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1. INTRODUCTION
No technological advancement in computing has offered

more significant benefits than virtualization. Benefits include
increased utilization of the virtualized resource, reduced oper-
ational costs, and improved agility via rapid disaster discovery.
For example, Software Defined everything Infrastructures
(SDxI), enabled by virtualization, allow programmability to
achieve speed, agility, and cost-effectiveness in modern cloud
platforms [32]. In short, virtualization is a crucial cornerstone
for many domains (e.g., compute, storage, and networking).

While progress has been made in virtualizing different
resources ranging from processors to storage devices to bat-
teries, there has been one under-utilized resource that has not
been virtualized: the unused optical fiber strands, known as
dark fiber. Given the diversity of the physical Internet [14]
and the fiber glut [10, 7], we posit that optical fiber strands
connecting different endpoints (e.g., switches) in an enter-
prise setting are a prime candidate for the next wave of vir-
tualization. Users who require temporary or limited-time
access to fiber, and enterprises (i.e., cloud providers) with
over-provisioned links between their facilities stand to gain
from virtualization of optical fibers. Unfortunately, the in-
terfaces between fiber and users today are telephone calls
and conversations between lawyers and network engineers.
Accessing fiber can take months to years. The process re-
quires the owner of the fiber and the client to agree on the
terms of the client’s Indefeasible Rights of Use (IRU)[3, 4, 2,
5]. In this work, we provide an alternative means for a fiber
owner to provide access to their network infrastructure via
virtualization.

Motivation. There are many use-cases to virtualizing optical
fibers. These include geographic diversity (GD) eliminating
shared risks [14], improved network resiliency, and band-
width on demand.

(1) GD refers to the ability for a sender to choose the
path which his/her data travels to reach its destination. Such
a capability is not available in today’s Internet and would
have implications for more secure routing of traffic1 in the

1We are not concerned with traffic on the fiber provider’s network.
Instead, we accommodate alien wavelengths within the network.
Alien wavelengths are optical frequencies that travel along the same
strands as the provider’s, but that terminate at different layer-2 hard-

case where a sender wishes for their traffic to avoid specific
intermediate hops.

(2) A virtualization system for optical fiber can improve
network resiliency. In the face of network outages or fiber
cuts the virtualization platform will quickly respond to the
event by provisioning higher capacity on alternative links.
Typically fiber cuts can take hours to days to recover from,
but a virtualization system for fiber could reduce this time
to minutes or seconds. The network experiencing the outage
will be able to use the virtualization system to see a significant
reduction in the traffic loss during the outage.

(3) Finally, bandwidth on demand will enable networks
which experience brief bursts in demand beyond their avail-
able capacity to access the underutilized fiber of another net-
work. Wide Area Network (WAN) administrators and traffic
engineers have been studying how to achieve the highest
utilization out of expensive networks consisting of fiber span-
ning the globe. A novel virtualization system would give
them a new tool to profit from underutilized fiber strands or to
access third party strands when demand is exceptionally high.
Scope and Context. The aim of this work is to spin-up un-

used optical fibers between adjacent layer-2 network devices
(endpoints) and to show how this capability can be used to vir-
tualize multi-link optical paths between these endpoints. We
envision this system to be useful for clients of an enterprise
data center network with high bandwidth demands. Similar
to the way in which people use virtual compute resources
in the cloud today, we see an opportunity to virtualize the
connectivity between cloud hosting locations. This system
will provide greater flexibility for fiber assets and their users.

Cloud service providers (CSPs) are in a choice position
to virtualize fiber. Consider Microsoft, which owns a global
data-center network and thousands of miles of fiber assets.
Microsoft has more than 25,000 enterprise clients in North
America, many of whom operate mission-critical systems, ap-
plications, and products (SAP) in the cloud [16]. Another pos-
sible purveyor of virtualized fiber is Amazon Web Services
(AWS) who has approximately 100,000 enterprise clients
worldwide [9]. These enterprise clients trust CSPs with their
critical SAP infrastructure. These clients could also benefit

ware. The benefit of adopting alien wavelengths has been discussed
by network engineers in recent years [24, 29].



by having dynamic access to fiber between the cloud’s many
data centers around the world. CSPs are proficient in packing
client virtual machines into available servers and rack-space.
vFiber will allow them to pack client data transmission re-
quests into unused optical fibers.

Regarding the pricing and determination of which client
receives which strand by the virtualization system, we as-
sume that there is a method in place to handle this decision.
Similar models that might be appropriate are Amazon’s Spot
instance marketplace [1], or auctions for web-based advertise-
ments [15, 35]. We leave the analysis of different economic
models for fiber allocation to future work and assume that the
network-provider has full control and discretion to allocate
links to the first client who offers the price determined by the
network operator.

Our Solution. In this work, we propose a set of techniques
and the design of a system called vFiber. This system is
intended to virtualize available optical fiber assets in an en-
terprise data center network, e.g. a regional cloud service
provider’s wide area network (WAN). We implement this
system and demonstrate its ability to scale bandwidth on a
100-meter strand of optical fiber in the lab. In section 3.2.1 we
benchmark the responsiveness of vFiber and the underlying
network hardware to provision an idle circuit between two
switches. In section 3.2.2 we measure the time to scale up
bandwidth on an existing link. We also developed a mon-
itoring capability for vFiber, which reports to the vFiber
controller whenever it detects a fiber-cut. In section 3.2.3
we leverage this monitor to demonstrate vFiber’s ability to
respond to a fiber-cut incident quickly. The control plane
for vFiber is implemented by a set of distributed servers run-
ning the Raft consensus algorithm [30]. In section 3.2.4 we
demonstrate the robustness of our Raft implementation by
simulating server failures in the face of network demand.
Finally, in section 3.2.5 we model the scalability of this dis-
tributed implementation by gauging the time to allocate paths
on different network topologies with server clusters of various
sizes.

