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Abstract
We study the problem of merging three-dimensional points that are nearby or coincident. We introduce a fast, efficient approach
that uses data parallel techniques for execution in various shared-memory environments. Our technique incorporates a
heuristic for efficiently clustering spatially close points together, which is one reason our method performs well against other
methods. We then compare our approach against methods of a widely-used scientific visualization library accompanied by
a performance study that shows our approach works well with different kinds of parallel hardware (many-core CPUs and
NVIDIA GPUs) and data sets of various sizes.

CCS Concepts
• Computing methodologies → Shared memory algorithms; Scientific visualization; Computer graphics;

1. Introduction

With this work, we contribute a many-core approach for the point
merge algorithm i.e. merging nearby points for scientific visualiza-
tion. The primary challenge for this algorithm is efficiently iden-
tifying which points are close to each other. Although the point
merge algorithm does not receive as much attention as algorithms
like iso-surfacing or volume rendering, it is used regularly in scien-
tific visualization tools.

Point merging typically complements visualization algorithms
that iterate over cells like iso-surfacing or slicing. These algorithms
iterate over input cells to generate triangles; the vertices of these
output triangles are interpolated and not part of the source data set.
Consider a case where an iso-surface operation is applied on two
neighboring cells, C1 and C2, to produce two abutting triangles T1
and T2, as shown in Figure 1. T1 comprises vertices V11, V12, and
V13, and T2 is composed of vertices V21, V22, and V23. As abutting
triangles, two sets of their vertices should be coincident. Without
loss of generality, assume V11 and V21 are coincident and V13 and
V22 are coincident. If these pairs are not merged, then connectivity-
based operations will fail. In particular, rendering this triangle data
will result in flat shading, since the normal of V11 would reflect only
T1 (and not T2), the normal of V21 would reflect only T2 (and not
T1), and V13 and V22 would suffer similarly. However, if V11 and V21

Figure 1: Example of abutting triangles generated by applying an
iso-surface operation.

are merged to make a new point V ′ and if V13 and V22 are merged
to make a new point V ′′, then the lighting will appear smooth.

Point merging is useful in other settings as well. When visualiza-
tion algorithms generate triangles with small areas, then lighting is-
sues can again arise (among other issues). The vertices of triangles
with small areas are typically very close to one another and thus
can be reduced to a single vertex through point merging. Further,
numerical errors can sometimes cause interpolated vertex positions

to be slightly offset. So in the previous iso-surface example, even
vertices that should be considered exactly coincident might have in-
exact point coordinates. Point merging solves this problem as well.

Point merging is typically done by organizing points into a spa-
tial data structure and traversing that data structure to locate nearby
points. Our algorithm works in this vein, although we are able to
arrange our operations so that no explicit data structure is needed.
It is for this reason that we refer to our approach as “Virtual Grid”
point merging. A particular focus for our algorithm is on many-
core architectures. Our code is designed to use the parallel build-
ing blocks available from the VTK-m library that ensure good per-
formance over varying architectures. We evaluate this code, com-
paring to another module in VTK-m, and to both parallel and se-
rial modules in VTK. Overall, we find that our Virtual Grid point
merging algorithm is competitive with other parallel point merging
techniques, more resilient to irregular distributions of input points,
scalable within shared memory domain, and performs well on both
CPU and GPU devices.

2. Related Work

We divide this section into two parts. In the first part we discuss
previous works that deal with merging of points. In the second part
we discuss previous works for developing scientific visualization
algorithms using data-parallel techniques.

2.1. Merging Points

Many previous works present approaches for merging points for
the related application of mesh simplification. This section is fur-
ther divided into three parts. The first part discusses works that use
tree-based search structures to discover spatially close points. The
second part discusses works that use spatial binning data structures
to merge points. The third part discusses works that focus on im-
proving the accuracy of merging points.

2.1.1. Merging Points Using Search Structures

Rock and Wozny [RW92] provided the one of the first approaches
for reconstructing the topology of a model. The first step in their
approach involves merging spatially close points, which they term
“vertex merging,” as the points that they merge are vertices of tri-
angular facets. To locate close points that need to be merged, they
used an AVL search tree constructed with the vertices of the facets.
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Kanaya et al. [KTKN05] presented a related approach where they
perform vertex clustering using an octree and offer multiple degrees
of mesh simplification. They used a depth-first approach on this oc-
tree to locate the connected components of the desired degree, and
simplify them using vertex merging.

