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ABSTRACT
Modern telemetry systems rely on programmable switches
to perform the required operations within the data plane in
order to scale with the rate of network traffic. These systems
create a stream processing pipeline for all telemetry oper-
ations and statically map a subset of operations to switch
resources. These systems exhibit two inherent restrictions:
First, the fraction of operations in the data plane decreases
with the number and complexity of telemetry tasks. Second,
changing telemetry tasks requires rebooting the switch to
install a new telemetry task, i.e., no agility.

To address these restrictions, this paper presents Cedar, a
first-of-its-kind reconfigurable dataplane telemetry system.
Cedar is based on a new Broadcom ASIC with the BroadScan
module that offers a wide range of reconfigurable telemetry
operations. Leveraging this unique capability, we introduce
and explore reconfigurable data plane telemetry systems de-
sign issues. Cedar can periodically re-map different telemetry
operations to limited switch resources. This temporal parti-
tioning of telemetry tasks leads to scalability and agility of
Cedar. Our experimental evaluations of Cedar demonstrate
that both the required switch resources and volume of gen-
erated telemetry reports in each period are very small and
gracefully scale with the number of tasks.

1 INTRODUCTION
Network telemetry systems provide continuous and real-
timemeasurements about the state of the network [29] which
is critical for network operators to detect increasingly com-
plex events ranging from performance degradation to se-
curity attacks. Network telemetry systems such as Gigas-
cope [16], Chimera [11], and NetQRE [32] can analyze net-
work traffic for a wide range of telemetry tasks using expres-
sive, high-level languages on general-purpose CPUs. How-
ever, it is prohibitively costly for such CPU-based systems to
scale with the rate of traffic in modern networks. While data
plane telemetry systems (e.g., Marple [24], OpenSketch [30],
Sonata [19]) can scale with traffic rates, the scarcity of data
plane resources, e.g., memory, limit either the number of
supported telemetry tasks (i.e., queries) [24] or performance
gains [19] for these systems.

State-of-the-art data plane telemetry systems (see Table 1)
generally rely on programmable switches [10, 12]. At the
heart of these systems is the “compile-and-deploy" model

which maps telemetry operations statically to switch re-
sources (e.g., stages of a Tofino switch [7]). As a result, these
programmable data plane telemetry systems exhibit two in-
herent restrictions. First, these systems must create a stream
processing pipeline that incorporates the entire set of opera-
tions associated with all the target telemetry tasks identified
by operators. Therefore, as the size of the processing pipeline
grows with the number and complexity of telemetry tasks,
only a smaller fraction of all operations can be executed in
the data plane. Second, to install or remove (or even change
the features of) any telemetry task, operators need to reboot
the switch to deploy a new program, i.e., no agility.

Framework Data plane Reconfig. HW Switch
NetQRE [32] ✓
DREAM [22] ✓
Marple [24] ✓
Sonata [19] ✓ ✓
Cedar ✓ ✓ ✓

Table 1: Comparison of Cedar and other query-based
telemetry systems.

To address these restrictions, in this paper we present a
first-of-its-kind reconfigurable data plane telemetry system,
called Cedar. Cedar is based on a commercial network switch
with the new Broadcom BCM57340 chipset that is equipped
with the BroadScan hardware module. The Broadcom ASIC
in the switch is not fully programmable, such as Barefoot
Tofino [7], but the BroadScan module offers a wide range of
telemetry operations that can be easily reconfigured on-the-
fly (at runtime) [8]. Thus, we call this a reconfigurable switch.
Leveraging this unique capability, we introduce and explore
reconfigurable data plane telemetry systems by making the
following contributions:
Programmable vs. ReconfigurableData Planes.We com-
pare and contrast the key capabilities and limitations of pro-
grammable and reconfigurable data plane telemetry systems
(§ 2). We show that reconfigurable systems can periodically,
once per epoch, assess the required operations, reconfigure
the data plane accordingly, and then collect the relevant
information from the network. By temporal partitioning of
telemetry tasks, limited switch resources can be periodically
allocated to different operations. Therefore, a significantly
larger fraction of telemetry operations is performed in the
data plane, ensuring seamless scaling with an increase in
the number and complexity of telemetry tasks. The runtime
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flexibility of reconfigurable data plane telemetry systems
easily facilitates any change in the target telemetry tasks or
their features on-the-fly.
Design and Implementation of Cedar. We examine key
design considerations of reconfigurable telemetry systems
such as proper encoding of input tasks and reconfiguration
intervals (§ 3). We present the implementation1 of Cedar
(§ 4) to demonstrate how it effectively harnesses the unique
capabilities of BroadScan. For example, to the best of our
knowledge,Cedar is the first data plane telemetry system that
places the switch ASIC directly in the control loop. Cedar
has a modular software architecture that can serve as an
extensible platform for reconfigurable data plane telemetry.
New telemetry tasks can be easily expressed as a flowchart
and then incorporated into the system.
Experimental Evaluation ofCedar.Using a reconfigurable
switch (BroadScan-enabled BCM 57340 series System Veri-
fication Kit), we conduct trace-driven experiments to incre-
mentally evaluate the performance and accuracy of single
and multiple telemetry tasks on Cedar (§ 5). Our key findings
can be summarized as follows. (i) Cedar can execute individ-
ual telemetry tasks using less than 200 operations per epoch
in the data plane on average while detecting target events
within 22-42 seconds. (ii) More importantly, the number op-
erations and reported tuples per epoch gracefully scales with
the number of concurrent telemetry tasks. These findings
clearly illustrate that Cedar can execute all the telemetry op-
erations in the data plane as the load of telemetry operations
grow. (iii) Despite the periodic reporting by Cedar, it is able
to reduce the telemetry traffic (i.e., reported tuples) by up
to four orders of magnitude compared to other data plane
telemetry systems.
Our efforts in developing this work are as a third party,

not associated with Broadcom Inc. apart from using their
hardware.

This work does not raise any ethical issues.

2 PROGRAMMABLE VS.
RECONFIGURABLE DATA PLANES

In this section, we present the abstract packet processing
model for programmable and reconfigurable data planes and
their implications on network telemetry systems.

2.1 Packet Processing Model
Programmable Switch. Data plane telemetry systems that
rely on protocol-independent switch architecture (PISA) (e.g.,
RMT [13], Tofinio[7], Netronome [6]) offer programmable
parsing and packet-processing pipelines with a fixed number

1Upon publication, we will make Cedar’s source code publicly available to
enable other researchers in the community to validate our results, extend
the capabilities of Cedar, and develop new telemetry tasks.

of operators arranged in consecutive physical stages (see
Figure 1a). Each stage features a self-contained match-action
(MA) table on packet header vectors (PHV) which contain
fields extracted by the parser as well as custom metadata
fields. If a header field in a PHVmatches a rule in a table, a set
of customized (stateful or stateless) operations is performed
on the PHV before it is forwarded to the next stage. Each
stage can perform a fixed number of independent operations
in parallel (i.e., the width of the processing pipeline) where
the MA table of that stage triggers different combinations of
operations. As a natural consequence of this pipeline design,
the result of these operations in a particular stage can only
be used by operations in later stages. The operations in each
stage also access a small amount (c.a. megabytes) of high-
speed SRAM which can be used to maintain state (e.g., in a
flow table) across packets. State information in the flow table
must be periodically read from this SRAM, by the switch’s
CPU, and sent to a remote collector.

Forwarding Pipeline (with 3 stages)

Operators

PHVin

SRAM

M A M A M APktin
Parser

PHVout

Deparser
Pktout

Collector
Report

(a) PISA
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(b) BroadScan
Figure 1: Architecture of PISA switch and switch with
BroadScan.

