
Exploiting the Matching Information in the
Support Set for Few Shot Event Classification

Viet Dac Lai1, Franck Dernoncourt2, and Thien Huu Nguyen1

1 Department of Computer and Information Science, University of Oregon, USA
2 Adobe Research, USA

vietl@cs.uoregon.edu, dernonco@adobe.com, thien@cs.uoregon.edu

Abstract. The existing event classification (EC) work primarily focuses
on the traditional supervised learning setting in which models are unable
to extract event mentions of new/unseen event types. Few-shot learning
has not been investigated in this area although it enables EC models to
extend their operation to unobserved event types. To fill in this gap, in
this work, we investigate event classification under the few-shot learning
setting. We propose a novel training method for this problem that exten-
sively exploit the support set during the training process of a few-shot
learning model. In particular, in addition to matching the query exam-
ple with those in the support set for training, we seek to further match
the examples within the support set themselves. This method provides
more training signals for the models and can be applied to every metric-
learning-based few-shot learning methods. Our extensive experiments on
two benchmark EC datasets show that the proposed method can improve
the best reported few-shot learning models by up to 10% on accuracy
for event classification.

Keywords: Event classification · Auxiliary Loss · Few-shot learning.

1 Introduction

Event Classification (EC) is an important task of Information Extraction (IE)
in Natural Language Processing (NLP). The target of EC is to classify the
event mentions for some set of event types (i.e., classes). Event mentions are
often associated with some words/phrases that are responsible to trigger the
corresponding events in the sentences. For example, consider the following two
sentences:

(1) The companies fire the employee who wrote anti-diversity memo.
(2) The troops were ordered to cease fire
In these examples, an EC system should be able to classify the word “fire”

in the two above sentences as an Employment-Termination event and an Attack
event, respectively. As demonstrated by the examples, a notable challenge in
EC is that the similar surface forms of the words might convey different events
depending on the context. Two main methods have been employed for EC. The
first approach explores linguistic features (e.g., syntactic and semantic proper-
ties) to train statistical models [9]. The second approach, on the other hand,



2 V. D. Lai et al.

focuses on developing deep neural network models (e.g., convolutional neural
network (CNN) and recurrent neural network (RNN)) to automatically learn
effective features from large scale datasets [5, 13]. Due to the development of the
deep learning models, the performance for EC has been improved significantly
[19, 17, 16, 14, 23].

The current EC models mainly employ the traditional supervised learning
setting [19, 17] where the set of event types for classification has been pre-
determined. However, once a model is trained on the datasets with the given
set of event types, it is unable to detect event mentions of unseen event types.
To extend EC to new event types, a common solution is to annotate additional
training data for such new event types and re-train the models, which is ex-
tremely expensive. It is thus desirable to formalize EC in the few-shot learning
setting where the systems need to learn to recognize event mentions for new
event types from a handful of examples. This is, in fact, closer to how humans
learn to do tasks and make the EC models more applicable in practice. However,
to our knowledge, there has been no prior work on few-shot learning for EC.

In few-shot learning, we are given a support set and a query instance. The
support set contains examples from a set of classes (e.g. events in EC). A learning
model needs to predict the class, to which the query instance belongs, among
the classes presented in the support set. This is done based on the matching
information between the query example and those in the support set. To apply
this setting to extract the examples of some new type, we need to collect just a
few examples of the new type and add them to the support set to form a new
class. Afterward, whenever we need to predict whether a new example has the
new type or not, we can set it as the query example and perform the models in
this setting.

In practice, we often have some existing datasets (denoted by D) with ex-
amples for some pre-defined types. The previous work on few-shot learning has
thus exploited such datasets to simulate the aforementioned few-shot learning
setting to train the models [26]. Basically, in each episode of the training pro-
cess, a subset of the types in D is sampled for which a few examples are selected
for each type to serve as the support set. Some other examples are also chosen
from the remaining examples of each sampled type to establish the query points.
The models would then be trained to correctly map the query examples to their
corresponding types in the support set based on the context matching of the
examples [7].