2.1.2. Merging Points Using Spatial Binning

The construction of search structures for large data is known to
have a significant computational overhead. Rossignac and Bor-
rel [RB93] addressed this issue with a mesh simplification approach
that uniformly subdivides a 3D volume containing an input mesh
into smaller 3D regions, or “bins.” All vertices that occur within the
same region are merged together. The input mesh is then corrected
to remove all degeneracies that were introduced by the merge op-
eration, yielding a simplified output mesh. While this approach is
fast, it has very little control over the accuracy and quality of the
simplification. Shin et al. [SPC∗04] modified the technique used by
Rossignac and Borrel to improve the accuracy of vertex merging.
They aimed to only merge vertices that exist within a user-defined
tolerance. Vertices within this tolerance may occur in spatially ad-
jacent bins. To limit searching for neighbors in all adjacent bins,
Shin et al. described a way to decompose a cell in multiple re-
gions. This modification significantly reduces the number of bins
that must be searched sequentially. The primary focus of this was
the construction of topology from triangle data, given no prior con-
nectivity information.

2.1.3. Improving Accuracy of Point Merging

This set of works focus on minimizing the error introduced by
merging vertices. Barequet and Kumar [BK97] merged pairs of ver-
tices that exist on different edges. In this method, edges are selected
based on the cost of moving the endpoint vertex of one edge to the
endpoint vertex of another edge. This cost has a user-provided up-
per bound, and a pair of vertices are merged by averaging their
coordinates. Garland and Heckbert [GH97] choose vertex pairs to
merge by considering the effect on the mesh. A pair of vertices
are merged based on a per-vertex error function that calculates the
sum of squared distances to the planes of the triangles that meet
at the vertex. To merge a pair (v1,v2), the position vnew is calcu-
lated as the minimum error point. Low and Tan [LT97] described
a way to produce a more consistent mesh simplification via a cell
clustering approach that assigns weights to vertices based on the
probability of the vertex lying on the mesh boundary, and on the
size of the faces bounded by the vertex. Lindstrom and Turk [LT98]
minimized the impact of point merging by assigning a cost to the
mesh edges, where the cost is a function of the volume, bound-
ary, and shape preservation properties of the mesh vertices. Finally,
Lindstrom [Lin00] proposed a hybrid scheme where they used the
vertex clustering algorithm proposed Rossignac and Borrel [RB93]
and improved it by using error minimization techniques proposed
by Garland and Heckbert [GH97], and Lindstrom and Turk [LT98]

2.2. Data-Parallel Techniques

Recently, a growing body of literature has investigated the design of
data-parallel algorithms for scientific visualization applications us-
ing data-parallel primitive (DPP) [Ble90] operations, such as sort,

gather, scatter, map, reduce, copy, etc. The DPP approach inspires
our own research of techniques for performing point merging in a
data-parallel setting.

Lessley et al. [LMLC17] described approaches for data-parallel
searching for duplicate elements in a 3D mesh topology. Point
merging has similar elements, in that coincident points need to be
searched and eliminated. That said the work by Lessley et al. is
not applicable to the problem of merging points, because their al-
gorithm can only be used to compare indices and find unique ele-
ments. The point merging problem, however, considers spatial loca-
tions (not indices) and must be capable of identifying nearby points
(not only duplicates). Regardless, their results motivate the use of
data-parallel techniques for search problems.

Miller et al. [MMM14] presented a data-parallel method that
generates the output topology of a visualization operator using the
knowledge of the input mesh topology. One of the visualization op-
erators they studied was the Marching Cubes algorithm, where all
output vertices occur on the edges of the cells of the input voxel
grid. Abutting triangles from the iso-surface will contain redun-
dant (coincident) points, and the authors located and removed these
points via a Reduce-By-Key DPP. However, this approach cannot
be directly applied to a mesh when the information about the orig-
inal topology is unavailable.

Finally, the emergence of platform-portable libraries, such as
NVIDIA Thrust [NVI18] and VTK-m [MSU∗16], have made it
convenient to write algorithms in a single code implementation
for execution across multiple platforms (e.g., both CPUs and
GPUs). These high-level libraries provide a set of core DPPs that
are optimized for each target platform of execution using low-
level, platform-specific libraries, such as OpenMP, Intel TBB, and
NVIDIA CUDA. Algorithms can then be written in terms of these
core DPPs or user-defined DPPs (“worklets” in the case of VTK-
m). This has been demonstrated in previous works in the context of
scientific visualization operations like iso-surface and cut surface
extraction [LSA12], threshold [LSA12, MMA∗13], and contour-
tree construction [CWSA16]. Specifically in the case of VTK-m,
a number of research works have demonstrated competitive perfor-
mance to algorithms designed for a specific platform for render-
ing [LLN∗15, LMNC15, SM15] and other scientific visualization
operations [LBMC16, LLCC17, PYK∗18, LPM∗17]. This collec-
tion of work justifies the merit of the platform-portable framework.
In this work, we design our algorithm with VTK-m and contribute
the implementation as a standard, open-source filter within the li-
brary.

