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Functional languages are known to enjoy an elegant connection to logic: lambda-calculus corresponds to

natural deduction. Unfortunately, the same cannot be said for object-oriented languages. Type systems have

been designed to capture all the fancy features present in current object-oriented languages. We believe,

however, that the logical foundation of object-orientation has not yet been fully explored. Our goal is to

describe how objects arise naturally in logic.

The dual of data, known as codata, can be seen as an object. Whereas data is constructed, codata specifies

all the possible ways to use it. Analogously to an object defining a pair, a codata pair gives two methods for

accessing the first and second components.

To substantiate this approach we extend a basic language containing both data and codata with the essential

object-oriented features of subtyping, classes, and inheritance. This suggests how the functional and object-

oriented paradigms can embrace each other; the extended language also provides a suitable intermediate

language for the compilation of the two programming paradigms.
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1 INTRODUCTION
The Curry-Howard correspondence is not only the coincidence that programming language re-

searchers and logicians develop similar systems independently, but it can be used as a tool for

information to be shared between the two communities. For instance, linear type systems [24] were

inspired by linear logic [11]. Linear logic’s rules prevent multiple uses of an assumption, which

when incorporated into a type system, can solve the problem of unwanted duplication of resources

in a program. One such area of programming languages that has not seen much sharing of ideas

with logic is object-oriented programming. Despite its popularity as a methodology for abstraction

and structuring of code, it is unclear what logic lies at its foundation. That is not to say that strong

type systems have not been developed to verify the safety of these languages [1, 4, 14]. These

solutions start with an object-oriented language and work back to logic, but what can we learn

from travelling in the other direction?

Like with linear type systems, we start our search for a logical foundation with linear logic. Linear

logic has been shown to have a Curry-Howard connection to polarized programming languages

[18, 26] and call-by-push-value [17]. An important aspect of these languages is that they contain two

notions of product: one that focuses on the introduction and another that focuses on elimination.

The former maps cleanly to data types found in functional languages, where the programmer

defines a set of constructors that introduce an instance of the type. The latter maps to codata types,
where the programmer defines a set of observations, or projections, that eliminate the type. Of

course, defining a type by its observations captures two basic aspects of objects from object-oriented

programming, where fields are data that can be projected from an object and methods are requests
that an object computes.

Though the notion of codata is similar to objects, the gap between these two language features

still appears large. This is in part because object-oriented languages contain extra ideas not found in

codata, such as subtyping, classes, and inheritance. Additionally, objects have been around longer

and discussed much more than the relatively mysterious codata. Because of these facts, it comes as

no surprise that the connection between the two has not received attention. In this paper, we aim

to explore the relationship of codata and objects as follows:
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• In order to give an intuition for what codata is, Section 2 introduces codata through examples.

Throughout, we make comparisons with objects to clearly convey the similarities of the two

language features.

• In a first step towards a Curry-Howard correspondence between logic and object-orientation,

Section 3 gives a description ofH : a language that combines data and codata.

• Since subtyping is one of the defining features of object-oriented languages, Section 4 extends

H to include subtyping for codata leading to H<:.

• Section 5 recalls Featherweight Java [14], a standard model of an object-oriented language.

The language contains the popular features of subtyping, classes, inheritance, and type

casting. It has been used to formalize extensions to languages like Java and C#.

• Section 6 presents a compilation of Featherweight Java into H<:. We find that classes can be

compiled into codata types (which specify the class’s interface) and constructor functions

(which encode the object’s constructor).

• Finally, Section 7 describes how thinking of objects as codata can help us extend object-

oriented languages with algebraic data types, fully corecursive objects, and the ability to

introduce objects with copattern matching. Additionally, we describe howH<: can be seen as

an intermediate language for both a functional and object-oriented language. So bridging the

gap between codata and objects also provides a common ground between these two popular

programming paradigms.

2 USING CODATA
This section contains co-authored material [9]. I am responsible for the database and game examples
that appear here in the paper. Additionally, I am responsible for all of the online code containing codata
examples.

We start by presenting codata as a merger between theory and practice, whereby encoding data

types by their observations (i.e. with codata) turns out to be a useful intermediate step in the usual

encodings of data in the λ-calculus. Demand-driven programming is considered a virtue of lazy

languages, but codata is an evaluation-strategy-independent tool for capturing this programming

idiom. Codata exactly captures the essence of procedural abstraction, as achieved with λ-abstractions
and objects, with a logically founded formalism [10]. Strengthening the type system to include

indexed and self-referential types allows codata to express pre- and post- conditions found in

protocols and Hoare-style logic [23]; this feature is available in some object systems via type-state

guarded method calls [8].

2.1 Encoding Data with Codata
Crucial information structures, like booleans, numbers, lists, and grammars can be encoded in

the untyped λ-calculus (a.k.a. Church encodings) or in the typed polymorphic λ-calculus (a.k.a.
Böhm-Berarducci [6] encodings). It is quite remarkable that data structures can be simulated with

just first-class, higher-order functions. The downside is that these encodings can be obtuse at first

blush, and have the effect of obscuring the original program when everything is written with just λs
and application. For example, the λ-representation of the boolean value true, the first projection out

of a pair, and the constant function K are all expressed as λx .λy.x , which is not that immediately

evocative of its multi-purpose nature.

Object-oriented programmers have also been representing data structures in terms of objects.

This is especially visible in the Smalltalk lineage of languages like Scala, wherein an objective is

that everything that can be an object is. As it turns out, the object-oriented features needed to

perform this representation technique are exactly those of codata. That is because Church-style
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encodings and object-oriented representations of data all involve switching focus from the way
values are built (i.e. introduced) to the way they are used (i.e. eliminated).
Consider the representation of Boolean values as an algebraic data type. There may be many

ways to use a Boolean value. However, it turns out that there is a most-general eliminator of

Booleans: the expression if b then x else y. This basic construct can be used to define all the

other uses for Bools. Instead of focusing on the constructors True and False let’s focus on this

most-general form of Bool elimination; this is the essence of the encodings of booleans in terms of

objects. In other words, booleans can be thought of as objects that implement a single method: If.
So that the expression if b then x else y would instead be written as

b.If(x,y)

We then define the true and false values in terms of their reaction to If:

true = {If(x,y) → x} false = {If(x,y) → y}

Or alternatively, we can write the same definition using copatterns, popularized for use in the

functional paradigm by Abel et.al. [2] by generalizing the usual pattern-based definition of functions
by multiple clauses, as:

true.If(x,y) = x false.If(x,y) = y

This works just like equational definitions by pattern-matching in functional languages: the ex-

pression to the left of the equals sign is the same as the expression to the right (for any binding of

x and y). Either way, the net result is that

true.If("yes","no") = "yes" false.If("yes","no") ="no"

This covers the object-based presentation of booleans in a dynamically typed language, but how

do static types come into play? In order to give a type description of the above boolean objects, we

can use the following interface, analogous to a Java interface:

codata Bool where If : Bool → (forall a. a → a → a)

This declaration is dual to a data declaration in a functional language: data declarations define the

types of constructors (which produce values of the data type) and codata declarations define the

types of destructors (which consume values of the codata type) like If. In this case, the reason that

the If observation introduces its own polymorphic type a is because an if-then-else might return

any type of result (as long as both branches agree on the type). That way, both the two objects

true and false above are values of the codata type Bool.
At this point, the representation of booleans as codata looks remarkably close to the encodings

of booleans in the λ-calculus. Indeed, the only difference is that in the λ-calculus we “anonymize”

booleans. Since they reply to only one request, that request name can be dropped. We then arrive

at the familiar encodings in the polymorphic λ-calculus:

Bool = ∀a.a → a → a true = Λa.λx :a.λy:a.x false = Λa.λx :a.λy:a.y

In addition, the invocation of the Ifmethod just becomes ordinary function application; b.If(x,y)
of type a is written as b a x y. Otherwise, the definition and behavior of booleans as either codata

types or as polymorphic functions are the same.

2.2 Demand-Driven Programming
In “Why functional programming matters” [12], Hughes motivates the utility of practical functional

programming through its excellence in compositionality. When designing programs, one of the
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goals is to decompose a large problem into several manageable sub-problems, solve each sub-

problem in isolation, and then compose the individual parts together into a complete solution.

Unfortunately, Hughes identifies some examples of programs which resist this kind of approach.

