
Understanding the Impact of Dynamic Power
Capping on Application Progress

Directed Research Project Report

Srinivasan Ramesh
sramesh@cs.uoregon.edu

Advisor: Allen D. Malony
malony@cs.uoregon.edu

Secondary Advisor: Swann Perarnau
swann@anl.gov

Committee Members: Allen D. Malony, Hank Childs, and Lei Jiao

Department of Computer and Information Science
University of Oregon

United States of America

Understanding the Impact of Dynamic Power
Capping on Application Progress

Abstract—Electrical power has become an important design
constraint in high-performance computing (HPC) systems. On fu-
ture HPC machines, power is likely to be a budgeted resource and
thus managed dynamically. Power management software needs to
reliably measure application performance at runtime in order to
respond effectively to changes in application behavior. Execution
time tells us little about how the science in the application is
progressing toward an application-defined end goal. To the best
of our knowledge, no study has defined or categorized online
application progress in the context of power management. Based
on semi-structured interviews with HPC application-specialists,
we define an online notion of progress—an application-specific
metric that can be monitored at runtime to provide a sense of
the rate at which application science is being performed. Using
instrumentation, we characterize and categorize the progress
of various production scientific applications and benchmarks.
We propose a model of the impact of dynamic power capping
on application progress. By experimental evaluation, we show
that our model accurately captures the general behavior of the
progress of different classes of applications under a power cap.
We believe that such a model is an important first step toward
the design of more dynamic power management policies for HPC
systems.

Index Terms—dynamic power management, online perfor-
mance characterization, application progress, power capping

I. INTRODUCTION

Power has been a critical design constraint at the processor
level for a decade now. Power constraints in the processor have
resulted in the notion of dark silicon—the entire chip cannot
be run at full power without overheating. As a result, hardware
employs techniques to manage power usage in the background.
The Intel Turbo-Boost technology is a prime example of a
built-in power management infrastructure on the processor.

Power has now become a critical design constraint at the
high-performance computing (HPC) system level. This is due
primarily to the fact that IT infrastructure and electrical power
needs are becoming economically infeasible. In this context,
one can reasonably expect future HPC systems to be power
budgeted. Consequently, the limited power in such systems
needs to be managed effectively.

The broad goal of power management in the context of HPC
is to optimize performance under a power budget. The power
management system needs to be dynamic in order to respond
to changes in the system and application behavior. A key
requirement of a dynamic control system is to reliably measure
the online performance of the application. Traditionally, per-
formance has been defined relative to observable metrics about
the program’s code execution, such as instructions per cycle,
execution time, and cache misses. However, this definition of
performance fails to capture the application-level concept of

“progress”, which is a more relevant metric for how well the
system is delivering compute value. Thus, in this study, we use
the terms online performance and progress interchangeably.

Dynamic power management requires online performance to
be monitored as the application is executing. An application-
specific definition of online performance would give the power
management infrastructure additional knowledge to make in-
formed decisions regarding the optimal budgeting of power
in the system. Specifically, we seek answers to the following
questions:

• How do we describe online performance such that it pre-
cisely conveys how a system is delivering scientific value,
in an application-specific, system-agnostic manner?

• What are the challenges involved in employing online
performance for the purpose of generating a performance
baseline?

• By employing power capping as a means to limit node
power, how do we model its impact on online perfor-
mance?

To the best of our knowledge, our research is the first extensive
study that defines and categorizes online performance (i.e.,
progress) for production HPC applications in the context of
power management. The paper makes the following contribu-
tions:

• Based on semi-structured interviews with HPC applica-
tion scientists, we define, categorize, extract, and charac-
terize progress for a set of production HPC applications.

• We study and model the impact of dynamic power
capping schemes on progress for this set of applications.

• We show that our model accurately captures the impact
of dynamic power capping for different classes of appli-
cations.

The rest of this paper is organized as follows. Section II
provides the motivation for characterizing online performance.
Section III defines and categorizes online performance for the
selected applications in our study. Section IV describes the
methodology used to extract progress. Section V describes
the dynamic power capping schemes and studies their impact
on progress. Section VI models and evaluates the impact of
dynamic power capping on progress. Section VII describes
the related work. Section VIII summarizes our conclusions
and briefly discusses directions for future work.

II. MOTIVATION

Argo is an on-going project of the U.S Department of
Energy to design and develop low-level system software for

future exascale systems. As a part of the Exascale Computing
Project (ECP), Argo aims to adapt, extend, and improve the
low-level HPC system software stack, based on the current
expectations of exascale architectures and workloads.

On the power management side, the Argo project leverages
the hierarchical nature of typical HPC systems to provide a
comprehensive approach to dynamic power management [1].
At its core, this approach relies on a hierarchy of control
loops that cooperate across system, job, and compute nodes to
improve both power consumption and application throughput.
At the top, a system controller monitors power across the
entire machine and distributes power budgets across the jobs.
Inside each job, this power budget is then distributed to nodes,
according to application characteristics and node variability.
On each node, a daemon is in charge of enforcing the power
budget while maximizing performance. The recently started
HPC PowerStack community-driven effort is advocating for a
similar power management infrastructure.

At the node level, the focus of this paper, a node re-
source manager (NRM) implements our resource management
policies. This component uses direct access to hardware to
measure and control power. It is ultimately responsible for the
enforcement of a power budget received from higher levels
in the hierarchy, while improving application performance.
On the control side, various techniques are available to the
NRM to enforce a power budget, including dynamic voltage
frequency scaling (DVFS), dynamic duty cycle modulation
(DDCM), and dynamic hardware power capping methods such
as Intel’s running average power limit (RAPL).

In order to design efficient power management policies, the
NRM must also be able to monitor both power and application
performance. We argue in this paper that more efficient and
more dynamic control policies could be designed if application
performance in particular could be easily monitored online.
Among the policies we envision are the following:

• In response to an increasing system load, the NRM
receives gradually decreasing power budgets and chooses
the optimal strategy that respects the power budget with
the least impact on performance.