3. Formal Definition of Point Merging

Informally, the point merging operation finds all points within a dis-
tance δ and merges those points together. However, it is necessary
to define correctness of merging points in ambiguous cases when
we have tolerance δ 6= 0. Figure 2 presents a scenario where we
have 3 points to be merged together, points A, B, and C. Points A
and B satisfy the distance criteria, and points B and C satisfy the
distance criteria with respect to tolerance δ, but A and C do not
satisfy the distance criteria. This is an ambiguous case because it is
unclear whether A and C should be merged together to satisfy all of
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Figure 2: Points to be merged, where x < δ

B’s distance criteria. In this work we consider any group of points
that satisfy the following properties to be a proper point merge:

1. In a group of points to be merged, every point in the group is
within distance δ from at least one point in the group; and

2. After the merging is complete, none of the resulting points are
within distance δ from one another.

Note that our definition of point merging allows for multiple,
equally correct solutions. For example, Figures 3(a), 3(b), 3(c)
present all the possible, correct solutions to merge the points from
Figure 2. Since there are multiple correct solutions to merge points
in an ambiguous case, the outputs of different approaches can be
slightly different from each other, i.e., they might not contain the
same points in the final output. However, they must satisfy the prop-
erties discussed earlier.

4. Technical Approach

This section provides details on our Virtual Grid approach. The key
benefit of our approach compared to previous approaches is that
our approach is designed for many-core architectures and is com-
posed of data parallel techniques. At a high level, our approach
works as follows. It begins by binning points into the cells of a 3D
uniform grid, which is the same first step taken by some previous
approaches. However, these previous approaches have relied on an
explicit mapping from cells to lists of points within the cells. Our
approach, instead, focuses on using data parallel operations to re-
arrange a large list of points. After rearranging, each thread of a
many-core device operates on one cell at a time, and the points that
lie within that cell are readily available in the thread’s memory. This
is the reason we term our approach as a “Virtual Grid” approach –
while we conceptually use a grid (i.e., 3D bins) to guide our pro-
cess, our DPP-based sequence of operations obviates the need to
explicitly represent this grid. Figure 4 provides a 2D schematic of
how this process occurs in our Virtual Grid approach.

Another difference between our algorithm and previous ap-
proaches is in the merge step. Previous approaches have merged
all points that occur in the same cell or have employed methods
to look for close points in adjacent cells. It is useful to merge all
points binned together in cases like mesh decimation, where accu-
racy is not of the utmost importance. We support this as a special
case of merging points as this helps us to avoid expensive compu-
tations that are necessary to obtain high accuracy. In cases where
higher accuracy is desired, our approach works differently; we per-
form distance computations between pairs of points within a cell

to ensure that only the points that occur within the tolerance δ are
merged. However, this operation by itself is not sufficient to merge
all points.

Occasionally, close points (i.e., points that are within δ and
should be merged) are mapped into adjacent cells of the Virtual
Grid. It is important to identify when this happens and ensure they
are merged. We deal with this case by performing multiple iter-
ations of our point merge operation. Each iteration uses its own
Virtual Grid, with the Virtual Grids from each iteration being off-
set from others by a small amount. This way, the points that sat-
isfy the tolerance criteria, but were binned into different cells in
one iteration, can be binned into the same cell in a later iteration.
Specifically, we run eight iterations. We calculate the eight bound-
ing boxes of the eight Virtual Grids as:

1. Expanding the bounding box of the original data set by δ in all
directions (1 count);

2. Shifting the bounding box from step 1 by δ along each axis
(3 counts);

3. Shifting the bounding box from step 1 by δ diagonally along
planes XY, YZ, and XZ (3 counts); and

4. Shifting the bounding box from step 1 by δ along the diagonal
of the bounding box (1 count).

Our algorithm also treats a tolerance of 0 and mesh decimation
as special cases where only a single iteration is required. This is
because, in the case of merging exactly coincident points (tolerance
of 0), the issue of close points in adjacent cells is not relevant, and
in the case of mesh decimation only an approximate representation
is desired.