In particular, numeric algorithms—for computing square roots, derivatives integrals—rely on

an infinite sequence of approximations which converge on the true answer only in the limit of

the sequence. For these numeric algorithms, the decision on when a particular approximation in

the sequence is “close enough” to the real answer lies solely in the eyes of the beholder: only the

observer of the answer can say when to stop improving the approximation. As such, standard

imperative implementations of these numeric algorithms are expressed as a single, complex loop,

which interleaves both the concerns of producing better approximations with the termination

decision on when to stop. Even more complex is the branching structure of the classic minimax

algorithm from artificial intelligence for searching for reasonable moves in two-player games

like chess, which can have an unreasonably large (if not infinite) search space. Here, too, there

is difficulty separating generation from selection, and worse there is the intermediate step of

pruning out uninteresting sub-trees of the search space (known as alpha-beta pruning). As a result,

a standard imperative implementation of minimax is a single, recursive function that combines all

the tasks—generation, pruning, estimation, and selection—at once.

Hughes shows how both instances of failed decomposition can be addressed in functional

languages through the technique of demand-driven programming. In each case, the main obstacle is

that the control of how to drive the next step of the algorithm—whether to continue or not—lies

with the consumer. The producer of potential approximations and game states, in contrast, should

only take over when demanded by the consumer. By giving primary control to the consumer,

each of these problems can be decomposed into sensible sub-tasks, and recomposed back together.

Hughes uses lazy evaluation, as found in languages like Miranda and Haskell, in order to implement

the demand-driven algorithms. However, the downside of relying on lazy evaluation is that it is a

whole-language decision: a language is either lazy by default, like Haskell, or not, like OCaml. When

working in a strict language, expressing these demand-driven algorithms with manual laziness

loses much of their original elegance [20].

In contrast, a language should directly support the capability of yielding control to the consumer

independently of the language being strict or lazy; analogously to what happens with lambda

abstractions. An abstraction computes on-demand, why is this property relegated to this predefined

type only? In fact, the concept of codata also has this property. As such, it allows us to describe

demand-driven programs in a way that works just as well in Haskell as in OCaml without any

additional modification. For example, we can implement Hughes’ demand-driven AI game in

terms of codata instead of laziness. To represent the current game state, and all of its potential

developments, we can use an arbitrarily-branching tree codata type.

codata Tree a where
Node : Tree a → a

Children : Tree a → List (Tree a)

The task of generating all potential future boards from the current board state produces one of

these tree objects, described as follows (where moves of type Board → List Board generates a
list of possible moves):

gameTree : Board → Tree Board

(gameTree b).Node = b

(gameTree b). Children = map gameTree (moves b)
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Notice that the tree might be finite, such as in the game of Tic-Tac-Toe. However, it would still be

inappropriate to waste resources fully generating all moves before determining which are even

worth considering. Fortunately, the fact that the responses of a codata object are only computed

when demanded means that the consumer is in full control over how much of the tree is generated,

just as in Hughes’ algorithm. This fact lets us write the following simplistic prune function which

cuts off sub-trees at a fixed depth.

prune : Int → Tree Board → Tree Board

(prune x t).Node = t.Node

(prune 0 t). Children = []

(prune x t). Children = map (prune(x-1)) t.Children

The more complex alpha-beta pruning algorithm can be written as its own pass, similar to prune
above. Just like Hughes’ original presentation, the evaluation of the best move for the opponent is

the composition of a few smaller functions:

eval = maximize . maptree score . prune 5 . gameTree

What is the difference between this codata version of minimax and the one presented by Hughes

that makes use of laziness? They both compute on-demand which makes the game efficient.

However, demand-driven code written with codata can be easily ported between strict and lazy

languages with only syntactic changes. In other words, codata is a general, portable, programming

feature which is the key for compositionality in program design.
1

2.3 Abstraction Mechanism
In the pursuit of scalable and maintainable program design, the typical followup to composability

is abstraction. The basic purpose of abstraction is to hide certain implementation details so that

different parts of the code base need not be concerned with them. For example, a large program

will usually be organized into several different parts or “modules,” some of which may hold general-

purpose “library” code and others may be application-specific “clients” of those libraries. Successful

abstractions will leverage tools of the programming language in question so that there is a clear

interface between libraries and their clients, codifying which details are exposed to the client and

which are kept hidden inside the library. A common such detail to hide is the concrete representation

of some data type, like strings and collections. Clear abstraction barriers give freedom to both the

library implementer (to change hidden details without disrupting any clients) as well as the client

(to ignore details not exposed by the interface).

Reynolds [21] identified, and Cook [7] later elaborated on, two different mechanisms to achieve

this abstraction: abstract data types and procedural abstraction. Abstract data types are crisply

expressed by the Standard ML module system, based on existential types, which serves as a concrete

practical touchstone for the notion. Procedural abstraction is pervasively used in object-oriented

languages. However, due to the inherent differences among the many languages and the way they

express procedural abstraction, it may not be completely clear of what the “essence” is, the way

existential types are the essence of modules. The language-agnostic representation of procedural

abstraction is codata. The combination of observation-based interfaces, message-passing, and

dynamic dispatch are exactly the tools needed for procedural abstraction. Other common object-

oriented features—like inheritance, subtyping, encapsulation, and mutable state—are orthogonal to

1
To see the full code for all the examples of [13] implemented in terms of codata, visit https://github.com/zachsully/codata_

examples.

https://github.com/zachsully/codata_examples
https://github.com/zachsully/codata_examples
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this particular abstraction goal. While they may be useful extensions to codata for accomplishing

programming tasks, only pure codata itself is needed to represent abstraction.

Specifying a codata type is giving an interface—between an implementation and a client—so that

instances of the type (implementations) can respond to requests (clients). In fact, method calls are

the only way to interact with our objects. As usual, there is no way to “open up” a higher-order

function—one example of a codata type—and inspect the way it was implemented. The same

intuition applies to all other codata types. For example, Cook’s [7] procedural “set” interface can be

expressed as a codata type with the following observations:

codata Set where
IsEmpty : Set → Bool

Contains : Set → Int → Bool

Insert : Set → Int → Set

Union : Set → Set → Set

Every single object of type Setwill respond to these observations, which is the only way to interact

with it. This abstraction barrier gives us the freedom of defining several different instances of Set
objects that can all be freely composed with one another. One such instance of Set uses a list to keep
track of a hidden state of the contained elements (where elemOf : List Int → Int → Bool
checks if a particular number is an element of the given list, and the standard functional fold is

fold : (a → b → b) → b → List a → b):

finiteSet : List Int → Set

(finiteSet xs). IsEmpty = xs == []

(finiteSet xs). Contains y = elemOf xs y

(finiteSet xs). Insert y = finiteSet (y:xs)

(finiteSet xs).Union s = fold (λx t → t.Insert x) s xs

emptySet = finiteSet []

But of course, many other instances of Set can also be given. For example, this codata type interface

also makes it possible to represent infinite sets like the set evens of all even numbers which is

defined in terms of the more general evensUnion that unions all even numbers with some other

set (where the function isEven : Int → Int checks if a number is even):

evens = evensUnion emptySet

evensUnion : Set → Set

(evensUnion s). IsEmpty = False

(evensUnion s). Contains y = isEven y || s.Contains y

(evensUnion s). Insert y = evensUnion (s.Insert y)

(evensUnion s).Union t = evensUnion (s.Union t)

Because of the natural abstraction mechanism provided by codata, different Set implementations

can interact with each other. For example, we can union a finite set and evens together because
both definitions of Union know nothing of the internal structure of the other Set. Therefore, all
we can do is apply the observations provided by the Set codata type.

While sets of numbers are fairly simplistic, there are many more practical real-world instances

of the procedural abstraction provided by codata to be found in object-oriented languages. For
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example, databases are a good use of abstraction, where basic database queries can be represented

as the observations on table objects. A simplified interface to a database table (containing rows of

type a) with selection, deletion, and insertion, is given as follows:

codata Database a where
Select : Database a → (a → Bool) → List a

Delete : Database a → (a → Bool) → Database a

Insert : Database a → a → Database a

On one hand, specific implementations can be given for connecting to and communicating with a

variety of different databases—like Postgres, MySQL, or just a simple file system—which are hidden

behind this interface. On the other hand, clients can write generic operations independently of any

specific database, such as copying rows from one table to another or inserting a row into a list of

compatible tables:

copy : Database a → Database a → Database a

copy from to = let rows = from.Select(λ_ → True)

in foldr (λrow db → db.Insert row) to rows

insertAll : List (Database a) → a → List (Database a)

insertAll dbs row = map (λdb → db.Insert row) dbs

In addition to abstracting away the details of specific databases, both copy and insertAll can

communicate between completely different databases by just passing in the appropriate object

instances, which all have the same generic type. Another use of this generality is for testing. Besides

the normal instances of Database a which perform permanent operations on actual tables, one

can also implement a fictitious simulation which records changes only in temporary memory. That

way, client code can be seamlessly tested by running and checking the results of simulated database

operations that have no external side effects by just passing pure codata objects.

