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Abstract

This paper introduces a new efficient scalable parallel algorithm that computes all minimal
transversals of a hypergraph. Finding all minimal transversals of a hypergraph is an important
problem in data mining [1]. Previous work has focused primarily on efficient algorithms that run
to completion. This paper extends an efficient algorithm to be parallel and scalable. Parallelism
is achieved by duplicating an iterative state machine and splitting the workload. State of the
art hypergraph transversal algorithms are compared and analyzed. Multiple hypergraph data
sets are evaluated to demonstrate the various benefits and drawbacks of the various algorithms.

1 Introduction

Hypergraphs are capable of representing a significantly larger range of problems than traditional
graphs; specifically, hyperedges connect N vertices. This generalization allows hypergraphs to model
problems such as the set cover problem where each set is a hyperedge, databases where each row
is a hyperedge and each discrete value in each column is a vertex, and Connect-4, where winning/
losing board positions, is a collection of hyperedges.

Hypergraph transversals are a cut through every hyperedge as each transversal contains at least
one vertex from all hyperedges. The generation of all transversals is a significant problem as this
equates to solving all possible ways to cut a hypergraph. Generating all transversals of a large
sparse hypergraph is intractable as the number of traversals grows combinatorically.

An example of using all transversals is considered a database of genes from patients with a
specific type of cancer, known to be genetic. Each transversal of the database is a set of genes that
all patients have one or more of: the smaller the transversal (number of vertices), the fewer the genes
that could be related to the type of cancer. This is a systematic way to find the combinations of
genes related to a type of cancer. [2] This procedure can be done with other databases as well such
as the accident, bms-webview, and win/lose data sets which are used in testing. The transversal
will have different “meaning” depending on the information contained in the database.

State of the art hypergraph transversal algorithms are examined then a modification and ex-
tension of the current best algorithm are designed for parallelization. All algorithms are tested and
examined on multiple data sets, including scaling performance of the new algorithm.

2 Definitions

The following definitions are necessary to discuss the related hypergraph transversal work.
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Figure 1: Example Hypergraph

Let H = (V,E) be a hypergraph of vertices V and hyperedges E. Let V be a set of vertices
such that ∀v|v ∈ V . Let E be a set of hyperedges such that ∀e|e ∈ E. Let each hyperedge e be a
subset of vertices from V such that ∀e ∈ E,∀v ∈ e|v ∈ V .

V = {1, 2, 3, 4, 5, 6, 7, 8}

E = {{1, 2, 3, 8}, {1, 5, 6, 8}, {1, 4, 7, 8}, {2, 4, 5, 8}}

Lemma 2.1. Let a transversal S be a subset of vertices from V such that there exists at least one
vertex in every hyperedge: ∀e ∈ E|∃v ∈ S ∧ v ∈ e.

For every hyperedge, there is a vertex in both the hyperedge and the transversal. This is called
the hitting property.

Lemma 2.2. Let a minimal transversal S be as a transversal where the removal of any v from S
will cause the hitting property to be invalidated.

Checking to see if a transversal is a minimal transversal is a minimality check. Each vertex in S
must be removed in turn and the hitting property invalidated. t1 = {1, 4, 6} is minimal as removing
any vertex invalidates the hitting property while t2 = {1, 2, 6} is not minimal as either 6 or 1 can
be removed and t2 still hits all hyperedges.

Previous work has shown that constructing all minimal transversals of a hypergraph is equiv-
alent to the enumeration of all minimal covering sets, enumerating all minimal uncovering sets,
constructing the dual of a hypergraph, circuit enumeration for an independent system, computing
negative border from the positive border, and DNF to CNF transformation. [3] The problem is
known to be NP-Hard, and there is still an open question on the existence of a polynomial time
algorithm to compute the answer to these problems.

Lemma 2.3. Let a hyperedge e be critical for a vertex v in a set S if the hyperedge contains only
v from S and no other vertices from S. ∀v′ ∈ S \ v|v′ /∈ e and v ∈ e
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This is similar to the minimality check, except the check is to see if the removal of a specific
v from S will invalidate the hitting property for a specific hyperedge. However, if a set s contains
both v ∈ e and v′ ∈ e for some v ∈ s ∧ v′ ∈ s then the hyperedge is not critical for any vertex in s.