2. vFiber SYSTEM DESIGN
Overview. vFiber is an intra-domain virtualization system

designed for enterprises to effectively orchestrate and operate
their physical infrastructural assets—specifically, the unused
(dark) fiber optic link assets. vFiber consists of two main
components; namely the distributed controller (DC) and the
underlying physical infrastructure substrate. We explain these
two components below.

Physical Infrastructure. The physical infrastructure is
composed of the traditional layer-1 network substrate includ-
ing (dark and lit) fiber optic strands, switches, routers, and
multiplexers. An enterprise using vFiber should expose its
infrastructure information as an infrastructure graph (IG)—
a new graph-based abstraction—to the DC. An IG encodes
address/interface information of devices along with the config-
uration parameters, the number of lambdas (or wavelengths)

between devices, cost per lambda (if any), and device/fiber
status information. In vFiber, we create IGs using the Net-
workX [19] library.

Distributed Controller (DC). The DC is a cluster of (re-
dundant) servers hosted within an enterprise to virtualize or
light a path on-demand between two endpoints based on the
information embedded in its IG. Our distributed design uses
an implementation of the RAFT consensus algorithm [30]
called PySyncObj [6]. Each server in the DC cluster consists
of a public-facing request handler, knowledge of the underly-
ing physical infrastructure (from the IG), and abstractions to
manage, configure and orchestrate the infrastructure assets.

Each DC member has an interface to receive and process
physical reconfiguration requests specified in CSV format.
Each request includes two endpoints (e.g. a source and desti-
nation for a data transfer) managed by vFiber, the number of
required lambdas, and the name of the client who requested
the path. Upon receipt of a request, the DC queries the IG
to check if there are sufficient network resources along a
requested path. The DC then modifies the IG by making
those resources unavailable to subsequent requests. Then,
the DC used a physical layer reconfiguration API—called
Torchbearer—to push the configuration changes reflected in
the updated IG to the physical hardware interfaces for the
lambdas along the requested path.

Torchbearer uses credentials specified by a network admin-
istrator to reconfigure network hardware. These credentials
and stored in the IG and used to access a command-line-
interface (CLI) at each switch along the requested path. From
the CLI, Torchbearer can activate or deactivate interfaces to
light a strand of fiber with one or more lambdas. The API can
be expanded to perform more complex tasks, like creating
virtual local area networks (VLANs) and optical tunnels for
clients.

Figure 1: vFiber flow diagram.

The DC is aware of the physical infrastructure and accounts
for (in)active links with the IG. Precisely, each server tracks
link-specific details (e.g., Is a link lit, or dark? If it is lit,



Figure 2: Lab-based test-bed using which we evaluate
vFiber. IP addresses of network hosts are shown as 1.A,
1.B, 2.A, 2.B, etc.

how many lambdas are in use? How many dark-lambdas are
available to new customers? Which physical port interfaces
correspond to lambdas on the links?). The IG stores these
details as attributes of an edge whose nodes are layer-2 hard-
ware devices. One such attribute for an edge is an availability
list. Before vFiber allocates a lambda, the corresponding
physical interfaces are obtained from the availability list and
pushed into an unavailability list. In our ongoing work, we
intend to add more functionalities to the DC to monitor active
link statistics such SNR similar to RADWAN [33].

Figure 1 depicts the process flow of a request through
vFiber. When vFiber receives a request the DC will find
the desired dark fiber strands in the IG and check for available
interfaces on those edges based on the monitored statistics. If
there is a pair of available interfaces for all edges of a path,
then the DC will first make those interfaces unavailable to
other requests (e.g., from other enterprise administrators) and
then send configuration commands to the routers, switches,
and multiplexers to light the fiber (and end interfaces) along
the requested path. While these configuration changes are
taking place, PySyncObj ensures the consistency of the IG
across the enterprise users/administrators. We store the IGs
as replicated objects in our system. Thus, changes to this
replicated object are always reflected across a majority of the
servers in the DC, and can only be referenced by the leader
of the DC [30].

3. vFiber IMPLEMENTATION AND EVAL-
UATION

In this section, we start by describing the implementation
details of vFiber (on a lab-based test-bed shown in figure 2)
and then discuss the testing capabilities that we use in our
evaluations.

3.1 vFiber Implementation
Our physical network topology is composed of two Cisco

3560-E switches. Each switch connects to a 4-Channel
Coarse-Wavelength Division Multiplexer/DeMultiplexer (4-
CWDM) and two physical machines. Each switch also con-
nects to two or more network hosts on each physical machine,
and each network host has a unique physical interface and

IP address. Enterprise administrators orchestrate/manage re-
sources across these network hosts.

Both switches have two twin-gig adapters (CRV-X2-
SFPs). We plug two CWDM-SFPs into each CRV-X2-
SFP. Thus, each switch has four CWDM-SFP transceivers.
The transceivers operate at different wavelengths (lambdas),
namely 1470, 1490, 1510, and 1530nm. The CWDM SFPs op-
erate in full duplex mode and are each connected to a 1-meter
long strand of duplex single-mode 2mm fiber. Each of these
four strands then connects to a 4-CWDM. The 4-CWDMs
are passive optical devices which are directly connected via
100m of SMF-28 fiber. Each strand of fiber between a switch
and a 4-CWDM has a capacity of 1 Gbps based on the Cisco
3560-E’s Gigabit Ethernet interface. Thus, the multiplexed
link has a capacity of 4 Gbps.