• A large, high-priority job begins executing elsewhere
on the system, and the power budget for the currently
executing low-priority job is reduced. The NRM responds
to this reduced power budget for the low-priority job by
implementing a hard, immediate power cap on the node.

Past studies [2]–[5] have focused largely on modeling the
impact of power-limiting techniques on execution time or a
static application metric output at the end of the run. These
studies form the basis for the work we present here. When
dealing with the question of dynamic power management,
however, they fall short in the following ways:

• They do not describe a way to monitor performance at
runtime that can help make dynamic decisions within the
power management system.

• Execution time tells us nothing about the online charac-
teristics of the application:

– It is unclear whether the application performs work
at a fixed rate.

– It is uncertain whether the application suffers from
inherent instability in terms of the rate at which work
is performed.

– It misses power management opportunities within
fine-grained demarcations such as phases.

Hardware counters that represent instructions per cycle (IPC),
floating-point instructions per second (FLOPS), and million
instructions per second (MIPS) are popular measures of ap-
plication performance. IPC, for example, is a good indication
of how efficiently the hardware is being utilized. We argue
that hardware counters are useful when debugging platform-
specific performance problems but are not always appropriate
measures of progress.

To illustrate this point, we design a simple MPI code sample
shown in Listing 1. The code executes a do work() routine
for a fixed number of iterations. There are two variations of
the do work() routine corresponding to situations where the
load is balanced and when it is not. For both variations of
the do work() routine, the highest value MPI rank always lies
on the critical path. For our code sample, we assign one work
unit for every microsecond that a process spends inside sleep().
The process with the highest MPI rank is on the critical path
and always performs a fixed 1,000,000 units of work.

Listing 1: MPI workload imbalance

void do_unequal_work(int rank, int size) {
float sleeptime =

((float)rank/size)*1000000.0;
usleep((int)sleeptime);

}

void do_equal_work(int rank, int size) {
usleep(1000000);

}

int main(int argc, char** argv) {
int i; double start, end;
// Initialize the MPI environment
MPI_Init(NULL, NULL);

// Get the rank of the process
int world_rank, world_size;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

for(i = 0; i < 5; i++) {
start = MPI_Wtime();

do_(un)equal_work(world_rank+1,
world_size);

MPI_Barrier(MPI_COMM_WORLD);

end = MPI_Wtime() - start;

if(!world_rank) printf("PROGRESS is %f
iterations per second\n", 1.0/end);

}

// Finalize the MPI environment.
MPI_Finalize();

}

This application’s goal is to execute a fixed number of
iterations of some pre defined, arbitrary work. This situation
is atypical of many iterative HPC applications. There are at
least two ways to define online performance:

• Definition 1: The number of iterations of the outer for-
loop executed per second

• Definition 2: The total work units executed in a certain
period of time

The former definition of online performance is relevant to
situations where additional parallelism does not always mean
that the additional work done is used. Consider a graph
search problem where multiple processes take different paths
to search for an element. The search terminates when one
(or more) process finds the element. From an application
performance perspective, one cares about how quickly the
element is found. The latter definition is the more general
case. Additional parallelism means that a larger problem can
be solved or a given problem can be solved faster. Table I
depicts that the MIPS metric is not correlated with Definition 1
of online performance. Along with the useful work, the MIPS
metric captures the wasted cycles due to busy waiting spent at
the MPI barrier as a result of load imbalance. However, this
has no bearing on the online performance of the application,
which remains at a constant one iteration per second regardless
of the do work() routine used.

TABLE I: Correlation between MIPS and online performance

No. of MPI Processes do work Routine Online Performance:
Definition 1 (iterations/second)

Online Performance:
Definition 2 (work units/second) MIPS

24 do equal work 0.998 4, 800, 000 4115.5

24 do unequal work 0.998 2, 400, 000 79724.1

III. DEFINING ONLINE PERFORMANCE

Many scientific applications define a numerical value, called
the figure of merit (FOM), that represents the performance
or quality of results in a way that relates to the science
being carried out. This value is usually generated at the end
of the execution. For example, the FOM for many climate-
modeling codes is the simulated years per day, calculated as
the number of simulated years divided by the time taken to run
the application (in days). The FOM is almost always derived
from the execution time. Note that the FOM may be different
from the metric that represents the quality of the scientific
result. For example, the FOM for iterative solvers involves the
number of iterations executed per second. However, the key
measure of the quality of the solution is the relative residual
norm. This is a measure of error in the system.

To study online performance, we identify three objectives
that are relevant to power management:

• Online performance relates directly to the science being
performed within the application.

TABLE II: Description of applications

Application Description

QMCPACK Monte Carlo quantum chemistry code that samples particle
positions randomly. Phased application.

OpenMC Monte Carlo neutron transport code that simulates particle
movement inside nuclear reactor. Phased application.

AMG Iterative solver benchmark that uses algebraic multigrid pre-
conditioning. Only the solve phase is important for perfor-
mance.

LAMMPS Molecular dynamics package that uses N-body simulation
techniques. No detected phases in the application.

CANDLE Deep Learning based cancer suite. Benchmark code that
uses TensorFlow [6] to solve problems related to precision
medicine for cancer.

STREAM Memory bandwidth benchmark designed to stress-test the
memory subsystem.

URBAN Collection of applications for modeling and simulation of
city infrastructure and transport mechanisms. Multiphysics
application where individual components run at different
timescales.

Nek5000 Computational fluid dynamics library that is a part of larger
applications.

HACC Cosmology application that uses N-body techniques for sim-
ulation of galaxies. Many individual components with distinct
performance characteristics.

• If the application defines an FOM, the online performance
is correlated with this FOM. If not, it is correlated with
the execution time.

• The value of the online performance metric is reasonably
consistent during execution.

The ECP applications and benchmarks that we consider
represent a broad range, from heavily compute to memory-
bound (Table II). We set up discussions with application
specialists to gather their responses to questions in Table III.