As identified by prior work [19, 24], the PISA maps natu-
rally to the stream processing network telemetry model [16].
The goal is to create a processing pipeline that sequentially
performs all the required operations to distill raw network
traffic into useful measurement results. This linear order
of execution can be represented as a directed, acyclic graph
(DAG) where each node performs an operation. In this model,
a telemetry task is described as a query on an abstract stream
of tuples (i.e., PHVs) using filter, map, and reduce operations.
Since switch resources are shared between telemetry and
basic switch operations (e.g., forwarding, loop detection, en-
capsulation), only a subset of switch resources/stages can
be allocated to telemetry tasks. The query is compiled to
determine the proper mapping of required operations to dif-
ferent stages of the switch to create the processing pipeline
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for telemetry tasks within the data plane using the allocated
stages. Therefore, in programmable data plane telemetry sys-
tems, both the width and depth of the processing pipeline within
the data plane are limited by the switch resources allocated to
telemetry operations.
While PISA switches offer the ability to program all as-

pects of switch operations, facilitating rapid prototyping of
new data plane telemetry tasks, their “compile-and-deploy”
model hinders any change in the mapping of operations
to different stages as it requires rebooting the switch with
a new program which takes 10s of seconds of downtime.
Even state-of-the-art techniques used for the “warm reboot”
feature found in Tofino switches imposes seconds of down-
time [5]. The key implication of this restriction is that all the
required telemetry tasks with most of their parameters must
be determined a priori at the deployment time or the switch
should be rebooted to incorporate any changes.
Reconfigurable Switch. The packet processing model for
a switch with reconfigurable telemetry capabilities is essen-
tially the same as the PISA model. The key difference is the
ability to arbitrarily change the telemetry operations without
disturbing other switch functions, thanks to recent innova-
tions in switch hardware (e.g., Broadscan described in § 4.2).
As shown in Figure 1b, the BroadScan hardware module can
be compared to a PISA switch with a single stage. It has a
single match-action table that is placed between the parser
and the main ingress pipeline. However, since telemetry
operations can be changed (within millisecond) on-the-fly
without disrupting other switch operations, Broadscan mo-
tivates a dynamic “divide-and-reconfigure" model for using
the switch’s telemetry resources. The distinct operations of
one (or multiple concurrent) telemetry task(s) can be exe-
cuted in hardware sequentially over the course of several
brief epochs, thus deferring decisions about particular opera-
tions and resource allocations to task runtime. In a sense, the
required processing pipeline for an (arbitrarily long) teleme-
try task can be incrementally (re)configured in the data plane
at runtime. Said differently, only the width of the processing
pipeline is limited in a reconfigurable switch model.

BroadScan also extends the classic match-action paradigm
with several telemetry-specific hardware processes that en-
able a task to efficiently manage the aggregation state in the
flowtable and to control the exporting strategy of telemetry
reports emitted directly from switch hardware. These capabil-
ities naturally lead to describing a BroadScan configuration
in terms of three basic operations: filtering, aggregation, and
exporting (described in § 4.2). Filtering works similarly to the
filter operation in the stream processing model. Aggregation
corresponds roughly to a reduce operation in the stream
processing model, but BroadScan offers telemetry-specific
operations such as aging-out old table entries and count-
ing table overflow events. Export manages the process of

sending aggregation results to the collector entirely in hard-
ware, freeing the switch CPU for the task of periodically
reading and exporting the telemetry state. For more details,
see Appendix 8.3.
Per-Stage Limitations. In both of the above models, the
main limitation in each stage of the processing pipeline is
that each PHV can match only a single action in the MA
table which determines the applied operation to each packet,
i.e., independent parallel operations in each stage can only
operate on a mutually-exclusive subset of incoming packets.
For example, consider the two tasks of counting sources
and counting destinations. Packets can be independently
grouped by sources and destinations if we impose a filter
to separate incoming PHVs into two, disjoint groups (e.g.,
UDP and TCP packets). However, we cannot simultaneously
count sources and destinations for two overlapping groups
(e.g., UDP packets and packet from a particular subnet). A
PISA switch could utilize separate stages of the processing
pipeline to group both sources and destinations for all PHVs
to overcome this limitation. Cedar addresses this limitation
by leveraging BroadScan to count sources and destinations
in consecutive epochs.

2.2 Implications on Telemetry Systems
To highlight the implications of the two models on telemetry
systems, we consider the telemetry task of detecting victims
of DNS reflection volumetric DDoS attacks [27] (Figure 2).
In particular, we are interested in detecting destinations that
receive DNS packets from a large number of sources (thresh-
old 2), but only on the condition that this total DNS traffic is
sufficiently large (threshold 1). To facilitate a head-to-head
comparison, the left side of Figure 2 presents this task as
a flowchart, while the right side shows the corresponding
operations in a query-like format that might be issued in
current programmable data plane telemetry systems (e.g.,
[19]). This example reveals a few important implications of
each approach to data plane telemetry as follows:
Representation of Tasks. Telemetry tasks often require
to check whether a certain condition is met before execut-
ing the rest of the task, leading to an iterative pattern of
execution. For example, loop 1 in Figure 2 is a triggering
condition (explained below) that should be satisfied before
considering other operations. More importantly, the number
of iterations for each loop depends on the network conditions
and is determined during runtime. Flowcharts offer a proper
representation of telemetry tasks because they accurately
encode key dependencies between operations as well as itera-
tive execution patterns. Returning to Figure 2, this flowchart
encapsulates a key dependency between operations: if the
number of DNS packets is below threshold 1, none of the
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other operations need to be evaluated. We refer to such de-
pendencies as trigger conditions. Since we expect such attacks
to be relatively rare under normal circumstances, flowcharts
will spend a majority of their evaluation time in the first
loop, simply counting their respective packet types or per-
forming other simple operations, leaving the majority of the
BroadScan resources available for other tasks. In contrast, a
query is only able to express a sequential order of execution
across different operations (or a DAG) which is suited for a
stream processing pipeline but cannot capture these iterative
(cyclic) operations.2

Start

Count DNS Packets
:: Predicate Count

Count DNS Sources
:: Distinct Count

Report Event

> Thresh1 ?
:: Threshold

yes

no

> Thresh2 ?
:: Threshold

yes

no

Find Victim
:: Heavy Hitters

found

none

filter(DstPort == 53)
.reduce(key=NULL, count)
.filter(count > Thresh1)

filter(DstPort == 53)
.distinct(SrcIP)
.reduce(key=NULL, count)
.filter(count > Thresh2)

filter(DstPort == 53)
.distinct(SrcIP, DstIP)
.reduce(key=DstIP, count)
.filter(count > Thresh3)

Epoch 1

Epoch 2

Epoch 3

L
o
o
p

 1
L
o
o
p

 2
L
o
o
p

 3

Op. 1

Op. 2

Op. 3

Op. 4

Op. n

STQL
# entries

epoch dur.

Flowchart Stream ProcessingOperations

Figure 2: Example flowchart expressing a telemetry
task for detecting DNS reflection attacks and the cor-
responding queries (for each loop) in the stream pro-
cessing paradigm. key=NULL indicates reduction of all
packets in the epoch to a single group.

Agility of Telemetry Systems. The offered agility of re-
configurable telemetry systems in allocating data plane re-
sources leads to a significantly higher level of scalability
and flexibility for these systems in action. In contrast, the
“compile-and-deploy” model of programmable telemetry sys-
tems implies that the processing pipeline should incorporate
all operations of all required telemetry tasks since the exe-
cution path of each task is not known a priori. This leads to
inefficient utilization of the already-limited switch resources.
To illustrate this issue, consider a linear task that is repre-
sented by a DAG with a few branches of operation. In each
round of execution, only the operations on a single execution
path (a branch of the DAG) are used while resources for all
operations must be allocated. This inefficiency reduces the
ability of the programmable telemetry systems to perform
all operations in the data plane and limits their scalability.
2Note that the corresponding queries for each loop in Figure 2 could be
combined in parallel in a stream processing pipeline, with their results
evaluated and joined conditionally in a system like Sonata [19]. However,
this strategy results in very inefficient use of data plane resources.

