
Scaling Collaborative Filtering with PETSc
Alister Johnson

Department of Computer and Information Sciences
University of Oregon

ajohnson@cs.uoregon.edu

Abstract—Machine learning and recommendation systems
have become extremely popular and widely used in recent
years, with several major companies using recommenders to
help their users sort through the vast array of products offered.
Naturally, we want these recommender systems to give accurate
predictions of products a user might like, but we also want
these predictions quickly, based on the user’s past preferences
and newer preferences they may have just expressed. Many
recommendation algorithms have been created, including neural
networks, nearest neighbor algorithms, and various latent factor
models. While neural networks have received the most attention
lately, these other algorithms can produce results that are just
as accurate, and in many cases better understood. This paper
explores how an optimized, highly scalable recommendation
system can be written using scientific libraries and the scalability
of such a the system by implementing implicit alternating least
squares with PETSc.

Index Terms—recommender systems, PETSc, alternating least
squares, collaborative filtering

I. INTRODUCTION

Recommender systems use machine learning techniques to
make sense of user preference data, such as product ratings,
website page views, or TV shows watched. At a high level, rec-
ommender systems try to find patterns in users’ preferences for
items, like movies or other products, and predict more items
they might like. Recommender systems are most commonly
used by online retailers or streaming services to help users
find new products among the wide variety that are available.

There are many kinds of recommender systems, the main
two being latent factor models and neighborhood-based mod-
els. Latent factor models, such as matrix factorization and prin-
cipal component analysis, try to find underlying characteristics
or properties that can accurately describe users’ preferences.
Matrix factorization, for example, tries to decompose a matrix
of user preferences for items into two latent factors matrices,
one for users and one for items, where each user and item is
described by a vector containing its various properties. Each
factor corresponds to a specific property, such as whether a
movie is a comedy or tragedy, although these properties might
not have any easily understood meaning.

Neighborhood-based models don’t try to discover any un-
derlying logic in the system, but operate on the principle that
similar people usually like similar things. For example, if there
are two people who both like X , Y , and Z, and one of them
also likes W , it’s a good bet the other will like W , too. These
models try to compute similarity scores for users, based on
how many of the same things each has expressed a preference
for, and recommend items other similar users like. Variations

on this model find similar items to recommend or use some
combination of user and item similarities.

Regardless of how our recommender system works, we want
it to work fast. Our recommendations do us no good if we get
them after the user has moved on to other things. We want
to be able to train our system quickly, especially at the start
when we have very little data to work with, but also when
we have a large database of preferences, which is the more
challenging problem.

We can get a head start, so to speak, on optimizing and
scaling our recommender system by using scientific libraries
to write it. Many recommender systems rely on linear algebra
operations, as do several scientific computing applications,
so scientific libraries have the basic algorithms we need and
are already heavily optimized. We can take advantage of that
to avoid optimizing low level code and instead spend our
time optimizing the main algorithm. Libraries like PETSc that
are built on a communication system such as MPI can also
give us optimized communication for “free,” again leaving
us with more time to work on the rest of the recommender
system. Since these libraries are designed to be run on highly
parallel systems, we want to choose an easy-to-parallelize
algorithm, such as implicit alternating least squares (iALS).
This paper uses PETSc to implement an optimized, highly
scalable version of iALS.

The contributions of this paper are as follows.
• A high performance, scalable implementation of iALS

using PETSc and Python.
• Benchmarks of this implementation, showing that it pos-

sesses good strong scaling.
• Optimizations to the iALS algorithm that have not been

previously published, to the author’s best knowledge.
The rest of this paper is organized as follows. Section II

discusses background information about the iALS algorithm
and libraries involved. Sections III and IV describe the im-
plementation and how it was optimized. Section V describes
scalability and accuracy results, and finally Section VI contains
references to related research.