2.4 Representing Pre- and Post-Conditions
The extension of data types with indexes (a.k.a. generalized algebraic data types) has proven useful

to statically verify a data structure’s invariant, like for red-black trees [25]. With indexed data types,

the programmer can inform the static type system that a particular value of a data type satisfies

some additional conditions by constraining the way in which it was constructed. Unsurprisingly,

indexed codata types are dual and allow the creator of an object to constrain the way it is going

to be used, thereby adding Hoare-style pre- and post-conditions to the observations of the object.

In other words, in a language with type indexes, codata enables the programmer to express more

information in its interface.

This additional expressiveness simplifies applications that rely on a type index to guard observa-

tions. Thibodeau et.al. [23] give examples of such programs, including an automaton specification

where its transitions correspond to an observation that changes a pre- and post-condition in its

index, and a fair resource scheduler where the observation of several resources is controlled by an

index tracking the number of times they have been accessed. For concreteness, let’s use an indexed

codata type to specify safe protocols as in the following example from an object-oriented language

with guarded methods:
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index Raw , Bound , Live

codata Socket i where
Bind : Socket Raw → String → Socket Bound

Connect : Socket Bound → Socket Live

Send : Socket Live → String → ()

Receive : Socket Live → String

Close : Socket Live → ()

This example comes from DeLine and Fähndrich [8], where they present an extension to C
♯

constraining the pre- and post-conditions for method calls. If we have an instance of this Socket i
interface, then observing it through the above methods can return new socket objects with a

different index. The index thereby governs the order in which clients are allowed to apply these

methods. A socket will start with the index Raw. The only way to use a Socket Raw is to Bind it,
and the only way to use a Socket Bound is to Connect it. This forces us to follow a protocol when

initializing a Socket.

3 H : A LANGUAGEWITH BOTH DATA AND CODATA
We have seen how codata can be used in many of the cases where object-oriented programming

is also useful. In fact, several of our examples come from object-oriented languages. To begin to

formalize the similarities of codata and objects, we define the languageH which contains two sorts

of types: data and codata. Though we have not discussed them much, data types have been included

for two reasons. At first glance data type constructors may look similar to object constructors

specified in a class declaration; we aim to show how they are different. Secondly, data types have

long been missing from object-oriented languages and we hope to show how easily they can be

added.

For notation, we use two representations of a list for convenience. The notation S is a list

containing the elements S . We write S0, S1, . . .n to mean a list of n elements that we wish to index in

to; we omit the subscript n when we do not care about the list’s length. For both data constructors

and codata observations, we omit the parentheses when they take no arguments, e.g. e .fst instead
of e .fst().
This presentation differs from other languages combining data and codata [2, 9, 22] in that we

have no special function type, instead it is added as a codata type in the same way object-oriented

programmers implement functions as an interface with a single method. For convenience, we

embed the λ-calculus inH as the following macro:

[[x]] = x [[t e]] = [[t]].app([[e]]) [[λx .u]] = {app(x) → [[u]]}

For example, the function call (λx .1 + x) 41 is represented as {app(x) → x + 1}.app(41).

3.1 H Syntax
Figure 1 gives the syntax of H . Types are divided into either data or codata types, where types

like “bool” and “nat” are data and “fun” (function types) and “stream” are codata. Since we have no

builtin types, every type must be specified by a (co)data declaration. A data type declaration X is

specified by a set of constructors with the form Ki : τ i → X, where Ki is the constructor’s name, τ i
is the list of arguments for the constructor, and the resulting type of X. On the other hand, a codata

declaration A is specified by a set of observations with the form Oi : A → τ i → ρi , where Oi is

the observation’s name, τ i is a list of arguments that the observation requires, and ρi is the final
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Variables
X, Y,Z ∈ Data A,B,C ∈ Codata x,y, z ∈ Term

Types

τ , ρ,φ,γ ∈ Type ::= X Data

| A Codata

Declaration ::= data X where {Ki : τ i → X} Data decl.

| codata A where {Oi : A → τ i → ρi } Codata decl.

Terms
e, t,u ∈ Term ::= x Variable

| fix x :τ in e Fixed point

| K(e) Data intro.

| case e of {Ki (x i ) → ti } Data elim.

| {Oi (x i ) → ei } Codata intro.
| e .O(t) Codata elim.

Fig. 1. Syntax of H

Terms Γ ⊢ t : τ

Γ, x : τ ⊢ x : τ

Γ, x : τ ⊢ e : τ

Γ ⊢ fix x :τ in e : τ

Γ ⊢ e0 : τ0 . . .

Γ,K : τ0 · · · → X ⊢ K(e0, . . . ) : X
Γ ⊢ e : X K0 : ρ0 → X ∈ Γ Γ, x0 : ρ0 ⊢ t0 : τ . . .

Γ ⊢ case e of {K0(x0) → t0, . . . } : τ

O0 : A → τ 0 → ρ0 ∈ Γ Γ, x0 : τ0 ⊢ e0 : ρ0 . . .

Γ ⊢ {O0(x0) → e0, . . . } : A
Γ ⊢ e : A Γ ⊢ t0 : ρ0 . . .

Γ,O : A → ρ0 · · · → τ ⊢ e .O(t0, . . . ) : τ

Fig. 2. Type System of H

type. Notice that every constructor in a data declaration X always produces the same output type X.
Dually, every observation in a codata declaration A always requires the same first input type A.

The term level has standard syntax for variables x and self reference (fixed points). In a manner

familiar to functional programmers, data types are introduced by fully applying constructors

K(e) and are eliminated through case expressions which contain branches that pattern match on

constructors. In a manner familiar to object-oriented programmers, codata types are introduced

by a set of observation declarations (like method declarations) and are eliminated by selecting an

observation and supplying its arguments e .O(t) (like method invocation). For simplicity, we assume

that case expressions have a branch for every constructor of the data type that it is eliminating and

sets of observations have a branch for every observation of the codata type that it is introducing.

3.2 H Static Semantics
The type system forH is given in Figure 2. It is composed of a single judgement for terms Γ ⊢ t : τ
which assumes that the declared constructors and observations are found in the environment Γ.
The rules for variables, fixed points, data introduction and elimination are standard.
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Contexts and Values
E ∈ Context ::= □

| fix x :τ in E

| K(V , E, t)
| case E of {Ki (x i ) → ti }
| E.O(t)
| V .O(V , E, t)

V ∈ Value ::= K(V )

| {Oi (x i ) → ei }

Reduction Rules t 7→ e

fix x :τ in e 7→ e[fix x :τ in e/x]

case Ki (V ) of {. . . ,Ki (x i ) → ei , . . . } 7→ ei [Vi/xi ]

{. . . ,Oi (x i ) → ei , . . . }.Oi (V ) 7→ ei [Vi/xi ]

Fig. 3. Call-by-value Semantics forH

The rules for codata introduction and elimination differ from most other presentations of codata

[3, 9, 22] because we include arguments in observations. Codata introduction checks that all of

the observations conform to the interface given in the codata declaration, i.e. they take the correct

number and type arguments, and produce a result of the correct type. The inclusion of arguments

is what allows us to encode the λ-calculus as codata. The rule checking that each branch of a codata

introduction is similar to the standard typing rule for lambdas. That is, we check that the term

in the branch has the type ρi given an environment extended with the observations arguments.

This alludes to the idea that codata and objects are simply multi-entry functions [16]. And like the

standard function elimination rule (i.e. function application), codata elimination checks that the

codata and the arguments match the types given in the observation’s declaration.

3.3 H Dynamic Semantics
We give the call-by-value operational semantics forH in Figure 3. A call-by-name semantics for

codata is given in [9] but we omit it here because call-by-value is used in the majority of object-

oriented languages. The dynamic semantics includes evaluation contexts, values, and reduction

rules. Only data whose arguments are fully evaluated are treated as values, whereas every codata

introduction is a value. To produce data type values, we evaluate all of the arguments of an applied

constructor from left to right before returning a value. On the other hand, codata introductions

are treated as values immediately which gives them the on-demand semantics discussed in Sec-

tion 2.2, even in a call-by-value language. For evaluation contexts, the fixed point, constructor, and

case expressions contexts are all standard. The contexts for observation application (E.O(u) and

V .O(V , E, t)) correspond to the function application contexts (E e and V E) in the call-by-value

λ-calculus, where the codata object must first be evaluated to a value then all of the arguments are

evaluated from left to right.