Lemma 2.4. Each vertex v in a minimal transversal S contains at least one critical hyperedge e.

Proof. By contradiction: Assume S contains a v that has no critical hyperedge. If there are no
hyperedges that are critical for v, then v can be removed from S. If S is a minimal transversal
then S ∩ v cannot be a minimal transversal, as the transversal property would be invalidated by
definition. Contradiction.

Lemma 2.5. A set S that hits all hyperedges and every vertex v in S has at least one critical
hyperedge, then S is a minimal transversal.

All hyperedges are hit by S, so the set is a hitting set. If any of the vertices v ∈ S is removed
from S, then the hyperedges critical for v are not hit. Thus the hitting property is invalidated for
each v is removed from s and therefore s is a minimal transversal.

3 Related Work

The hypergraph transversal problem has been explored with several algorithms, each using different
techniques. The six algorithms reviewed are BEGK, DL, BMR, KS, HBC, and SHD, none of which
are parallel. Broadly they can be categorized into two categories: BEGK, DL, BMR, AND KS are
constructive generation while HBC and SHD are hill climbing with pruning techniques.

The original algorithm to solve hypergraph transversals by Berge [4] starts with the set of all
vertices: Check if the transversal is minimal, if it is output the transversal, otherwise remove each
vertex in turn and call recursively. This suffers from over generation of minimal transversals and
exponential minimality checks in the worst case. This algorithm exists on paper as a mathematical
construct, and no implementations are evaluated.

The BEGK [5] algorithm constructs an initial dual(H0) by creating a set for each vertex of size
1. dual(H) is iteratively solved from dual(H−1) by adding each vertex to each set and checking if
each new resulting set is a minimal transversal. Overgeneration is solved by checking against the
other minimal transversals. In terms of time complexity this algorithm was proved to be the fastest,
however, in practice, it is not. Parallelism is possible but not considered because the number of
minimality checks, excessive checks for overgeneration matching, and maintaining all transversals
in the worst case results in exponential memory usage.

The DL [2] algorithm constructs the dual by mining the borders of minimal transversals. An
emerging pattern is a collection of sets used to generate a set of minimal transversals. The dual is
then a collection of emerging patterns that generate all transversals. Overgeneration is solved by
checking each emerging pattern against each other pattern and removing non-minimal transversals
from the pattern. Memory usage is significantly reduced with the generative data structure, but
the dual is still maintained in its entirety to check for overgeneration, meaning that memory usage
is still exponential in the worst case.

The BMR [1] algorithm improves on DL by recursively partitioning the hypergraph before
solving. First, the set of vertices is sorted by frequency, then for each vertex in the sorted set we
remove each hyperedge that contains the vertex from the hypergraph and solve for the remaining
set. The algorithm uses an arbitrary cut off point in recursion either choosing to partition or use
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the DL algorithm to solve the remaining hypergraph. This results in improved performance but still
suffers from exponential memory and time usage in the worst case. The technique of partitioning
hyperedges on a vertex is used in the parallel algorithms along with updating the critical hyperedges.

The KS [6] algorithm is a recursive technique that considers “generalized variables” or subsets
of V , which derive from the hyperedges and are used to generate the transversals. The KS algo-
rithm uses a depth-first recursive search which generates a transversal from the current generalized
variables then checks it against the other transversals of depth−1 for invalidation. Overgeneration
is solved by checking the previous dual(H−1) which may invalidate a new transversal. Memory
usage does not grow exponentially: the current transversal is maintained, and the previous dual
is generated on the fly. Computation time does grow with the dual, as all transversals need to
check against the previous dual for validation. Parallelization was achieved with this algorithm,
but it was also necessary to transform it to a breadth-first search with generative data structures
to represent the “generalized variables”, as a result, the memory and time became exponential and
was abandoned. [7]

The HBC [8] algorithm starts with an initial dual and iteratively adds combinations of vertices to
each solution, checking for minimality with the pruning criteria called the “Galois connection”. The
“Galois” property is defined as two operators: one for vertices, one for edges. The fh(E, V ) operator
is the set of vertices remaining after the removal of the unionization of E, fh(E, V ) = V \

⋃
E.

