, e) ∧ spamRel(r)→ spam(e)

Figure 3: Generalized relational model represented as
first order logical rules. (a) Negative prior, (b) positive
prior, (c, d) hub-based relational rules; e is short
for entity (typically messages or users), r is short for
relation.

over all possible labelings and perform probabilistic
inference to reason about that distribution.

We first describe the formulas, which capture our in-
tuition about how information should propagate among
related messages, and then describe how we use Markov
logic and PSL to turn these formulas into a full proba-
bilistic model. Our relational model contains two main
components: priors (negative and positive) and rela-
tions. The negative prior assumes that all messages are
non-spam, which is a fair assumption given the prob-
lem domain, while the positive prior gives the model
information to propagate (Figure 3 (a,b)). We focus
on connecting messages to one another using any rela-
tion, but our model may connect entities of any type
together, such as users, hashtags, URLs, etc.

The second part defines the relations to exploit
from the network structure, grouping related messages
together (Figure 3 (c,d)). As a concrete example,
let’s use matching text as our relation, the intuition
being that spammers tend to post comments that are
very similar or exactly the same from one or multiple
accounts. We can instantiate rules (c, d) as follows:

hasText(t,m) ∧ spam(m)→ spamText(t)(3.1)

hasText(t,m) ∧ spamText(t)→ spam(m)(3.2)

Now if a spammy message is posted, then the text
associated with that message is more likely to be
spammy. Thus, the more evidence we have of messages
with this text being predicted as spammy, the more
confident we are to label the text itself as spammy.
Then, if we encounter a message whose predicted label
is ambiguous, we can confidently label this new message
as spam as it is associated with this spammy text.

Previous work using Markov networks for joint
reasoning over a set of related entities typically do so
in a direct fashion [48]. For example, we could have
written the previous relational rule as:

sameText(m1,m2) ∧ spam(m1)→ spam(m2)(3.3)

m1 m2

m3 m4

m5 m6

m1 m2

m3 m4

m5 m6

Rel

Figure 4: Pairwise connections between related mes-
sages (left). Hub-based approach to connect related
messages (right).

This type of modeling provides propagation directly
from one message to another, but makes it difficult to
scale for large groups of related messages. For example,
a group of 100 related messages would need

(
100
2

)
edges

to take care of every possible interaction.
Other researchers have defined user nodes with

edges to all messages posted by a given user [37,38,52],
mitigating the problem mentioned above. We extend
this notion to work not only with users, but any
chosen relation (Figure 1), such as similar text, links,
hashtags, etc. This concept of a ‘hub node’ essentially
creates a hyper-edge from a message to all related
messages (Figure 4). This significantly reduces the
number of edges to be linear in the number of related
messages. As information starts to propagate, these
‘hub nodes’ become more or less ‘spammy’, which in
turn gets propagated to messages that are difficult to
detect at first glance, but become more obvious as their
connections to other messages are revealed.

We use the outputs of the supervised classifier
as message priors for our joint prediction model to
propagate, but it is important to note that a message
with no relations to any other messages in the dataset
will not be affected by this model.

MLN Implementation We first implement our
relational model as an MLN, and then convert our MLN
into an MRF using the Libra toolkit [24] since belief
propagation in Libra is better optimized than inference
in existing MLN implementations. We can convert our
MLN formulas into equivalent MRF factor potentials
between a message node and a hub node (Table 3),
where ε is tuned separately for each relation and in-
ference is done using loopy belief propagation, similar
to prior work on fraud detection [37,38].

Table 3: Factor Potential Definition per Relation
Message State

Hub State spam non-spam

spam 1 - ε ε

non-spam ε 1 - ε



PSL Implementation The second implementa-
tion of our relational rules is as a PSL model, which
builds a hinge-loss Markov random field (HL-MRF) [3]:
a type of log-linear model that uses hinge loss functions
of the variable states as features and can be modeled as
a conditional probability distribution as follows [13]:

P (Y |X) =
1

Z(ω)
exp

(
−

n∑
i=1

ωiφi(X,Y )
)

(3.4)

where φi is the set of n continuous potentials:

φi(X,Y ) = [max{0, `i(X,Y )}]pj ,(3.5)

` is a linear function of X and Y, and pj ∈ {1,2}. We can
learn the weights to these rules from data using gradient
descent and expectation maximization [3].