Similarly, if network operators decide to change features
of a telemetry task or install/remove a telemetry task (e.g., to
cope with a newly identified attack or performance event),
they must compile and deploy the new program which re-
quires rebooting the switch leading to 10s of seconds of
downtime. On the other hand, reconfigurable telemetry sys-
tems allow the operator to enable and disable desired teleme-
try tasks, or change resource allocations between tasks, by
adjusting the corresponding flowcharts, without impacting
other switch functions. Even if there are not sufficient data
plane resources to accommodate a new task, the operator
can retry at a later time or the runtime can start the task as
soon as resources become available.
Telemetry Traffic & State Management. In both the ap-
proaches, periodic telemetry reports from the switch enables
the collector to maintain the state of individual telemetry
tasks and detect the target events. In reconfigurable teleme-
try systems, the output of operations in each epoch (i.e.,
single stage) must be reported to the collector. However, in
programmable telemetry systems, the output of operations
in each stage are fed into the related operations in other
stages of the switch, and only one (or a small number of
stages) report their output to the collector. Therefore, if all
operations fit in the data plane, the rate of telemetry reports
from the switch to the collector could be larger in reconfig-
urable systems. However, as the number of operations per
tasks or the number of concurrent tasks increases, it is more
likely that their operations do not fit in the data plane of
programmable systems. In these cases, the switch should
send reports and mirror filtered data packets to the collector
that leads to a significantly larger rate of traffic to the col-
lector. This, in turn, increases the complexity of statement
management between the switch and the collector [19].
Diversity of Offered Telemetry Options. Cedar currently
supports a collection of telemetry operations and associated
parameters that are most commonly used by network oper-
ators. However, we do not support all possible monitoring
options because of hardware constraints. For example, Broad-
Scan currently does not measure queue-length on each port
or observed delay by each packet.3 Similarly, the hardware-
based implementation of different telemetry-related methods
in reconfigurable switches are reasonably optimized but can-
not be changed. For example, BroadScan implements its own
hash function for managing the flow table that has a first
miss utilization of 92% and average utilization of 98%. How-
ever, this hash function cannot be updated with a better
alternative (e.g., Cuckoo Hash [25]) and its output can only
be used for indexing into the flow table. In a programmable
telemetry system, on the other hand, one can program and

3Broadcom has indicated that the next generation of BroadScan will incor-
porate these operations.
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reboot the switch to select from a variety of hardware hash
function implementations and use the resulting hash val-
ues in new and creative ways (e.g., in the deployment of
sketching techniques [15, 21]).

3 DESIGN CONSIDERATIONS
In this section, we examine a few basic considerations in the
design of a reconfigurable data plane telemetry system.
Temporal Partitioning of a Task. To enable the partition-
ing of individual telemetry tasks on-the-fly, the representa-
tion of each task should specify (i) the dependency between
different required operations, and (ii) the required resources,
namely the number of flow table entries, for each operation.
The inter-operation dependency is used to identify one (or
multiple independent) operation(s) in each task that can be
performed in the next epoch. The required number of flow
table entries for individual operations reveals whether these
operations can be executed in one epoch. If the aggregate
demand of all planned operations in an epoch exceeds the
size of the flowtable, the system must implement a resource
scheduling scheme to manage such an overloaded epoch, e.g.,
by slightly delaying a subset of operations while considering
the temporal dependencies between consecutive operations.
Cedar currently implements a simple FIFO scheduling of op-
erations andwe leave investigation ofmore complex schemes
to future work.
Setting Epoch Duration. Duration of an epoch, which we
define as the time between two consecutive reconfigurations
of the telemetry operations in the data plane, is a key design
parameter of a reconfigurable telemetry system which has
an opposite effect on the accuracy of individual operations
and the completion time of related tasks. On the one hand,
very short epochs could introduce noise in measured traffic
features. For example, as shown in Figure 3, the number of
unique sources exhibits larger variation when measured over
very short time scales (a coefficient of variation of over 6%
with 0.1 second epochs). Furthermore, epoch duration should
be significantly longer than the reconfiguration time for the
data plane to avoid error induced by packets missed during
reconfiguration.
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Figure 3: The effect of epoch duration on the number
of observed packets andnumber of distinct sources for
CAIDA traffic trace. Error bars show std. deviation.
On the other hand, increasing epoch duration linearly

extends the completion time of tasks that require a fixed

number of epochs. For example, when executing the MRT
algorithm with an expansion ratio of 4, a search of the IPv4
address space takes 16 epochs in theworst-case. If each epoch
takes 10 seconds, this leads to a worst-case turnaround time
of over 2.5 minutes which could be too long for some tasks.
More importantly, the number of required flow entries for
an operation may need to increase with the epoch duration
to maintain the same level of accuracy since the feature
magnitude tends to increase (see again Figure 3).
Therefore, we believe that there is sweet spot for epoch

duration that strikes the balance between the above factors.
Plots in Figure 3 illustrate how the value of two traffic fea-
tures along with their coefficients of variation (CV) across
different segments of traffic evolves with epoch duration.
These examples illustrate that epoch duration of 2-3 second
offers the sweet spot for a telemetry task based on these
features. A similar type of analysis can be performed for
any task using offline processing on traffic traces, or online
estimation of the variability at small epoch durations and
the increasing magnitude at large epoch durations.
Disjoint Packets Across Epochs. Temporal partitioning of
a telemetry task implies that operations in different epochs
observe temporally disjoint segments of network traffic. This
raises the following key question: how does the temporally
disjoint nature of operations in individual telemetry tasks affect
their accuracy when implemented in reconfigurable switch data
planes?

To address this question, we note thatmany current teleme-
try systems assume that their measured traffic features re-
main detectable (e.g., above a certain threshold) for at least
10s of seconds tominuteswhile the target security or performance-
related event of interest occurs. Therefore, these features can
be captured at any time while the event is detectable. To
illustrate this fact, plots in Figure 4 present the number of
unique sources per second in two different DNS reflection
attack traces [27]. While these attacks have widely different
intensities (in terms of the absolute number of sources), their
main feature remains measurable/high for minutes. Existing
telemetry systems such as DREAM [22] and Sonata [19] al-
ready rely on temporally disjoint measurement, using online
accuracy estimation and dynamic query refinement respec-
tively, without any accuracy concern.

0 50 150 250

0
20

40

Time (s)

So
ur

ce
s 

pe
r S

ec
on

d

0 200 400 600

0
10

00
25

00

Time (s)

So
ur

ce
s 

pe
r S

ec
on

d

Figure 4: Number of observed sources per second in
two traces of DNS reflection attack traffic.
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In the design and implementation of Cedar (§ 4), we use
flowcharts (instead of queries) because they address these
considerations by directly accommodating iterative task.

4 IMPLEMENTATION OF CEDAR
This section describes the implementation details of Cedar
including the different components and their interactions
and shows how Cedar meets all the design considerations
(in § 3).

4.1 System Overview
Figure 5 depicts an overview of Cedar and how the different
components interact with each other. We rely on a switch
that is based on the Broadcom BCM57340 chipset and of-
fers reconfigurable monitoring capabilities. The monitoring
capabilities of the switch are (re)configured by a collector ap-
plication software.4 The collector receives individual teleme-
try tasks from an operator and manages their execution. A
telemetry task is described as a flowchart that expresses the
ordering and dependency between all operations needed to
complete that task. Each node in the flowchart may execute
one or more operations, possibly over multiple epochs, be-
fore transitioning to another node. In other words, operators
who generate flowcharts to achieve a specific telemetry task
only need to deal with nodes as a high-level abstraction (e.g.,
using a node to find heavy hitters) and do not need to bother
with the low-level operations required (e.g., the iterations of
the MRT algorithm).

BCM 57340 Series SVK

ASIC

IPFIX
BroadScan

Forwarding
Pipelines

Switch Agent

Collector

Runtime
Active Flowcharts

New
Tasks

Events

Network Traffic

Parser

SDK

JSON

IR

Figure 5: Overview of Cedar showing closed circle of
communication used to evaluate monitoring tasks.