A. Gathering insights from application specialists

Table IV summarizes the responses to the questions in
Table III. In the context of defining online performance, QMC-
PACK [7], OpenMC [8], LAMMPS [9], and STREAM [10] are
similar. They are all loop-based applications that have a fixed
amount of work to perform, specified by the input. Execution
time for these applications can be determined by gathering
the input requirements, since the work per loop or timestep
iteration is fixed. The online performance can be accurately
determined by the number of iterations (or equivalent metric)
executed in a given period of time.

We choose to study iterative solvers because they form
an important part of many scientific applications. AMG and
CANDLE [11] share several commonalities. Online perfor-
mance can be measured, but the number of iterations cannot
be predicted in advance for these loop-based codes. Further,
online performance for both these applications does not relate
directly to the science being performed. For example, although
not currently supported, the training phase of the CANDLE
benchmark can be bounded by accuracy. In this case, the
number of epochs required for training to complete cannot
be predicted. However, online performance can be defined as
the number of epochs completed in a given period of time.

HACC [12] and Nek5000 [13] are large applications that
are also loop based. Specifically, Nek5000 is used as a library

TABLE III: Questions posed to application specialists

Question Number Question

1 Is there a well-defined FOM for the application?
2 Can we measure online performance during execution that

correlates well with either FOM or the execution time?
3 Does online performance measure progress toward an

application-defined scientific goal?
4 Is the execution time accurately predictable based on a

performance model of the application?
5 If the application is loop based, is the number of loop

iterations decided prior to execution?
6 If application is loop based, do loop iterations proceed in a

uniform manner in terms of instructions executed?
7 Does the application have multiple phases or components

that are clearly demarcated from a design or performance
characteristic standpoint?

8 What system resource is the application limited by?

TABLE IV: Summary of responses

Question

Application 1 2 3 4 5 6 7 8

QMCPACK Y Y Y Y Y Y Y Compute
OpenMC N Y Y Y Y Y Y Memory latency
AMG Y Y N N N Y N Memory bandwidth
LAMMPS Y Y Y Y Y Y Y Compute
CANDLE Y Y N Y Y Y Y Memory bandwidth
STREAM Y Y Y Y Y Y N Memory bandwidth
URBAN N - - - - N Y Component-dependent
Nek5000 N - - - Y N Y Compute
HACC Y N - N Y N Y Compute

in computational fluid dynamics applications. For these appli-
cations, however, the number of timesteps per second cannot
be used to measure online performance reliably because this
metric does not stay uniform during the execution. Moreover,
such a high-level metric provides little insight into the progress
of the science as the application executes. In the URBAN
project, the Nek5000 library is used with Energy Plus (a
building energy simulation suite) to study the effect of external
temperature changes on the energy-efficiency of buildings.
Nek5000 and Energy Plus run at timescales that are orders
of magnitudes apart. We could define the online performance
of URBAN using an arbitrary metric such as the number of
buildings simulated per second. This definition, however, has
little meaning in the context of power management because
it does not translate to the performance of its key component
applications.

B. Categorizing applications

Based on the summary of responses in Table IV, we find that
applications can be broadly categorized based on their simi-
larities. Table V summarizes the definition and categorization
of online performance for the selected applications.

• Category 1: Most HPC applications, simulations, and
benchmarks that have iterative loops fall in this category.
For such applications, there is a clear, well-defined mea-
sure of online performance that correlates well with the
application-specific scientific goal. Usually, this metric
also correlates well with the FOM of the application if it
is defined.

• Category 2: These are timestep-based applications where
the online performance is well defined but does not

TABLE V: Categorizing applications and defining online
performance

Application Category Online performance Metric

QMCPACK 1 Blocks per second
OpenMC 1 Particles per second
AMG 2 Conjugate gradient iterations per second
LAMMPS 1 Atom timesteps per second
CANDLE 1/2 Epochs per second (training phase)
STREAM 1 Iterations per second
URBAN 3 N/A
Nek5000 3 N/A
HACC 3 N/A

correlate well with the scientific metrics of interest. For
this reason, one cannot determine how far the application
has progressed toward its goal.

• Category 3: Applications in this category are character-
ized by one or both of the following properties:

– Online performance cannot be monitored reliably.
– The application is composed of multiple components

that limit the usefulness of a single metric.

This class of applications requires a multifaceted defi-
nition or an appropriate composition of the progress of
individual components that is out of the scope of this
study.

IV. EXTRACTING AND CHARACTERIZING PROGRESS

Now that we have a definition of progress for the ap-
plications in our study, we would like to corroborate the
findings from our research discussions with experiments that
characterizes applications and the behavior of their progress.

A. Characterizing applications

The β metric is a measure of the compute-boundedness of
an application introduced by [5]. Its value lies between 0 and
1: a high value indicates that the application is compute-bound.
A previous work [14] reports that this value shows less than
5% of variation with CPU frequency. We do not verify this
claim here. Rather, we use the execution time at the maximum
frequency of 3300 MHz and the execution time at 1600 MHz
to calculate this value.

Misses Per Operation (MPO) is another metric used to
characterize applications. MPO is frequency independent,
making it more reliable than the β metric. We use PAPI [15]
to calculate MPO for an application by dividing the total
L3 cache misses (PAPI_L3_TCM) by the total instructions
executed (PAPI_TOT_INS). A high MPO suggests that the
application is memory bound.

Table VI displays the experimentally observed values for the
β and MPO metrics for the applications in our study. We see a
good correlation between the MPO and the β metric for all the
applications. Although there exist other ways to characterize
applications, we focus on the β metric in particular because
our model builds on past work that uses this measure.

B. Extracting progress
Our study involves extracting and monitoring the progress

of parallel applications running on a single node. Each of
the applications described in this study was instrumented at
the source-code level to publish its online performance metric
(refer to Table V) using the publish-subscribe ZeroMQ [16]
sockets.