A single iteration of our approach works as follows:

1. For each point, identify which cell in the Virtual Grid contains
it. This is done via a “Map” data parallel operation.

2. Rearrange the layout of the points so that points contained in the
same cell are grouped together in an array.

3. For each group, calculate the set of points that are within the
tolerance δ of each other. There may be multiple such sets. For
a set of points that satisfy the tolerance criteria, output the point
with the minimum index as the neighborhood identifier. This is
done via a “Reduce-By-Key” data parallel operation, which is
provided by VTK-m.

4. Rearrange the layout of the points so that points contained in the
same neighborhood are grouped together in an array.

5. Reduce each neighborhood of points by calculating its centroid.
This is done via a “Reduce-By-Key” data parallel operation,
which is provided by VTK-m.

Miller et al. [MMM14] show how to perform Steps 2 and 4 effi-
ciently in parallel by sorting, and VTK-m provides this grouping as
a basic feature [Mor18]. The steps described above are performed
once for each of the Virtual Grids described earlier. Algorithm 1
shows these steps in pseudocode.

This approach performs at its best when the cells of the Virtual
Grid have small numbers of points binned into them. Binning fewer
points in the cells of the Virtual Grid translates to performing fewer
computations to correctly group points that satisfy the tolerance δ.
Also, since the Virtual Grid is represented sparsely in memory, i.e.,
no state information for the grid is stored, it can use much smaller
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(a) Merge points A and B. y > δ (b) Merge points B and C. y > δ (c) Merge points A, B, and C

Figure 3: Possible, correct solutions to merging points

Figure 4: Notional example of the Virtual Grid approach in action.

Algorithm 1 Virtual Grid approach

// Step 1
1 for all i ∈ [0 . . | Points |], do in parallel
2 Cell[i] = GET-CELL-FOR-POINT(Points[i])

// Step 2 : Performed internally by VTK-m
// using Cell array from Step 1.

3 Bins = {(bin,Pbin) :
Pbin are indices of all points in bin}

// Step 3
4 for all (bin,Pbin) ∈ Bins, do in parallel
5 for i ∈ Pbin
6 nearest[i] = MIN(i,GETNEAREST(i,Pbin))

// Step 4: Performed internally by VTK-m
// using Nearest array from Step 3.

7 Clusters = {(cluster,Pcls) :
Pcls are indices of all points in cluster}

// Step 5
8 for all (cluster,Pcls) ∈ Clusters, do in parallel
9 centroid = GET-CENTROID(Points,Pcls)

// Centroids collected from Step 5
// become the set of merged points.

bins and therefore reduce the cost of searching for neighbors in
step 3 of Algorithm 1. To achieve this, we calculate the optimal
dimensions for the uniform grid based on the tolerance δ using the
following equation:

dimensiont =
lengtht

2×δ
(1)

where dimensiont is the dimension of the grid along axis t and
lengtht is the length of the bounding box along axis t in the origi-
nal data set. This enables us to create the smallest bins for which all
pairs of points within the tolerance δ of each other are guaranteed
to bin in the same bin or in adjacent bins. However, if the tolerance
δ is very small, then the dimensions of the Virtual Grid can become
so large that it requires more than 232 or 264 bins, which means
they cannot be indexed by 32-bit or 64-bit numbers. In such cases,
we limit the dimensions of the grid using the following equation:

dimensiont = f loor( 3
√
|MaxValue|) (2)

Where MaxValue is the maximum number of bins that can be in-
dexed using the data type we choose for binning points. We also
use Equation 2 to calculate dimensions of the grid when δ is zero.

Section 6 presents the impacts of the data type choice on perfor-
mance.
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5. Experimental Overview

To better compare and study the performance characteristics of our
method, we performed tests with the following variables:

• 6 algorithms;
• 3 data sets;
• 4 values of tolerance δ, 2 absolute and 2 relative to the bounding

box; and
• 2 different hardware architectures.

We ran performance tests with select combinations of these vari-
ables. Table 1 details these combinations. Note that we tested each
of these combinations with all three of our data sets. In total we
compared 171 unique combinations of these variables. Limitations
of the features from our comparators restricted us from testing all
possible combinations. We elicit these limitations further in this
section.

5.1. Algorithms

We consider a total of six algorithms: two algorithms are from the
VTK library, and four algorithms are implemented using VTK-m.