To perform “temporal partitioning" of a task, the runtime
maintains a list of active nodes for each task (starting with
the root) and determines, for all running tasks, which oper-
ations from these active nodes should be executed in each
epoch. It then determines the required monitoring capabili-
ties in the switch and emits the relevant commands to the
switch agent. The switch agent, running on the switch’s CPU,
receives commands from the collector, and (re)configures the
monitoring capabilities of the switch through a module in
4We use the term “collector” (instead of “controller”) to emphasize that
this software only manages the monitoring capabilities of the switch. In
contrast, a controller manages the forwarding behavior of a switch.

the switch ASIC, called BroadScan (described in § 4.2). Once
configured, Broadscan directly sends IPFIX packets (using a
format fixed by the operation) that contain the monitored in-
formation to the collector based on the reporting conditions
(e.g., periodic, once a threshold is reached). At the end of each
epoch, the runtime collects the resulting reports from the
parser for each operation and feeds these results back into
the active nodes to complete any required post-processing.
Active nodes then inform the runtime to make a transition
to the next node in the flowchart, in which case the runtime
adds the next node to the list of active nodes, or that they
have more operations to execute, in which case the runtime
holds the node in the list of active nodes.
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Figure 6: Sequence of communication between collec-
tor (runtime), switch agent, and BroadScan hardware.
Hardware reporting and challenges.Akey feature of this
interaction, as shown in Figure 6, is that, since telemetry re-
ports are generated and transmitted directly from switch
hardware, the switch ASIC is placed in the control loop of
the telemetry process. While bypassing the switch CPU im-
proves the scalability of the system, it also raises three design
challenges that must be addressed.
• The incremental configuration of the BroadScan hardware
(labeled Install Time in Figure 6) takes a long time (tens of
milliseconds) compared to the rate of the network traffic
driving the monitoring hardware. The BroadScan hard-
ware must be “unplugged” before modifying its configura-
tion and “plugged in” after a valid configuration is set for
the next epoch to prevent erroneous IPFIX exports under
a partial configuration.

• Telemetry operations that perform some aggregation (e.g.,
counting distinct sources) often only need to export their
results at the end of the epoch—due to MTU restrictions
this may lead to several IPFIX data packets per operation
(see label D1 in figure 6). As these packets are transmitted,
new traffic arrives at the switch and potentially updates
the results between the exported IPFIX packets.

• Some key counters and registers may not be included
in the exported IPFIX data and must be read from the
ASIC’s memory space by the agent after results have been
received by the collector (see label D2 in Figure 6). Again,
these counters and registers may have been updated by
the continuous flow of monitored traffic during the RTT
between the switch hardware and the collector leading
to discrepancies between the values read and the value
returned in the IPFIX reports.
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In our prototype, the collector is directly connected to the
switch’s management port and we observe the short RTT
between them minimizes these potential errors. In larger
systems where this RTT might be significant, we contend
that the switch agent could listen for an interrupt or mirror
IPFIX data packet from BroadScan and immediately “unplug”
the traffic fed into the monitoring system to mitigate both
of these potential discrepancies.

4.2 Broadscan
At the core of Cedar is BroadScan [1], a re-configurable hard-
ware module in the switch ASIC, that performs telemetry op-
erations at line rate. In contrast to P4-based systems, Broad-
Scan is completely independent of the forwarding function
of the ASIC allowing telemetry operations to be changed
during runtime without any impact on other critical switch
functions. BroadScan is centered around an independent
hardware flow table and features several dedicated hardware
processes to manage filtering, aggregating, and exporting
monitoring information. BroadScan receives parsed informa-
tion about each packet traversing the ASIC’s main forward-
ing pipeline through a dedicated bus and evaluates three
stages to generate useful telemetry reports: (i) filtering, (ii)
aggregation, and (iii) export. We note that, while the current
prototype of Cedar relies on particulars of the BroadScan
hardware, Cedar could be implemented on a different ASIC
if that ASIC supported similar features in terms of reconfig-
urability and hardware table management.
Filtering. matches particular bit patterns in packet headers
allowing rules to be applied to specific slices of traffic (similar
to the flowsets of ProgME [31]). Filters on single fields can
be combined using logical conjunction and disjunction in
more complex predicates allowing telemetry applications to
drill down on relevant packets along several dimensions, e.g.,
“only monitor traffic on TCP port 80 sent to destinations in
the 192.0.2.0/24 or 198.51.100.0/24 subnets.” Filtering is im-
plemented by a dedicated TCAMmatch-action table inserted
between the parser and the main ingress match-action tables,
allowing the evaluation of complex predicates over the rich
variety of information extracted by the parser. For example,
BroadScan can filter packets by subnet, vlan, or TCP flag
combinations.
Aggregation. is implemented by a flexible hash table and
ALU operations, allowing to group packets along different
dimensions and at different resolutions, as well as providing
several different aggregation functions. For example, packets
could be grouped according to source subnets to aggregate
over the IP address space, according to packet length to detect
large numbers of similar-sized packets, or by combinations of
TCP, flags to measure the ratio between SYN and FIN packets.
In addition to simple counting and summation, these ALUs
can evaluate minimums, maximums, moving averages, and

range-based functions such as histograms. The aggregation
stage provides the following three key features to effectively
manage the flow table and track relevant flows:
• Hardware-based Learning: new table entries are automati-

cally “learned” by hardware—that is when a packet hashes
to a table entry marked as invalid, the hardware auto-
matically initializes counters for this entry and begins
aggregation operations;

• Aging out Rules: table entries can be automatically aged
out—an independent hardware process periodically decre-
ments an “age” counter for each table entry and removes
entries after they have received no packets for a certain
period of time;

• Detecting/Measuring Table Overflow: the aggregation ta-
ble has a fixed, hardware-dependent number of entries,
but BroadScan maintains dedicated counters for packets
which are missed due to a full table—allowing applications
to detect table overflow and estimate the degree to which
the table entries sample the total traffic.

Export. of the results of the aggregation stage can be per-
formed in a periodic or event-driven fashion. These options
enable Cedar to minimize the volume of transmitted teleme-
try data to the collector while accommodating the required
export discipline for individual tasks. Periodic export is im-
plemented by a clock which marks a set of aggregation table
entries as ready for export at a fixed interval, the duration
of which is controlled through a dedicated register. Event-
driven export can be triggered when new entries are learned,
existing entries are aged out, or aggregation counters pass
certain thresholds. Either mechanism leads to the insertion
of records, containing the counter values generated by the
aggregation table, into a dedicated export FIFO. Finally, a
hardware process coalesces these records into IPFIX data
packets, appends the appropriate headers, and inserts the
packets into the switch’s data plane where they are routed
to the collector. To the best of our knowledge, BroadScan
is the first hardware telemetry system that generates and
emits telemetry data packets directly in hardware. Currently,
BroadScan only supports UDP transport of telemetry data
from the data plane. Other transport protocols can be im-
plemented by transferring the exported records first to the
switch’s CPU.
Limitations: A key limitation of BroadScan in comparison
with P4-based programmable switches is that it currently
features a single TCAM for deciding which data plane pack-
ets to consider. Telemetry operations installed in BroadScan
select what packets they should apply to in the BroadScan
TCAM table, however, since each incoming packet can only
match a single TCAM entry, each packet can only be counted
towards a single operation. This implies that concurrently
executed operations in Cedar must apply to disjoint sets of
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packets as determined by their filters. Future versions of
BroadScan may feature multiple TCAM tables for filtering
packets into multiple groups or at multiple vantage points
in the switch’s topology (e.g., after the ingress pipeline or
before the deparser).

4.3 Switch Agent
To control the BroadScan hardware module, we develop a
software switch agent that runs on the switch’s CPU, act-
ing as an intermediary between the control functions of the
collector and the hardware configuration. Our switch agent
acts as a server, fulfilling requests for particular hardware
configurations from the collector and returning hardware
status. These requests are delivered as an intermediate rep-
resentation that abstracts the hardware configuration space
into a compact memory structure. In addition to updating
the hardware configuration, the agent keeps track of the cur-
rently running operations and can perform sanity checking
for compatibility and resource usage.