II. BACKGROUND

A. Collaborative Filtering

Collaborative filtering is a class of algorithms used for
making recommendation systems. In general, for any given
user, these algorithms find other users with similar tastes and
recommend items well-liked by those users. For example, if

you buy a keyboard from an online shopping website, the
site may start recommending other products commonly bought
with a keyboard, like a desktop monitor or mouse. Other
variants of the algorithm will instead find similar items to
things a user has liked, so if you bought multiple books by
a particular author, the recommender would begin showing
you more books by that author. Some algorithms, like the one
implemented in this paper, use a combination of both.

1) Implicit Alternating Least Squares: The specific algo-
rithm implemented in this paper is implicit alternating least
squares (iALS). iALS is a collaborative filtering algorithm
designed to work with implicit data. Implicit data by nature
contains uncertainty, since it may not reflect users’ true
preferences. Instead, it contains information about what a user
has seen, like page views or products they’ve bought, but not
necessarily whether they liked it. However, we can associate
confidences with these values to represent this uncertainty. For
example, if a user viewed a web page twice, we can assume
they like it, but only with a low confidence; if they viewed
the page twenty times, we can say they like it with high
confidence.

At a high level, iALS decomposes the matrix of user-item
preferences into two matrices of latent factors, one for users
and one for items. It alternates between fitting the user and
item factors matrices to the data, which avoids overfitting
on either one. This algorithm was first described by Koren,
Hu, and Volinsky in [1]. In their original paper, Koren et al.
denoted the user factors matrix as X and the item factors
matrix as Y , and recomputed each row xu of the user factors
matrix with

xu = (Y TCuY + λI)−1Y TCup(u),

where Cu is a diagonal matrix with user u’s confidence values
along the diagonal, p(u) is a vector of the user’s preferences,
λ is a scalar regularization term, and I is the identity matrix.
Each row of the item factors matrix is computed analogously.
User u’s confidence values for each item i are a function
of their observed preferences, as described earlier. One such
function proposed by Koren et al. is

cui = 1 + α log(1 + rui/ε),

where cui is the confidence value for user u and item i, α and
ε are scaling factors, and rui is a binarized preference value
(1 if a user has viewed an item, 0 if they have not), but many
other functions are also suitable.

Using this confidence function, as Koren et al. did, the
diagonal of Cu is generally not sparse, so computing Y TCuY
is expensive. To optimize this multiplication, they instead
compute Y TY +Y T (Cu− I)Y , which is equivalent, and has
the advantage of allowing them to pre-compute Y TY for all
rows of X , since that term does not depend on the user. Since
cui is 1 when a user has not viewed an item, Cu− I is sparse
and fewer operations are required to compute Y T (Cu − I)Y .
Pseudocode for this algorithm can be seen in Alg. 1, where
conf is a confidence function applied to the user’s preference
vector, and diag(M) denotes the diagonal of matrix M .

Algorithm 1 Original iALS
user-items = users× items matrix {preferences matrix}
item-users = user-itemsT

X = users× factors matrix {user factors}
Y = items× factors matrix {item factors}
for i = 0 to max-iteration do

calculate Y TY
for xu in X do
Cu = items× items matrix
diag(Cu) = conf (user-items[u])
A = Y TY + Y T (Cu − I)Y + λI
b = Y TCu · user-items[u]
solve Ax = b for x
set xu = x

end for
calculate XTX
for yi in Y do
Ci = users× users matrix
diag(Ci) = conf (item-users[i])
A = XTX +XT (Ci − I)X + λI
b = XTCi · item-users[i]
solve Ay = b for y
set yi = y

end for
end for

B. PETSc

PETSc [2], [3] is the Portable, Extensible Toolkit for Scien-
tific Computation, a library of high performance, scalable data
structures and algorithms for scientific applications. PETSc
includes MPI algorithms, as well as GPU algorithms using
CUDA or OpenCL and hybrid MPI-GPU algorithms. There
are also Python bindings for PETSc, provided by petsc4py
[4], which were used to implement iALS for this paper.
PETSc contains linear algebra routines, ODE solvers, and
linear solvers and preconditioners. PETSc was chosen because
it is extremely high performance and widely used in scalable
applications. This paper primarily uses PETSc’s matrix and
vector algebra routines.