5.1.1. VTK Algorithms

The two algorithms from VTK come from the “vtkSMPMerge-
Points”, and “vtkCleanPolyData” classes. Both of these classes
have limitations. The “vtkSMPMergePoints” point locator merges
coincident points in parallel,† but requires the user to explicitly
take care of threading. The “vtkCleanPolyData” filter is capable
of merging points within a user provided tolerance. This filter also
performs additional tasks, such as removing degenerate triangles.
However, the vtkCleanPolyData filter operates only in serial.

5.1.2. VTK-m Algorithms

From the four algorithms implemented in VTK-m, two algorithms
come from variants of our Virtual Grid approach, one algorithm
comes from a point locator based approach for merging points, and
one other comes from the “VertexClustering” filter from the VTK-
m library [MSU∗16, Mor18].

The variants in the Virtual Grid approach result from the user’s
choice in data type to store the bin indices while binning points.
For this paper, we chose to test with two different data types: 32-bit
integers and 64-bit integers.

The point locator based approach was implemented as a VTK-
m counterpart to the point locator based module in VTK, namely
vtkSMPMergePoints. The solution for this study was implemented
using a modification of the “PointLocatorUniformGrid” module
from the VTK-m library, which uses spatial binning to locate the
nearest neighbor of a point. The modification was performed to
support queries for nearest neighbors for the same points that were

† We encountered a bug in this module, and so the experiments performed
in our study came from a revised version provided by Kitware. The bug fix
will be available in a future version of VTK. The bug report can be found
at the link: https://gitlab.kitware.com/vtk/vtk/issues/
17386.

used to build the search structure. Without this modification, for a
given query point, the points locator returns the same query point
as the nearest neighbor. Other point locator modules based on a k-D
tree and on two-level uniform grid are also available in the VTK-
m library but were not used for this study. The algorithm that we
developed uses multiple iterations to merge points. For each iter-
ation it finds the nearest neighbor for every point, and merges the
neighbors by reducing them to their centroid. These iterations are
performed until no new neighbors are discovered in the set of the
residual points.

The “VertexClustering” filter from VTK-m is intended for the
use of mesh decimation and we use it as a parallel comparator for
the Virtual Grid approach for the application of mesh decimation.

5.2. Data Sets

Fusion Thermal Hydraulics Supernova

Figure 5: Data sets used for the performance tests. An additional
clip operation was applied to generate the images for the Fusion
and Supernova data to reveal more intricate details.

We explored three data sets for this study. In each case, we took
an existing data set and applied an iso-surface operation. The fu-
sion data set comes from the NIMROD [SGG∗04] simulation code,
which is used to model the behavior of burning plasma. The ther-
mal hydraulics data set comes from the NEK5000 [FLPS08] code,
which is used for the simulation of computational fluid dynamics.
Finally, the supernova data set comes from a supernova simulation
made available by Blondin and Mezzacappa [BMD03]. We used
the VTK-m library to perform the iso-surfacing and disabled the
option for merging coincident points. This resulted in a triangle
soup, where no triangles shared any common vertices. Explicitly,
if there were N triangles, then the soup would have 3×N vertices,
with many of the vertices being coincident and replicated in the ver-
tex list. Figure 5 provides the visuals for the test data sets, and Table
2 provides additional information for reproducibility purposes.

5.3. Tolerance for Merge

We test our algorithms with four values for tolerance, two as abso-
lute values to study point merging and two as fractions of the data
set extents used to study mesh decimation.

We used zero as the tolerance to merge exactly coincident points
present in the data set. Choosing the tolerance as δ = 0 enabled
us to compare our parallel algorithms implemented using VTK-m
with the parallel features to merge coincident points from the VTK
library. We used a non-zero tolerance δ = 0.0001 to merge points
that occur within the specified distance of each other. This value
was arbitrarily chosen, but yielded sufficient reduction for the test

https://gitlab.kitware.com/vtk/vtk/issues/17386
https://gitlab.kitware.com/vtk/vtk/issues/17386
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Tolerance Parallel
Point Merge Decimation CPU

Algorithm δ = 0 δ 6= 0 δ = 1% δ = 10% TBB Scaling GPU Count

vtkSMPMergePoints 3 3 3 18
vtkCleanPolyData 3 3 3

VTK-m Vertex Clustering 3 3 3 3 12
VTK-m Point Locator 3 3 3 3 3 42

VTK-m Virtual Grid (32 bit) 3 3 3 3 3 3 3 54
VTK-m Virtual Grid (64 bit) 3 3 3 3 3 42

Total 171

Table 1: Combinations that we tested. As an example of how to interpret this table, consider the row for "VTK-m Virtual Grid (32-bit),"
which we used for both point merge and mesh decimation experiments, with all types of parallelism. For different hardware architectures we
ran 1 experiment for both CPU and GPU execution, and performed 5 scaling experiments for TBB with varying number of CPU threads,
making the total 7. For point merging, we have 2 tolerances × 7 parallelizations × 3 data sets = 42 experiments. For mesh decimation,
we have 2 tolerances ×2 parallelizations ×3 data sets = 12 experiments. In total, we have 54 total experiments for this case.