There are only three reduction rules. The fixed point rule is standard. The case expression rule

selects the branch matching constructor used while substituting arguments for variables. Similarly,

the observation rule selects the branch matching the observation used while substituting arguments

for variables.
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Subtypes τ <: φ

τ <: τ Refl
τ <: ρ ρ <: φ

τ <: φ Trans

(codata A where {O0 : A → τ0 → ρ0, . . .n+m})[B/A]
codata B where {O0 : B → τ0 → ρ0, . . .n}

A <: B
Breadth

codata A where {O0 : A → ρ0 → τ0, . . .n}
codata B where {O0 : B → φ0 → γ0, . . .n}

φ0 <: ρ0[B/A] τ0[B/A] <: γ0 . . .n

A <: B
Depth

Terms Γ ⊢ t : τ

· · ·

Γ ⊢ t : φ φ <: τ

Γ ⊢ t : τ
Sub

Fig. 4. Subtyping rules forH<:

3.4 Properties
H enjoys the type safety properties of progress and preservation. That is, every well-typed term

is either a value of a data or codata type or there is a step it can take. Progress holds over closed

terms. The proofs are provided in Appendix A.

Theorem 1 (H Progress). If ⊢ t : τ , then either t is a value or t 7→ t ′.

Theorem 2 (H Preservation). If Γ ⊢ t : τ , and t 7→ t ′, then Γ ⊢ t ′ : τ .

4 H<:: CODATAWITH SUBTYPING
The next step in route to comparing codata to objects is to incorporate one of the defining features

of object-orientation: subtyping. Intuitively, the notion of subtyping is the exact same for codata as

it is for objects and records. That is, if a codata type A has the same observations as another codata

type B plus some more, then we can safely use a term of type A where a term of type B is required.

For example, a triple codata type with the observations fst : Triple → int, snd : Triple → int,
and thd : Triple → int can be used in place of a pair codata type that only contains the first two

observations.

Adding subtyping toH requires that we make changes only to the type system (see Figure 4).

We call the new language H<:. First, we define a subtyping relation τ <: σ that states “τ is a

subtype of σ ”. The first two rules state that (<:) is both reflexive and transitive. Next, we define two

ways that a codata type can be a subtype of another. The first states that if a codata has all of the

same observations and more of another, then it is a subtype of the other; this is known as width

or breadth subtyping. For instance, a codata type ⊤ with no observations (codata ⊤ where {}) is
a supertype of all codata types with one or more observations; this is similar to the Object type
in Java. The second subtyping rule fore codata states that if the argument and return types of a

codata’s observations are subtypes of another codata’s, then it is a subtype of the other; this is

known as depth subtyping. In the depth subtyping rule, the subtyping relation for arguments is
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Variables
A,B,C,D, E ∈ Class name/Type

Programs

D ∈ Class declaration ::= class A extends B {C f ; K ; M}

K ∈ Constructor declaration ::= A(C f ) {super(f ); this. f = f }

M ∈ Method declaration ::= A m(B x) {return t ; }
t, e,u ∈ Terms ::= x Variable

| t . f Field access

| t .m(e) Method invocation

| new A(t) Object creation

| (A) t Cast

Fig. 5. Syntax of Featherweight Java

contravariant, while results are covariant. This corresponds to the function subtype rule in the

λ-calculus with subtypes where functions are contravariant in their domain and covariant in their

codomain.

In both the breadth and depth rules, the subtyping relation for codata is structural because we

substitute the names of one codata type for another. This structural subtyping differs from the

nominal subtyping found in classed-based object-oriented languages like Java and C#. Structural

subtyping subsumes nominal subtyping, but it makes typecheckingH<: not syntax-directed. We

will expand on this difference more when we compile classes into codata in Section 6.

The final step in adding subtyping toH is to extend the term typing rules to include a subsumption

rule. This extra rule allows us to replace one type with another if it is a subtype. This can be seen

as implicit upcasting, which allows us to forget observations that we do not need.

H<: with its extended type system maintains the same properties of progress and preservation

as H . These proofs are in Appendix B.

Theorem 3 (H<: Progress). If ⊢ t : τ , then either t is a value or t 7→ t ′.

Theorem 4 (H<: Preservation). If Γ ⊢ t : τ and t 7→ t ′, then Γ ⊢ t ′ : τ .

5 FEATHERWEIGHT JAVA: A CLASS-BASED OBJECT-ORIENTED LANGUAGE
Popular object-oriented programming languages focus on the notion of a class which can be thought
of as a template for constructing and extending objects in addition to specifying their interface.

Featherweight Java (FJ) [14] is a standard model of a class-based language that was designed to

help model extensions to Java.

5.1 FJ Syntax
The syntax of FJ is given in Figure 5. It is simple, containing only a five productions. The only types

in FJ are object types that are either declared or the base/top object type: ⊤. Class declarations

introduce new object types. They specify a new class name, its supertype, a set of fields C f and

their types, a single constructor K , and a set of methodsM. Fields of the class being defined are

distinct from fields of the supertype, whereas methods of the class being defined may overload

methods of the supertype. Constructors bear the same name as the type created and take only the

class’s fields and those of its supertype as arguments. The syntax of FJ’s constructors suggests

two common Java practices: that the super class’s constructor is initialized with the relevant fields
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Classes D OK

K = A(D0 д0, . . . , E0 h0, . . . ) {super(д0, . . . ); this. f0 = h0; . . . }
fields(B) = D0 д0, . . .
M0 OK IN A . . .

class A extends B {C0 f0, . . . ;K ;M0, . . . } OK

Methods M OK IN A

x0 : B0, . . . , this : C ⊢ e : D
D <: A

m : B0 · · · → A ∈ methods(A) ∪methods(super(A))

A m(B0 x0, . . . ) {return e; } OK IN C

Terms Γ ⊢ t : τ

Γ, x : τ ⊢ x : τ

Γ ⊢ e : A fields(A) = C0 f0, . . .

Γ ⊢ e .fi : Ci

Γ ⊢ e : A mtype(m,A) = D0, · · · → C Γ ⊢ u0 : B0 B0 <: D0 . . .

Γ ⊢ e .mi (u0, . . . ) : C

fields(C) = D0 f0, . . . Γ ⊢ u0 : B0 B0 <: D0 . . .

Γ ⊢ new C(u0, . . . ) : C

Γ ⊢ e : D D <: C
Γ ⊢ (C) e : C

Γ ⊢ e : D C <: D C , D
Γ ⊢ (C) e : C

Γ ⊢ e : D D ̸<: C C ̸<: D
Γ ⊢ (C) e : C

Fig. 6. Type System of FJ

and that the class’s fields are initialized with the arguments of the constructors. Finally, method

declarations specify a return type, a method name m, a list of typed arguments, and a term.

Terms in FJ contain some of the same syntax found in H<:: variables and method invocation

(which field access is a no argument version of). For working with classes, terms contain syntax

for object creation through object constructor application and a new cast operation.

We will make use of several auxiliary functions that require knowledge of all class declarations.

fields(A) and methods(A) return all of the fields and methods of class A including those of all of its

supertypes. super(A)will return the supertype that A extends and constr(A) returns the constructor
declaration for A. Lastly, supertypes(A) returns a list containing a string representation for all of

the supertypes of A.

5.2 FJ Static Semantics
The type system for FJ is found in Figure 6. It contains judgements for class declarations, methods,

and terms. The class declaration judgement checks the correctness of the object constructor and

that the methods are well-formed. An object’s constructor is correct iff all of the fields of the

supertype constructor are passed to its initialization super(д) and if all of the fields for this class

have been set with this. f = f .

Checking that methods are correct is given by a new judgement M OK IN A stating thatM

is a well-formed method for the class A. This requires that the method body is well-typed in the
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Contexts and Values
E ∈ Context ::= □

| E. f
| E.m(t)

| V .m(V , E, t)

| new A(V , E, t)
| (A) E

V ,W ∈ Values ::= new A(V )

Reduction Rules t 7→ e

(new C(V )). fi 7→ Vi
(new C(V )).mi (W ) 7→ ui [W /x][new C(V )/this]

(A) (new B(V )) 7→ new B(V ) where B <: A

Fig. 7. Featherweight Java Operational Semantics

environment that includes the method arguments and the self-referencing this variable. The type of
the body must be a subtype of the declared method output type. Finally, we check that the method

has the same type declared in either A or one of its super types. This final property is required

for method override, ensuring that if we override a supertype’s method, then its type remains

unchanged.