1) LAMMPS: We use the Lennard-Jones benchmark that
is provided as a part of the LAMMPS package. Pure MPI
is used to parallelize the application using 24 processes on
the node and MPI process pinning is enabled. The application
simulates a fixed number of 40,000 atoms. LAMMPS runs
an outer timestep loop that encloses the main parallel section
of the program. We measure the amount of time required
to execute one timestep in the VERLET run function. This
number is multiplied by the number of atoms simulated to
report progress as a single value for the application. Note that
the rate at which progress is reported depends entirely on the
rate of execution of the timestep. For the single node setup,
progress is reported roughly 20 times a second. These values
are collected and averaged once every second.

2) AMG: AMG is a solver benchmark that uses iterative
solvers from the HYPRE [17] library. We use the AMG
preconditioner with solver 3: GMRES with diagonal scaling
along with pooldist ID 1 for our experiments. Pure MPI is
used to parallelize AMG using 24 processes, one per physical
core. Process pinning is enabled. The GMRES iterations are
managed and implemented within the HYPRE library. We
measure progress as the number of GMRES iterations executed
in a given period of time. The GMRES iterative loop encloses
the performance-critical parallel section of the solver. Progress
is reported as a single value for the application. For this setup,
progress is reported approximately 3 times a second.

3) QMCPACK: The performance-NiO benchmark that is a
part of the QMCPACK package has three phases: VMC 1,
VMC 2, and DMC. The DMC is particularly important for
performance benchmarking of this application. The benchmark
is parallelized by using pure OpenMP on the node. For
these experiments, 24 pinned OpenMP threads are used. The
number of steps per block is set to 15, and the number of
blocks is set to 3,000 for the DMC in order to ensure that
the application executes for a long enough period of time.
QMCPACK continuously monitors and reports the number of
blocks executed. This reporting is done at a level outside the
main parallel section of the code. We leverage this reporting
framework to monitor and report progress as the number of
blocks completed in a given period of time. This number is
reported approximately 16 times a second for the DMC.

4) STREAM: OpenMP is used to parallelize STREAM
using 24 threads, one per physical CPU core. STREAM
executes four operations: copy, scale, add, and triad for a fixed
number of iterations specified in the input. The iterative loop
is instrumented to report progress as a single value for the
application, once per iteration. The loop encloses the OpenMP
parallel sections for the three operations. Progress is reported
approximately 16 times a second.

TABLE VI: β and MPO metrics for selected applications

Application β Metric MPO Metric
(×10−3)

QMCPACK (DMC) 0.84 3.91
OpenMC (Active) 0.93 0.20
AMG 0.52 30.1
LAMMPS 1.00 0.32
STREAM 0.37 50.9

5) OpenMC: OpenMC is a neutron-particle simulation
code that has two phases: active and inactive. The number of
particles to simulate along with the number of batches to run
fully specifies the amount of work in the application. The loop
for the batch computation encloses the loop for the particles.
The particle loop is parallelized by using 24 OpenMP threads.
Progress is reported at the batch-loop level, once after each
batch computation completes. Note that progress is reported
as one value for the application. We use 10 inactive batches
and 300 active batches to simulate 100,000 particles. Progress
is reported approximately once every second.

CANDLE is built by using TensorFlow, a Deep Learning
suite that reports the number of epochs completed during
the training phase. Extracting the online performance for
CANDLE as the number of epochs completed in a certain
period of time involves instrumenting TensorFlow. We do
not present a description for extracting progress from the
CANDLE application. We faced significant technical issues
in installing and using TensorFlow from the source on our
testing platform. Installing TensorFlow from the source is a
known difficulty among the data-science community. We thus
had to resort to using the pre built TensorFlow binaries for
our study. As a result, access to the source that generates the
training progress information was not possible. In principle,
however, extracting online performance for CANDLE involves
the same procedure as that described for other applications in
our study.

Although the study that we present here is restricted to a
single node, we note that this directly maps to a multi node
study without any change. Transposing this notion of progress
in order to monitor it at a per-processing-element level is part
of future work.

C. Characterizing progress

We characterize the online performance of the selected
applications. LAMMPS and STREAM display consistent be-
havior for their respective online performance metrics. Figure
1 (left) depicts this consistent online behavior of LAMMPS:
online performance remains at 1080 atom timesteps per second
throughout the execution. On the other hand, the online
performance of AMG is inconsistent (Figure 1, center). Online
performance for AMG fluctuates between 2.5 and 3 iterations
per second and needs to be averaged out.

For QMCPACK, consider the performance-NiO benchmark.
Recall that QMCPACK is an application belonging to Cat-
egory 1. The benchmark has three distinct phases: VMC1,

VMC2, and DMC. Each of these phases, however, could
have a different number of blocks to compute and distinct
performance characteristics. As depicted in Figure 1 (right),
when we define and monitor blocks per second at runtime,
the phases are clearly distinguishable from one another as they
compute blocks at different rates. This information is missed
when we consider static definition of performance output at the
end of the run. OpenMC displays a similar phased behavior:
we do not show OpenMC’s online performance due to a lack
of space.

V. POWER CAPPING AND APPLICATION PROGRESS

Dynamic power capping is a requirement for this study for
two reasons:

• Application progress is measured at runtime, so static
techniques are not sufficient in order to study the impact
of power capping on this metric.

• We want to study the effect of possible interactions be-
tween the node resource manager and power management
software at higher levels within the hierarchy.

We begin this section by describing the software we used in
our study.

A. Software

1) Running Average Power Limit: RAPL is Intel technol-
ogy that allows users to specify power caps on hardware
domains by using model-specific registers (MSRs). Commonly
exposed domains include the package and DRAM domains.
When given a power cap and time window, the processor
ensures that the average power over the time window is
maintained. Rountree et al. [18] offer a good explanation of
how RAPL can be used to measure and limit power usage.
We use RAPL in this study to implement our dynamic power
capping schemes on the package domain.