Output
Data set Iso-Values Points Cells Bounds

Fusion 2.4, 3.2 4125540 1375180 0 – 1
Hydraulics 42, 64 15686430 5228810 0 – 1
Supernova 0.02, 0.05, 0.07 24493224 8164408 0 – 431

Table 2: Details of the data sets we used for our experiments.

data sets. This enabled us to test cases where it is needed to merge
points that are not strictly coincident but are separated by some
insignificant distance between them.

The fractional tolerances were chosen to make it easier to study
mesh decimation with the Virtual Grid approach. We chose to have
bins that were sized 1% and 10% of the bounding volumes of the
data set. These values represent 1003 and 103 spatial bins for mesh
decimation respectively.

5.4. Hardware Architectures

The biggest advantage of using the VTK-m library is its ability to
provide portable performance over multiple architectures that are
comparable to platform specific solutions. We tested our implemen-
tations on two different hardware:

CPU: Dual IBM Power9 CPU, each with 22 cores running at 3.8
GHz, capable of running 4 threads per core, and equipped with
512 GBytes of DDR4 memory.

GPU: NVIDIA Tesla V100 GPU of the Volta family with 5120
CUDA cores, 6.1 TeraFLOPS of double precision performance,
and equipped with 16 GBytes of HBM2 memory.

VTK-m uses the TBB (Thread Building Blocks) library as a back-
end threading library for execution on many-core CPUs, and uses
CUDA as a backend threading library for execution on NVIDIA
GPUs. Henceforth, all parallel CPU execution times are reported
using TBB, and GPU execution times are reported using CUDA.

6. Results

We present our evaluation of the Virtual Grid approach in four
parts. The first two parts each contain an application: merging of
exactly coincident points (Section 6.1) and mesh decimation (Sec-
tion 6.2). In both parts, we compare performance with the appli-
cable algorithms listed in Sections 5.1.1 and 5.1.2. In Section 6.3
we evaluate the strong scaling characteristics on multi-core CPUs.
In Section 6.4 we present the performance portability when exe-
cuting on multi-core CPUs and NVIDIA GPUs. In Section 6.3 and
Section 6.4, we quantify performance and scaling in terms of the
rate of processing points, which is calculated using the following
equation:

processing rate =
number o f points

execution time (seconds)
(3)

This gives us the total number of points that a program is able
to process in a second. We use processing rate as a measure be-
cause it is a better indicator of parallel speed-up than execution
time [MO15].

6.1. Merging Points

This section is divided into two parts. In the first part, we study
the performance of the Virtual Grid approach for merging exactly
coincident points. In the second part, we study the performance
of the Virtual Grid approach for merging points with a non-zero
tolerance.

Our Virtual Grid approach is designed to merge points within
a specified distance, δ, of each other. Merging exactly coincident
points is a special case of this problem, i.e., the case where δ is
zero. For our study, we compare against a VTK module that is de-
signed specifically for merging coincident points; this comparator
is somewhat imperfect, since the coincident point problem can be
solved with fewer calculations then when δ is non-zero. In particu-
lar, our VTK-m based approach performs additional distance com-
putations to make sure we group points only within the given tol-
erance δ. Also, we calculate the centroid for all the points grouped
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together to merge them, coincident or otherwise. Despite this asym-
metry, we feel the comparison is valuable since it lets us test against
another parallel implementation.

6.1.1. Merging Coincident Points (δ = 0)

VTK-m
Point Virtual Grid

Data Set Device VTK Locator 32-bit 64-bit

Fusion TBB 0.16 0.38 0.11 0.11
CUDA 0.07 0.04 0.04

Thermal TBB 1.01 4.88 0.39 0.41
Hydraulics CUDA 0.31 0.12 0.14

Supernova TBB 1.14 3.97 0.61 0.67
CUDA 0.35 0.19 0.21

Table 3: Execution times in seconds for merging points with δ = 0.
The execution times for TBB are presented using 40 CPU cores.