We built the vFiber’s DC in Python using PySyncObj [6]
for consensus. The DC consists of a cluster of servers running
Ubuntu 16.04 virtual machines (VMs). The VMs each have
one processor and 2 GB of memory. They run on a MacBook
Pro with a 2.9GHz Intel i7 CPU and 16 GB of memory. The
VMs have two network adapters that they use throughout
all experiments: a bridged-adaptor for communicating with
non-VM machines and a host-only adaptor for coordinating
with other peer vFiber servers.

We wrote our testing and benchmarking tool (discussed
in section 3.2.1) in Python and Bash. This tool leverages
vFiber’s physical layer reconfiguration API to activate and
deactivate physical interfaces on the switches while probing
for an available host at the remote end of a network. We
use this tool to measure the baseline responsiveness of the
physical layer to reconfiguration change and compare this
against the responsiveness to reconfiguration via a network
administrators request sent to vFiber.

Concurrency Control. It is crucial for the implementation
of a distributed system to facilitate effective concurrency
control of a shared resource. In our case, vFiber servers are
responsible for modifying physical hardware, and therefore
the access to this hardware must be orchestrated logically and
efficiently. The primary objective is to ensure that the state of
the physical infrastructure is identical to the physical topology
at any time. To achieve this, we leverage the fact that our
infrastructure graph (IG) has one edge for every strand of
fiber. When the members of the cluster wish to change the
IG, they must obtain a lock for the edges they wish to modify
and then release them after all of the edges associated with
that path have been updated in the IG.

Since we are implementing a locking scheme, we must
consider the four necessary and sufficient conditions for dead-
lock. These conditions are mutual exclusion, hold and wait,
no preemption, and circular wait. Lock ordering is an effi-
cient way to avoid deadlock when one has the luxury of a
priori knowledge about the locks that a process will require.
Fortunately, this condition is satisfied in our system because
we can determine all of the links that will be required by a
client’s request. Thus, we create an ordering of edges in our



system and require that a client must acquire locks in edge-
order. Edge-order is the order in which vFiber learns about
an edge. The first edge created receives the edge number 0.
The next edge added to the IG is 1, and so on.

While we have implemented a two-phase-commit locking
protocol for edges in the IG, we leave it to future work to
test the efficiency of this protocol against other protocols
such as optimistic concurrency control. In section 3.2.5 we
see that requests for multi-link paths are completed in time
proportional to the number of links in the path.

3.2 vFiber Evaluation
We seek to evaluate our implementation of vFiber, a novel

system for virtualizing optical fibers. There are many pieces
to consider when evaluating a distributed system such as
vFiber. The system itself relies on a symphony of parts op-
erating correctly together. The distributed controller must
replicate state across its member servers. The infrastructure
graph must always reflect the state of the underlying hard-
ware. The system must be robust enough to handle internet
link failures, and server crashes. Lastly, the system must
operate on diverse network topologies.

Our analyses and evaluations focus on three key character-
istics of the system. These are (1) scalability, (2) availability,
and (3) performance. We developed and ran five experiments
to glean insight into these critical aspects. To evaluate perfor-
mance, we run a benchmarking suite in section 3.2.1. This
test quantifies the provisioning time for an idle optical link
via vFiber, as well as the overhead related directly to the
hardware in the physical network substrate. In section 3.2.2
we evaluate the scalability of vFiber by using it to scale band-
width up and down on link connecting two remote network
host locations. We demonstrate that vFiber can be used to
increase or decrease the bandwidth for a network, and show
how to use functionality provided by the switch (LACP) to
achieve this. We also benchmark the time to scale bandwidth
on an active link. In sections 3.2.3 and 3.2.4 we evaluate the
availability of the distributed controller (DC) and physical
infrastructure respectively. Section 3.2.3 introduces a moni-
toring capability to use in tandem with vFiber. The monitor
studies the available links in a portion of the network and
reports to vFiber if a link is cut or otherwise disconnected.
We show how vFiber can use this information to reallocate
networking resources that it had provisioned to a client in
response to such outages. Section 3.2.4 demonstrates the
availability of the DC in the face of random server failures.
We show that vFiber is capable of fulfilling client request
despite limited periodic random server failures, and show its
ability to recover after a majority of the servers has crashed
for more than five minutes. Finally, putting it all together, we
study the three dimensions of the system simultaneously in
section 3.2.5, where we look at the performance of vFiber
on different topologies while varying the number of servers
active in the DC, and stress testing the system with a vari-
able number of requests. Together, these experiments aim to

Figure 3: After 50 trials, 95% of all link activation times
were less than 35.5 seconds. 5% completed within 33.6
seconds.

present a holistic picture of vFiber, a complex and powerful
tool for virtualizing optical fibers.

3.2.1 Responsiveness of vFiber
Goal: First and foremost, the resources (i.e., fiber-optic

links) virtualized by the system should enable and support
five-nines availability. Unfortunately, due to the many ways
in which failure can arise, satisfying this requirement is chal-
lenging. We posit that this challenge can be addressed by
enabling infrastructure to be provisioned in a fast and flexible
fashion. In particular, vFiber must be able to support reactive
reliability and put paths into service quickly when needed by
an enterprise to recover from an unexpected failure. Naturally,
the ability to rapidly virtualize fiber infrastructure simplifies
the process of activating backup resources during network
maintenance or outage events.