One potential issue with this training procedure is that the training signals
for the models only come from the matching information between the query ex-
amples and the examples in the support set. The available matching information
between the examples in the support set themselves is not yet explored in the
existing few-shot learning work [28, 26], especially for the NLP tasks [7]. While
this approach can be acceptable for the tasks in computer vision, it might not
be desirable for NLP applications, especially for EC. Overall, datasets in NLP
are much smaller than those in computer vision, thus limiting the variety of the
context for training purposes. The ignorance of the matching information for the



Matching Information in the Support Set for Few Shot Event Classification 3

examples in the support set might cause inefficiency in using the training data
for EC where the models cannot fully exploit the available information and fail to
achieve good performance. Consequently, in this work, we propose to simultane-
ously exploit the matching information between the examples in the support set
and between the query examples with the examples in the support set to train
the few-shot learning models for EC. This is done by adding additional terms
in the loss function (i.e., the auxiliary losses) to capture the matching knowl-
edge between the examples in the support set. We expect that this new training
technique can better utilize the training data and improve the performance of
few-shot learning in EC.

We extensively apply the proposed training method on different metric learn-
ing models for few-shot learning on two benchmark EC datasets. The experi-
ments show that the new training technique can significantly improve all the
considered few-shot learning methods over the two datasets with a large per-
formance gap. In summary, the contribution of this work includes: (i) for the
first time in the literature, we study the few-shot learning problem for event
Classification, (ii) we propose a novel training technique for the few-shot learn-
ing models based on metric learning. The proposed training method exploits
the matching information between the examples in the support set as additional
training signals, and (iii) we achieve the state-of-the-art performance for EC on
the few-shot learning setting, functioning as the baselines for the future research
in this area.

2 Related Work

Early studies in event classification mainly focus on designing linguistic features
[1, 9, 12] for statistical models. Due to the development of deep learning, many
advanced network architectures have been investigated to advance the event
classification accuracy [5, 19, 17, 18, 21, 13, 22]. However, none of them investi-
gates the few-shot learning problem for EC as we do in this work. Although
some recent studies have considered a related setting where event types are aug-
mented with some keywords [3, 24, 11], these works do not explicitly examine the
few-shot learning setting as we do in this work. Some other efforts on zero-shot
learning for event classification [8] are also related to our work in this paper.

Few-shot learning facilitates the models to learn effective latent features with-
out large scale data. The early studies apply transfer learning to fine-tune the
pre-trained models, exploiting the latent information from the common classes
with adequate instances [4, 2]. Metric learning, on the other hand, learns to model
the distance distribution among the observed classes [10, 28, 26]. Recently, the
idea of a fast learner that can generalize to a new concept quickly is intro-
duced in meta-learning [25, 6]. Among these methods, metric-learning is more
explainable and easier to train and implement compared to transfer learning
and meta-learning. Notably, the prototypical networks in metric learning achieve
state-of-the-art performance on several FSL benchmarks and show its robust-
ness against noisy data [26, 7]. Although many FSL methods are proposed for



4 V. D. Lai et al.

image recognition [10, 28, 26, 6, 25], there have been few studies investigating this
setting for NLP problems [7, 29].

3 Methodology

3.1 Notation

The task of few-shot event classification is to predict the event type of a query
example x given a support set S and a set of event type T = {t1, t2, . . . , tN} (N
is the number of event types). In few-shot learning, S contains a few examples
for each event type in T . For convenience, we denote the support set as:

S ={(s11, a11, t1), . . . , (sK1
1 , aK1

1 , t1)

. . .

(s1N , a
1
N , tN ), . . . , (sKN

N , aKN

N , tN )},
(1)

where (sji , a
j
i , ti) indicates that the aji -th word in the sentence sji is the trigger

word of an event mention with the event type ti, and K1,K2, . . . ,KN are the
numbers of examples in the support set for each type t1, t2, . . . , tN respectively.
For simplicity, we use w1, w2, . . . , wl to represent the word sequence for some
sentence with length l in this work.

Similarly, the query example x can also be represented by x = (q, p, t) where
q, p and t represent the query sentence, the position of the trigger word in the
sentence, and the true event type for this event mention respectively. Note that
t ∈ T is only provided in the training time and the models need to predict this
event type in the test time.

In practice, the numbers of support examples in S (i.e., K1, . . . ,KN ) may
vary. However, to ease the processing and speed up the training process with
GPU, similar to recent studies in FSL [7], we employ the N-way K-shot FSL
setting. In this setting, the numbers of instances per class in the support set are
equal (K1 = . . . = KN = K > 1) and small (K ∈ {5, 10}).