RAPL is a proprietary interface to power management on
the chip. Given a power cap, it budgets power between the
core (processors, caches) and uncore (off-chip) components
that make up the package domain. However, we have access
to power usage only at the package level. To the best of our
knowledge, no published work accurately describes or models
RAPL’s internal behavior.

Figure 2 depicts CPU frequencies for two applications—
LAMMPS and STREAM—under a RAPL-based power cap.
LAMMPS is a compute-bound application, whereas STREAM
is a memory-bound benchmark. Under identical power caps,
RAPL employs a higher CPU frequency for compute-bound
applications and thus distributes more power to the core
components. In other words, RAPL performs application-
aware power management.

2) libmsr: The libmsr library from Lawrence Livermore
National Laboratory provides an easy-to-use interface to the
model-specific registers on Intel hardware. We use libmsr
along with the msr-safe [19] module to implement our dy-
namic power-capping schemes and monitor power usage with-
out the need for root access.

B. Dynamic power-capping schemes

The dynamic power-capping schemes we present here were
implemented by using a power-policy tool that was developed
as a part of this study. The power-policy tool runs as a
background daemon on the node. It monitors power usage
and applies the selected dynamic power-capping scheme on
the package domain once every second. We present below the
power-capping schemes that we have designed.

• Linearly decreasing power cap – Initially, the power on
the node is uncapped, and a linearly decreasing power
cap is applied until a system or user-specified minimum
value is reached.

• Step-function power cap – The power cap on the node
alternates between an uncapped (or high value) and a low
value.

• Jagged-edge function power cap – The power cap on the
node linearly decreases from an uncapped level to a low
value and then goes back to an uncapped level quickly.

C. Impact of dynamic schemes on online performance

In the interest of space, we present the impact of applying
these dynamic power capping schemes on three applica-
tions: LAMMPS, QMCPACK (performance-NiO benchmark,
DMC), and OpenMC (active). Figure 3 depicts the impact of
these three different schemes. These experiments were run on a
single node and all the applications were parallelized to utilize
all available CPU cores. The following observations can be
made from the results of this experiment:

• The online performance of the application follows the
power capping function being applied. We found this to
be true regardless of the application being studied or the
power capping function being applied.

• Upon careful observation of the collected progress values,
we note that the instantaneous value of the progress
metric is affected by the instantaneous value of the power
cap. Figure 3 supports this observation.

For OpenMC, the progress metric is occassionally reported as
zero, as shown in Figure 3. We note that is due to a flaw in the
design of the ZeroMQ-based progress monitoring framework
and not a characteristic of the application itself.

VI. MODELING AND EVALUATION

We would like to quantify and model the impact of RAPL-
based power-capping on progress in order to do the following:

• Validate and improve upon assumptions about RAPL’s
behavior for different application characteristics.

• Be able to predict the impact of power-capping on
progress given a description of application characteristics.
This is the first step in the design of power policies at
the node level.

• Be able to decide on the exact power budget to be
employed given an expectation of online performance.

The impact of DVFS of execution time is discussed in [4] and
[14]. We extend these ideas and models in order to study the
impact of power capping on application progress. In particular,

0 50 100 150 200 250 3000 50 100 150 200 250 300 0 50 100 150 200

b
lo

ck
s/

se
co

n
d

5

10

15

20

3

2

1500

1000

1500

it
er

a
ti

o
n

s/
se

co
n

d

a
to

m
-t

im
es

te
m

p
s/

se
co

n
d

Time [s] Time [s] Time [s]

PHASE 1: VMC

Time [s]

PHASE 2: VMC

PHASE 3: DMC
(performance benchmarking

done for this phase)

Fig. 1: Characterizing online performance

we are interested in studying the impact of the package domain
power capping on application progress.

We rely on experimentally observed behavior to make the
following assumptions:

• RAPL distributes the available power between the
core and uncore in the ratio equal to their compute-
boundedness (refer to Figure 2). We use the β metric
introduced by [5] to denote this ratio.

• If a power cap that is lesser than the uncapped power
usage of the application is applied, the application uses
all the power given to it. We have observed this behavior
to be true regardless of the application being studied.

A. Model

We begin with the equation denoting the impact of fre-
quency scaling on execution time described in [4].

T (f)

T (fmax)
= β ∗ (fmax

f
− 1) + 1 (1)

Here fmax represents the nominal maximum frequency of
the processor, and β is a value betweeen 0 and 1; an ideal
compute-bounded application has a β value of 1.

Fig. 2: RAPL: Application aware power management

The power used by the core component, Pcore is related to
CPU frequency f as follows.

Pcore ∝ fα (2)

Here α is a value that lies between 1 and 3 [20], and Pcoremax
is the core power usage level corresponding to the CPU
frequency fmax. Denoting the progress at a CPU frequency
f by r(f), we note that

r(f) ∝ 1

T (f)
. (3)

We now use a change of variable and denote the progress at
a core power usage level Pcore as

r(Pcore) =
r(Pcoremax)

β ∗ ((PcoremaxPcore
)

1
α − 1) + 1

. (4)

We denote Pcap as the power cap applied to the package
domain and Pcorecap as the effective power budget employed
by RAPL on the core component under a package domain
power cap Pcap. Recalling our assumptions, we have

Pcorecap = β ∗ Pcap (5)

and

Pcore ≈ Pcorecap. (6)

We can thus model the change in progress with an effective
power cap on the core, Pcorecap, as follows.

δprogress = r(Pcoremax) ∗ [1−
1

β ∗ ((PcoremaxPcorecap
)

1
α − 1) + 1

]

(7)

B. Evaluation

We evaluated the model against the experimentally observed
values. We present the results in this section.