The agent uses the Broadcom SDK to install the requested
configuration changes, however, our current use of Broad-
Scan somewhat exceeds the functionality provided by the
Broadcom SDK so parts of our implementation use direct
table and register access. Moreover, there are several opportu-
nities for improving the efficiency of hardware configuration
through coalescing the configuration update operations re-
quired by Cedar and bypassing the layers of error checking
and verification added by Broadcom SDK calls. We quantify
the expected improvement of these methods in Appendix 8.2
and intend to work on this further as future work.

4.4 Remote Collector
To execute adaptive telemetry tasks, we develop a remote
collector which receives the telemetry results emitted from
BroadScan and responds by changing the monitoring con-
figuration via the switch agent. As shown on the right side
of figure 5, our collector consists of (i) an IPFIX parser that
received raw IPFIX data stream from the switch and parses it
into JSON, and (ii) a runtime that evaluates task flowcharts
and coordinates with the switch agent to reconfigure Broad-
Scan at the beginning of each epoch.

We adopt the open-source ipfixcol2 [3] to parse the raw
IPFIX data stream returned from the switch and to forwarded
the parsed data as JSON to the runtime. The open modular
architecture of ipfixcol2 allows users of Cedar to easily
insert a database for long-term storage of raw telemetry re-
sults or adopt another transport protocol such as TCP. We
developed a custom plugin in ipfixcol2 to strip padding
data fields inserted by BroadScan and provided custom infor-
mation element definitions for fields not found in the IANA
standard [4].

At the beginning of each epoch, the runtime polls each
scheduled flowchart node to build an install list of the op-
erations to execute on the switch in that epoch. Nodes ex-
press these per-epoch operations to the runtime in a human-
readable, high-level Switch TelemetryQuery Language (STQL)
which abstracts the details of hardware configuration in a
stream processing-like paradigm [19]. The runtime compiles
expressions submitted in STQL into install commands in an
intermediate representation (IR) and sends a batch of install
commands for all the operations selected for the particular
epoch to the switch. After sending these install commands,
the runtime polls the parser to wait for the receipt of teleme-
try results. Once available, the runtime gathers the results
from the parser and distributes them back to the scheduled
nodes which are responsible for interpreting the results and
making transitions. The runtime evaluates these transitions,
generating more active nodes, runs a scheduling algorithm
(as described below) to generate the list of scheduled nodes
and the epoch duration, and repeats the process.

4.5 Generic Flowchart Nodes
To illustrate the utility of telemetry flowcharts, we describe
the implementation of three generic nodes, predicate count,
distinct count, and heavy hitters. These nodes can be param-
eterized to complete a wide variety of common telemetry
tasks such as DDoS or port scanning detection. For the im-
plementation details of these nodes, see Appendix 8.1
Predicate Count. The generic predicate node simply counts
the number of packets or byte that satisfy a given filter condi-
tion. For example, a predicate count node could be given the
filter “(SrcIPv4 in 10.0.1.0/24 or SrcIPv4 in 10.0.3.0/24) and
IPProtocol == 6” to count the number of IPv4 packets from
two particular subnets. Our implementation uses a single
operation and a single flow table entry to track the packet
or byte counts.
Distinct Count. The distinct count node counts the number
of distinct elements, as defined by a grouping expression, ob-
served in in a filtered subset of traffic. For example, to count
the number of distinct IPv4 sources sending to a particular
subnet, one could give “SrcIPv4” as the grouping expression
and a filter expression to only catch packets destined for the
particular subnet. Our implementation uses a form of dis-
tinct sampling [18], leveraging the BroadScan table overflow
counter.
Heavy Hitters. The heavy hitters node extracts heavy el-
ements from traffic, as defined by a grouping expression
and a definition of heaviness based on predicate or distinct
counts. For example, the classic DDoS detection task can be
implemented by grouping over destination addresses and
defining heaviness in terms of the distinct count of sources.
Our implementations uses theMulti-Resolution Tiling (MRT)
algorithm proposed in ProgME [31].
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5 EVALUATION
We evaluate the performance and accuracy of Cedar in three
steps. We start by providing details of our setup including
traffic traces and telemetry tasks in § 5.1. In § 5.2, we ex-
plore how resource utilization progresses over time, showing
that tasks expressed as flowcharts only use resources when
needed. Next, in § 5.3, we measure the resource usage for
several example tasks showing that in Cedar, tasks execute
a maximum of 100 to 300 operations per epoch. In § 5.4, we
show how leveraging data plane resources allows Cedar to
reduce load on the collector by up to four orders of magni-
tude. We show how the maximum and mean value of total
required resources and reported tuples scale with the num-
ber of telemetry tasks in § 5.5. Finally, § 5.6 verifies that the
implemented iterative tasks in Cedar achieve the expected
accuracy of their corresponding algorithms (∼10% error for
distinct count and ∼80% recall for heavy hitters).

5.1 Setup
Traces. All our evaluations use the CAIDA unsampled and
anonymized Internet trace from 2019 [2]. In particular, we
use the first five minutes of direction A of the NYC moni-
tor containing ∼138 million packets at an average rate of
612Kpps. Each second of this traffic has packets from approx-
imately 32K sources to 42K destinations.
Example Tasks. To evaluate Cedar, we implemented four
common telemetry tasks, namely DDoS, heavy hitters, new
TCP connections, and port scan, using the generic flowchart
nodes described in § 4.5. These tasks all use the generic heavy
hitters node to detect different traffic patterns by changing
how heaviness is defined. We leave implementation of other
generic nodes such as frequency moment estimation as fu-
ture work. Two of these tasks (in particular DDoS and Port
Scan) additionally use the distinct count implementation to
provide the measure of heaviness associated with each ele-
ment in the search space. For each task, we iteratively refine
the MRT threshold on the particular measure of heaviness
until 10 to 15 heavy elements are detected in the traffic trace.
The default epoch duration in our flowcharts is one second.
Setting. Our switch is a BroadScan-enabled BCM 57340 se-
ries System Verification Kit (SVK). The version of BroadScan
in our SVK has a single 2048 entry match action table, 20 pro-
grammable ALU operators, and a flow table capacity of 32K
entries with 36 bytes per entry for a total of ∼1.3MB for ag-
gregation state. Our switch agent runs directly on the SVK’s
CPU, an ARM Cortex A57 MPCore at 2Ghz with 4GB mem-
ory. Our collector and manager software runs on a server
with an Intel Xeon Gold CPU at 2.3Ghz and 383GB mem-
ory. To drive test traffic through the switch at line rate, we
replay the trace using tcpreplay [9] through a 40Gb Mel-
lanox MT27700-family network card connected directly to
the SVK’s data plane. A separate 10Gb Intel X550T network

card on the same server connects to the SVK’s management
interface to manage the Cedar control plane.

5.2 Flowchart Execution
We demonstrate how Cedar is able to conditionally allocate
resources to a telemetry task as the task’s flowchart is exe-
cuted by recreating a realistic attack detection scenario and
observing the system’s behavior during attack detection.
For attack traffic, we use a publicly available DNS reflection
DDoS attack trace [27] that was captured from a real “Booter”
service. This traffic features 281 seconds of reflected DNS
traffic at a mean rate of ∼45Kpps coming from ∼940 sources
each second. We mix this attack traffic into the CAIDA trace
at a known offset and replay the resulting augmented trace
through our SVK while running the DNS reflection flowchart
(shown in Figure 2). We set the thresholds in the flowchart
to values slightly larger than the maximums observed in the
CAIDA trace.
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Figure 7: Resource usage of DNS reflection flowchart
over time showing the number of records exported to
the collector, operations and filters installed in Broad-
Scan for each epoch during detection of a DNS reflec-
tion attack. (Loops are shown in Figure 2.)