Note that to evaluate the few-shot learning models for EC, we would need
the training data Dtrain and the test data Dtest. For few-shot learning, it is
crucial that the sets of event types in Dtrain and Dtest are disjoint. The event
type set T in each episode would then be a sample of the sets of event types
in Dtrain or Dtest, depending on the training and evaluation time respectively.
Also, as mentioned in the introduction, in one episode of the training process, a
set of query examples (i.e., the query set) would be sampled so it involves the
similar event types T as the support set, and the examples for each type in the
query set would be different from those in the support set. At the test time, the
classification accuracy of the models over all the examples in the test set would
be evaluated.



Matching Information in the Support Set for Few Shot Event Classification 5

3.2 Few-shot Learning for Event Classification

The few-shot learning framework for EC in this work follows the typical metric
learning structures in the prototypical networks [26, 7], involving three major
components: instance encoder, prototypical module, classifier module.

Instance encoder Given a sentence s = {w1, w2, . . . , wl} and the position of
the trigger word a (i.e., wa is the trigger word of the event mention in s and (s, a)
can belong to an example in S or the query example), following the common
practice in EC [19, 5], we first convert each word wi ∈ s into a real-valued vector
to facilitate the neural computation in the following steps. In particular, in this
work, we represent each word wi using the concatenation of the following two
vectors:

– The pre-trained word embedding of wi: this vector is expected to capture
the hidden syntactic and semantic information for wi [15].

– The position embedding of wi: this vector is obtained by mapping its relative
distance to the trigger word wa (i.e., i − a) to an embedding vector in the
position embedding table. The position embedding table is initialized ran-
domly and updated during the training process of the models. The purpose
of the position embedding vectors is to explicitly inform the models of the
position of the trigger word in the sentence [5].

After converting wi into a representation vector ei, the input sentence s
becomes a sequence of representation vectors E = e1, e2, . . . , el. Based on this
sequence of vectors, a neural network architecture f would be used to transform
E into an overall representation vector v to encode the input example (s,m)
(i.e., v = f(s,m)). In this work, we investigate two network architectures for the
encoding function f , i.e., one early architecture for EC based on CNN and one
recent popular architecture for NLP based on Transformers:

CNN encoder: This model applies the temporal convolution operation with
some window size k and multiple filters over the input vector sequence E, pro-
ducing a hidden vector for each position in the input sentence. Such hidden
vectors are then aggregated via the max-pooling operation to obtain the overall
representation vector v for (s,m) [5, 7].

Transformer encoder: This is an advanced model to encode sequences of
vectors based on attention mechanism without recurrent neural network [27].
The transformer encoder involves multiple layers; each of them consumes the
sequence of hidden vectors from the previous layer to generate the sequence of
hidden vectors for the current layer. The first layer would take E as the input
while the hidden vector sequence returned by the last layer (i.e., the vector
at the position a of the trigger word) would be used to constitute the overall
representation vector v in this case. Each layer in the transformer encoder is
composed of two sublayers (i.e., a multi-head self-attention layer and a feed-
forward layer) augmented with a residual connection around them [27].



6 V. D. Lai et al.

Prototypical module The prototypical module aims to compute a single pro-
totype vector to represent each class in T of the support set. In this work, we
consider two versions of this prototypical module in the literature. The first
version is from the original prototypical networks [26]. It simply obtains the pro-
totype vector ci for a class ti using the average of the representation vectors of
the examples with the event type ti in the support set S:

ci =
1

K

∑
(sji ,a

j
i ,ti)∈S

f(sji , a
j
i ) (2)

The second version, on the other hand, comes from the hybrid attention-
based prototypical networks [7]. The prototype vector is a weighted sum of the
representation vectors of the examples in the support set. The example weights
(i.e., the attention weights) are determined by the similarity of the examples in
the support set with respect to the query example x = (q, p, t):

ci =
∑

(sji ,a
j
i ,ti)∈S

αijf(sji , a
j
i )

where αij =
exp(bij)∑

(ski ,a
k
i ,ti)∈S exp(bik)

bij = σ(f(sji , a
j
i )� f(q, p))

(3)

In this formula, � is the element-wise multiplication and sum is the summa-
tion operation done over all the dimensions of the input vector.