To this end, we measure the responsiveness of our system.
Specifically, we seek to understand the time taken by different
components in vFiber to virtualize a fiber-optic link between
two endpoints and quantify the overheads in the vFiber system
versus the underlying physical infrastructure substrate. Using
our testing and benchmarking capability, we measure the
time spent to generate the configuration files, virtualize and
provision the actual link between two switches, the hardware
processing time and limitation (if any), and total response
time to process a physical link reconfiguration request.

To understand the hardware limitations of the switches in
our test-bed, we employ two functions—light and extinguish—
from the testing capability. Light enables a pair of interfaces
at the ends of a link, thus adding a new lambda. Extinguish
works similarly to light but disables the interfaces rather than
enabling them. We leverage these functions while sending
pings to a remote host (, e.g., a local network address that is
only accessible via the optical link) every tenth of a second
to measure the availability of a newly provisioned path from
one network host to another.

Parameters: We issue a command at one network host to
send 600 pings per minute, for 50 minutes, to a remote host.
Simultaneously, we call extinguish to shutdown interfaces



at both ends of the link. We then wait 10 seconds for the
switch to clear its cache about the presence of a link (if there
was one). Then we call light to activate the link and note the
number of pings that timed out while the link was inactive. We
divide this by ten pings-per-second to arrive at the number of
seconds that the link was down and then subtract ten seconds
to account for the time we waited before activating the link.
We calculate the time taken for a lit link to become available
for end-to-end communication using Equation 1. The δ in
Equation 1 is the time in which the connection is purposefully
left idle between extinguishing and lighting an end-to-end
path.

T =
|PingT imeouts|
PingsPerSecond

− δ (1)

Results: We run our benchmark 50 times and analyze the
distribution of activation times over these runs. We can see
from figure x that for the 95% of the results were less than 36
seconds, with one outlier of ∼41 seconds. This outlier could
be caused by queueing delay at any of the host interfaces or
within the switches. We omit this outlier and infer that the
link activation time is between 33 and 36 seconds 95% of the
time.

During these experiments, spanning tree was active on the
switches per best-practices advise from network administra-
tors. The protocol is designed to prevent broadcast loops be-
tween switches. Much of the delay that we observed between
activating a lambda and using it was due to the spanning tree
protocol which has a run time of ∼30 seconds [12].

Without the overhead of waiting for the link to become
available, the system’s average processing time was 2.023
seconds with a standard deviation of 0.278 milliseconds over
50 runs—enabling rapid enterprise fiber infrastructure virtu-
alization. Later, in section 3.2.5 we see responsiveness of
vFiber in completing multiple requests with the overhead of
lambda activation reported in figure 3.

3.2.2 Scalability of vFiber
Goal: One of the key objectives of any enterprise is to

maximize revenue. Maximizing revenue is directly tied to
maximizing the utilization of network resources. This objec-
tive motivates the second required feature for vFiber. Various
strategies include: (1) providing resource elasticity, i.e., by
creating an illusion of unlimited fiber optic links in the net-
work; (2) efficiently packing the fiber conduits with maximum
amounts of traffic without introducing network congestion
(e.g., RADWAN [33]); (3) and reclaiming/reusing all the un-
derutilized dark fiber resources (e.g., GreyFiber [13] and our
vFiber approach).

Parameters: To achieve this objective, we present a case
study on how the virtualization of fiber optic links using
vFiber can increase the total capacity of the network on de-
mand. Using our test-bed depicted in figure 2, with four hosts
at each end of the dumbbell topology, we virtualize the link
between the 4-CWDMs.

Figure 4: Cumulative bandwidth between 4 pairs of
hosts on a network, using vFiber to scale bandwidth up
and down between the host locations (network diagram
in figure 2).

We use iPerf3 [34] to saturate the 1 Gbps link (with only
one lambda) between the two switches by running iPerf
servers on hosts connected to switch 1 and iPerf3 clients
on hosts connected to switch 2, making all four hosts at each
endpoint compete for the bandwidth.

Results: After one minute of saturating the link, we send a
physical reconfiguration request from a host for more band-
width to vFiber, and ∼9 seconds later, the new network ca-
pacity of 1,885 Mbps2 is available. We repeat this process
another minute later, this time sending two additional requests
for increased bandwidth. As seen in figure 4, vFiber-based
fiber optic virtualization can scale the total network capacity
from 942 Mbps to 3,763 Mbps. Again, we observed this shift
∼9 seconds after sending the requests.

The client terminates its lease on the lambda after sending
the second requests. At this time, bandwidth on the link drops
back down to∼2 Gbps. Another minute later, the first request
terminates, and vFiber repossesses that link as well. At this
time, the bandwidth on the link returns to ∼1 Gbps.

In figure 4, the dashed line at 1 Gbps shows the initial capac-
ity of the link. The blue line (bottom) shows the bandwidth
from an iPerf3 client through one iPerf3 server. The green
line shows bandwidth between two iPerf3 clients and two
iPerf3 servers. The red line shows bandwidth through three
iPerf3 client/server pairs. Finally, the purple line (top) shows
the observed bandwidth through all four iPerf3 client/server
pairs simultaneously.