The gh(V,E) operator is the set of hyperedges remaining after removing V from each one, and
then removing empty hyperedges, gh(E, V ) = E \ (E \ V ). This algorithm has the potential to be
parallelized but suffers from exponential memory growth on dense hypergraphs with few minimal
transversals. The critical property is gh(s, E) \ gh(s \ v,E) or the set of hyperedges critical for the
vertex v.

The SHD [3] hill climbing algorithm uses a recursive depth-first technique with global hypergraph
updates. The algorithm defines two new properties uncov(S,E) and crit(v, S) as simplifications of
the “Galois” properties. uncov(S,E) is the set of edges remaining after removing each edge if it
contains any vertex contained in S. crit(v, S) is the set of hyperedges remaining after removing
S \ v from each hyperedge. Note that performing ∀v ∈ S|crit(v, S) and checking to see if the result
is the empty set is minimality checking. The algorithm maintains the partially evaluated global
hypergraph state at each level of recursion, for both uncov and crit. Memory usage grows with
the size of the hypergraph and time grows with the size of the dual. The concepts of uncov as
a list of hyperedges not yet hit and crit as a list of partitions to store hyperedges hit by v was
used. However, to parallelize the original algorithm the global hypergraph with the state had to be
duplicated for each thread and was not feasible without reworking.

4 Iterative Algorithm

The author now introduces an iterative solution to enumerate all of the minimal transversals of a
hypergraph. As there are several stacks of lists of composite items, each variable is name is now
defined along with the associate type, see Figure 2 Each of the stacks grows and shrink together,
when a new vertex is considered from the VStack then a new item is placed on the other stacks.
Each depth of a stack has an associated vertex at the same depth in the VStack. A partition is a
list of hyperedges hit by some vertex v
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partition A List of vertices
SM.Consider List of vertices, candidates for VStack
SM.V Stack Stack of list of vertices, search tree
SM.CRecover Stack of list of vertices, return to Consider
SM.Uncovered List of hyperedges, not hit by S
SM.Critical Stack of partition, each partition is a list of hyperedges
SM.PRecover Stack of list of partition, return to Critical

Figure 2: Stack Machine Variables

The main algorithm to step a state machine data structure a single step forward is now presented.
The algorithm operates by transitioning the state machine from state to state, performing the
composite operations on the state machine. Each iterative step in the function advances the state
of the machine by doing one of the following: finish, output transversal, add vertex list to top of the
VStack, pop a partition off Critical, or pop vertex list from VStack & pop a partition off Critical.
A partitioning technique similar to BMR and SHD is used to construct smaller partitions for
minimality checks. All partitions are with respect to one vertex, the critical vertex in a hyperedge.

Fundamentally each call to the function needs to advance the state machine so that the top of
the VStack is either the empty list or a list of non-evaluated vertices, see Figure 3.

A depth-first stack of lists of vertices is used to explore the N-way combination search tree,
Figure 4 The search tree VStack is used to explore combinations, using a list of vertices as a stack
at each depth. Each of the vertices in each list/stack will become the current vertex in turn. When
a vertex becomes the active vertex the combination of the top of each list/stack is used to make S.

Figure 4: N-Way Branching Search Tree
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The hyperedges in Uncovered that contain the active vertex are transitioned to Critical. 4
UpdateCriticalPartion is called with respect to the active vertex, partitioning Uncovered into a
partition for Critical and the remaining uncovered list. Additionally, each partition in Critical is
examined, and if a hyperedge contains the active vertex, the hyperedge is moved from Critical to
the associated PRecover, see Figure 4.