(a) LAMMPS: Linearly decreasing power cap (b) LAMMPS: Jagged-edge power cap (c) LAMMPS: Step function power cap

(d) QMCPACK: Linearly decreasing power cap (e) QMCPACK: Jagged-edge power cap (f) QMCPACK: Step function power cap

(g) OpenMC: Linearly decreasing power cap (h) OpenMC: Jagged-edge power cap (i) OpenMC: Step function power cap

Fig. 3: Impact of dynamic power-capping on progress

1) Experimental Setup: Our experiments were performed
on the Chameleon cluster at the Texas Advanced Computing
Center. We used a single compute skylake instance for all of
our experiments. Each Skylake instance is a dual-socket Intel
Xeon Gold 6126 CPU with 12 cores per socket. The Linux ker-
nel version is 3.10.0-862.9.1.el7.x86 64. Each core is hyper-
threaded accounting for a total of 48 logical cores per instance.
Hyperthreading was turned off for all our experiments. Intel
Turbo-Boost was enabled on the instance. The compiler used
was gcc-4.8.5, and the MPI version used was mvapich2.2. The
application setup is identical to the description in Section 4.

2) Results: Recall the observation (refer to Section 4)
that the progress of applications follows the power-capping
function being applied. For each of the applications described
in this section, we applied the step-function dynamic power-
capping policy (refer to Section 5) and measured the change
in progress when a package power cap was applied. We
chose the step-function policy since the power cap (and hence,
progress) remains stable for a longer period of time, making
it easier to measure the impact on progress. Note that the
change in progress is measured when a power cap is applied
from an uncapped state of execution. The following points are
important to note before the results are analyzed:

• For each power cap, five measurements for change in
progress were made, and the average value for the change
in progress was calculated.

• Pcorecap is a model-estimated value based on the package
power cap.

• α is assumed to have a value of 2 for all model predic-
tions.

As depicted by Figure 4a and Figure 4c the model
closely predicts the impact of power-capping on progress for
LAMMPS and QMCPACK. For an effective core power cap
of 80 W or less, the model predicts the impact on the progress
of LAMMPS to within 13.3% of its experimentally observed
value. When a more stringent power cap is applied, however,
the model underestimates the impact of RAPL-based power-
capping for LAMMPS by upto 19%.

For QMCPACK, the model consistently overestimates the
impact of power capping: the model has error values ranging
from 8.5% for stringent power caps to 53.3% for mid-range
power caps. For low power caps, the model performs poorly,
overestimating the impact by 250% of the measured value.
Figure 4b depicts the measured and model-predicted change
in progress with a change in Pcorecap for AMG. The model,
in general, overestimates the impact of RAPL-based power
capping on progress. It is not able to account for the “plateaus”
in the measured values. The error percentages lie between
13.3% for a power cap of roughly 65 W and 111% for a
power cap of 50 W.

For a memory-bound code such as STREAM, the model
performs well for power caps of 20 W or less, keeping the
error percentage to within 3% of the measured value. It clearly
performs badly for stringent power caps. It underestimates
the performance impact of RAPL-based power-capping for
STREAM by 70.0% for a power cap of 43 W. This is not an

entirely surprising result because the model is built upon the
assumption that RAPL uses DVFS for power capping. Clearly,
RAPL is using additional means to ensure that the power
budget is met, and these additional means are not captured
by our model.

Because of a lack of space, we present the results of
dynamic power capping on the active phase only for the
assembly example that is used for performance benchmarking
on a single node. From Table VI, we see that OpenMC’s active
phase has a β of 0.94, indicating that it is a CPU-bounded
code.

Figure 4e demonstrates that the model is able to closely
match the measured values for the change in progress with
different power caps. For a power cap in the range of 70 to 140
W, the error percentage varies between a minimum of 3.8%
and a maximum of 27.7%. Owing to an unstructured memory
access pattern, OpenMC’s performance is generally influenced
by memory latency. This particular example, however, is
sensitive to CPU frequency.

In general, our model performs well for mid-range power
caps but performs poorly at the extreme ends of the power
cap range. We argue that in production, power-caps are more
likely to be in the mid-range, and the model holds merit in
this regard. Further, we note that model the performs better
overall for CPU-bound code than for memory-bound code.

3) Discussion: The task of managing power efficiently
and dynamically on HPC systems demands a high-fidelity
measure of online performance of production HPC applica-
tions. We have demonstrated how such an online measure of
performance can be elicited from semi-structured discussions
with application specialists. Online performance is application
specific and no single solution exists for defining this quantity.
Our categorization of applications helps us get closer to this
goal by structuring the information that we have gathered from
our discussions.

We have presented a model that attempts to predict the
impact of RAPL-based power capping on application progress.
Through extensive experimentation, we have shown that this
model accurately captures the general behavior of a variety
of classes of applications. In evaluating our experimental
results, we note potential improvements that could be made
to our model’s fidelity and our approach to categorization of
applications.

We have described applications such as HACC and URBAN
for which no single, well-defined, and reliable measure of
online performance exists. This situation is atypical of large,
multiphysics applications. We can improve upon this by study-
ing individual components separately and modeling progress
as a weighted combination of the progress of individual
components.

Figure 4d clearly demonstrates that our model fails to
predict performance for memory-bound code for stringent
power caps. Our model is built on the assumption that RAPL
uses DVFS to manage power on the node. Further, we assume
that RAPL budgets power between the core and uncore in the
ratio of the β metric of the application. In a way, we make an

(a) LAMMPS (b) AMG

(c) QMCPACK (d) STREAM (e) OpenMC

Fig. 4: Comparison of measured and predicted values for change in progress

optimistic assumption about RAPL’s performance. Figure 5
clearly demonstrates that RAPL is not the best technique
to implement power capping for STREAM: DVFS performs
better in the range that it is applicable in.

Further, we fix the α value in the model to be 2 for all of our
experiments. Our experiments indicate that this value varies
between 1 and 4 depending on the range of the power cap
being applied. Without having access to fine-grained, reliable
core power usage data, we choose to parameterize RAPL to
explain its behavior. Our model does not explicitly take into
account the other hardware features that RAPL has access to:
specifically, DDCM and uncore-DVFS.

Fig. 5: STREAM: Comparison of different power limiting
techniques on progress

VII. RELATED WORK

In this section, we present the related work that influence
our research.