The judgement for terms is Γ ⊢ t : τ and it assumes knowledge of all of the classes used. The

rules for field access and method invocation check that the object being observed actually contains

the field or method requested. Method invocations and object constructor applications have checks

that their arguments are subtypes of the declared argument type. Finally, we look to the three cast

rules. We can say that a cast is well-typed if the argument is being cast to a supertype, cast to a

subtype, or if it is being cast to an unrelated type. Thus, there is no way to statically rule out any

cast. We will see next that casts only serve a purpose at runtime.

5.3 FJ Dynamic Semantics
The operational rules as well as evaluation contexts and values for FJ are given in Figure 7 following

the call-by-value semantics given in Pierce [19]. The evaluation contexts resemble those forH<:

closely, where we must evaluate an object to a value before performing a field access, a method call,

or a cast. And because the semantics is call-by-value, arguments of method calls and constructors

must be fully evaluated. The only value in FJ is an applied object constructor.

As designed, the reduction rules for FJ are simple. Accessing the ith field is simply returning the

ith field of the constructor. Invoking the ith method involves jumping to the ith method body of

the class doing substitutions for arguments and a special substitution of the current object for the

this keyword. Finally we see that the casting rule is not so much a computation as it is a runtime

check. If the cast is not an upcast, then the program will get stuck.

6 COMPILING FEATHERWEIGHT JAVA TO H<:

Finally, we are prepared to present the relationship between codata and class-based objects as a

compilation of objects to codata. First, we present the transformation with examples, then we give

the full transformation, and last, we discuss its correctness.
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6.1 Compilation By Example
Classes and Constructors. As the only types in Featherweight Java, we must start with how to

represent the essence of classes inH<:. Intuitively, classes are transformed into codata declarations

which specify their interface. Constructors are treated specially because they are not part of this

interface, i.e. we cannot call a constructor as a method of an object. So constructors are compiled to

functions that introduce instances of the new codata type. As an example, let’s consider this notion

of a product type in the FJ given in [14]:

class Pair extends ⊤ {

⊤ fst;
⊤ snd;
Pair(⊤ fst,⊤ snd) {super(); this.fst = fst; this.snd = snd; }
setfst(⊤ newfst) {return (new Pair(newfst, this.snd); )}

}

Given any two objects we can construct a Pair object with the fields “fst” and “snd”. There is also a

“setfst” method which will return a new Pair object with a different first component
2
.

We translate this class intoH<: by creating a codata declaration Pair that captures the class’s
interface. For the constructor, we define a function newPair (making use of the encoding of the

λ-calculus given in Section 3).

codata Pair where
fst : Pair → ⊤

snd : Pair → ⊤

setfst : Pair → ⊤ → Pair

newPair = fix newPair : ⊤ → ⊤ → Pair in
λfst:⊤.λsnd:⊤.

fst → fst
snd → snd

setfst(newfst) → newPair newfst snd


Since both the fields and methods of a class are part of its interface, the codata type declaration

generated contains observations for both. The constructor for the class (newPair) is a function
that takes the fields of a class as arguments before producing the codata type. Using function

application for the fields of object construction captures the fact that FJ classes have call-by-value

fields and call-by-name methods. Since, observation arguments in H<: are evaluated ahead of

time, the translated fields of the class will be evaluated in the same manner as object constructor

application in FJ.

Another aspect of the classes is self-reference. In this example, we see self-referenced fields

which are handled by simply accessing the respective variable in the closure for the codata type,

e.g. {fst → fst, . . . }. Self-referencing constructor applications and method calls require the fixed

point to construct a new object. We see this in the “setfst” branch of the codata introduction.

Inheritance. A useful feature of object-oriented programming not captured in the example above

is inheritance (since Pair in inherits nothing from the empty object ⊤). For this, let’s consider a

2
In this example, the ⊤ object is used as a “poor man’s” polymorphism allowing us to build a pair out of any object since

everything is a subtype of ⊤.
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Triple object that extends Pair by one field.

class Triple extends Pair {
⊤ thd;
Triple(⊤ fst,⊤ snd,⊤ thd) {super(fst, snd); this.thd = thd; }

}

The generated codata type captures the extended interface by including all of the fields and methods

of its supertypes in its declaration’s observations.

codata Triple where
fst : Triple → ⊤

snd : Triple → ⊤

thd : Triple → ⊤

setfst : Triple → ⊤ → Pair

newTriple = fix newTriple : ⊤ → ⊤ → ⊤ → Triple in
λfst:⊤.λsnd:⊤.λthd:⊤

fst → fst
snd → snd
thd → thd

setfst(newfst) → newPair newfst snd


Notice that the “setfst” method still returns a Pair. To match the notion of methods enforced by

FJ’s type system (Figure 6), inherited methods must take the same types of arguments and return

the same type as declared in the supertype. We see that the body of method is also the same as in

the supertype. If the class Triple overrode that method, then we would include that method body

instead of the one declared in Pair.

Casting. Type casts are used in Featherweight Java only to forget the extra structure of class.

This means that in terminating programs, all casts must be upcasts. As an example, the downcast

(Quadruple) (new Triple(1, 2, 3))

gets stuck because we cannot conjure a “fourth” projection out of thin air. One the other hand, the

upcast

(Pair) (new Triple(1, 2, 3))

will reach a value (new Triple(1, 2, 3)) with the new type Pair. This is safe because we can forget

the “thd” projection of Triple if the rest of the program treats this term as a Pair.
In order to replicate this behavior in our compilation, we need to know subtype information at

runtime. This is done by adding a special casts# observation to every compiled class. This represents

all of the types that the object can be safely cast to, i.e. its own type and that of its supertypes.

codata Pair where
casts# : Pair → [String]
fst : Pair → ⊤

snd : Pair → ⊤

setfst : Pair → ⊤ → Pair

For the “Triple” codata type, this operation is defined as {casts# → [“Triple”, “Pair”, “⊤”], . . . }. We

use this information in a compiled cast operation, such as the following:

[[(Pair) (e : Triple)]] = if “Pair” ∈ [[e]].casts# then [[e]] else Ω
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Declarations
D[[class A extends B {C f ; K ; M}]] = codata A where

casts# : A → [String]
Df [[C f ]]A,Df [[fields(B)]]A
Dm [[M]]A ∪ Dm [[methods(B)]]A

Df [[C f ]]A = f : A → C
Dm [[C m(B x) {return t ; }]]A = m : A → B → C

Constructors
K[[A(C f ) {super(f ); this. f = f }]] = fix newA : C → A in

λf :C.
casts# → [“A”] ∪ casts(super(A))
Kf [[C f ]],Kf [[fields(super(A))]]

Km [[methods(A)]]A, f

Km [[methods(super(A)) −methods(A)]]A, f


Kf [[C f ]] = f → f

Km [[A m(B x) {return t ; }]]C, f = m(x :B) → T[[t]][fi/this.fi] [(newC f0 . . . fn ).m/this.m]

Terms
T[[x]] = x

T[[t . fi ]] = T[[t]].fi
T[[t .m(e)]] = T[[t]].m(T [[e]])

T [[new A(t)]] = K[[constr(A)]] T [[t]]0 . . . T[[t]]n
T[[(A) t]] = let x = T[[t]] in

if “A” ∈ x .casts#

then x
else Ω

Fig. 8. Compiling FJ toH<:

We check that the string representation of the type that we are casting to matches one of those in

codata’s “casts#” observation. If the it matches one then continue, otherwise loop forever. So like

Featherweight Java, the translated program will fail to reach a value if a cast is not an upcast.

6.2 The Compilation
The full encoding of FJ inH<: is given in Figure 8. It is composed of three different translations:

translating class declarations into codata declarations D[[−]], translating constructor declarations

into constructor functions K[[−]], and translating FJ terms into H<: terms T[[−]].

As we just saw, classes are mapped to codata types containing the fields and methods of the

class as well as those of its supertypes and the special “casts#” observation. Since in FJ the fields

of a class are distinct from those of its supertypes, we simply include all of the fields of the class

and supertypes. On the other hand, we support method overriding by only including observations

for the union of the methods of the class and its supertypes. Finally, the translation uses two

sub-translations that ensure the fields and methods appear with the correct form in the codata

declaration.

Object constructors are mapped to self-referencing function definitions, which can be thought

of as an object’s closure. The “casts#” observation is set to a list of strings representing the all of

the supertypes of the class. All of an object’s fields are set to access the closure’s local variable for

that field. Methods are mapped directly to observations multiple arguments. To handle method
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overriding, we include the translation of all of the methods of the class and only the methods of

the super class that have not been overridden. The body of the method is translated with the term

translation. In the term, we must also substitute self-references (this) to access the correct fields and
methods. Self-referenced fields are substituted for the fields of the closure, whereas self-referenced

method calls are substituted for a new construction of the object using the fixed point.