Once Uncovered and Critical have been updated for the active vertex, then validation checks
that every partition still contains a hyperedge. If any partition in Critical drops to zero hyperedges
then S is a invalid combination as there is at least one hyperedge that is not critical for the active

5



Algorithm 1 StepStateMachine

1: function StepStateMachine(StateMachine sm,HyperGraph hg)
2: if |V Stack| == 0 then return Finished

3: if |V Stack.Top| == 0 then
4: Consider ← Consider ∪ CRecover.Top
5: V Stack.pop()
6: CRecover.pop()
7: if |V Stack| > 0 then
8: Consider ← Consider ∪ V Stack.Top.F irst
9: PopV ertexPartition(sm, hg)

10: else
11: v ← V Stack.Top.F irst
12: UpdateCriticalPartition(v, sm, hg)
13: if V alidate(sm, hg) then
14: if |Uncovered| == 0 then
15: S = GenSFromV Stack(V Stack)
16: ProcessMinimalHittingSet(S)
17: CRecover.Top← CRecover.Top ∪ v
18: PopV ertexPartition(sm, hg)
19: else
20: N = SelectV ertices(sm, hg) ∩ Consider
21: Consider ← Consider \N
22: V Stack.Add(N)
23: CRecover.Add(∅)
24: else
25: CRecover.Top← CRecover.Top ∪ v
26: PopV ertexPartition(sm, hg)

return Continue

Figure 3: Algorithm to advance state machine
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Figure 5: Partition Uncovered with vertex 5
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Figure 6: Partition Uncovered and Partition Critical

vertex v in S. If the active vertex is valid and the number of hyperedges in Uncovered is zero, then a
minimal transversal from S has been reached and is output. If the active vertex is valid and number
of hyperedges in Uncovered is greater then zero, a new list of vertices is selected and added to the
search tree VStack.

When choosing a set of vertexes to add to the search tree: all of the hyperedges in Uncovered
are examined and the hyperedge whose intersection with Consider is the smallest is selected, see
Figure 9. By selecting a hyperedge and using its vertices, the search tree is guaranteed on the
next iteration to hit at least the chosen hyperedge in Uncovered. The Consider list is used to prune
the search tree when a list of vertices is selected, all of the vertices in the list are removed from
Consider as they are now in the search tree. When removing the active vertex from the search tree,
v is moved to either CRecover or Consider. The top partition in Critical is rejoined with uncovered.
Any hyperedges in PRecover that are hit by v are rejoined with the associated Critical. When the
current depth of the VStack is removed, then rejoin CRecover at that depth with Consider. All of
this functionality is encompassed in PopVertexPartition, see Figure 8.

When the active vertex invalidates a partition, it should not be considered in further combina-
tions with the remaining vertices. If S invalidates then S∪v also invalidates, so the vertex is moved
to CRecover. When the active vertex makes a minimal transversal S, it should not be reconsidered
as S∪v is non minimal/invalid, so the vertex is moved to CRecover. When the current depth in the
search tree VStack is empty, then the associated CRecover is rejoined with Consider. Additionally,
the active vertex from the previous depth has searched all of its combinations. Because the previous
vertex was considered with more combinations of vertices, it should be moved to Consider so that
it can be added to the search tree again.

Lemma 4.1. Each hyperedge can only be critical for one vertex at a time.

Proof. When a vertex is added to S and Uncovered is partitioned, the hyperedges that contain
the new v are moved to Critical. Only critical hyperedges are stored in Critical, all hyperedges in
Critical that are hit by v are moved to PRecover. Thus any hyperedge in Critical is critical for the
associated vertex in S.

Lemma 4.2. Every vertex in a minimal transversal contains at least one critical hyperedge.

Proof. Let a S be a set of vertices, where each v has a partition in Critical. For every vertex there
is at least one hyperedge in Critical, if any Critical partition size drops to zero then the set S is
non-minimal.
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Algorithm 2 UpdateCriticalPartition

1: function UpdateCriticalPartition(V ertex v, StateMachine sm, HyperGraph hg)
2: r ← ∅
3: for p ∈ Critical do
4: for he ∈ p do
5: if v ∈ he then
6: r ← r ∪ he
7: p← p ∩ he

8: PRecover[p].Add({v, r})
9: p← ∅

10: for he ∈ Uncovered do
11: if v ∈ he then
12: p← p ∪ he
13: Uncovered← Uncovered ∩ he
14: Critical.Add(p)

Figure 7: Update Critical and Uncovered

Algorithm 3 PopVertexPartition

1: function PopV ertexPartition( StateMachine sm, HyperGraph hg)
2: Uncovered← Uncovered ∪ Critical.Top
3: Critical.pop()
4: for rp ∈ PRecover do
5: if v = rp.Top.v then
6: Critical[rp]← Critical[rp] ∪ rp.Top.r
7: rp.pop()

8: v ← V Stack.Top.F irst
9: V Stack.Top← V Stack.Top ∩ v

Figure 8: Remove v from S and update state machine
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Figure 9: Select vertices to place on VStack

Lemma 4.3. A set S that hits all hyperedges and for every vertex v in S has at least one critical
hyperedge, then S is a minimal transversal.