Discussion on LACP. In our experiment above, the switches
use Cisco’s Link Aggregation Control Protocol (LACP) to
aggregate a 4-lambda link; we consider the implementation
of the protocol as a black box in our experiment. Although
LACP is useful in virtualizing optical fibers, it presents unique
challenges for flexible use in our system. Specifically, LACP
cannot guarantee fair load balancing—or exclusive lambda
access—for links whose cardinality is not a power of two
2Bandwidth calculated based on the average throughput before and
after scalability on the network is realized for each physical layer
reconfiguration request sent.



(i.e., aggregates of 3, 5, 6, and 7 lambdas will be unfairly
balanced) [8]. In what follows, we outline two API calls based
on Cisco’s Internetwork Operating System (IOS) functions
to address this issue but leave the implementation details for
future work.

First, we acknowledge that we can make use of an IOS
source-address based load-balancing call in our API to ensure
that packets hash to an optical fiber interface based on the
packet’s source address. The IOS command is:

port-channel load-balance src-ip

Next, we will add a layer in our API call to test which IP
addresses are mapped to which ports. Thus we can assign
IP addresses to only those pairs of hosts at opposite ends
of the network such that each pair’s traffic will map to the
same switch interface. We can repeatedly call the following
function, giving different parameters for the source address
until we find two addresses that hash to the same physical
port or lambda:

test ethernet load-balance interface \
port 1 ip x.y.z.A x.y.z.B

In this way, we can virtualize fiber optic strands in a net-
work topology where select pairs of hosts will have distinct
lambdas and capacity to utilize. It is important to note if one
or more links from the link-aggregation fail, traffic which
would otherwise be destined for one dead interface will mi-
grate to an available link. In the next section (3.2.3), we
propose and evaluate a solution to this problem.

3.2.3 Robustness to Link Outages
Goal: One use case for vFiber is to provide geographic di-

versity (GD), thus enabling more robust connectivity between
a client’s host locations. We understand that the robustness of
the physical layer is critical for achieving this goal. Therefore,
vFiber must respond to physical layer disruptions like fiber-
cuts proactively. If it can perform this function, then users
can expect a relatively high quality of service from the sys-
tem. Since the physical layer cannot watch itself and inform
the higher layers of the networking stack when a fiber is cut,
we build a physical layer monitoring capability for vFiber.
This monitor allows the system to reallocate these links to the
client in the case of a link outage.

Parameters: The monitor pings a switch every second,
scanning the interfaces that are available in vFiber to see
whether or not any are disconnected. If a link is registered
as disconnected for more than five seconds the monitor alerts
vFiber. vFiber needs to translate the IP-address and port
information that it receives from the monitor into an IG graph
query to update the lambda on an edge corresponding to the
fiber-cut. After vFiber finds the edge in the IG associated
with the disrupted link, it updates its infrastructure graph (IG)
and records the interfaces as unavailable and broken. In case
a client was using the interface at the time of the fiber cut,
vFiber allocates a new lambda on an alternative interface for
that client (if a redundant link is available).

Figure 5: Bandwidth between two pairs of hosts on a
network during a fiber-cut, using vFiber.

We chose five seconds as a threshold for classifying a link
outage event because of the way that new links are activated,
that is—when a switch interface is enabled, its state changes
from "administratively down" to "disconnected" until an inter-
face at the other end of the link can successfully communicate
with it. At that time, the interface’s state changes to "con-
nected." This protocol takes roughly five seconds; therefore
if the monitoring threshold were any less than five seconds,
we would misclassify newly connected links as fiber-cuts.

Results: We test this capability by disconnecting a link
between one switch and a CWDM after vFiber has provi-
sioned it for a client. We show that vFiber can detect this link
outage in real-time and reallocate the client’s request to a new
lambda. Figure 5 shows this process in action.

Two hosts (orange and blue) from a network have been allo-
cated independent lambdas on a strand of fiber, and are using
∼1 Gbps each. One of the strands is cut, forcing the two hosts
to share a lambda. Thus their bandwidth drops dramatically.
vFiber’s monitor notices the event and automatically allocates
a new lambda for the network users.

The discovery and mitigation of the fiber-cut took ∼20 sec-
onds. This time accounts for the 5 seconds that it took vFiber
to discover and classify the outage, and the 9 seconds that it
took to scale the link back up (as seen in section 3.2.2). Some
time is also taken for the monitor to establish a connection
with vFiber after the fiber-cut is detected, and for the monitor
to relay the relevant information to vFiber. The remainder of
the time is spent by vFiber searching the IG for the affected
link and updating the edge data. Only after updating the IG,
and finding a suitable lambda, does vFiber activate a new
interface for the client.

We measured the bandwidth demand of the monitoring
capability to be 2.9 kbps using Wireshark [31]. This overhead
is less than %0.003 of the available bandwidth to the switch
(1 Gbps). Thus we are confident that the cost of monitoring
will not adversely affect the performance of vFiber. Thus, we
have demonstrated vFiber’s ability to detect fiber-cuts, and to
provide an alternate link if one is available.

3.2.4 Robustness to Server Failures



Figure 6: DC handling ∼100 requests per second for 10
minutes under no failure scenario.

Goal: A primary requirement for service providers is to
guarantee five-nines availability to their customers [18] (i.e.,
available 99.999% of the time). Likewise, the vFiber system
must be highly available to virtualize fiber optic strands flex-
ibly and for providing reactive reliability for enterprise net-
works. Two positive consequences of such a highly-available
system are that it enables the treating of failures as a normal
situation to handle [28] and that a high level of service can
be guaranteed through service level agreements (SLA), if
needed, with low risk to the enterprise.