Classifier module In this module, we compute the probability distribution
over the possible types for x in T using the distances from the query example
x = (q, p, t) to the prototypes of the classes/event types T in the support set:

P (y = ti|x, S) =
exp(−d(f(q, p), ci))∑N
j=1 exp(−d(f(q, p), cj))

(4)

where d is a distance function, and ci and cj are the prototype vectors obtained
in either Equation (2) or Equation (3).

In this paper, we consider three popular distance functions in different few-
shot learning models using metric learning:

– Cosine similarity in matching networks (called Matching) [28]
– Euclidean distance in the prototypical networks. Depending on whether the

prototype vectors are computed with Equation 2 or 3, we have two variations
of this distance function, called as Proto [26], and Proto+Att (i.e., in
hybrid attention-based prototypical networks [7]) respectively.

– Learnable distance function using convolutional neural networks in relation
networks (called Relation)



Matching Information in the Support Set for Few Shot Event Classification 7

Given the probability distribution P (y|x, S), the typical way to train the few
shot learning framework is to optimize the negative log-likelihood function for x
(with t as the ground-truth event type for x) [26, 7]:

Lquery(x, S) = − logP (y = t|x, S) (5)

Matching the examples in the support set The typical loss function for
few-shot learning in Equation 5 aims to learn by matching the query example
x with the examples in the support set S via the prototype vectors. An issue
with this mechanism is it only employs the matching signals between the query
example and the support examples for training. This can be acceptable for large
datasets (e.g., in computer vision) where many examples can play the role of the
query examples to provide sufficient training signals for the learning process.
However, for EC, the available datasets are often small (e.g., the ACE 2005
dataset with only about a few thousands of annotated event mentions), making
the sole reliance on the query examples for training signals less efficient. In
other words, the few-shot learning framework might not be trained well with
the limited data for the query matching for EC. Consequently, in this work,
we propose to introduce more training signals for few-shot learning for EC by
additionally exploiting the matching information among the examples in the
support set themselves. In particular, as there are multiple examples (although
only a few) per class/type in the support set, we select a subset of such examples
for each type in S and enforce the models to be able to match such the selected
examples to their corresponding types in the remaining support set.

Formally, let Si = {(s1i , a1i , ti), . . . , (sKi , aKi , ti)}∀1 ≤ i ≤ N so S = S1 ∪
S2 . . . ∪ SN . Let Q be some integer that is less than K (i.e., 1 ≤ Q < K). For
each type ti, we randomly select Q examples from Si (called the auxiliary query

examples), forming the auxiliary query set SQ
i (i.e., SQ

i ⊂ Si, |SQ
i | = Q). The

remaining set of Si is then denoted by SS
i = Si \ SQ

i . We unify the sets SS
i

to constitute an auxiliary support set SS while the union of SQ
i serves as the

auxiliary query set: SS = SS
1 ∪ SS

2 ∪ . . . ∪ SS
N , S

Q = SQ
1 ∪ S

Q
2 ∪ . . . ∪ S

Q
N .

Given the auxiliary support set SS , we seek to enhance the training signals
for the few-shot models by matching the examples in the auxiliary query set SQ

with SS . Specifically, we first use the same networks in the instance encoder and
prototypical modules to compute the auxiliary prototypes for the classes in T of
the auxiliary support set SS . For each auxiliary example z = (sz, az, tz) ∈ SQ

(sz, az and tz are the sentence, the trigger word position and the event type
in z respectively), we use the network in the classifier module to obtain the
probability distribution P (.|z, SS) over the possible event types for z based on
the auxiliary support set SS . Afterward, we enforce that the models can correctly
predict the event types for all the examples in the auxiliary query sets SQ

i given
the support set SS by introducing the auxiliary loss function:

Laux(S) = −
N∑
i=1

∑
z=(sz ,az ,ti)∈S

Q
i

logP (y = ti|z, SS) (6)



8 V. D. Lai et al.

Eventually, the overall loss function to be optimized to train the models in
this work is: L(x, S) = Lquery(x, S) +λLaux(S) where λ is a trade-off parameter
between the main loss function and the auxiliary loss function. For convenience,
we call the training method with the auxiliary loss function for few shot learning
in this section LoLoss (i.e., leave-out loss) in the following experiments.