Proof. When the size of Uncovered drops to zero then all hyperedges have been hit by the set S,
either into Critical or CRecover. Each vertex v ∈ S has an associated Critical that is not empty,
the hyperedges critical for v ∈ S. If any v ∈ S is removed from S, then the hyperedges in Critical
for that v will no longer be hit. Thus S hits all hyperedges, as they are no uncovered hyperedges,
and S is minimal because if any v is removed, then some hyperedges will no longer be hit by S.

4.1 Depth First Search

The depth-first search (DFS) is a methodology of constructing the VStack, CRecover, and Consider.
The DFS selects the smallest hyperedge remaining in Uncovered and takes the intersection of
the edge with Consider, removing them from Consider and putting them on the VStack with an
associated empty list in CRecover. 9 By selecting a hyperedge from Uncovered, it is guaranteed
that the list of vertices will each hit that hyperedge in Uncovered. The list of vertices on the VStack
is a subset of vertices from a specific hyperedge, thus guaranteed to hit the same hyperedge as they
are considered in turn. Applied iteratively, this will keep selecting remaining hyperedges until all
hyperedges are hit, and all minimal transversals are generated.

Consider shapes and prunes the search tree by only allowing vertices which are not already on
the VStack to be considered. If a vertex is already on the VStack but not a current consideration,
then the vertex will be considered later when it does become current. As vertices are removed from
the VStack, they are placed either into the associated CRecover or Consider. When a vertex list
is popped from the VStack, then the CRecover is popped and rejoined with Consider. All vertices
transition from Consider to the VStack and back.

5 Parallelization

The parallelization of hypergraph transversals is a non-trivial: algorithms that are recursive need
to be converted to iterative versions or have controlled task expansion. Algorithms that have
exponential memory usage are not viable as the algorithm should run to completion given enough
time and processing units. Recursive algorithms that use global variables that are updated upon
entry and then unwound on exit require special attention as parallel execution corrupts the global
data. All variables that are used in the algorithm, including the implied stack variables and global

9



data state, need to be explicitly added to the data structure. Each of the algorithms were considered
for parallelization and multiple techniques were combined to create an stepping state machine
algorithm that was then parallelized.

The state machine data structure has two list variables Uncovered and Consider, and four
interrelated stacks VStack, CRecover and Critical, PRecover. Vertexes transition from Consider to
the VStack then CRecover and back to Consider. Hyperedges transition from Uncovered to Critical
and back additionally from Critical to PRecover and back. The state machine stepping function
requires that VStack and CRecover be the same size, the same for Critical and PRecover, and that
the number of partitions in Critical is one less then the number of vertex lists in VStack. The
smallest representation is 1 state machine to output all of the minimal transversals.

Consider that a single call to StepStateMachine as the smallest unit of work. A full state machine
representation with all of the stacks and variables is passed repeatedly to the step function until
done. If a starting state machine is duplicated and both worked on simultaneously, then it would
over generate, outputting each minimal transversal twice. However, if a state machine is duplicated
and both machines modified so the VStack is split between them, then they produce only the set
of minimal transversals.

To split a work item, the entire state machine is copied. One copy processes the active vertex
and moves the rest to CRecover, the other moves the active vertex to CRecover and processes the
rest of the vertices. The split operation ensures that the representations can be processed in parallel
and each work item is only processed once. As a representation has an unknown depth and branches
to explore in the search tree, its not possible to split the work evenly to load balance. On certain
problems this degrades performance as the number of splits relative to the amount of work for each
split is low. On other problems where there is a large amount of work per split, performance is
improved.