Both of these models propagate information among
the same sets of related messages, but there is an
important difference: loopy belief propagation in MLNs
can combine uncertain prior probabilities to arrive at
more confident posterior probabilities. For example, if
n messages all the have the same prior of 0.85, their
posterior scores can be ‘pushed’ beyond 0.85, and this
effect increases as n increases. On the contrary, spam
scores in the PSL model stop increasing once their
distance to satisfaction specified in (3.5) reaches zero.

4 Data

We evaluated our methods on spam data from three
social networks: SoundCloud, Twitter, and YouTube.

SoundCloud SoundCloud is an online music shar-
ing network where users can upload original tracks that
other users can listen to and comment on. The dataset
includes all comments posted from October 10, 2012
to September 30, 2013, on approximately 8M tracks.
The basic statistics of this dataset reveal just how im-
balanced the class labels are distributed throughout the
comments compared to the other two datasets (Table 4).

YouTube YouTube is a video sharing service sim-
ilar to SoundCloud, except users post comments to a
specific video instead of a track. The data1 was col-
lected from October 31st, 2011 to January 17th, 2012,
focusing on the most viewed and top-rated videos [35].
This dataset contains no user subscription attributes
(analogous to followers in SoundCloud and Twitter), as
the data collectors were often restricted from this infor-
mation, and did not want this fact to cause inaccuracies
in their experiments [35].

Twitter Twitter is a social network that allows
users to post short messages to one another. We use

1http://mlg.ucd.ie/yt/

Table 4: Basic Statistics per Domain

Entity SoundCloud YouTube Twitter

messages 42,783,305 6,431,471 8,845,979
spam 684,338 481,334 1,722,144
users 5,505,634 2,860,264 4,831,679
spammers 128,016 177,542 843,002
follows 335,000,000 N/A 128,000,000

the HSpam14 Dataset2, curated from May 1, 2013 to
June 31, 2013 with a hashtag oriented focus [43].

5 Evaluation

We evaluate the effectiveness of EGGS at finding spam
in three social network domains. We use the area under
the precision-recall curve (AUPR) as our main metric.
AUPR measures the ability to find most of the positive
examples (spam) without too many negative examples
(non-spam). With highly imbalanced classes, as in our
SoundCloud dataset (1.6% spam), AUPR is usually
a better way to differentiate between classifiers than
alternatives such as area under the ROC curve.

Social network spam evolves rapidly, so a method
that works well one month may work poorly the next.
We incorporate this into our experiments by creating
ten test sets for each domain, partitioned chronologi-
cally. Predictions from each test set are concatenated
into one large test set, on which the AUPR is computed.
Different test sets may reflect different spam campaigns,
user policy changes for the network, and changing us-
age patterns among legitimate users over time. This is
especially pertinent in the SoundCloud domain, where
the data spans all comments over a period of one year.
For each test set, we use data from the preceding time
period for training3. This ensures that each prediction
is only made using data from the past, never the future.

SoundCloud is evenly split into ten non-overlapping
subsets of roughly 4M messages each (training on 70%,
learning PSL weights on 1.25%, and testing on the rest:
1.15M messages). We use users, similar text, and links
posted by a given user as the relations. YouTube is split
into ten overlapping subsets of roughly 2M messages
(75% for training, 2.5% for PSL, and the rest for testing)
since this dataset only contains 6.4M messages, these
subsets contain some overlap, but the test sets remain
mutually exclusive. We use users and similar text as the
relations.Twitter is evenly split into ten non-overlapping
subsets of roughly 880K messages (70% for training,
6% for PSL, and the rest for testing). We use users,

2http://www.ntu.edu.sg/home/axsun/datasets.html
3For the Twitter dataset, time information was not available,

so the tweets were ordered based on tweet ID.



content (c)

ngrams (n)

graph (g)

user (u)
c+n+g

g+u c+g+u
c+n+g+u

0

0.2

0.4

0.6

0.8

1 aupr
auroc

feature set

au
pr

 / 
au

ro
c

content (c)

ngrams (n)

user (u)
c+n c+u n+u c+n+u

0

0.2

0.4

0.6

0.8

1
aupr
auroc

feature set

au
pr

 / 
au

ro
c

content (c)

ngrams (n)

graph (g)

user (u)
c+n g+u c+g+u

c+n+g+u

0

0.2

0.4

0.6

0.8

1
aupr
auroc

feature set

au
pr

 / 
au

ro
c

Figure 5: Feature set performance for SoundCloud (left), YouTube (middle), and Twitter (right).

similar text, and hashtags posted by a given user as the
relations.