Figure 7 shows how switch resource usage and report traf-
fic progress as the flowchart detects the victim of the attack.
Before the attack begins, the flowchart remains in loop 1 for
six epochs, counting DNS packets in each epoch by using a
single operation which also returns a single report in each
epoch. After 6 seconds, the attack begins and the abnormally
large number of DNS packets observed triggers the flowchart
to move into loop 2, executing the distinct count node to
measure the number of sources sending DNS traffic. The
distinct count node executes an aggregation operation in
the data plane to estimate the total number of DNS sources
resulting in a spike in the number of records reported from
BroadScan. After one epoch in loop 2, the distinct count node
indicates an abnormally large number of sources sending
DNS traffic indicating that a DDoS attack is underway. The
flowchart responds by transitioning to the heavy hitters node
to find the victim in loop 3. The heavy hitters node executes
the MRT algorithm, iteratively zooming in on destination
subnets that receive from large numbers of sources, until the
victim /32 address is found after 17 epochs in loop 3. During
execution of this algorithm, the heavy hitters node uses up to
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8 parallel aggregation operations (and up to 16 filters in the
TCAM table) to monitor disjoint subnets resulting in larger
volumes of returned records. After around six iterations of
the MRT algorithm, the only subnet still under considera-
tion is the subnet containing the victim, causing the number
of parallel operations per epoch to reduce to 4, though the
report volume remains relatively high (around 1K tuples per
epoch) until the flowchart returns to loop 1.
Summary: This example demonstrates that Cedar dynam-
ically controls the allocation of switch resources to tasks
based on observed traffic conditions and task semantics. To
the best of our knowledge, prior data plane telemetry efforts
rely on static mapping of operations to switch resources at
deployment time that significantly limits the utilization of
switch resources. In Cedar, detection tasks only utilize switch
resources for the required operations in each epoch. For exam-
ple, the DNS reflection flowchart requires a single operation
for a triggering condition and only moves to other parts
of the flowcharts if more in-depth detection operations are
justified.

5.3 Task Resource Usage
To understand how the resource usage (discussed in § 5.2)
varies across different tasks, we run four example tasks and
collect the maximum and average operations and exported
tuples per epoch from the running system. By using these
metrics, we illustrate the average-case resource usages of
the tasks as well as the extent of any spikes (e.g., as seen in
Figure 7). Rather than constructing attack traffic for each
task, we adopt the approach of prior work [19, 21] and tune
the thresholds of these tasks to find corresponding patterns
already present in the CAIDA trace. A single exception to
this is the new TCP task—since we did not observe any hosts
fitting this traffic pattern in the five minute trace considered
here, we injected a small number of TCP SYN packets (less
than 0.5% of the total volume of SYN packets in the original
trace) for the new TCP task to detect.

Figures 8a and 8b summarize the resource usages and
report volumes for the selected tasks showing that Cedar
can execute different telemetry tasks using less than 200 op-
erations in the data plane per epoch on average. Tasks that
use distinct counts as the heaviness measure (e.g., DDoS,
Port Scan) require fewer operations, but generate more re-
port traffic than tasks which use packet (new TCP) or byte
(heavy hitters) counts. This is due to the fact that our dis-
tinct count implementation must export several records to
estimate the number of distinct elements in each monitored
subnet whereas the packet and byte count implementations
use a single record for each subnet. Figure 8c presents the
max and mean detection latency (in seconds or epochs) for
individual tasks. This result reveals that our target tasks can
be detected in 22 to 42 seconds.
Summary: The main observation in Figure 8 is that the gap
between maximum usages and average usages is large for all
tasks considered (at least 2×). This confirms the finding of
§ 5.2—that tasks typically only use their maximum amount of
resources for a small fraction of the time—for a wider range
of different tasks. As discussed in § 3, reconfigurable teleme-
try systems like Cedar are uniquely capable of leveraging
this observation to improve resource utilization by chang-
ing allocations over time in response to the usage patterns
shown here. We plan to address the algorithmic challenges of
formulating scheduling strategies to automatically leverage
this characteristic in our future work.

5.4 Reporting Schemes
To understand how the volume of reported information in
Cedar compares to alternative methods which forward fine-
granularity reports to software for reconfigurable process-
ing [28, 32], we measure the total number of tuples returned
to the collector in a single detection round under three dif-
ferent reporting methods.
• Each Packet: A tuple is returned to the collector for each
network packet as in systems like NetQRE [32].
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• Filtered: The switch ASIC is only used to filter which pack-
ets should generate report tuples to forward to the collec-
tor as in systems like Everflow [34].

• Cedar: The switch ASIC is used for both filtering, reduc-
tion, and report generation at the end of each epoch as
described in § 4.
Figure 9 shows that Cedar is able to reduce the number

of tuples sent to the collector by up to four orders of magni-
tude, allowing for savings comparable to those achieved by
fixed “compile-and-deploy” telemetry systems [19] while
offering the greater flexibility afforded by a fully reconfig-
urable model. We note that there is a roughly two order of
magnitude difference in the collector load between tasks like
DDoS, which find heavy elements based on distinct counts,
and tasks like new TCP, which find heavy elements based
on predicated counts. This is due to the fact that our distinct
count method must send multiple records to estimate the
number of distinct elements for a particular slice of traffic,
whereas the predicated count method sends a single record
per traffic slice.
Summary: A key motivation for transferring telemetry pro-
cessing operations into the data plane is the reduction in
the volume of reports which must be transported to and
processed by a remote collector. Figure 9 shows that, even
with a single telemetry stage in the data plane, by using a re-
configurable approach this reduction can still be significant
compared to methods which require exporting a tuple for
each packet.

5.5 Resource Usage with Multiple Tasks
We evaluate the resource requirements for running multi-
ple concurrent telemetry tasks in Cedar using the follow-
ing methodology. We consider the temporal evolution of
required resources per epoch for (similar to Figure 7) for
ten different instances of the heavy hitters detection. We
repeat the resource usage of each instance by adding silent
gaps that are generated by a Poisson process with a mean
rate of 2 second. Using this technique, we generate indepen-
dent 1K-epoch-long emulated resource usage timeseries for
each task. We then sum up the resource usage in each epoch
across timeseries of x different tasks and identify the mean
and max values across all epochs of the resulting timeseries.
These values offer representative mean and max resource
usage across for these x tasks as they co-occur with different
temporal offset.
Figure 10a shows the resulting mean and max resource

requirements per epoch for x concurrent tasks over 10 inde-
pendent. We also show the worst-case resource requirement
for x task as the sum of the maximum resource usage across
all tasks. Figure 10b shows the same metrics for the number
of report tuples returned to the collector. For both operations

and reported tuples, we observe the worst-case usages in-
crease linearly with the number of tasks. However, we also
observe that in our emulated scenario, the maximum and av-
erage usages increase sublinearly, confirming that temporal
partition of operations between tasks potentially improves
scalability in the number of tasks.
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Figure 10: Resource usage when running multiple
tasks showing worst case and the observed maximum
and mean values per epoch. Lines show means, error
bars show std. deviations over 10 trials.

Summary: Due to the large variation in the temporal pat-
tern of task resource usage, combining multiple tasks in
Cedar can effectively share the resources of a fixed single
stage among a number of independent telemetry tasks. In
particular, the number of operations required in the data
plane and the number of reported tuples are sublinear in
the number of tasks running concurrently, indicating the
advantages of temporal partitioning for scalability in the
number of concurrent tasks.

5.6 Generic Node Performance & Accuracy
Having shown that Cedar is able to evaluate dynamic, itera-
tive telemetry tasks and characterizing the resource usage of
tasks in Cedar, we now turn to evaluating the accuracy of our
generic flowchart node implementations. As discussed in § 2,
our goal is not to compete with or to highlight the missing
aspects of state-of-the-art solutions to these measurement
problems (e.g., bitmaps [17] or count-min sketches [15]). In-
stead, we seek to highlight the efficacy of reconfigurable
switch hardware used in Cedar by offering initial serviceable
tools to best leverage its advantages. This section only dis-
cussed the distinct count node evaluation—for an evaluation
of the other nodes used in Cedar, see Appendix 8.2.
Distinct Count: We evaluate the accuracy of our distinct
count estimation node along three dimensions: the number
of hardware table entries allocated to the node, the epoch
duration, and the duration of the gap between epochs. In
this experiment, we use a 30% uniform sample of flows from
the CAIDA trace to reduce the number of sources to approx-
imately 10K per second. This allows evaluation of scenarios
where the number of table entries is less than the total num-
ber of elements (sources) as well as scenarios where the
number of table entries is greater than the total number
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of elements. We report median error from 120 trials with
Error = max

(
n
n̂ ,

n̂
n

)
− 1 where n is the ground truth (calcu-

lated offline) and n̂ is the value returned by Cedar.
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Figure 11: Performance of Distinct Count Node show-
ing median and error bars at 5% and 95% quantiles.