III. OPTIMIZATION

A. User Preferences as a Proxy for Confidence

As mentioned earlier, in the original paper, Koren et al.
optimized their computation of Y TCuY by transforming it
into Y TY + Y T (Cu − I)Y , which has a sparse diagonal
for the center matrix. However, if we use user preference
values instead of confidence values for the diagonal of Cu,
this optimization becomes unnecessary. Confidence values are
meant to express uncertainty in our data, but the data itself
can do this in many ways. For example, if a cable company
is keeping track of how many hours of any given TV show a
user has watched, they can conclude that the show that user
has watched 500 hours of is one that user likes, and the show
they’ve only watched 5 hours of is one they don’t care for. In

general, the more a user views an item, the more confident we
can be that they like it, so users’ view counts can be used as
both preferences and confidences.

When we put these preference values in the diagonal of Cu,
we can substitute zeros for preferences we have no data for,
and the diagonal of Cu becomes sparse. This allows us to
further optimize computing Y TCuY .

B. Matrix Reduction
This optimization turns a very large, sparse matrix-matrix

multiplication into a comparatively small, dense multiplica-
tion, and greatly reduces the number of FLOPS wasted on
multiplications by zero. It also replaces a very expensive
transpose operation (transposing all of Y) with many much
smaller transpose operations, which may be more efficient,
depending on the relative sizes of Y and the various reduced
Y s. Even if these many small transposes are less efficient than
a single large transpose, the gains from smaller matrix-matrix
multiplications more than make up for it. The fill factors for
these user-item matrices are usually very low – the average
person can only view a very small percentage of the products
on offer – so the fill factor for the diagonal is similarly very
low. The two data sets used by this paper both had user-
item fill factors of 1% or lower. The dense multiplication is
therefore usually on the order of 1% the size of the original,
sparse multiplication.

When we multiply a matrix on the left by a diagonal
matrix, this has the effect of scaling the rows of the original
matrix by the values on the diagonal. If many of those
diagonal values are zero, this will zero out several rows of
the original matrix. Furthermore, if we right-multiply a matrix
by another matrix with many zero rows, the corresponding
columns of the original matrix will only be multiplied by
zero. We can optimize this multiplication by only multiplying
the non-zero rows and their corresponding columns, since any
multiplication by zero is a waste of computing power. We use
this to compute Y TCuY as follows.

First, we remove all the rows of Y that would become
zero and only keep a copy of the others. We then transpose
this reduced Y , since those rows are exactly the columns of
Y T that would not become zero when multiplied by CuY
– we must reduce both Y and Y T so the inner dimensions
match for the last multiplication. We compute CuY by scaling
our reduced Y by the non-zero values in Cu, avoiding many
multiply-by-zeros. Finally, we multiply our reduced Y T by the
reduced CuY to get Y TCuY .

A small example of this is shown in Fig. 1, where Y consists
of row vectors ~x, ~y, and ~z of length n, and Cu has two zeros
and a one on the diagonal. Since ~x and ~y become zero vectors,
the full multiplication is equivalent to a smaller multiplication
with only ~z and its transpose.

The full iALS algorithm, including this optimization, is
shown in Alg. 2.

C. Parallelization
The original algorithm described by Koren et al. is serial,

as is the version described in Alg. 2. This algorithm is easily

[
~xT ~yT ~zT

] 0 0
1

~x~y
~z

 =
[
~xT ~yT ~zT

] ~0~0
~z

=

z1~z
z2~z

...
zn~z

~zT · 1 · ~z =

z1
z2
...
zn

 · ~z =

z1~z
z2~z

...
zn~z

Fig. 1. A small example of the optimization described in Sec. III-B. The
vectors ~x, ~y, and ~z are row vectors of length n (thus their transposes are
column vectors of length n).

parallelizable by noting that calculating each row of the user
factors matrix is independent of calculating any other row of
the matrix, and the same is true for the item factors. We can
thus distribute the rows of the user and item factors matrices
between processes, so these recalculations can be done in
parallel. Afterwards, the full matrices can be reconstructed by
broadcasting each processes’ rows to all the other processes.