The overhead for parallelization is that each time a work item is split, an entire copy of the
representation must be performed. The size of the stack machine is dependent on the problem,
which can be substantial. Additionally it is not possible to know how much work is left in the
branch of the search tree, so the representation can be split and the new representation only takes
one step before finishing.

Each thread runs the ParrallelThread algorithm, see Figure 10: retrieve and process a state
machine, split the representation when necessary and queue the split work item. When a thread
is waiting and a representation can be split, then a thread will split its work item and share the
workload. An example of how threads operating on work items in parallel is shown in Figure 11.
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Figure 11: Parallel task splitting model
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Algorithm 4 ParallelThread

1: function ParallelThread( WorkQueue wq, StateMachine sm, HyperGraph hg)
2: global WorkersPaused← ThreadCount
3: Done← False
4: sm← ∅
5: while !Done do
6: if sm = ∅ then
7: if |WorkQueue| = 0 ∧WorkersPaused = ThreadCount then
8: Done← True
9: sm←WorkQueue.WaitItem()

10: WorkersPaused−−
11: else
12: if CanSplitSM(sm) ∧WorkersPaused > 0 then
13: sm2 = SplitStateMachine(sm)
14: wq.Add(sm2)
15: else
16: if StepStateMachine(sm, hg) = Finished then
17: sm← ∅
18: WorkersPaused + +

Figure 10: Parallel thread to split state machine
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5.1 Doubly-Linked Array-List

The doubly-linked array-list (DLAL) data structure is two arrays, a next and prev index. List-
headers are a pair of head and tail indexes into the DLAL. Indexes can only appear in one list at
a time, so each list-header contains a subset of indexes. Maintaining multiple list-headers allows
for representing multiple subsets of the DLAL, each pointing at different head-tail indexes in the
array. Removal of an item from one list must be paired with addition to another list to maintain
correctness. All items must exist in a list and be moved from list to list, even if it requires another
list-header to store items. The removal is O(1), addition O(1), and merging two lists O(1).

A DLAL can be directly used as an index map, where each index in the DLAL arrays maps
to an index in another object array. An additional element is added to the array-lists at the N+1
index which represents the tail of all lists. A list-header with head and tail values of N+1 represent
the empty list. The use of a DLAL is a mechanism for representing multiple subsets of a set that
only constructs headers to allow moving items from subset to subset.

Two DLALs are used in the algorithm data structure: one for hyperedges indexes and one
for vertices indexes. Two list-header stacks are used: one for partitioned hyperedges and one
for candidate vertices. Here is an example of 4 lists splitting the vertices of H into subsets:
LH1 = {1, 2, 3, 8},LH2 = {5, 6},LH3 = {4, 7},LH4 = {∅}, see Figure 12. Indexing starts at
1 and maps directly to vertices for clarity in this image, implementation values starts at 0 and map
to the index of a vertices.

H:1, T:8 H:5, T:6 H:4, T:7 H:9, T:9

H:1, T:8 H:5, T:6 H:4, T:7 H:9, T:9

2 3 8 7 6 9 9 9 9

9 1 2 9 9 5 4 3 9

List Heads

Next

Prev

List Tails

Figure 12: Doubly Linked Array List

6 Results

The various algorithms have different strengths and weaknesses that that depend upon the contents
of the data set; therefore data sets that are categorically different were selected. Five mathematically
generated hypergraphs and four machine learning data sets were used for testing.

There are three graphs for each dataset, time to process, memory usage, and scaling. Time to
process is the amount of time taken by the algorithm to calculate all miminal transversals. Memory
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usage shows the maximal memory used by each algorithm. Scaling compares SHD D and SHD R
single threaded algorithms verse IP Dx, where x is the number of threads from 1 to 80. Time is
measured in seconds and log scaled. Hypergraph complexity is measured in either the number of
hyperedges or the number of nodes. When hyperedges is used as the complexity measurement, then
the axis is log scaled.