Parameters: To this end, we evaluate the availability of
the DC in vFiber. Using our testing capability, we send ∼100
physical (re)configuration requests per second from a single
network administrator. The exact number of requests per
second is generated based on the Poisson distribution, follow-
ing the prior effort on modeling Internet traffic [23]. A host
machine makes requests to vFiber by running the capability
as a process. The host sends the requests to a random server
in the DC, then waits for a response from vFiber before ter-
minating. If no servers are available, then the capability will
also end. However, we assume that there is always at least
one server active in our experiments. Furthermore, to ensure
that no process terminates via a timeout, we set the request
timeout in the capability to be longer than the length of the
experiment.

When a server in the DC receives a request, it can process
that request as long as the majority of the servers are up.
PySyncObj handles the consensus protocol on a server-only
address space; thus, any server which is not the leader of
the RAFT-based DC will always know the identity of the
leader and will forward any requests to that leader. We test
the availability of the servers in the DC under three scenarios
(described below). Subsequently, we measure the request
throughput as perceived by the network administrator. We
calculate the request throughput based on the number of re-
quests sent and responses received during five minutes. Next,
we parse the number of completed requests at each time t into
mutually exclusive 5-second bins and report measurements
based on these bins.

No Failures. First, to establish a baseline, we measure the

Figure 7: Requests completed per 5-seconds with ran-
dom server failures. (1) Server 2 fails. (2) Server 2
recovers. (3) Server 1 fails. (4) Server 1 recovers. (5)
Server 2 fails again. (6) Server 2 recovers. (7) Server
1 fails. (8) Server 1 recovers. (9) Server 3 fails.

Figure 8: Request completed per 5-seconds before an
after a majority of the cluster has been offline for 5
minutes. Two of the three servers are shut down at 120
seconds (red line) and then recovered at 420 seconds
(green line).

number of requests processed when all servers in the DC are
available. Figure 6 depicts the fact that the number of requests
processed per five-second bin oscillates around 500. We note
that it takes ∼8 seconds for a server in the DC to process a
request; therefore we see zero completed requests initially.
After 8 seconds, the DC consistently returns responses with
no more than 1 second of delay between newly completed re-
quests and an average throughput of 95.7 requests per second.

Random Periodic Failures. Given that we tested the DC
under the baseline scenario (where all servers are available),
we next introduce periodic failure and recovery of a single
random server (figure 7). In this test we run the cluster for
10 minutes, periodically failing a randomly chosen server
every 2 minutes. We then introduce the recovery of the failed
server after it has been down for one minute. In figure 7 red
lines underneath odd-number annotations show the instants
that a server terminates, while green lines underneath even-
number annotations show the instants at which the server
recover. From figure 7, we observe that request throughput
stays roughly the same when compared with the baseline
scenario. Altogether, vFiber completed a total of 58,588



requests in 614 seconds with an average throughput of 95.4
requests per second.

Dead-Stop Failures. Finally, we would like to see how
quickly vFiber can recover after a majority of the servers
have gone offline. Furthermore, we would like to determine
if there is a correlation between the duration of the failure
and the recovery time. To this end, we introduce a dead-stop
failure scenario in which a majority of the servers (i.e., 2
out of 3) in the DC fail. Then, we observe vFiber’s ability
to recover. We repeated this experiment for downtimes of
1 to 5 minutes and noticed that after the servers recovered,
vFiber was easily able to process the back-logged requests,
and then proceed to handle new requests. We show results for
the 5-minute failure case in figure 8. The choice of a 5-minute
failure period is consistent with the requirement of five-nines
availability, which corresponds to roughly five minutes of
system downtime in a year.

Results: To complement figures 6, 7, and 8, we summarize
the aggregate statistics from the availability experiments in
Table 1. From this table, we see that the median number of
requests completed per-second in our No Failure and Random
Periodic scenarios differ by only three requests. We also see
that the average completion rate for No Failure and Random
Periodic are within one request-per-second of each other. This
insight strengthens our confidence in the availability of the
system. We also see that the maximum number of requests
processed per-second was highest in the Dead-stop failure
scenario because requests accumulate at the last living server
until another peer comes back online. Once enough peers
are available to hold quorum, they immediately proccess the
backlogged requests. Overall, we see that the implementation
of RAFT that we use in our DC is highly available under
different failure scenarios.

Median Average S.D. Max
No Failures 101.0 98.96 72.0 329

Random Periodic 98.0 98.8 91.4 906
DS pre-failure 89.0 93.2 145.0 1273

DS post-failure 93.0 313.6 2137.1 24092

Table 1: Aggregate statistics for each availability experi-
ment based on request completion rate (requests per sec-
ond). DS refers to the Dead-stop scenario with a 5-minute
failure.

3.2.5 Diverse Topologies, Demands, and Cluster
Sizes

Goal: Until now, we have studied various aspects of vFiber
in isolation (responsiveness, availability, scalability). Now
it is time to see how the system operates as a whole. To
this end, we seek a multidimensional analysis of the system.
This analysis spans three characteristics of interest: (1) How
efficiently does vFiber perform across different topologies?
(2) How does the performance of vFiber vary with demand?
(3) How does the performance change while varying the size

Figure 9: (A) A star graph with six nodes and five
edges. (B) A random graph with five nodes and six
edges.