Figure 11a shows that the error of the distinct count node
rapidly decreases with the size of flow table until it reaches
∼2% with 10K entries after which it levels off. Figure 11b
presents the effect of epoch duration on the accuracy of the
distinct count node using flow table with 5K entries. Note
that the ground truth number of flows is adjusted with epoch
duration to calculate the error. The lowest epoch duration
is 0.1 second as imposed by the BroadScan export process
(see Figure 1b). This result reflects the trade off described in
Figure 3: short epochs observe significant variation while
long epochs catch too many elements for the fixed memory
to form an accuracy estimate.
Due to space constraints, we show the performance and

accuracy results for Heavy Hitters in Appendix 8.2.
Summary:The results of this section confirm that the generic
flowchart nodes developed in Cedar, are capable of leverag-
ing the reconfigurable telemetry system to produce accurate
results (∼10% error for distinct count and near perfect preci-
sion with ∼80% recall for heavy hitters). More over, there is
a trade off for both node types in that allocating more table
entries improves performance while varying the epoch dura-
tion exposes a sweet spot in result variability and search time.
The accuracy of our heavy hitters algorithm is comparable
to prior software evaluations of the underlying MRT algo-
rithm [22, 31], though in Cedar we leverage a reconfigurable
data plane to reduce the overheads of exported results.

6 RELATEDWORK
We present a brief overview of related efforts in network
telemetry in addition to those discussed in § 1 and § 3.
Adaptive CPU-based Telemetry. Our work is closest in
spirit to adaptive monitoring efforts such as ProgME [31].
These efforts iteratively update filtering and reduction oper-
ations to “zoom in” on particular features of interest. More
recently, DREAM [22] and SCREAM [23] propose integrat-
ing adaptive monitoring in switch-based systems. However,
these efforts rely on CPU-based functional simulations or

virtual switches for evaluation and it is unclear if they could
be deployed on actual switch hardware due to the overheads
of installing hardware programs.
Generic Data Plane Telemetry. An alternative approach
to the "compile-and-deploy" model, is to develop a single, uni-
fied telemetry summary using sketches that can be adapted
to multiple (possibly unforeseen) tasks. Sketches combine
constant-time updates and counting to estimate useful traffic
features, such as heavy hitters [15], entropy [33], per-flow
delay [26], or micro-bursts [14]. To increase deployability of
sketch-based solutions, OpenSketch [30] provides a frame-
work for composing and automatically tuning a number of
sketch primitives to produce useful traffic features. Univer-
sal sketching [21] builds a single sketch which can be used
to estimate multiple, possibly unforeseen, useful summary
statistics. However, captured features (e.g., source address,
destination address, source-destination pairs) by a sketch are
fixed at deployment time and there are limits to the types of
queries that can by satisfied by the resulting universal sketch.
*flow [28] adopts a method using grouped packet vectors
to leverage the generic aggregation capabilities of a PISA
switch while performing the specific aggregation required by
a particular query in software. However, the reduction gran-
ularity is fixed at deployment time and the resulting stream
of per-packet information poses post-processing challenges.

7 CONCLUSION & FUTUREWORK
The compile-and-deploymodel ofmodern data plane systems
leads to inefficient utilization of switch resources, hinders
their scalability in the face of an increase in the number and
complexity of telemetry tasks, and lacks agility. To address
these limitations, we present the design, implementation,
and evaluation of Cedar: a first-of-its-kind reconfigurable
data plane telemetry system. At the core of Cedar is a recent
innovation in switch hardware called Broadscan which en-
ables the agile (re)configuration of the data plane at runtime.
This capability provides a unique opportunity to partition
telemetry tasks temporally and facilitates efficient switch
resource utilization, better scalability with the number of
telemetry tasks, and reduced load on the remote collector.

In future work, we plan to extend this effort in the follow-
ing directions. First, we will incorporate a resource schedul-
ing scheme in Cedar to avoid overloaded epochs where the
required resources for concurrent operations exceed switch
memory. Second, we are working on deploying Cedar over
campus and enterprise networks to examine Cedar’s perfor-
mance and agility in action. Third, we intend to develop a
distributed telemetry system where multiple Cedar nodes co-
operatively determine proper operations at individual nodes
to detect a network-wide event reliably.
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8 APPENDIX
8.1 Implementation of Generic Nodes
Predicate Count: Measuring the volume or rate of particu-
lar subsets of traffic is a foundational operation in most event
detection and management tasks. In Cedar, the predicated
count node simply uses BroadScan to count the number of
packets and bytes which satisfy a given filter condition, al-
lowing volume and rate estimations when combined with
knowledge of the epoch duration. This node is given a filter
as a predicate over the supported header fields, potentially
including masking, conjunctions, and disjunctions, which is
passed directly to the runtime system as an STQL expression.
For example, a count node could be given the filter “(SrcIPv4
in 10.0.1.0/24 or SrcIPv4 in 10.0.3.0/24) and IPProtocol == 6”
to count the number of IPv4 packets from two particular sub-
nets. At the end of the epoch, the resulting packet and byte
counts are stored in the global state allowing subsequent
nodes in the flowchart to react to the observed results.
Distinct Count: Many telemetry operations require count-
ing or estimating the total number of distinct elements ob-
served in a given subset of traffic. In Cedar, we implement
a generic distinct count node which estimates the number
of distinct elements as defined by grouping packets along
one or more fields. This node is given a filter, in the same
form as the predicate node, and an expression which defines
how to group packets, expressed as a list of field names with
possible masks. For example, to count the number of dis-
tinct IPv4 sources in a particular traffic subset, one could
give “SrcIPv4” as the grouping expression. Again, the result-
ing distinct count is written into the global state for use by
subsequent nodes in the flowchart.
Our distinct count node uses the BroadScan hardware to

estimate the number of distinct elements using less table
entries than elements, adopting a technique similar to dis-
tinct sampling [18]. Each distinct count node is allocated
a certain number of table entries when it is scheduled and
each table entry tracks a particular distinct element. If the
total number of distinct elements in the current traffic is less
than the number of table entries allocated, the node reports
the exact number of distinct elements. If the total number
of distinct elements exceeds the number of table entries al-
located, the node uses the value of the exceeded counter
returned from BroadScan to estimate the total number of
distinct elements based on the distribution of the returned
table entries. The intuition for this estimation is that the set
of elements sampled in the aggregation table and the set of
elements that exceeded the aggregation table should have
similar distributions in terms of the number of packets per
element. Specifically, if the total number of elements sam-
pled in the aggregation table is qs , the density of packets per
element is δs , and the number of packets that exceeded the

aggregation table is pe , our count distinct node estimates the
total number of elements n̂ as

n̂ = qs + pe/δ .

Due to the skewed nature of packet distributions in network
traffic, we find that the median provides the most useful
estimate of the density δ . Our evaluation section provides
empirical evaluation of the performance of this estimator
though we leave rigorous mathematical analysis to future
work.
Heavy Hitters: Another common task for telemetry sys-
tems is finding heavy hitters: elements which represent more
than a given fraction of the total number of elements of that
type in the given traffic. In Cedar, we implement a generic
heavy hitters node that finds heavy elements based on ar-
bitrary counting strategies for a particular subset of traffic
flowing through the switch. This generic node can be applied
towards traditional heavy hitter tasks, such as finding top
talkers, or security event detection tasks, such as DDoS vic-
tim detection by changing the count to interpret as “heavy.”
Arbitrary counting implementations are dynamically loaded
through a generic interface which accepts a subset of traf-
fic specified as an STQL filter expressions and returns an
(estimated) count to the heavy hitters node.