Algorithm 2 Serial iALS
user-items = users× items matrix {preferences matrix}
item-users = user-itemsT

X = users× factors matrix {user factors}
Y = items× factors matrix {item factors}
for i = 0 to max-iteration do

for xu in X do
r = number of non-zeros in user-items[u]
Cu = r × r matrix
diag(Cu) = non-zeros in user-items[u]
Y ′ = {Y [i] | user-items[u][i] is non-zero}
calculate Y ′T

A = Y ′TCuY ′ + λI
b = Y ′TCu · user-items[u]
solve Ax = b for x
set xu = x

end for
for yi in Y do
r = number of non-zeros in item-users[i]
Ci = r × r matrix
diag(Ci) = non-zeros in item-users[i]
X ′ = {X[u] | item-users[i][u] is non-zero}
calculate X ′T

A = X ′TCiX ′ + λI
b = X ′TCi · item-users[i]
solve Ay = b for y
set yi = y

end for
end for

IV. IMPLEMENTATION

Scientific libraries provide many benefits for implementing
programs like this one, beyond the built-in parallelism men-
tioned earlier. We can save a great deal of time by using
a library with the basic operations we need, since we can
trust that those operations are correct and already optimized,
and spend that time on higher level optimizations, such as
the ones just described. Scientific libraries often come with
optimized data structures as well, which saves us the time of
implementing our own. This section describes how PETSc’s
linear algebra operations and matrix data structures were used
to implement iALS.

A. Mapping iALS to PETSc

All the operations of iALS are linear algebra. The two most
computationally expensive are the Y TCuY multiplication and
solving the final linear system to recalculate each row of
X and Y . In this implementation, all of the matrices were
one of PETSc’s sequential matrix types (as opposed to the
MPI versions1), and parallelism was instead implemented with
mpi4py [5]–[7]. Each processor owns a block of rows in both
the user and item factors matrices, and after the recalculation
of that matrix is done, each process broadcasts its new values
for its rows to all the other processes.

The Y TCuYmatrix multiplication was implemented with
only a single full matrix multiplication; the CuY part is done
using PETSc’s diagonalScale operation, which is much
more efficient than a full matrix multiplication. Instead of
doing a full multiply, it simply scales the rows or columns
of the dense matrix by the corresponding elements on the
diagonal of the diagonal matrix, eliminating all the multiply-
by-zeros that would have resulted from the off-diagonal el-
ements of the diagonal matrix. Since the matrix reduction
optimization described above removes all zeros from the
diagonal, this effectively removes all zero multiplications from
the Y TCuY calculation.

The linear solver used to recalculate the user and item
factors is PETSc’s Cholesky direct solver. The linear system
is a square matrix of size factors× factors; since factors
is usually chosen to be a comparatively small number, on the
order of one hundred, and usually not more than one thousand,
a direct solver will be just as accurate and likely faster than an
iterative solver. Cholesky solvers are designed to work with
real, symmetric, positive-definite matrices. Y TCuY is certainly
real, so we must only show that the system is symmetric
and positive-definite. Consider a diagonal matrix C, whose
diagonal contains the square roots of the diagonal of Cu,
and let A = CY . The diagonal entries of C will scale the
rows of Y , and, similarly, if we right-multiply Y T by C, the
diagonal entries will scale the columns of Y T . This means that
Y TC = AT , so Y TCuY = (Y TC)(CY) = ATA. The prod-
uct of a matrix and its transpose is always symmetric, therefore

1PETSc’s MPI matrix types distribute the matrix across all the processors,
but iALS requires both X and Y to be completely resident on every processor
for each iteration.