Figure 10: Darkstrand, a real fiber deployment from
the Internet Topology Zoo. This graph has twenty-
seven nodes and thirty edges.

of the DC?
Throughout the previous experiments, we considered

vFiber was running on dumbbell topology. We will now
relax this constraint by simulating several topologies: a star
topology with six nodes (figure 9 A), a random topology with
six nodes and five edges (figure 9 B), and a real fiber de-
ployment topology with twenty-seven nodes and thirty edges
called Darkstrand (figure 10). We chose to simulate vFiber on
the Darkstrand because it is a real-world fiber deployment that
was publicly available through the Internet topology zoo [25].
We stress test vFiber on these topologies by sending the DC
different numbers of client requests, up to the maximum num-
ber of requests that could be satisfied based on the limited
resources in the underlying topology. Furthermore, we evalu-
ate the performance of vFiber—across different topologies,
and with variable demand—while running on a variable num-
ber of servers.

Parameters: We simulate the time to allocate a single
link along a path using the 95th percentile link activation
time of 35.5 seconds (from the benchmark experiments in
section 3.2.1). The number of lambdas available at each link
is 40. This parameter is consistent with the availability 40-
Channel Dense Wavelength Division Multiplexers (DWDMs)
used in Internet backbone links [11]. We consider DC clusters
of size three to nine. We do not look at DC groups of a size
larger than nine because we assume it is unlikely that five



Figure 11: Evaluation of vFiber on the star topology
considering 10, 40, and 80 requests sent to DC clusters
of various sizes. The trend for the graph is an increase
in completion time with respect to cluster size, with an
exception of 80 requests processed by a cluster of three
severs. This is likely due to non-deterministic request
processing by the cluster.

Figure 12: Evaluation of vFiber on the random topol-
ogy considering 10, 40, and 80 requests sent to DC
clusters of various sizes. The trend for this graph is
a gradual increase in completion time with respect
to cluster size with the exception of processing time
from three to five servers. This could indicate that the
servers are balancing requests more efficiently on five
servers than three.

out of the nine servers will ever fail simultaneously. The
probability of this event decreases by hosting the servers in
physically diverse locations. Thus, we host the servers on one
of three distinct physical machines. These machines can be
thought of as racks in a data center. They are all connected to
the same local area network (LAN) switch.

A client requests a path by choosing a source and desti-
nation within a given topology. The client chooses this re-
quest at random, by sampling from all of the possible source-
destination pairs within the topology with equal probability.
These paths could be single-hop or multi-hop. To assess the
scalability of vFiber we send 10, 40, and 80 requests at a
time. If we allowed bursts of more than 80 requests, then
many of the requests would be denied due to limited lambdas
on the links. We are looking for insight into how quickly
vFiber clusters of different sizes can allocate network paths

on different topologies. Therefore we need the majority of
requests to succeed. We chose to send bursts of 10 and 40
requests as well to gain insight into what relationship existed
might exist between request volume on different topologies
and cluster sizes. Each request sent originates from distinct
client processes. We measure and report the time for vFiber
to complete the sum of client requests.

For any given topology, we include the smaller set of re-
quests in every larger set of requests. We also send the same
sets of requests to all of the DC clusters. For instance, if we
send a burst of n requests to a cluster of size 3, then we will
send the same n requests to clusters of size 5, 7, and 9 too.
Furthermore, when we send a burst of 40 requests, we ensure
that the first 10 were the same 10 that we sent in a previous
experiment. Similarly, the first 40 requests in a group of 80
we send are those 40 that we used earlier. This staging of re-
quests ensures that the variations we see between cluster sizes
and groups of requests are not due to larger clusters receiving
easier sets of requests (e.g., requests for shorter paths), or to
larger groups of processes sending easier requests than those
groups of smaller numbers.

When the DC processes the requests, it first checks for
availability of the resource within the infrastructure graph
(IG). It handles concurrent access to the IG with the locking
protocol described in section 3.1. When all locks are acquired,
and sufficient capacity is available, the DC activates the links
along the requested path. If there isn’t enough capacity to
satisfy the request, then the request is rejected.

Results: Figure 11 shows the various completion times
for requests on the star topology. All of the requests for each
cluster and request volume competed within 73.15 seconds.
Interestingly, that maximum completion time for this topol-
ogy occurred when we evaluated 80 requests on the smallest
cluster size, three. We hypothesize that this could be an out-
lier that occurs due to the nondeterminism in processing all
of these requests in parallel and where clients are choosing
servers to send their requests to at random. The general trend
of the graph for different request sizes is stable for clusters
of size five and seven, with less than a tenth of a second of
difference between any set of requests evaluated on these
clusters. When we scale the cluster up to nine servers, how-
ever, the completion time for 80 requests goes from 72.1 to
72.9 seconds. This time is still less than the 73.14 seconds
that a cluster of three servers completed the same 80 requests.
Again, we attribute this observation to the nondeterminism in
request processing.

In figure 12 we see the results evaluated on the random
topology. vFiber clusters of different sizes completed all of
the requests within 72.7 seconds for this topology. Again, we
observed that the maximum completion time occurred for 80
requests on a cluster of three servers. When vFiber ran on five
servers, the completion time for all of the different request
batches dropped. This anomaly could indicate that with five
servers, this set of vFiber clients might have been balancing
their requests more equitably among the servers (recall that



servers can perform some actions, such as parsing requests,
independently and only consult the leader of the cluster when
making changes to the IG). From clusters of size five to nine,
the general trend is a steady, gradual increase in completion
times.