• Accidents AC: the accidents dataset is taken from the FIMI repository, where the number
corresponds with the number of rows selected from the database. Frequent itemset or pattern
mining is collecting the set of maximal frequent itemsets, where a maximal frequent itemset
is not included in any other maximal frequent itemset, otherwise known as a transversal.
The minimal infrequent itemset is the inverse or the dual of the maximal frequent itemset.
A minimal infrequent itemset/transversal relates a set of conditions to every accident in the
database. See Figure 13

• BMS-Webview-2 BMS2: the bms webview2 is a database of web sessions and the products
viewed during the session, taken from the FIMI repository. The number corresponds to the
number of rows selected from the database. Each transversal represents the minimal number
of pages to visit such that every web session visited the page. See Figure 14

• Win/Lose: The win/lose data set is generated from the UCI Machine learning repository from
the game Connect-4. Each hyperedge/row corresponds to a minimal winning/losing board
position for the first player. The minimal transversal represents a set of moves which disturb
the winning/losing plays of the first player. The first m rows correspond to the problem
instance size. See Figures 15 and 16

• Matching Hypergraph M(n): a hypergraph with n vertices, where n is even, and n/2 hyper-
edges forming perfect matching hyperedges, Fi is 2i − 1, 2i. There are very few hyperedges
and an exponential number of minimal transversals 2n/2 See Figure 17

• Dual Matching hypergraph DM(n): the dual of a matching hypergraph, 2n/2 hyperedges and
n/2 minimal transversals.

• Threshold Hypergraph TH(n): a hypergraph with n vertices, where n is even, and the hy-
peredge set {{i, j} : 1 ≤ i ≤ j ≤ n, j is even }. There are few hyperedges n2/4 and a small
number of minimal transversals n/2 + 1. See Figure 19

• Self-Dual Threshold Hypergraph SDTH(n): a hypergraph with n vertices, where the hyper-
edge set is given as {{n−1, n}}∪{{n−1}∪E|E ∈ TH(n−2)}∪{{n}∪E|E ∈ dual(TH(n−2))}.
SDTH(N) is the dual of SDTH(N); thus the number of transversals and hyperedges are the
same, (n− 2)2/4 + n/2 + 1. See Figure 20

• Self-Dual Fano-Plane Hypergraph SDFP (N): a hypergraph with n vertices an (k − 2)2/4 +
k/2 + 1 hyperedges where k = (n − 2)/7. Starting with the set of lines in Fano plane H0 =
{{1,2,3}, {1,5,6}, {1,7,4}, {2,4,5}, {2,6,7}, {3,4,6}, {3,5,7}}. Then set H = H1 ∪H2 ∪ · ∪Hk,
where H1, H2, ...,Hk are k disjoint copies of H0. The dual of H is hypergraph of a 7k unions
obtained by taking one hyperedge from each of k copies of H + 0(H1, H2, ...,Hk), this is
SDFP (N). The total number of hyperedges is 1 + 7k + 7k. See Figure 21
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All programs were either compiled with g++ 7.3 or provided native binaries. Tests were run
on Ubuntu 18.04 with a dual Xeon Gold 6148 @ 2.40 GHz (80 logical cores total) and 384GB of
memory. The only program able to take advantage of the multiple cores is the new Iterative-Parallel
algorithm IP Dx, the rest are single threaded applications. No single application outperforms on all
problems as the dataset changes the structure of the problem; therefore each algorithms strengths
and weaknesses are examined.

BEGK generally underperforms against all other algorithms tested. The time complexity of
BEGK is the fastest from a strictly mathematical aspect, but the memory usage to store the
dual and the time to access it leads to massive slowdown and program crashes on larger datasets.
Notably, BERK only runs to completion in the allotted time for the Threadhold Hypergraph, see
Figure 19. BEGK serves as a base reference point to evaluate the performance of other algorithms.

DL only outperforms the other algorithms when the search tree is narrow and deep, this cor-
responds to a few large transversals, see Figure 18. Mining the borders of the dual means that
a representation of the dual is being maintained. As the complexity of the dual grows, the mined
borders become numerous, resulting in many representations that need to be maintained. The per-
formance drops off dramatically on all other data sets where the number of transversals is larger.

BMR, which is based on the DL algorithm, chooses to either partition the hypergraph on a
vertex or use the DL algorithm. The extra cost to partition hinders on the mathematical data sets
and improves performance on the real world data sets. The BMS data set in Figure 14 shows
BMR outperforming DL when the extra cost of partitioning is counteracted by the complexity of
the hypergraph.