Experiments over multiple development sets indi-
cate that a relatively small percentage of data is needed
to learn decent weights for the PSL model. Thus, we
reserve about 50K messages per subset for PSL weight
learning. We pre-tune ε per relation for the MRF factor
potentials on separate development data, and use those
values for each test set.4

5.1 Independent Model Performance We use lo-
gistic regression as our independent classifier, since it
generally outperformed other methods such as tree en-
sembles during development. Before testing our rela-
tional methods, we perform ablation tests on the in-
dependent model to determine which feature sets con-
tribute the most. We test each feature set in isolation
and in combination with each other on the first 10% of
the data for each domain using 70% for training and
tuning, and the remaining 30% for testing (Figure 5).
The effectiveness of different feature types varies from
domain to domain. For SoundCloud, a combination of
content, graph, and user features (c+g+u) yields the
best results; n-gram features are not very helpful. For
YouTube and Twitter, the opposite is true: n-gram fea-
tures on their own work almost as well as all feature
types put together.

5.2 Relational Modeling Performance We per-
form four sets of experiments to test our relational mod-
els’ capability of detecting spam. The ‘full’ experiments
use all available features when learning and making pre-
dictions. The ‘limited’ experiments exclude some of the
most informative features: we remove n-gram features
from YouTube and Twitter, and graph features from
SoundCloud. This makes the prediction problem more
challenging, testing the ability of our relational methods
to compensate for limited information. In adversarial
settings like spam, it’s common to only have limited or

4PSL learning curves as well as PSL and MRF inference times

can be found in the appendix A.1
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Figure 6: (a) The number of connected components it
takes to cover the first five million messages for each
domain. (b) Percentage of ham/spam test set messages
with at least one connection to any training messages.

noisy information, since spammers quickly adapt their
messages and networks to evade detection.

We also evaluate our models for test instances that
have no relational connections to any messages in the
training sets (Inductive), in addition to evaluating all
test instances (Inductive + Transductive). For Sound-
Cloud, a small number of connected components covers
a significant portion of ham and spam messages (Fig-
ure 6), but this is less so for YouTube and Twitter,
where transductive methods would need more and more
known labels to propagate to the increasingly discon-
nected pockets of related messages.

In all settings, we compare against predictions from
the independent model (top row). Then we start to
incorporate relational structure, applying our joint in-
ference models to the outputs of the independent model
as well as to the relationally augmented independent
models, which use up to two levels of stacked learning.

We find that not only can relational modeling im-
prove performance for these domains (Table 5)5, but in
many cases stacked learning and joint reasoning work
well together, achieving the best performance in many
of the experiments. In the case of the limited feature

5AUROC results can be found in the appendix A.2



Table 5: Relational Modeling Performance Results (AUPR)

Inductive Inductive + Transductive
Model SoundCloud YouTube Twitter SoundCloud YouTube Twitter

L
im

it
ed

Independent 0.396 0.148 0.260 0.352 0.387 0.466
SGL(1) 0.396 0.221 0.281 0.444 0.453 0.494
SGL(2) 0.342 0.263 0.275 0.364 0.478 0.612

PSL 0.363 0.225 0.249 0.332 0.438 0.498
MRF 0.431 0.164 0.264 0.547 0.404 0.483

SGL(1) + PSL 0.284 0.268 0.258 0.521 0.471 0.523
SGL(1) + MRF 0.412 0.239 0.285 0.578 0.473 0.513
SGL(2) + PSL 0.243 0.282 0.270 0.562 0.489 0.594
SGL(2) + MRF 0.404 0.276 0.280 0.583 0.493 0.630

F
u
ll

Independent 0.409 0.321 0.860 0.460 0.539 0.950
SGL(1) 0.434 0.440 0.848 0.530 0.614 0.946
SGL(2) 0.369 0.439 0.838 0.483 0.617 0.942

PSL 0.458 0.337 0.823 0.469 0.569 0.927
MRF 0.487 0.347 0.857 0.579 0.557 0.948

SGL(1) + PSL 0.289 0.433 0.817 0.602 0.588 0.925
SGL(1) + MRF 0.489 0.439 0.845 0.604 0.609 0.944
SGL(2) + PSL 0.324 0.426 0.813 0.582 0.581 0.923
SGL(2) + MRF 0.435 0.438 0.835 0.604 0.614 0.939

set, relational modeling is able to improve performance
for all three domains; in the fully featured case, rela-
tional modeling improves performance for the Sound-
Cloud and YouTube domains. For Twitter, the inde-
pendent model is already very effective when trained
with n-grams (AUPR=0.95); stacked learning and joint
inference offer no additional benefit. Against an evasive
adversary that changes text to avoid detection, the in-
dependent model would be less effective and relational
modeling more likely to help.