Y TCuY is symmetric. Furthermore, since it is unlikely that
any of the elements of Y are zero, and the matrix reduction
optimization removes all zeros from Cu, A is also likely non-
singular (i.e., its determinant is non-zero). Since A is non-
singular, ATA = Y TCuY is positive-definite, because for any
non-zero column vector z, zTATAz = (AT z)T (AT z) > 0,
the definition of non-singularity. This product is strictly greater
than zero because it is equivalent to the dot product of AT z
with itself. It will always be greater than zero if AT z is
non-zero, which it is. Since Y TCuY is real, symmetric, and
positive-definite, a Cholesky solver is appropriate.

B. Memory Management

Although Python is increasingly popular in data science
and machine learning, which both often require applications
to be high performance, Python is not a high performance
language in and of itself. This can become a problem when
working with large data sets, like the Netflix Prize data set.
In these cases, it can be useful to fall back on memory
management efficiency techniques that are commonly used in
high performance languages like C.

One such technique is pre-allocating arrays, instead of
the Python idiom of creating an empty list and appending.
Repeatedly appending to a list in Python is slow and memory
inefficient, since Python over-allocates when growing an array.
When that array gets large, the over-allocation can be far more
than necessary, to the point where the program uses two times
more memory than is truly needed. C-style memory allocation
can be achieved using the NumPy package [8], which provides
array data structures and operations and is written in C to
improve efficiency.

The other main memory management technique used in this
implementation was storing data, both in memory and on disk,
in CSR format. CSR format is used to store sparse data, and
keeps the data in three one-dimensional arrays, two of which
store the non-zeros and their column indices, and the third of
which indexes into the first two, showing where each new row
starts. PETSc provides an “AIJ” matrix type that stores sparse
data like this, but it can also be advantageous to read in the
data this way. Using CSR format can improve both run-time
memory usage and I/O times, since less data needs to be stored
and read in at start-up.

V. EXPERIMENTAL RESULTS

A. Data Sets

The first data set used is a collection of link counts between
pages on TVTropes.org, scraped from the website by the
author in January and February of 2018. The pages are divided
into two categories, which are works of fiction, such as
movies, books, and TV shows, and tropes, which are narrative
devices used in those works, such as common plot points,
character archetypes, and setting features. In the context of a
recommender system, works are analogous to users and tropes
are analogous to items. The user-item matrix contains link
counts between work and trope pages and is approximately
square, with 63,705 works and 60,290 tropes. The matrix

contains almost 4 million nonzero values with a fill factor of
about 0.1%, making it the smaller of the two data sets. This
data set was used for initial scaling tests.

The second data set is the well-known Netflix Prize data
set, kindly made available by Netflix in 2006 [9]. The Netflix
data set contains around 100 million user ratings of movies
from the early 2000s. This user-item matrix is rectangular,
with 480,189 users rating 17,770 movies, and its fill factor
is approximately 1%. This data set was used to further test
the scalability of the recommender, since it is about 25 times
larger than the TVTropes data set, as well as the accuracy of
the recommender, because it is well known and often used for
accuracy tests.

B. Efficiency

All the following experiments were run on nodes of a cluster
with dual Intel E5-2690v4 processors (28 cores total) and 128
GB of memory per node. PETSc version 3.8.4 was used, and
compiled with debugging turned off and –O3 optimization.
The timing information was collected using PETSc’s built-in
logging stages, and includes separate times for computation
and communication, to show the increase in overhead for
adding more cores and/or nodes. I/O and data initialization
times are not shown because they are generally negligible
compared to the total run time (usually less than 5%, often
less than 1%), and they are constant, compared to the compute
and communication portions of the algorithm.

1) Timing Comparisons: Each timing test was done with
350 factors and 20 iterations, unless stated otherwise. In
practice, the optimal number of factors can vary per data set,
although more factors will of course give a better fit, at the
risk of overfitting. We chose 350 because it comes close to
using up all the available memory per node with the Netflix
data set, and does in fact sometimes cause nodes to run out of
memory when all cores are used. Koren et al.’s implementation
usually converged after about 10 iterations [1], however since
this implementation has none of their accuracy improvements,
it can take longer to converge, hence these tests being run for
20 iterations.