4 Experiments

4.1 Datasets

We evaluate all the models in this study on the ACE 2005. ACE 2005 involves
33 event subtypes which are categorized into 8 event types: Business, Contact,
Conflict, Justice, Life, Movement, Personnel, and Transaction. The TAC KBP
dataset, on the other hand, contains 38 event subtypes for 9 event types. Due
to the larger numbers of the event subtypes, we will use the subtypes in these
datasets as the classes for our few-shot learning problem.

As we want to maximize the numbers of examples in the training data, for
each dataset (i.e., ACE 2005 or TAC KBP 2015), we choose the event subtypes
in 4 event types that have the least number of examples in total and split at the
ratio 1:1 into the test and development classes. Following this heuristics to select
the classes, the event types used for training data in ACE 2005 involve Business,
Contact, Conflict, and Justice while the event types for testing and development
data are Life, Movement, Personnel, and Transaction. For TAC KBP 2015, the
training classes include Business, Contact, Conflict, Justice, and Manufacture
while the test and development classes consist of Life, Movement, Personnel,
and Transaction. Finally, due to the intention to follow the prior work on few-
shot learning with 10 examples per class in the support set and 5 examples per
class in the query set for training [7], we remove the examples of any subtypes
whose have less than 15 examples in the training, test and development sets of
the datasets.

4.2 Hyper-Parameters

Similar to the prior work [7], we evaluate all the models using N -way K-shot
FSL settings with N,K ∈ {5, 10}. For training, we avoid feeding the same set
of event subtypes in every batch to make training batches more diverse. Thus,
following [7], we sample 20 event subtypes for each training batch while still
keeping either 5 or 10 classes in the test time.

We initialize the word embeddings using the pre-trained GloVe embeddings
with 300 dimensions. The word embeddings are updated during the training time
as in [20]. We also randomly initialize the position embedding vectors with 50
dimensions. The other parameters are selected based on the development data
of the datasets, leading to similar parameters for both ACE 2005 and TAC KBP
2015. In particular, the CNN encoder contains a single CNN layer with window
size 3 and 250 filters. We manage to use this simple CNN encoder to have a



Matching Information in the Support Set for Few Shot Event Classification 9

fair comparison with the previous study [7]. The Transformer encoder contains
2 layers with a context size of 512 and 10 heads in the attention mechanism.
The number of examples per class in the auxiliary query sets Q is set to 2 while
the trade-off parameter λ in the loss function is 0.1. We use stochastic gradient
descent with a learning rate of 0.001 to optimize the models.

4.3 Results

Table 1 shows the accuracy of the models (i.e., Matching, Proto, Proto+Att,
and Relation) on the ACE 2005 test dataset, using the CNN encoder and Trans-
former encoder. There are several observations from the table. First, comparing
the instance encoders, it is clear that the transformer encoder is significantly
better than the CNN encoder across all the possible few-shot learning mod-
els and settings for EC. Second, comparing the few-shot learning models, the
prototypical networks significantly outperform Matching and Relation with a
large performance gap across all the settings. Among the prototypical networks,
Proto+Att achieves better performance than Proto, thus confirming the benefits
of the attention-based mechanism for the prototypical module. Third, comparing
the pairs (5-way 5-shot vs 5-way 10-shot) and (10-way 5 shot vs 10 way 10 shot),
we see that the performance of the models would be almost always better with
larger K (i.e., the number of examples per class in the support set) on different
settings, consistent with the natural intuition about the benefit of having more
examples for training.

FSL Setting
5 way 5 way 10 way 10 way 5 way 5 way 10 way 10 way
5 shot 10 shot 5 shot 10 shot 5 shot 10 shot 5 shot 10 shot

CNN Encoder Transformer Encoder

Matching 45.81 49.01 30.41 35.66 71.83 76.51 61.2 66.79
Matching+LoLoss 51.78 52.64 32.48 39.15 78.13 83.42 68.91 75.30

Proto 70.92 74.40 57.59 62.67 78.07 82.64 68.77 74.99
Proto+LoLoss 76.98 82.19 66.92 73.63 81.27 86.20 73.07 79.63

Proto+Att 72.26 74.22 57.28 64.36 80.77 83.96 72.78 77.97
Proto+Att+LoLoss 76.93 75.59 67.54 66.70 83.38 87.20 76.03 81.79

Relation 36.33 33.75 24.21 18.04 51.22 55.47 36.98 39.89
Relation+LoLoss 37.86 38.52 25.99 23.47 54.74 56.60 39.74 41.69

Table 1. Accuracy of event classification on ACE-2005 dataset. +LoLoss indicates
the use of the auxiliary loss.