The term translation of fields and methods is a simple mapping to observation applications

in H<:. Constructor application maps to function application (which is a macro for observation

application). The interesting case is the cast operation as discussed in Section 6.1. It is important to

note that this encoding of casts requires data types for the if-statement and checking equality of

strings.

6.3 Correctness
Our translation has three properties: translation of classes preserves subtyping, translation of terms

preserves types, and translation preserves evaluation for both terminating and non-terminating

programs. The proofs of these properties can be found in Appendix C.

Lemma 5 (Subtype preservation). If A <: B in FJ, then [[A]] <: [[B]] in H<:.

Because Featherweight Java’s type system allows downcasts and nonsense casts, type preserva-

tion for the compilation comes with a restriction. That is, it is only valid for programs containing

only upcasts. We argue that this is not much of a restriction, because programs with only upcasts

are the only ones that do not get stuck. We also note that it is these upcasts and our compilation of

them that make it essential for us to add subtyping to H .

Theorem 6 (Type preservation). If Γ ⊢ t : A where t contains only upcasts, then [[Γ]] ⊢ T [[t]] :
[[A]].

Like type preservation, evaluation preservation is not so clean cut. This is because in FJ construc-

tor application new A(V ) is value, which is translated to a function (observation) application in

H<:. However, applications inH<: are not values! The translated constructor application must take

steps before it becomes a codata value. Therefore, we have the following statement of evaluation

preservation to account for this fact.

Theorem 7 (Evaluation Preservation). If t 7→∗ V for some t,V ∈ FJ, then T[[t]] 7→∗ W where
W is a value in H<: such that T[[V ]] 7→W .

7 DISCUSSION
7.1 Enriching Object-orientation
We have shown that many object-oriented features are either contained in (Section 2), can be

incorporated in (Section 4), or compiled down to (Section 6) codata. In the interest of sharing

information in the other direction, let’s see how aspects of codata can be incorporated into object-

orientation.

Algebraic Data Types. The absence of algebraic data types has long been a pain point for object-

oriented languages. Since many concepts can be represented by algebras, it is necessary for pro-

grammers to easily express and manipulate them. For instance, programming language grammars

are algebras and a compiler is simply a series of transformations from one algebraic data structure

to another. The common solution to this problem for object-oriented programmers is to either

use the visitor pattern or type cases to encode the algebraic structure of interest. However, these

solutions include either verbose boilerplate or incomplete runtime type checking, respectively.

The lack of the ability to express these structures directly can easily lead to programmer error. In
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addition to reducing the chance for programmer error created by these encodings, the inclusion of

language support for algebraic data types allows compilers to statically check whether all cases are

covered. These completeness checks are not possible with encodings of algebras because the com-

piler does not know all the cases. Luckily, languages related to linear logic via the Curry-Howard

correspondence (like H ) can show us how to integrate data and codata types.

Fully Corecursive Objects. Corecursive definitions specify how to construct the next part of a
self-similar structure, whereas recursive definitions specify what to do with a smaller part of a

self-similar structure. The former allows for specification of possibly infinite objects. These can

occur often in practice; for instance, a database server is a process that is meant to run forever. In

an attempt to include corecursion in an object-oriented setting, Ancona and Zucca [5] extended

Featherweight Java with regular corecursive objects. A similar extension was added to the functional

language Ocaml [15]. Regular corecursive objects are restricted in that they can only represent

cyclic structures with a finite representation, i.e. an infinite stream of 0s.

Fortunately, H ’s codata types already support unrestricted corecursion. A key aspect of codata

is that it is only evaluated on-demand regardless of the strategy of the host language, as discussed

in Section 2.2. It is this aspect of codata that allows us to define exactly how to build up an infinite

structure, but not run into an infinite loop trying to construct it. The client of the codata will decide

how much of the structure is generated. Interestingly, Featherweight Java can already support this

sort of unrestricted corecursive structures because it has methods which are evaluated on-demand.

There is only an issue with corecursion if the programmer tries to include the corecursion as a

call-by-value field.

Introducing Objects with Copatterns. Ancona and Zucca [5] argue that Featherweight Java does

not have a good abstraction for specifying corecursive objects. Another advantage of using codata

as the base of objects is that it allows us to use copattern matching to define them [2]. Dual

to pattern matching which allows the programmer to look deeply into a nested data structure,

copattern matching allows the programmer to specify how to generate several layers of a nested

(possibly infinite) codata structure. The poster-child of using copattern matching to define complex

corecursive structures is the infinite stream of fibonacci numbers as seen below.

fix fib : stream in
.head → 1

.tail.head → 1

.tail.tail → zipwith (+) fib fib.tail


7.2 Conclusion
In exploring the relationship between codata and objects, we have found that codata is a good

fit for directly modelling several aspects of object-oriented programming including on-demand

evaluation and abstraction. We also saw that by adding subtyping to codata types, we can compile

of the notion of classes into codata. Though our compilation is flexible enough to represent the

features of Featherweight Java, modern object-oriented languages are large beasts that incorporate

many language features not included in it, such as runtime reflection of types and dynamic loading

of classes. For future work, we would like to explore how these may interact with our compilation.

In the spirit of the Curry-Howard correspondence, our work suggests that we can exploit the

close relationship between codata and objects to expand the expressiveness of object-oriented

languages. Additionally, since data and codata integrate so well together, our approach can be used

as a two-paradigm intermediate language that suitable for both functional and object-oriented

languages.
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A TYPE SAFETY FOR H

Lemma 8 (Inversion of Typing forH ). We have a number of observations based on the conclusion
of the typing rules.
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• Γ ⊢ x : τ implies x : τ ∈ Γ
• Γ ⊢ fix x :τ in e : τ implies Γ, x : τ ⊢ e : τ
• Γ ⊢ {O0(x0) → e0, . . . } : τ implies τ = A, O0 : A → ρ

0
→ φ0 ∈ Γ), and Γ, x0 : ρ0 ⊢ e0 : φ0, . . .

• Γ ⊢ e .O(t0, . . . ) : τ implies O : A → ρ0 · · · → τ ∈ Γ, Γ ⊢ e : A, and Γ ⊢ t0 : ρ0, . . .
• Γ ⊢ K(e0, . . . ) : τ implies τ = X, K : ρ0 · · · → X ∈ Γ, and Γ ⊢ e0 : ρ0, . . . .
• Γ ⊢ case e of {K0(x0) → t0, . . . } : τ implies Γ ⊢ e : X and (K0 : ρ0 → X ∈ Γ) ∧ (Γ, x0 : ρ0 ⊢ t0 :
τ )), . . .

Lemma 9 (H Canonical Forms). For e ∈ H where e is a value,

• If Γ ⊢ e : A, then e has the form {Oi (x i ) → ti }.
• If Γ ⊢ e : X, then e has the form K(V ).

Theorem 10 (H Progress). If t ∈ H and ⊢ t : τ , then either t a value or t 7→ t ′.

Proof. By induction on the derivation ⊢ t : τ .

• case x : τ ⊢ x : τ holds vacuously.

• case ⊢ fix x :τ in e : τ , fix x :τ in e 7→ e[fix x :τ in e/x].

• case ⊢ {Oi (x i ) → ei } : A, {Oi (x i ) → ei } is a value.
• case O : A → ρ0 · · · → τ ⊢ e .O(t0, . . . ) : τ ,

By inversion on the typing rule, Γ ⊢ e : A and Γ ⊢ t0 : ρ0, . . . .
By the inductive hypothesis, e is a value or e 7→ e ′.
– case e is a value,

By Lemma 9, e has the form {Oi (x i ) → ui }.
By the inductive hypothesis, ∀ti ∈ t0, . . . , either ti is a value or ti 7→ t ′i .

∗ If all ti are values, then {. . . ,Oi (x i ) → ui , . . . }.Oi (t i ) 7→ ui [ti/xi ]

∗ Otherwise for the first ti where ti 7→ t ′i , we know {Oi (x i ) → ui }.Oi (V , ti , t) 7→

{Oi (x i ) → ui }.Oi (V , t
′
i , t) because V .Oi (V , E, t) is an evaluation context.

– case e 7→ e ′, then e .O(t0, . . . ) 7→ e ′.O(t0, . . . ) because E.O(t0, . . . ) is an evaluation

context.