The training times of iALS on the TVTropes and Netflix
data sets are shown in Figs. 2 and 3, respectively. As can
be seen, the benefits of using additional cores diminish more
quickly for the smaller TVTropes data set, while the Netflix
data set continues to scale well until the node runs out of
memory. The communication overhead for the Netflix data is
also significantly higher than the overhead on the TVTropes
data, although this is only because the Netflix data set is so
much larger, and the overheads are roughly constant across
higher numbers of cores for each data set.

As well as the version described in Sections III and IV,
whose run times are displayed in Figs. 2 and 3, two other
versions of iALS, one based closely on Koren et al.’s original
algorithm, and another with only the optimization described
in III-A, were implemented with the intention of comparing
them with the fully optimized version. However, even after
giving both these versions twice the amount of time allotted

Fig. 2. Training times on the TVTropes data using various numbers of cores
on a single node.

Fig. 3. Training times on the Netflix data using various numbers of cores on
a single node. Times are not available for 1 or 2 cores because these tests
exceeded the time limit on the cluster. Times are also not available for 27
or 28 cores because these tests required more memory than was on a single
node.

to the final version, each of them only completed at most five
iterations on the smaller data set before timing out. Runs done
on a small number of cores barely finished a single iteration.
These non-optimized versions are so slow, they are rendered
useless for any practical application, while the fully optimized
version can complete at least 20 iterations on the Netflix data
set with many factors in a couple hours, given a sufficient
number of cores.

2) Scalability: As the original authors mention in [10],
iALS is slower than other matrix factorization algorithms,
unless it is run in parallel. Therefore, in addition to testing
scalability across the cores of one node, scalability across
multiple nodes, connected by an EDR InfiniBand network,
was also investigated, and the results are shown in Figs. 4 and

Fig. 4. Scalability across nodes on the TVTropes data. Note that the vertical
scale is in minutes, not hours.

Fig. 5. Scalability across nodes on the Netflix data. Only 20 of the 28 cores
available on each node were used to avoid exceeding the memory available
per node.

5. Such a high degree of parallelism is possible with iALS
that gains can still be seen for both data sets when running
on 200 or more cores. However, there is a point for each
data set where the increasing communication overhead from
additional nodes outweighs the decreasing computation time.
For the smaller TVTropes data set, this appears to be at around
eight nodes; for the Netflix data set, nine nodes. Theoretically,
iALS could continue to scale until each row of the item
and user factors matrices is recalculated on its own dedicated
core, but these results imply that would be inadvisable unless
communication speeds improved drastically.

Another important aspect of scaling for iALS is how the
algorithm scales as the number of factors is increased, since
more factors will generally give more accurate results. The
results of running the algorithm on varied numbers of factors
for 20 iterations on all 28 cores on a single node are shown in

Fig. 6. Scaling across factors on the TVTropes data. Each run was done on
a single node using all 28 cores.

Fig. 7. Compute and communication times for scaling across factors on the
TVTropes data shown separately.

Fig. 6. The same results are shown in Fig. 7 with compute and
communication times separated to more easily see how each
component of the run time scales across factors. Communica-
tion scales linearly, since the same number of messages are
sent, but the message size grows with the number of factors
that must be sent. However, the computation time scales with
the cube of the number of factors, since the underlying matrix
multiplication and linear solver algorithms have an O(n3)
asymptotic complexity.2 Thus the whole algorithm scales with
the number of factors cubed.

C. Accuracy

The Netflix Prize data set is well known in the machine
learning community, and many papers have been published de-

2Matrix multiplication algorithms with complexity less than O(n3) exist,
but for our purposes, estimating the complexity of matrix multiplication as
O(n3) is sufficient.

scribing algorithms designed to recommend movies to Netflix
users. Netflix chose to use the root-mean-square error (RMSE)
as their metric for how accurate a recommendation system
is, so it provides a good baseline for comparison with other
recommender systems. In the original challenge, the RMSE
to beat was calculated over a smaller, held-out test data set
with the Cinematch algorithm, with a minimum RMSE of
0.9525. Netflix provided a probe data set for contestants to test
their algorithms against, and Cinematch achieved an RMSE
of 0.9474 on the probe set [9]. The RMSE in this paper is
calculated over the same probe set after the recommender was
trained on the entire data set with the probe set removed.