Most importantly, we see that training the models with the LoLoss proce-
dure would significantly improve the models’ performance. This is true across
different few-shot learning models, N-way K-shot settings, and encoder choices.
The results clearly demonstrate the effectiveness of the proposed training proce-
dure to exploit the matching information between examples in the support set
for few-shot learning for EC. For simplicity, we only focus on the best few-shot
learning models (i.e., the prototypical networks) and the Transformer encoder
under 5-way 5-shot and 10-way 10-shot in the following analysis. Even though



10 V. D. Lai et al.

we show the results in fewer settings and models in table 2 and 3, the same
trends are observed for the other models and settings as well.

Table 2 additionally reports the accuracy of Transformer-based models on the
TAC KBP 2015 dataset. As we can see from the table, most of our observations
for the ACE 2005 dataset still hold for TAC KBP 2015, once again confirming
the advantages of the proposed LoLoss technique in this work.

Model 5 way 5 shot 10 way 10 shot

Matching 72.78 65.55
Matching+LoLoss 75.58 68.53

Proto 78.08 73.23
Proto+LoLoss 78.88 74.82

Proto+Att 75.35 71.28
Proto+Att+LoLoss 79.93 76.37

Relation 50.97 34.91
Relation+LoLoss 51.65 35.13

Table 2. Accuracy of the models with the Transformer encoder on the TAC-KBP test
dataset. +LoLoss indicates the use of the auxiliary loss.

4.4 Robustness against noise

In this section, we seek to evaluate the robustness of the few-shot learning models
against the possible noise in the training data. In particular, in each training
episode where a set of examples is sampled for each type in T to form the query
setQ, we simulate the noisy data by randomly selecting a portion of the examples
in Q for label perturbation. Essentially, for each example in the selected subset
of Q, we change its original label to another random one in T , making it a noisy
example with an incorrect label. By varying the size of the selected portion in Q
for label perturbation, we can control the level of noise in the training process
for FSL in EC.

Noise rate Model 5 way 5 shot 10 way 10 shot

20%
Proto+Att 70.08 59.55
Proto+Att+LoLoss 74.61 64.66

30%
Proto+Att 67.38 57.08
Proto+Att+LoLoss 72.45 62.65

50%
Proto+Att 60.50 50.67
Proto+Att+LoLoss 65.29 55.21

Table 3. The accuracy on the ACE-2005 test set with different noise rates.

Table 3 shows the accuracy of the Proto+Att model on the ACE 2005 test set
that employs the Transformer encoder with or without the LoLoss training pro-
cedure for different noise rates. As we can see from the table, the introduction of
noisy data would, in general, degrade the accuracy of the models (i.e., comparing
the cells in Table 3 with the Proto+Att based model in Table 1). However, over
different noise rates and N way K shot settings, the Proto+Att model trained



Matching Information in the Support Set for Few Shot Event Classification 11

with LoLoss is still always significantly better than those without LoLoss. The
performance gap is substantial that is at least 4.5% over different settings. In
fact, we see that LoLoss can improve Proto+Att in the noisy setting (i.e., at
least 4.5%) more significantly than those in the setting without noisy data (i.e.,
at most 3.3% on the 5 way 5 shot and 10 way 10 shot settings in Table 1). Such
evidence further confirms the effectiveness and robustness against noisy data of
LoLoss for few-shot learning due to its exploitation of the matching information
between the examples in the support set.

5 Conclusion

In this paper, we perform the first study on few-shot learning for event clas-
sification. We investigate different metric learning methods for this problem,
featuring the typical prototypical network framework with several choices for
the instance encoder (i.e., CNN and Transformer). In addition, we propose a
novel technique, called LoLoss, to train the few-shot learning models for EC
based on the matching information for the examples in the support set. The
proposed LoLoss technique is applied to different few-shot learning methods for
different datasets and settings that altogether help to significantly improve the
performance of the baseline models. In the future, we plan to examine LoLoss for
few-shot learning for other NLP and vision problems (e.g., relation extraction,
image classification).