• case ⊢ K(e) : D,
By the inductive hypothesis, ∀ei∈e , either ei is a value or ei 7→ e ′i .
– If all ei are values, then K(e) is a value.
– Otherwise for the first ei where ei 7→ e ′i , we know K(V , ei , e) 7→ K(V , e ′i , e) because
K(V , E, e) is an evaluation context.

• case Γ ⊢ case e of {Ki (x i ) → ti } : τ ,
By inversion on the typing rule, Γ ⊢ e : X and K0 : ρ0 → X ∈ Γ and Γ, xi : ρ0 ⊢ t0 : τ , . . . .
By the inductive hypothesis, e is either a value or e 7→ e ′,
– case e is a value,

By Lemma 9, e has the form Ki (V ).

Thus, case Ki (V ) of {. . . ,Ki (x i ) → ti , . . . } 7→ ti [Vi/xi ].

– case e 7→ e ′, then case e of {Ki (x i ) → ti } 7→ case e ′ of {Ki (x i ) → ti } because we have

case E of {Ki (x i ) → ti } as an evaluation context.

□

Lemma 11 (H Substitution). If Γ, x : τ ⊢ t : ρ and Γ ⊢ e : τ , then Γ ⊢ t[e/x] : ρ.

Theorem 12 (H Preservation). If t ∈ H , Γ ⊢ t : τ , and t 7→ t ′, then Γ ⊢ t ′ : τ .

Proof. By induction on the derivation Γ ⊢ t : τ .
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• case Γ, x : τ ⊢ x : τ is immediate, since there is no t 7→ t ′.
• case Γ ⊢ fix x :τ in e : τ ,

There is one reduction for t , that is fix x :τ in e 7→ e[fix x :τ in e/x].
By inversion, we know Γ, x : τ ⊢ e : τ .
By Lemma 11, Γ ⊢ e[fix x :τ in e/x] : τ .

• case Γ ⊢ {Oi (x i ) → ei } : τ is immediate, since there is no t 7→ t ′.
• case Γ,O : A → ρ → τ ⊢ e .O(t) : τ ,

By inversion on the typing rule, we know Γ ⊢ e : A and Γ ⊢ t : ρ.
There are three reductions to consider:

– case e .O(t) 7→ e ′.O(t), we know Γ ⊢ e ′.O(t) : τ by the inductive hypothesis and the

observation typing rule.

– case V .O(V , ti , t) 7→ V .O(V , t ′i , t), we know Γ ⊢ V .O(V , t ′i , t) : τ by the inductive hypoth-

esis and the observation typing rule.

– case {. . . ,Oi (x i ) → ui , . . . }.Oi (V i ) 7→ ui [Vi/xi ],
By inversion on the typing rule for e , i.e. Γ ⊢ {. . . ,Oi (x i ) → ui , . . . } : A, we know that

Γ, xi : ρi ⊢ ui : τ .

By Lemma 11, Γ ⊢ ui [Vi/xi ] : τ .
• case Γ,K : τ · · · → X ⊢ K(e) : X,

By inversion on the typing rule, we know Γ ⊢ e : τ .

There is one reduction rule to consider, K(V , ei , e) 7→ K(V , e ′i , e).
By the inductive hypothesis and the constructor typing rule, we know Γ ⊢ K(V , e ′i , e) : X.

• case Γ ⊢ case e of {Ki (x i ) → ti } : τ ,
By inversion on the typing rule, we know Γ ⊢ e : X and K0(x0) : ρ0 → X and Γ, x0 : ρ0 ⊢ t0 :
τ , . . . .
There are two reductions to consider:

– case case e of {Ki (x i ) → ti } 7→ case e ′ of {Ki (x i ) → ti }, we know Γ ⊢ case e ′ of {Ki (x i ) → ti :
τ by the inductive hypothesis and the case-expression typing rule.

– case case Ki (V ) of {. . . ,Ki (x i ) → ti , . . . } 7→ ti [Vi/xi ],
By inversion on the typing rule for e , i.e. Γ,Ki : ρi → X ⊢ Ki (V ) : X, we know that

Γ ⊢ Vi : ρi .

By Lemma 11, we know Γ ⊢ ti [Vi/xi ] : τ .

□

B TYPE SAFETY FOR H<:

Lemma 13 (Inversion of Subtyping for codata in H<:). If A <: B, then we have the codata
declarations (codata A where {O0 : A → φ0 → γ0, . . .m})[B/A] and codata B where {O0 : B →

ρ0 → τ0, . . .n} wherem ≥ n and (ρ0 <: φ0 ∧ γ0 <: τ0) ∧ . . .n .

Lemma 14 (Inversion of Typing for H<:). We have a number of observations based on the
conclusion of the typing rules.

• Γ ⊢ x : τ implies x : φ ∈ Γ and φ <: τ .
• Γ ⊢ fix x :τ in e : τ implies Γ, x : τ ⊢ e : τ .
• Γ ⊢ K(e0, . . . ) : τ implies all of the following
– τ is some data X
– K : ρ0 · · · → X ∈ Γ
– Γ ⊢ e0 : ρ0, . . . .

• Γ ⊢ case e of {K0(x0) → t0, . . . } : τ implies all of the following
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– Γ ⊢ e : X
– K0 : ρ0 → X ∈ Γ
– Γ, x0 : φ0 ⊢ t0 : γ and ρ0 <: φ0 and γ <: τ , . . .

• Γ ⊢ {O0(x0) → e0, . . . } : τ implies all of the following
– τ is some codata B
– B <: A
– O0 : A → ρ

0
→ φ0 ∈ Γ and Γ, x0 : ψ0 ⊢ e0 : γ0 and ρ0 <: ψ0 and γ0 <: φ0, . . .

• Γ ⊢ e .O(t0, . . . ) : τ implies all of the following
– O : A → ρ0 · · · → τ ∈ Γ
– Γ ⊢ e : A
– Γ ⊢ t0 : ρ0, . . .

• Γ ⊢ t : τ implies Γ ⊢ t : φ and φ <: τ

Lemma 15 (H<: Canonical Forms). For e ∈ H<: where e is a value,

• If Γ ⊢ e : A, then e has the form {Oi (x i ) → ti }.
• If Γ ⊢ e : X, then e has the form Ki (V ).

Theorem 16 (H<: Progress). If ⊢ t : τ , then either t is a value or t 7→ t ′.

Proof. By induction on the derivation ⊢ t : τ .
There is one extra case from theH progress proof.

• . . .

• case Γ ⊢ t : τ ,
By inversion, Γ ⊢ t : φ and φ <: τ .
By the inductive hypothesis, either t is a value or t 7→ t ′.

□

Lemma 17 (H<: Substitution). If Γ, x : τ ⊢ t : ρ and Γ ⊢ e : τ , then Γ ⊢ t[e/x] : ρ.

Theorem 18 (H<: Preservation). If Γ ⊢ t : τ , and t 7→ t ′, then Γ ⊢ t ′ : τ .

Proof. By induction on the derivation Γ ⊢ t : τ .

• case Γ, x : τ ⊢ x : τ is immediate, since there is no t 7→ t ′.
• case Γ ⊢ fix x :τ in e : τ ,

There is one reduction for t , that is fix x :τ in e 7→ e[fix x :τ in e/x].
By inversion, we know Γ, x : τ ⊢ e : τ .
By Lemma 11, Γ ⊢ e[fix x :τ in e/x] : τ .

• case Γ ⊢ {Oi (x i ) → ei } : τ is immediate, since there is no t 7→ t ′.
• case Γ,O : A → ρ → τ ⊢ e .O(t) : τ ,

By inversion on the typing rule, we know Γ ⊢ e : A and Γ ⊢ t : ρ.
There are three reductions to consider:

– case e .O(t) 7→ e ′.O(t), we know Γ ⊢ e ′.O(t) : τ by the inductive hypothesis, subsumption

typing rule, and then the observation typing rule.

– case V .O(V , ti , t) 7→ V .O(V , t ′i , t), we know Γ ⊢ V .O(V , t ′i , t) : τ by the inductive hypoth-

esis, subsumption typing rule, and then the observation typing rule.

– case {. . . ,O(x) → u, . . . }.O(V ) 7→ u[V /x] where t = V ,

By inversion on the typing rule for e , i.e. Γ ⊢ {. . . ,O(x) → u, . . . } : B, we know

Γ, x : φ ⊢ u : γ and ρ <: φ and γ <: τ .