Table 3 presents the execution times for this part of the study. In
all cases the CPU execution times for the Virtual Grid approach
are better than the comparator from the VTK library. The point
locator based approach, implemented in VTK-m, performs slower
than the other approaches in all cases. The reason for this behavior,
apart from the extra computations, is the cost associated with the
construction of the point locator data structure for every iteration
until the merge converges.

Table 3 also shows the difference between the two versions of
our Virtual Grid approach. The version using 32-bit integers con-
sistently performs better than the one using 64-bit integers. Intu-
itively, the 32-bit integers results in larger bins, which results in
more points binned together, which in turn should result in more
time spent computing distances between points. However, 32-bit
integers can be sorted faster than 64-bit integers, and the reduced
sort time more than compensates for the extra distance compar-
isons, which are embarrassingly parallel.

When considering performance across data sets, the algorithms
behaved differently. The execution times for the Virtual Grid are
consistently proportional to the number of points being processed.
For example, the Virtual Grid algorithm using 32-bit integers run-
ning with TBB computes at a rate of about 40 million points per
second for all three data sets. In contrast, the algorithms based on
point locators, which includes the VTK algorithm, process points
at a much slower rate for thermal hydraulics data than the other
two data sets. This is because the thermal hydraulics data is not
spatially distributed as evenly as the other two data sets. We ob-
serve, therefore, that the Virtual Gird approach is more resilient to
the spatial distribution of the points in the data and a better choice
for unstructured data at different scales.

6.1.2. Merging Close Points (δ = 0.0001)

The execution times for our comparator from the VTK library come
from the “vtkCleanPolyData” module. This is the only module
available in the VTK library that readily supports merging of points
that are separated by some distance. As mentioned in Section 5, it

does not support parallel execution on any architecture. In addition
to merging close points, the vtkCleanPolyData module removes de-
generate triangles; we modified our algorithms implemented using
VTK-m to also remove these triangles to have a fair comparison.

VTK-m
Point Virtual Grid

Data Set Device VTK Locator 32-bit 64-bit

Fusion Serial 2.68 7.17 2.43 2.49
TBB 0.47 0.22 0.23

CUDA 0.09 0.16 0.17

Thermal Serial 76.79 121.43 10.85 11.19
Hydraulics TBB 5.99 0.75 0.81

CUDA 0.58 0.56 0.50

Supernova Serial 64.13 87.96 15.21 15.96
TBB 4.67 0.84 1.02

CUDA 0.42 0.40 0.55

Table 4: Execution times in seconds for merging points with δ =
0.0001. The execution times for TBB are presented using 40 CPU
cores.

Table 4 presents the execution times for this part of the study.
There is a significant increase in the execution times for both the
VTK library and the VTK-m implementations compared to the
times presented in Section 6.1.1. The increase in execution time
for the VTK library is a result of now having to perform distance
checks and calculating the centroid for merging points that are
within the distance δ. The modules for merging coincident points
from the VTK library only perform a comparison for equality. The
increase in the execution times for the VTK-m implementations is a
result of having to perform multiple iterations to merge points that
are within the distance δ.

The Virtual Grid approach in VTK-m is the most performant of
all the algorithms that we tested for this case. As we bin points into
the smallest possible cells of the Virtual Grid, we have to perform
only a few distance checks between pairs of points that belong to
the same cell in order to merge them correctly. This reduces the
computations that are performed by each thread when executing in
parallel. Also, in contrast to the point locator based algorithm im-
plemented in VTK-m, the Virtual Grid approach does not have the
overhead of maintaining and updating a search structure to locate
close points.

6.2. Mesh Decimation

Table 5 provides a comparison of our Virtual Grid approach against
the Vertex Clustering filter from the VTK-m library. The numbers
from the table suggest that the Vertex Clustering filter outperforms
the Virtual Grid approach in most cases. This is an expected result
as after clustering the vertices of the data, the Vertex Clustering
filter chooses a random point from the clustered vertices as a rep-
resentative point of the cluster. As mentioned in section 4, in the
Virtual Grid approach we calculate the centroid of the clustered
points as a representative point. The Virtual Grid approach incurs a
significant performance cost for the centroid computations.
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δ = 1% δ = 10%
Vertex Virtual Vertex Virtual

Data Set Device Clust. Grid Clust. Grid

Fusion TBB 0.07 0.09 0.06 0.15
CUDA 0.16 0.04 0.16 0.06

Thermal TBB 0.22 0.32 0.23 0.51
Hydraulics CUDA 0.24 0.11 0.21 0.43

Suprenova TBB 0.36 0.48 0.35 0.76
CUDA 0.27 0.17 0.26 0.33

Table 5: Execution times in seconds for performing mesh deci-
mation. The execution times for TBB are presented using 40 CPU
cores.