A. Defining and characterizing application performance

Traditionally, execution time has been used to define, an-
alyze, and optimize application performance. Interfaces for
measuring hardware performance counters such as [15] allow
performance introspection at runtime. Numerous tools exist
that use such interfaces to provide performance monitoring,
introspection, and tuning capabilities. Gustafson and Todi [21]
introduce the concept of miniapps to characterize application
performance. Carrington et al. [22] study the effectiveness of
different metrics in representing application performance. The
metrics presented correlate well with the actual application
performance, but they give us nothing useful about the sci-
ence of interest to the application. In other words, hardware
counters and other metrics are arbitrary values: scientific
information is lost when dealing with defining performance
in the context of power management.

B. Modeling power usage and studying impact of power
capping on performance

Prior to direct power measurement capabilities becoming
mainstream on HPC hardware, several studies have used elec-
trical power meters or hardware counters to provide average
power usage over a time window. In [23] and [24], the
authors present a way to estimate instantaneous (dynamic)
power usage using a subset of critical and commonly occurring
hardware counters. Powermon [25] operates inside commodity
computer systems and analyzes the performance and power

consumption tradeoffs in computer applications at a high
frequency. Goel and McKee [26] provide a comprehensive
analytical model of CPU power usage that includes static and
dynamic power usage of core and uncore components.

Haidar et al. [2] study the impact of power capping on
application execution time and other application-specific met-
rics of interest. Bhalachandra et al. [27] show that with
power capping, non optimal programs speedup with frequency
reduction due to an increase in overall thermal headroom to
the critical path. The notion of performance impact in these
studies is based on the execution time and not on the actual
algorithmic progress discussed in this work.

C. Limiting node power and optimizing performance under a
power bound

Petoumenos et al. [28] present a broad survey of a variety
of power-capping techniques, both hardware and software
schemes. Rountree et al. [18] show that performance vari-
ability between compute nodes becomes a highlighted issue
in a power-limited HPC environment. A large body of re-
lated work seeks to optimize performance (typically execution
time) by moving power to nodes on the critical path or by
searching for optimal configurations that do not exceed the
power budget. Several approaches [29], [30] have explored
the benefits of overprovisioning HPC systems, limiting power
usage in order to add additional hardware and improve ap-
plication performance at a system level. Ellsworth et al. [31]
present an application-agnostic scheme to move power within
a power-limited system to where it is most needed. Wang et
al. [32] present an application power-aware scheduler based
on profiled power usage characteristics. Conductor [33] is
a runtime system that finds optimal concurrency and DVFS
configurations to adaptively power balance applications at the
job level. The use of DDCM to effect energy savings and
increase performance in situations where there exists load
imbalance in parallel code is explored in [27], [34]. How
RAPL affects an application remains to be answered. Thus
we focus on modeling the impact of dynamic power capping
on application progress.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a methodology to monitor
and characterize the online performance of HPC applications.
Based on semi-structured interviews with application special-
ists, we identified an application-specific notion of progress
that can be monitored during application execution and that
directly relates to both the application performance and its
scientific output. Using lightweight instrumentation and simple
dynamic power capping schemes, we measured how such a
metric is affected by changes in the power caps, and we
provided a model of this effect under a RAPL-enforced control
scheme. Our model builds on existing studies of the impact of
DVFS on execution time and provides a satisfying predictive
power of this effect on various classes of applications. We
believe that the availability of application progress and this
model will provide the key components needed to implement

complex dynamic power management policies for future ex-
ascale systems.

Nevertheless, our study can be extended in several ways.
First, some production applications ended up being too com-
plex to define a single progress metric across the entire
workload. In such cases, the resolution of these progress
reports or the intrusiveness of the instrumentation might need
to be changed. Second, our current model could be improved
by dissociating application characteristics such as compute
boundedness from the exact control knob being used, by
more accurately modeling the relation between power cap and
processor behavior. Such improvements could also incorporate
online hardware performance monitoring and measurement
across a wider range of architecture and hardware power con-
trol mechanisms. Also valuable would be a more detailed study
of the infrastructure needed for dynamic progress monitoring
across large-scale systems and how to combine job wide and
node-local progress metrics for power management.

ACKNOWLEDGMENTS

We would like to thank Stephanie Labasan and Tapasya Patki
from LLNL for their help in setting up the libmsr software. Results
presented in this paper were obtained by using the Chameleon testbed
supported by the National Science Foundation. Argonne National
Laboratory’s work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computer Research, under
Contract DE-AC02-06CH11357. This research was supported by the
Exascale Computing Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

REFERENCES

[1] D. Ellsworth, T. Patki, S. Perarnau, S. Seo, A. Amer, J. Zounmevo,
R. Gupta, K. Yoshii, H. Hoffman, A. Malony et al., “Systemwide power
management with Argo,” in IEEE International Parallel and Distributed
Processing Symposium Workshops, 2016.

[2] A. Haidar, H. Jagode, P. Vaccaro, A. YarKhan, S. Tomov, and J. Don-
garra, “Investigating power capping toward energy-efficient scientific
applications,” Concurrency and Computation: Practice and Experience
(Special Issue Paper), 2018.

[3] H. Zhang and H. Hoffmann, “Maximizing performance under a power
cap: A comparison of hardware, software, and hybrid techniques,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 2, pp. 545–559,
2016.

[4] M. Etinski, J. Corbalán, J. Labarta, and M. Valero, “Understanding the
future of energy-performance trade-off via DVFS in HPC environments,”
Journal of Parallel and Distributed Computing, vol. 72, no. 4, pp. 579–
590, 2012.

[5] C.-H. Hsu and U. Kremer, “The design, implementation, and evaluation
of a compiler algorithm for CPU energy reduction,” vol. 38, no. 5, 2003,
pp. 38–48.