By the subsumption typing rule, Γ ⊢ V : φ

By Lemma 11, Γ ⊢ u[V /x] : γ .
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Types
[[C]] = C

Environment
[[•]] = •

[[Γ, x :C]] = [[Γ]], x :[[C]]

Fig. 9. Translation of Types and Environments

By the subsumption typing rule, Γ ⊢ ui [V /x] : τ .
• case Γ,K : τ · · · → X ⊢ K(e) : X,

By inversion on the typing rule, we know Γ ⊢ e : τ .

There is one reduction rule to consider, K(V , ei , e) 7→ K(V , e ′i , e).
By the inductive hypothesis and the constructor typing rule, we know Γ ⊢ K(V , e ′i , e) : X.

• case Γ ⊢ case e of {Ki (x i ) → ti } : τ ,
By inversion on the typing rule, we know Γ ⊢ e : X and K0 : ρ0 → X ∈ Γ and ((Γ, x0 : φ0 ⊢
t0 : γ ) ∧ ρ0 <: φ0 ∧ (γ <: τ )), . . . .
There are two reductions to consider:

– case case e of {Ki (x i ) → ti } 7→ case e ′ of {Ki (x i ) → ti }, we know Γ ⊢ case e ′ of {Ki (x i ) → ti :
τ by the inductive hypothesis and the case-expression typing rule.

– case case Ki (V ) of {. . . ,Ki (x i ) → ti , . . . } 7→ ti [Vi/xi ],
By inversion on the typing rule for e , i.e. Γ,Ki : ρi → X ⊢ Ki (V ) : X, we know that

Γ ⊢ Vi : ρi .

By the subsumption typing rule, Γ ⊢ Vi : φi .

By Lemma 11, we know Γ ⊢ ti [Vi/xi ] : γ .

By the subsumption typing rule, Γ ⊢ ti [Vi/xi ] : τ .
• case Γ ⊢ t : τ ,

By inversion on the subsumption typing rule, we know Γ ⊢ t : φ and φ <: τ .
By the inductive hypothesis, we know Γ ⊢ t ′ : φ where t 7→ t ′.
By the subsumption typing rule, we know Γ ⊢ t ′ : τ .

□

C CORRECTNESS OF COMPILATION
First, we must specify the translation of FJ types and environments to H<:’s (Figure 9) which were

omitted in the main text.

Lemma 19 (Subtype preservation). If A <: B for FJ types A,B, then [[A]] <: [[B]] for the H<:

codata types.

Proof. By induction on the subtype relation for FJ.

• case A <: A, is immediate as H<: contains the same reflexive subtype rule.

• case A <: C where A <: B and B <: C, holds with induction and H<:’s similar transitivity

rule.

• case A <: B where there exists the class declaration class A extends B {. . . },
Both A and B are translated into codata declarations. Since A extends B, its translation
contains a “casts

#
” observation and all of the fields and methods of B in addition to its own.

Therefore, the breadth subtyping rule for codata gives us [[A]] <: [[B]].

□
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Theorem 20 (Type preservation). If Γ ⊢ t : A where t contains only upcasts, then [[Γ]] ⊢ T [[t]] :
[[A]].

Proof. By induction on the derivation Γ ⊢ t : A.

• case Γ, x : τ ⊢ x : τ is immediate because translation of types is the identity.

• case Γ ⊢ e . fi : Ci ,

By inversion on the field access typing rule, Γ ⊢ e : A and fields(A) = C0 f0, . . . .
By the inductive hypothesis and Γ ⊢ e : A, we know [[Γ]] ⊢ T [[e]] : [[A]].
We know by T[[−]] on the class definition of A, that fi : A → Ci ∈ [[Γ]].
ByH<:’s observation rule, [[Γ]] ⊢ T [[e]].fi : [[Ci ]].

• case Γ ⊢ e .mi (u0, . . . ) : C,
By inversion on the method invocation rule, Γ ⊢ e : A, mtype(mi ,A) = D0 · · · → C, and
Γ ⊢ u0 : E0 where E0 <: D0 . . . .
By the inductive hypothesis and Γ ⊢ e : A, Γ ⊢ u0 : E0, . . . , we know [[Γ]] ⊢ T [[e]] :

[[A]], [[Γ]] ⊢ T [[u0]] : [[E0]], . . . .
By Lemma 19, [[E0]] <: [[D0]], . . . .

By Dm[[−]], a method of type D0 · · · → C is translated to an observation of type A →

D0 · · · → C ∈ H<:.

By the H<: observation, we can build the derivation [[Γ]] ⊢ T [[e]].mi ([[u]]0, . . . ) : [[C]] after
applying the subsumption typing rule to each of the arguments [[Ei ]] ⇒ [[Di ]].

• case Γ ⊢ new C(u0, . . . ) : C,
By inversion on the object construction rule, we know fields(C) = D0 f0, . . . , Γ ⊢ u0 : B0

where B0 <: D0, . . . .
By the inductive hypothesis, [[Γ]] ⊢ T [[u0]] : [[B0]], . . . .
By Lemma 19, [[B0]] <: [[D0]], . . . .

By C[[−]], an object constructor is turned into a recursive function with the type D0 · · · →

C ∈ H<:.

By T[[−]], object constructor application is tuned into function application.

Since functions are macros for observations, we can use the observation typing rule

to construct the derivation [[Γ]] ⊢ K[[constr(C)]] T [[u0]] · · · : [[C]] after applying the

subsumption rule to the arguments [[Bi ]] ⇒ [[Di ]].

• case Γ ⊢ (C) e : C,
There are three typing rules for casts, but we only need to focus the ones with upcasts.

By inversion on the typing rule for an upcast, we know Γ ⊢ e : D.
By the inductive hypothesis, [[Γ]] ⊢ T [[e]] : [[D]].
ByT[[−]], casting becomes an if-expression (a macro for case-expressions). The interrogated

term is looking up a data type in a list, which is valid forall codata constructed by translating

class definitions because they all contain the casts# observation. The branches of the if
statement are T[[e]] and Ω.
[[Γ]] ⊢ T [[e]] : [[D]] holds by induction and [[Γ]] ⊢ Ω : [[D]] holds by the definition of the Ω
macro.

Since, (C) e contains only upcasts. The only typing rule that applies is one where D <: C.
By Lemma 19, [[D]] <: [[C]].
By the subsumption typing rule, [[Γ]] ⊢ T [[e]] : [[C]].

□

Theorem 21. If t 7→∗ V for some t,V ∈ FJ, then T[[t]] 7→∗ W whereW is a value inH<: such that
T[[V ]] 7→W .
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Proof. This holds by the following observations:

• For any V in FJ, T[[V ]] 7→∗ W , whereW is a value inH<:.

There is only on value in FJ: new C(V ). This is translated into a function application

(K[[constr(A)]] T [[V ]]) in H<:. This always length V plus 1 steps to result in a codata type

value inH<:.

• For every evaluation context E in FJ, there exists some evaluation context E ′
in H<: such

that T[[E[t]]] = E ′[T [[t]]].
– case □, is trivial as E ′ = □.
– case E. f , then E ′ = E.f.
– case E.m(e), then E ′ = E.mi (e).
– case V .m(V0, . . . ,Vn, E, t0, . . . , tm), E

′ = V .m(V0, . . . ,Vn, E, t0, . . . , tm).
– case new A(V0, . . . ,Vn, E, t0, . . . , tm), E ′

is K[[constr(A)]] V0 . . . Vn E t0 . . . tm , which
matches the observation argument context.

– case (A) E, E ′
is let x = E in . . . , which matches the observation argument context, since

let-expressions desugar into function application.

• For any t 7→ t ′ in FJ, T[[t]] 7→∗ T[[t ′]].

– case (new C(V )). fi 7→ Vi ,

T[[(new C(V )). fi ]] is (K[[constr(A)]] T [[V ]]).fi
By the definition of K[[−]] and H<:’s dynamic semantics, we know that the second step

taken must be the fixed point substitution.

Next, we take length of V steps of copattern matching to get to a codata introduction

(this is taking the fields as arguments).

Finally, one more reduction gets the ith field from the codata type, which is T[[Vi ]].

– case (new C(V )).mi (W ) 7→ ui [W /x][new C(V )/this],
This case is almost identical to the field access case. The difference being that copattern

matching returns a term T[[ui ]][T [[W ]]/x]. The substitution for this in T[[ui ]] is handled
during the translation K[[−]].

– case (A) (new C(V )) 7→ new C(V ) where C <: A,
As with the other two cases, the first steps are to build a codata type by fixed-point

substitution and accepting the fields V as arguments. Next we take steps evaluating the

interrogated term of the if expression by the case-expression evaluation context. If C <: A,
then the branch returning the evaluated T[[new C(V )]] is returned.

□
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