KS is a recursive depth-first search that leverages the concept of generalized variables (subsets
of hyperedges/vertices) to generate transversals which are then validated. KS re-generates the
previous set of transversals to validate, so as the number of transversals grows, KS processing time
grows exponentially. KS only runs to completion on the mathematical data sets, see Figures 17,
19, 20, 21. KS fails from recursive stack overflow on real world data sets when the complexity
grows.

HBC/MTMiner stores the dual and iterates solutions using pruning and minimality checks.
MTMiner only outperforms the other algorithms when there are a large number of small transver-
sals, corresponding to a wide and shallow search tree, see Figure 14. MTMiner stores the dual
at each level of the search tree, so as the depth of the search tree grows, MTM uses exponential
memory and crashes. MTM only runs to completion on Figures 14 and 13.

SHD D/SHD R are variants of the same algorithm SHD. SHD D constructs the search tree using
the smallest hyperedge in uncovered while SHD R constructs the search tree using the next unhit
hyperedge in uncovered. SHD D/R outperforms the previous algorithms on all datasets except
BMS and dual matching, see Figures 14 and 18, where MTM/DL target the specific search tree
shape. Notably, SHD also runs to completion on the win and lose data sets, see Figures 15 and
16, when all previous algorithms fail.

IP D1-80 is the iterative parallel algorithm that extends SHD D by using the critical vertex
check to partition edges. IP D1-2 is slower then SHD D as IP D requires more computational time
in favor of smaller memory, in order to outperform SHD there must be more threads to counter
the additional computation. As the number of threads goes up, real world data sets show excellent
scaling such as AC, BMS, win, and lose data sets. See Figures 13, 14, 15, and 16, respectively.
In some cases adding more threads degrades performance as the cost of copying the representation
exceeds the benefit of multiple threads working on the problem: Matching, Figure 17. The extra
computation cost is never overcome with more threads on the Threshold, Figure 19, and Self-Dual
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Threshold, Figure 20 data sets, however the extra threads outperform on the Self-Dual Fano-Plane
Hypergraph, see Figure 21.
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Figure 13: AC: Accidents
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Figure 14: BMS2: BMS-Webview-2
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Figure 15: Win: Connect-4 Winning Positions
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Figure 16: Lose: Connect-4 Losing Positions
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Figure 17: Matching Hypergraph
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Figure 18: Dual-Matching Hypergraph

17



50 100 150 200
Number of Nodes

10−2

10−1

100

101

102

Ti
m

e 
in

 S
ec

on
ds

Process Time: TH

50 100 150 200
Number of Nodes

103

104

105

M
em

or
y 

in
 K

By
te

s

Memory Usage: TH

0 20 40 60 80
Number of Threads

10−1

100

Ti
m

e 
in

 S
ec

on
ds

Scaling: TH 200

Figure 19: Threshold Hypergraph
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Figure 20: Self-Dual Threshold Hypergraph
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Figure 21: Self-Dual Fano-Plane Hypergraph
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7 Conclusion

After examining multiple algorithms and datasets, the IP D is shown to be the only algorithm
capable of scaling to multiple cores. There are a few problems where scaling degrades performance,
the cost to split the representation and distribute the work outweighs directly solving the problem.
The algorithm still runs to completion just not as fast as SHD in some cases. There are BEGK,
MTM, BMR algorithms that completely fail in catastrophic ways for some datasets. KS and DL
run into explosive computation time for several data sets as well. IP D and SHD are the only
algorithms to complete computation on all datasets.

IP D outperforms SHD on larger real-world datasets AC, BMS, win, lose. As IP D was designed
to scale for large problems, this is expected. The poor performance on large mathematical hyper-
graphs by IP D even with scaling is unexpected. The vertex search tree for these hypergraphs does
not work well with the splitting of representations. There are a large number of representations
(task items) created that do little work. When the task item contains lots of work relative to the
creation of it, IP D outperforms.

IP D is intended for use on real-world large-scale hypergraphs. Additionally, IP D is designed
so that problematic mathematical datasets process to completion instead of failing catastrophically
or explode in time usage. IP D generally outperforms other algorithms overall and shows great
scaling properties on larger real-world data sets.
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