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[7] J. Kim, A. T. Baczewski, T. D. Beaudet, A. Benali, M. C. Bennett, M. A.
Berrill, N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley et al.,
“QMCPACK: An open source ab initio quantum Monte Carlo package
for the electronic structure of atoms, molecules and solids,” Journal of
Physics: Condensed Matter, vol. 30, no. 19, p. 195901, 2018.

[8] P. K. Romano and B. Forget, “The OpenMC monte carlo particle
transport code,” Annals of Nuclear Energy, vol. 51, pp. 274–281, 2013.

[9] S. Plimpton, P. Crozier, and A. Thompson, “LAMMPS large-scale
atomic/molecular massively parallel simulator,” Sandia National Lab-
oratories, 2007.

[10] J. D. McCalpin, “Stream benchmark,” Link:
www.cs.virginia.edu/stream/ref.html.

[11] J. M. Wozniak, R. Jain, P. Balaprakash, J. Ozik, N. Collier, J. Bauer,
F. Xia, T. Brettin, R. Stevens, J. Mohd-Yusof et al., “CANDLE/Super-
visor: A workflow framework for machine learning applied to cancer
research,” BMC Bioinformatics, 2018.

[12] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka et al., “HACC: Simulat-
ing sky surveys on state-of-the-art supercomputing architectures,” New
Astronomy, vol. 42, pp. 49–65, 2016.

[13] P. Fischer, J. Kruse, J. Mullen, H. Tufo, J. Lottes, and S. Kerkemeier,
“Nek5000: Open source spectral element CFD solver,” Argonne National
Laboratory, Mathematics and Computer Science Division, Argonne, IL,
see https://nek5000. mcs. anl. gov/index. php/MainPage, 2008.

[14] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer,
B. L. Rountree, and M. E. Femal, “Analyzing the energy-time trade-
off in high-performance computing applications,” IEEE Transactions on
Parallel & Distributed Systems, no. 6, pp. 835–848, 2007.

[15] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable
interface to hardware performance counters,” in Proceedings of the
Department of Defense HPCMP Users Group Conference, 1999.

[16] P. Hintjens, ZeroMQ: messaging for many applications, 2013.
[17] R. D. Falgout and U. M. Yang, “hypre: A library of high performance

preconditioners,” in International Conference on Computational Science,
2002, pp. 632–641.

[18] B. Rountree, D. H. Ahn, B. R. De Supinski, D. K. Lowenthal, and
M. Schulz, “Beyond DVFS: A first look at performance under a
hardware-enforced power bound,” in Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), IEEE, 2012.

[19] K. Shoga, B. Rountree, M. Schulz, and J. Shafer, “Whitelisting MSRs
with msr-safe,” in 3rd Workshop on Exascale Systems Programming
Tools, in conjunction with SC14, 2014.

[20] L. Yu, Z. Zhou, S. Wallace, M. E. Papka, and Z. Lan, “Quantitative
modeling of power performance tradeoffs on extreme scale systems,”
Journal of Parallel and Distributed Computing, vol. 84, pp. 1–14, 2015.

[21] J. L. Gustafson and R. Todi, “Conventional benchmarks as a sample of
the performance spectrum,” in Proceedings of the Thirty-First Hawaii
International Conference on System Sciences, vol. 7. IEEE, 1998, pp.
514–523.

[22] L. C. Carrington, M. Laurenzano, A. Snavely, R. L. Campbell, and L. P.
Davis, “How well can simple metrics represent the performance of hpc
applications?” in Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, 2005, p. 48.

[23] R. Rodrigues, A. Annamalai, I. Koren, and S. Kundu, “A study on the use
of performance counters to estimate power in microprocessors,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 12,
pp. 882–886, 2013.

[24] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation
and thread scheduling via performance counters,” ACM SIGARCH
Computer Architecture News, vol. 37, no. 2, pp. 46–55, 2009.

[25] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield, “Powermon:
Fine-grained and integrated power monitoring for commodity computer
systems,” in Proceedings of the SoutheastCon, 2010, pp. 479–484.

[26] B. Goel and S. A. McKee, “A methodology for modeling dynamic and
static power consumption for multicore processors,” in IEEE Interna-
tional Parallel and Distributed Processing Symposium, 2016, pp. 273–
282.

[27] S. Bhalachandra, A. Porterfield, and J. F. Prins, “Using dynamic duty
cycle modulation to improve energy efficiency in high performance
computing,” in IEEE International Parallel and Distributed Processing
Symposium Workshop (IPDPSW), 2015, pp. 911–918.

[28] P. Petoumenos, L. Mukhanov, Z. Wang, H. Leather, and D. S. Nikolopou-
los, “Power capping: What works, what does not,” in IEEE Parallel and
Distributed Systems (ICPADS), 2015, pp. 525–534.

[29] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. De Supin-
ski, “Exploring hardware overprovisioning in power-constrained, high
performance computing,” in Proceedings of the 27th international ACM
conference on International Conference on Supercomputing, 2013, pp.
173–182.

[30] O. Sarood, A. Langer, A. Gupta, and L. Kale, “Maximizing throughput
of overprovisioned HPC data centers under a strict power budget,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2014.

[31] D. A. Ellsworth, A. D. Malony, B. Rountree, and M. Schulz, “POW:
System-wide dynamic reallocation of limited power in HPC,” in Intl.

Symposium on High-Performance Parallel and Distributed Computing,
2015.

[32] B. Wang, D. Schmidl, C. Terboven, and M. S. Müller, “Dynamic
application-aware power capping,” in Proceedings of International Work-
shop on Energy Efficient Supercomputing, 2017.

[33] A. Marathe, P. E. Bailey, D. K. Lowenthal, B. Rountree, M. Schulz,
and B. R. de Supinski, “A run-time system for power-constrained HPC
applications,” 2015.

[34] A. Porterfield, R. Fowler, S. Bhalachandra, B. Rountree, D. Deb, and
R. Lewis, “Application runtime variability and power optimization for
exascale computers,” in Proceedings of International Workshop on
Runtime and Operating Systems for Supercomputers, 2015.