Acknowledgments

This research has been supported in part by Vingroup Innovation Foundation
(VINIF) in project code VINIF.2019.DA18 and Adobe Research Gift. This re-
search is also based upon work supported in part by the Office of the Director
of National Intelligence (ODNI), Intelligence Advanced Research Pro

References

1. Ahn, D.: The stages of event extraction. In: Proceedings of the Workshop on An-
notating and Reasoning about Time and Events. pp. 1–8 (2006)

2. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning.
In: Proceedings of ICML workshop on unsupervised and transfer learning (2012)

3. Bronstein, O., Dagan, I., Li, Q., Ji, H., Frank, A.: Seed-based event trigger labeling:
How far can event descriptions get us? In: ACL-IJCNLP (2015)

4. Caruana, R.: Learning many related tasks at the same time with backpropagation.
In: NIPS (1995)

5. Chen, Y., Xu, L., Liu, K., Zeng, D., Zhao, J.: Event extraction via dynamic multi-
pooling convolutional neural networks. In: ACL-IJCNLP (2015)

6. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML (2017)



12 V. D. Lai et al.

7. Gao, T., Han, X., Liu, Z., Sun, M.: Hybrid attention-based prototypical networks
for noisy few-shot relation classification. In: AAAI (2019)

8. Huang, L., Ji, H., Cho, K., Voss, C.R.: Zero-shot transfer learning for event ex-
traction. In: ACL. pp. 2160–2170 (2018)

9. Ji, H., Grishman, R.: Refining event extraction through cross-document inference.
In: ACL (2008)

10. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot
image recognition. In: ICML deep learning workshop. vol. 2 (2015)

11. Lai, V.D., Nguyen, T.: Extending event detection to new types with learning from
keywords. In: Proceedings of the 5th Workshop on Noisy User-generated Text (W-
NUT 2019) (2019)

12. Li, Q., Ji, H., Hong, Y., Li, S.: Constructing information networks using one single
model. In: EMNLP (2014)

13. Liu, S., Chen, Y., Liu, K., Zhao, J.: Exploiting argument information to improve
event detection via supervised attention mechanisms. In: ACL (2017)

14. Lu, W., Nguyen, T.H.: Similar but not the same: Word sense disambiguation im-
proves event detection via neural representation matching. In: EMNLP (2018)

15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS (2013)

16. Nguyen, T.H., , Meyers, A., Grishman, R.: New york university 2016 system for
kbp event nugget: A deep learning approach. In: TAC (2016e)

17. Nguyen, T.H., Cho, K., Grishman, R.: Joint event extraction via recurrent neural
networks. In: NAACL (2016)

18. Nguyen, T.H., Fu, L., Cho, K., Grishman, R.: A two-stage approach for extending
event detection to new types via neural networks. In: Proceedings of the 1st ACL
Workshop on Representation Learning for NLP (RepL4NLP) (2016b)

19. Nguyen, T.H., Grishman, R.: Event detection and domain adaptation with convo-
lutional neural networks. In: ACL-IJCNLP (2015)

20. Nguyen, T.H., Grishman, R.: Relation extraction: Perspective from convolutional
neural networks. In: Proceedings of the 1st NAACL Workshop on Vector Space
Modeling for NLP (VSM) (2015a)

21. Nguyen, T.H., Grishman, R.: Modeling skip-grams for event detection with convo-
lutional neural networks. In: EMNLP (2016d)

22. Nguyen, T.H., Grishman, R.: Graph convolutional networks with argument-aware
pooling for event detection. In: AAAI (2018a)

23. Nguyen, T.M., Nguyen, T.H.: One for all: Neural joint modeling of entities and
events. In: AAAI (2019)

24. Peng, H., Song, Y., Roth, D.: Event detection and co-reference with minimal su-
pervision. In: EMNLP (2016)

25. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning
with memory-augmented neural networks. In: ICML (2016)

26. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
NIPS (2017)

27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: NIPS (2017)

28. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for
one shot learning. In: NIPS (2016)

29. Yu, M., Guo, X., Yi, J., Chang, S., Potdar, S., Cheng, Y., Tesauro, G., Wang, H.,
Zhou, B.: Diverse few-shot text classification with multiple metrics. arXiv preprint
arXiv:1805.07513 (2018)