Comparing the different relational methods, we find
that no one method dominates; thus, when applying
EGGS to a new spam domain, we recommend testing
several methods on validation data before committing
to a single model. Having more layers in stacking
sometimes helps a lot, especially in the Inductive +
Transductive setting. For example, on the limited
Twitter dataset, SGL goes from 0.494 to 0.612 AUPR
with the addition of a second layer, SGL+PSL goes
from 0.523 to 0.594, and SGL+MRF goes from 0.513
to 0.630. In other cases, such as the full SoundCloud
dataset in the Inductive setting, performance can drop:
SGL goes from 0.434 to 0.369, and SGL+MRF goes
from 0.489 to 0.435. With more layers, each classifier
in SGL is trained on less data, which may explain why
performance sometimes decreases.

MRF usually achieves better AUPR than PSL:
out of the 12 combinations of datasets and inductive
or transductive settings, MRF outperforms PSL on 8,
SGL(1)+MRF outperforms SGL(1)+PSL on 10, and

SGL(2)+MRF outperforms SGL(2)+PSL on 11.6 How-
ever, PSL usually achieves better AUROC, outperform-
ing the MRF models in 25 out of 36 cases.

6 Discussion

We have shown how to flexibly incorporate relational
structure from multiple separate domains using several
approaches to build EGGS, a spam detection system
that attacks the problem from as many angles as pos-
sible. Two of these approaches share a general rela-
tional framework that provides full joint inference over
related messages, while the pseudo-relational features
can be added to any independent model without the
need for more complexity. We see that these methods
are effective on real-world large-scale datasets in iso-
lation and in combination with one another. Further-
more, if these specific techniques are a poor fit to a new
domain, EGGS can easily be adapted to include other
features, other types of classifiers, and other relational
reasoning methods.

A promising direction of future work involves
adversarial manipulations of the training or test
data. It would be valuable to know how much re-
lational modeling can increase classification perfor-
mance and robustness for a wide range of adversar-
ial attacks. Code for this application is available
at: https://github.com/snspam/sn spam.

6This would be statistically significant under a binomial test
(29 successes out of 36 trials), but the trials are not independent.
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A Appendix

A.1 Learning Curves and Running Times A
small amount of data is needed to learn decent weights
for our PSL models (Figure 7).
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Figure 7: Typical learning curve for the PSL model.

The running times for our joint inference mod-
els (Figure 8) show that the PSL model is able to scale
more effectively than the MRF model based on the num-
ber of edges between relations in the test set.
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Figure 8: Inference times for MRF and PSL.

A.2 Relational Results (AUROC) We present
the AUROC results from our relational models as an
additional metric to the main AUPR metric (Table 6).



Table 6: Relational Modeling Performance Results (AUROC)

Inductive Inductive + Transductive
Model SoundCloud YouTube Twitter SoundCloud YouTube Twitter

L
im

it
ed

Independent 0.814 0.702 0.699 0.905 0.776 0.720
SGL(1) 0.763 0.748 0.706 0.922 0.812 0.738
SGL(2) 0.796 0.761 0.707 0.926 0.821 0.806

PSL 0.838 0.745 0.668 0.913 0.807 0.728
MRF 0.799 0.673 0.700 0.896 0.747 0.726

SGL(1) + PSL 0.787 0.763 0.684 0.926 0.822 0.745
SGL(1) + MRF 0.725 0.740 0.707 0.928 0.804 0.744
SGL(2) + PSL 0.814 0.767 0.699 0.932 0.826 0.789
SGL(2) + MRF 0.755 0.759 0.708 0.931 0.819 0.808

F
u
ll

Independent 0.929 0.785 0.957 0.965 0.843 0.975
SGL(1) 0.929 0.840 0.947 0.972 0.880 0.971
SGL(2) 0.871 0.823 0.943 0.971 0.872 0.969

PSL 0.936 0.803 0.948 0.964 0.857 0.966
MRF 0.932 0.773 0.956 0.962 0.829 0.975

SGL(1) + PSL 0.934 0.845 0.939 0.972 0.884 0.962
SGL(1) + MRF 0.933 0.832 0.946 0.971 0.870 0.971
SGL(2) + PSL 0.882 0.826 0.934 0.971 0.872 0.959
SGL(2) + MRF 0.870 0.814 0.941 0.969 0.864 0.968