The lowest RMSE observed for this implementation of iALS
was 1.8501 after training the recommender with 1000 factors
for over 100 iterations. It must be noted that no attempts were
made to improve the accuracy of this recommender above
that of the base algorithm. Therefore, this RMSE and the
convergence rate could certainly be improved by adding the
same accuracy optimizations Koren et al. did, some of which
are described in Sec. VI. Using a scientific library for the
linear algebra primitives does not imply a trade-off between
accuracy and speed or ease of implementation.

VI. RELATED WORK

When Netflix announced their challenge in 2006, with a
reward of $1,000,000 to the winning team, there was naturally
a large increase in interest in collaborative filtering methods,
and a great deal of research has been done in the area.
Popular methods include gradient descent [11], singular value
decomposition [12], nearest neighbors [13], [14], and, of
course, alternating least squares. The two research groups with
the most in common with this paper, however, are those led
by Koren and Takács.

Koren et al., as mentioned earlier, originally created the
algorithm implemented in this paper, but most of their work
was on improving the models used, by incorporating new
dimensions, like user and item biases, temporal components,
and demographic information, rather than optimizing the base
matrix factorization algorithm. Their work was geared towards
improving accuracy, not speed. Adding additional parameters,
such as biases, can improve results by accounting for other
underlying causes of similarities (or differences) in the data.
For example, some users tend to give higher or lower ratings
than others. When a user who almost always gives a movie
five out of five stars gives a movie only four stars, that is
more significant than a user whose average rating is 3.8 stars
giving that movie four stars, and the model should be able
to understand and incorporate that into its results. Bias terms
can normalize all users’ ratings to be on the same “scale,”
removing these personal differences [10].

Takács et al. have also done a great deal of work on optimiz-
ing collaborative filtering recommendation systems, however
their work has been on other forms of matrix factorization,
primarily stochastic gradient descent (SGD). The basic SGD
matrix factorization algorithm works similarly to iALS, but
recalculates each user and item factors row by finding the

gradient of the error for each estimated rating and updating
the rows in the direction opposite the gradient. Like Koren
et al., they also refine the algorithm by adding additional
parameters to the update step, such as individual learning rates
and regularization terms for each rating, to account for some
users’ tendencies to give higher or lower than average ratings.
Takács et al. have also researched ensemble methods that
use multiple different algorithms and make recommendations
which are a combination of the individual results. Often,
ensemble methods give better results than a single algorithm.
A secondary method they considered is nearest-neighbor based
algorithms, which find similar sets of users (or items) and
make recommendations based on the preferences of the group
[11], [15].

With respect to the mathematics of the algorithm, the
matrix-matrix multiplication reduction has a similar effect to,
and was inspired by, the graph-coloring matrix multiplication
algorithm described by McCourt, Smith, and Zhang in [16].
Both algorithms aim to turn a sparse matrix multiplication
into a dense one by removing zero entries, however they
differ in how the zeros are removed. The algorithm in this
paper seeks to remove entire columns and rows along the
inner dimensions of the multiplication, while McCourt et
al.’s algorithm tries to find columns whose non-zeroes can
be merged by mapping the matrix columns onto a graph
and then coloring the graph. This coloring will find sets of
matrix columns that have no non-zeroes in the same rows,
so that those columns can be combined to make the matrix
multiplication more dense. Since those columns are on the
outer dimensions of the multiplication, the true result must be
recovered afterwards by reconstructing the original non-zero
pattern. The algorithm in this paper does not require any such
reconstruction; the result is the final product.