However, the extra cost helps the Virtual Grid approach produce
smoother output meshes. Figure 6 shows the difference in the out-
put of the Vertex Clustering filter and the Virtual Grid approach for
the fusion data.

(a) Vertex Clustering (b) Virtual Grid

Figure 6: Decimation outputs using VTK-m Vertex-Clustering and
the Virtual Grid approach for the Fusion data. The output data was
obtained using 103 subdivisions for the Vertex Clustering filter and
δ = 10% for the Virtual Grid method.

6.3. CPU Scaling Study

In addition to comparing our Virtual Grid approach to the reference
VTK counterparts and the point locator based VTK-m algorithm,
we also studied the strong scaling characteristic of the algorithms
for merging close points. Figure 7 plots the results for this part of
the study. Since there is no parallel module in VTK for this task,
the plots show a flat line for the corresponding VTK module. The
plots present the comparison of strong scaling results of our imple-
mentations when executing with varying number of CPU threads.

In general, the plots indicate that our VTK-m implementations
are able to benefit from an increase in the number of available CPU
cores. That said, we observe that although this scaling is good, it
does level off as we approach the number of cores available. We
believe this is because the point merging algorithm, which by its

nature must load points from disparate memory locations, is mem-
ory bandwidth bound. Consequently, we observe diminishing re-
turns for more cores and almost no benefit from engaging hyper-
threading. These observations suggest that increasing the number
of threads for execution beyond the available physical CPU cores
does not result in any performance improvements for our imple-
mentations. This can be used as a heuristic to schedule programs to
yield the best performance.

6.4. Performance Across Devices

Figure 8 presents the comparison of processing rates for the Virtual
Grid approach across devices. The processing rate for the VTK li-
brary comes from the “vtkCleanPolyGrid” filter and is used as a
comparator for the Virtual Grid approach when executing in serial.
This section reinforces our findings from Section 6.1.2 that the Vir-
tual Gird approach is very efficient for a general case of merging
points. When executing in serial the Virtual Grid approach offers
better throughput compared to the VTK comparator. Additionally,
the Virtual Grid approach is able to use available parallelism effi-
ciently. When executing on GPUs the Virtual Grid approach is able
to achieve a much higher processing rate.

The observed performance portability of our approach between
GPU and CPU is just short of the ideal. The Power9 CPUs are ca-
pable of a throughput of 2.1 TFLOPS, and the Nvidia V100 GPUs
are capable of a throughput of 6.1 TFLOPS, so the ratio of the
theoretical throughput between the GPU and the CPU is about 3.
In our study, the maximum observed ratio was about 2 for the su-
pernova dataset. This result is consistent with previous findings,
as GPUs are more memory bound than CPUs and our algorithm
stresses memory.

7. Conclusions

We presented our Virtual Grid algorithm, a fast and scalable solu-
tion for merging points in a data set that occur within a certain user
provided tolerance. This algorithm leverages VTK-m and its data
parallel techniques.

Overall, our algorithm performs well on varied parallel envi-
ronments and workloads. Our experiments reveal that the Virtual
Grid approach works better than its competitors for merging points
from the VTK and VTK-m libraries. Further, while our approach is
slower for the application of mesh decimation, it yields smoother
output meshes.

For future work, we expect further optimizations are possible
with respect to optimizing memory accesses. We will also be ex-
ploring alternatives to the sort used for grouping points in the same
Virtual Grid bins. We are considering hash-table–based approaches
similar to that used by Lessley et al. for external facelist calcula-
tion [LBMC16, LPM∗17].
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(b) CPU strong scaling for thermal hydraulics
data.
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(c) CPU strong scaling for supernova data.

Figure 7: CPU strong scaling for merging close points (δ = 0.0001) : The dashed vertical line at 40 threads is where we start using logical
CPU cores. The VTK data shown is the processing rate for the serial version.
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(b) Processing rates for thermal hydraulics data

0 500000 1000000 1500000 2000000 2500000

Processing Rate (*1M points/sec)

VTKVTK-m
 S

er
ial

VTK-m
 T

BBVTK-m
 C

UDA

(c) Processing rates for supernova data

Figure 8: Comparison of processing rates for Virtual Grid (32-bit) approach across devices. These rates are based on the tolerance δ =
0.0001. The TBB results are provided using 40 CPU cores.
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