The request completion times were∼72 seconds when eval-
uated on both the star and random topology. This similarity
occurs because the longest path that was requested in on both
topologies was a path of length two. This time is consistent
with the time that it takes to activate the two links sequentially.
There appears to be a more significant variation in comple-
tion times for nine servers on the star topology than similar
requests and servers on the random topology. We hypothesize
that this is due to more competing requests for overlapping
resources in the star topology, where any two request requests
will share at least one node (the center of the star).

Figure 13 shows the results from testing vFiber on a real
fiber deployment topology. The completion times for requests,
in this case, are much larger (∼358 seconds). This difference
occurred because Darkstrand topology had many more edges
than the previous topologies, and those links were activated
sequentially for every request. In spite of the delay associated
with link activation, the variation of completion time across
different cluster sizes is relatively small (∼1 second). One in-
teresting characteristic of the results evaluated on Darkstrand
is that request batches with a volume of 40 are consistently
completed as much as 0.2 seconds more quickly than request
batches of volume 80 until the cluster reaches a size of nine.
Another observation is that completion time for 10 requests
drops from a high of 358.6 seconds for a cluster of size three
to 357.7 seconds for a cluster of size seven. We attribute both
of these observations to nondeterministic request handling.
The trend for request processing times for 40 and 80 requests
is a gradual increase with cluster size.

Overall, we noticed that there was no monotonically in-
creasing behavior for completion time with respect to cluster
size or request volume for any topology. We hypothesize the
following explanation for this result. There are two sources
of nondeterminism that arise in processing a set of requests.
First, the servers process all of the client requests in paral-
lel. Second, nondeterminism appears in the face of client
requests generation, that is, each client sends its request to a
random server. Therefore, the completion time depends on
the scheduling of concurrent threads on the server, and the
likelihood of a client choosing the leader of the cluster when
sending its requests. For clusters of size nine or fewer, these
effects can have a more significant impact on the completion
time than the number of servers running in the cluster. These
variations again, are consistently less than 1 second and there-
fore do not cause us great concern for the performance of the
system in this setting. There is more room to improve on else-
where in the system, by efficiently provisioning non-adjacent
links of a path in parallel. We leave this optimization to future
work.

4. RELATED WORK

Figure 13: Evaluation of vFiber on the Darkstrand
topology considering 10, 40, and 80 requests sent to
DC clusters of various sizes. With the exception of the
batch of 10 requests, the trend is a gradual increase in
completion time with respect to cluster size. This ex-
ception is likely due to nondeterministic request han-
dling by the cluster.

Optimizing WAN Traffic. There has been significant re-
cent work in optimizing the utilization of expensive WAN
resources for unpredictable workloads e.g., between data cen-
ters, and increasing the total capacity of the network. Hong
et al. describe SWAN to achieve high bandwidth utilization
in Software-Defined Wide Area Networks [20]; B4 [21] de-
scribes a similar system for Google. Xu et al. define a diverse
routing optimization algorithm that network planners can use
to provision diverse paths thereby mitigating potential choke-
points in a network [36]. BwE by Kumar et al. utilizes a
fixed network capacity between data centers and optimizes
the capacity allocation among different applications [26]. Jin
et al. describe a joint optimization of optical and routing
substrates using OWAN [22]. Our effort is complementary:
prior works operate under the constraint of fixed network
capacity between endpoints. With a system for virtualizing
optical fibers, we posit a number of benefits to prior works
including enhanced resilience to outages, greater flexibility
for accommodating surges in bandwidth demand, and even an
increase in revenue by leasing their fiber during times when
the internal network demand is low. The notion of recon-
figurability and fan-out agility in data centers are explored
in [17].

Increasing Capacity. Other recent work has addressed
the challenge of increasing network capacity. For instance,
Laoutaris et al. propose NetStitcher which allows clients to
purchase additional bandwidth from a network provider [27].
Singh et al. takes a rate-adaptive approach with RADWAN to
increase capacity on fiber during events that would otherwise
be outages [33]. Their system monitors the Signal-to-Noise
(SNR) ratio of an optical link and reduces the link’s capacity
when the SNR drops below a threshold.

The only other system to use dark fiber to increase ca-
pacity is GreyFiber [13]. While GreyFiber made significant



progress towards providing Connectivity-as-a-Service, we dif-
fer from GreyFiber is several novel ways. First, we architect
our system with scalability and reliability in mind. Hence, we
distribute the components and infrastructure used by our sys-
tem. Second, we operate at the scale of an enterprise/provider
and hence vFiber is not a fiber marketplace. Third, we intro-
duce new testing and benchmarking capabilities to test link
installations by our system.

5. SUMMARY
vFiber seeks to virtualize the under-utilized dark fiber in

today’s enterprise networks. We posit that the virtualization
of optical fibers will provide new means for efficiently orches-
trating and operating physical infrastructure assets. We have
addressed three critical challenges in building vFiber. (1)
We distribute the components of vFiber using RAFT-based
consensus and show that vFiber is resilient to different failure
scenarios. (2) We have developed a capability to test and
benchmark the responsiveness of network hardware to config-
uration changes in vFiber. (3) Finally, we have shown how to
virtualize dark fiber in a lab testbed to scale bandwidth from
942 Mbps to 3,763 Mbps in 9 seconds between endpoints. We
also developed a monitoring capability, which vFiber can use
to respond to link failure events automatically. We also tested
the scalability of our distributed server environment by sim-
ulating fulfillment of requests on several distinct topologies
while varying the number of servers in the DC cluster.
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