VII. CONCLUSIONS

This paper described an optimized, highly scalable imple-
mentation of iALS using PETSc. The original algorithm as
presented by Koren et al. was optimized by directly using
preferences instead of calculating confidences and reducing
the large, sparse Y TCuYmultiplication to a small, dense
multiplication. iALS is easily parallelized by dividing the
recalculation of the user and item factors matrices between
processors. This implementation scales well, but after a point
the communication overhead overshadows any decreases in
compute time from additional cores. While further improve-
ments could be made to the accuracy and convergence rate,
the low time per iteration means this approach is promising.

ACKNOWLEDGMENTS

Many thanks to Professors Norris and Malony in the Com-
puter and Information Sciences department at the University
of Oregon for their support and advice during this project,
and to Erin McCarthy for being a wonderful office-mate
and proofreader. The author would also like to thank the
administrators at TVTropes.org for allowing their website to

be scraped, and Netflix for continuing to provide the Netflix
Prize data set.

This work benefited from access to the University of Oregon
high performance computer, Talapas.

REFERENCES

[1] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in 2008 Eighth IEEE International Conference on
Data Mining, Dec. 2008, pp. 263–272.

[2] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-
man, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan,
B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, “PETSc users man-
ual,” Argonne National Laboratory, Tech. Rep. ANL-95/11 - Revision
3.9, 2018.

[3] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient
management of parallelism in object oriented numerical software li-
braries,” in Modern Software Tools in Scientific Computing, E. Arge,
A. M. Bruaset, and H. P. Langtangen, Eds. Birkhäuser Press, 1997,
pp. 163–202.

[4] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel distributed
computing using Python,” Advances in Water Resources, vol. 34, no. 9,
pp. 1124–1139, 2011, New Computational Methods and Software Tools.

[5] ——, “Parallel distributed computing using Python,” Advances in Water
Resources, vol. 34, no. 9, pp. 1124 – 1139, 2011, New Computational
Methods and Software Tools.

[6] L. Dalcı́n, R. Paz, and M. Storti, “MPI for Python,” Journal of Parallel
and Distributed Computing, vol. 65, no. 9, pp. 1108 – 1115, 2005.

[7] L. Dalcı́n, R. Paz, M. Storti, and J. D’Elı́a, “MPI for Python: Perfor-
mance improvements and MPI-2 extensions,” Journal of Parallel and
Distributed Computing, vol. 68, no. 5, pp. 655 – 662, 2008.

[8] N. Developers, “Numpy reference,” Apr. 2018,
https://docs.scipy.org/doc/numpy-1.14.1/reference/.

[9] Netflix, “Netflix Prize,” Oct. 2006, https://www.netflixprize.com.
[10] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for

recommender systems,” Computer, vol. 42, pp. 30–37, Aug. 2009.
[11] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Matrix factorization and

neighbor based algorithms for the Netflix Prize problem,” in Proceedings
of the 2008 ACM Conference on Recommender Systems, ser. RecSys ’08.
New York, NY, USA: ACM, 2008, pp. 267–274.

[12] A. Paterek, “Improving regularized singular value decomposition for
collaborative filtering,” in Proceedings of KDD Cup and Workshop, vol.
2007, 2007, pp. 5–8.

[13] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proceedings of the 10th
International Conference on World Wide Web, ser. WWW ’01. New
York, NY, USA: ACM, 2001, pp. 285–295.

[14] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A
constant time collaborative filtering algorithm,” Information Retrieval,
vol. 4, no. 2, pp. 133–151, Jul. 2001.

[15] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Scalable collaborative
filtering approaches for large recommender systems,” Journal of Ma-
chine Learning Research, vol. 10, pp. 623–656, Mar. 2009.

[16] M. McCourt, B. Smith, and H. Zhang, “Efficient sparse matrix-matrix
products using colorings,” SIAM Journal on Matrix Analysis and Appli-
cations, 2013.

[17] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Investigation of various
matrix factorization methods for large recommender systems,” in 2008
IEEE International Conference on Data Mining Workshops, Dec. 2008,
pp. 553–562.