To implement heavy hitter detection, we use the Multi-
Resolution Tiling (MRT) algorithm originally proposed by
Yuan et al. [31] and improved through several enhancements
by Khan et al. [20]. MRT is an adaptive algorithm which
uses sequential hypothesis tests to iteratively zoom in on
potential heavy hitters. The simple yet powerful fact that if
the combined count for a group of elements does not exceed
the threshold, then the counts for none of the individual
elements in the group drives the zooming process—in each
iteration if the aggregated count for a group exceeds the
threshold, MRT zooms in by partitioning the group and re-
peating the process on the resulting subgroups in the next
epoch, otherwise the group is no longer considered. We also
implement the flow momentum enhancement proposed by
Khan et al. [20], which essentially delays the decision to drop
a group from consideration based on the mean counts used
in arriving at that group. In practise, this enhancement is
required to deal with the often bursty quality of network
traffic.
The inputs to this algorithm are the heavy hitter search

space (e.g., source IP addresses) and a threshold on the counted
value (e.g., 5% of the link bandwidth in bits per second). After
several iterative stages, the algorithm returns a (potentially
empty) list of elements from the search space which meet or
exceed the given threshold (e.g., sources contributing to more
than 5% of the total link bandwidth). We implement the divi-
sion into subgroups by adding a fork method to our frame-
work. Mirroring the classic fork call in Unix, this method
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(a) Effect of table size (per operation) with fixed epoch of 1 sec-
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(b) Effect of epoch duration with table size based on threshold.

Figure H.1: Performance of heavy hitters node show-
ing mean and standard deviation of recall, precision,
and search time.

creates a number of copies of the current node which can
be independently parameterized and evaluated in the next
epoch. Child nodes which find heavy elements append an
identifier of the element (e.g., the source ip address) into a
list in the global state and make a transition indicating suc-
cessful location of a heavy element, while child nodes that
drop a particular group from consideration, as per the MRT
algorithm, make a transition indicating no heavy element
has been found. This allows designers of flowcharts to explic-
itly deal with located heavy elements by, e.g., transitioning
to a reporting node when heavy elements are located.

8.2 Extended Evaluation
Task Details. Table H.1 shows how the example tasks we
implemented use the generic heavy hitters node with differ-
ent search spaces and definitions of heaviness.

Performance andAccuracy ofGenericNodes:Heavy
Hitters We investigate the effect of flow table size and epoch
duration on the accuracy of our heavy hitter detection tech-
nique (i.e., MRT algorithm [31]) in detecting the top-10 des-
tination addresses that receive connections from the largest
number of source addresses (the core of the DDoS victim de-
tection task). To evaluate this task, we augment the CAIDA
trace described in Section 5.1 with ten selected heavy flows
from the (busier) alternate direction. In this way, the added
heavy flows follow realistic traffic patterns, similar to the
lighter flows from direction A of the trace, while accounting
for less than 3% of the total packets traversing the switch.
For these experiments we report (i) recall as the fraction of

ground-truth top-10 destinations found by Cedar, (ii) preci-
sion as the fraction of destinations reported by Cedar that
are actually in the top-10, and (iii) detection latency as the
time between starting the flowchart node and detecting all
heavy hitters. We set the heaviness threshold at 250 sources
per destination based on analysis of the non-heavy flows
making up the background traffic and vary the number of
table entries between 20 and 250.
The plots in Figure H.1a present the mean recall, preci-

sion, and detection latency across 10 runs of the heavy hitters
node with 1 second epochs as a function of the number of
table entries allocated to each primitive counting operation.
While the distinct count operations early in the search pro-
cess are likely see far more sources (due to the fact that they
look at large subnets rather than individual destinations)
and hence report in-accurate results, we note these opera-
tions are only needed to guide the search and the particular
distinct count accuracy does not matter until the counts ap-
proach the threshold of 250 sources. These results show that
our heavy hitters node effectively detects the 10-top heavy
flows with ∼80% recall and ∼100% precision. We note that
higher precision is an expected result of using the MRT al-
gorithm which does not report a heavy element unless that
element passes the specified threshold. Lower recall is also
expected due to the fact that, during the search, the MRT
algorithm dismisses entire subnets based on a single oper-
ation, potentially missing heavy elements. Finally, we note
that latency increases with table size because less primitive
counting operations can fit in each epoch. Unlike for nodes
which execute a single operation (e.g., distinct count), when
nodes must execute multiple operations, changing the num-
ber of table entries exposes a tradeoff between recall and
detection latency.
The plots in Figure H.1b present the mean recall, preci-

sion, and detection latency across 10 runs for the heavy
hitter node as a function of epoch duration. As in figure 11b,
our choice of epoch durations are limited by hardware con-
straints (in the minimum) and the increased accumulation
of elements (in the maximum). To deal with the fact that
different epoch durations are expected to capture different
numbers of distinct elements, we scale the threshold based
on the total number of distinct sources observed under each
epoch duration leading to a range of thresholds between 64
and 622 elements. We also scale the number of table entries
per operation as 1/2 of the threshold leading to a range of 32
through 311 entries.

Since the heavy hitters node executes in multiple epochs,
increasing the epoch duration has a clear effect on the time
taken to discover the heavy elements. We also note that
accuracy (recall and precision) becomes less predictable with
short epochs. This is likely due to the increased noisiness
of the distinct count results under shorted epochs which
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Task Search Space Heaviness Max Ops Mean Ops Max Reports Mean Reports
DDoS [30] dests. distinct sources 275.6 119.3 9148.7 3578.5
Heavy Hitters sources packets 346.4 160.1 643.4 178.9
New TCP [32] dests. SYN packets 300.4 88.5 479.7 86.6
Port Scan [19] sources distinct ports 93.6 35.2 14899.7 4862.7

Table H.1: Example tasks implemented in Cedar showing maximum and mean operations and reports per epoch.
Results averaged over 10 trials.

causes the MRT algorithm to wrongly zoom in on or discard
a subnet.
Effect of Number of Operations on Reconfiguration
Time. To illustrate the ability of Cedar to quickly recon-
figure telemetry operations, we measure the reconfiguration
time as the time taken between submitting a configuration to
the switch and getting confirmation of that configuration’s
installation (from the vantage point of the manager). We also
measure five components of this total reconfiguration time
as follows:
• compile, the time taken to compile the high-level STQL

code emitted by flowchart nodes to the low-level Interme-
diate Representation (IR) of the hardware configuration;

• transmit install, the time taken to transmit the IR install
configuration instruction from the manager to the switch;

• install, the time taken on the switch to configure hardware
registers and memories for the requested configuration;

• transmit remove, the time taken to transmit the IR re-
move configuration instruction from the the manage to
the switch; and

• remove, the time taken on the switch to reset the config-
ured hardware registers and memories.
Figure H.2 presents the total re-configuration time (and

its breakdown across different components) as a function of
the number of concurrent, randomly-generated, single-filter
operations. We observe that the installation time linearly
increases with the number of operations. This result is con-
sistent with prior work in terms of hardware configuration
overheads [19] and the linear effect of the number of op-
erations [22]. However, unlike prior work [22], the update
time in Cedar is fast enough for us to evaluate task perfor-
mance in an actual hardware prototype. We note that this
result depends in part on our switch agent’s reliance on the
Broadcom SDK and that lower-level programming interfaces
are likely to be fast, though trading off portability between
different switch models (see section 4).

We also examined how the complexity of a single query, in
terms of the number of filter table entries it requires, affects
the installation time. Our result shows that the effect of the
number of filters for individual operations has a negligible
impact (less than 6 ms/operation with a similar standard
deviation) on the total reconfiguration time.
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Figure H.2: Reconfiguration time as a function of the
number of operations. Error bars show 25% and 75%
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Figure H.3: Reconfiguration time for 128 opera-
tions, iteratively through the SDK (left) and in DMA-
accelerated batches (right).

ImprovingReconfigurationTime.To illustrate the abil-
ity of Cedar to quickly reconfigure telemetry operations, we
measure the reconfiguration time as the time taken between
submitting a configuration to the switch and getting confir-
mation of that configuration’s installation (from the vantage
point of the manager). We observe that installing a single
operation takes roughly one millisecond and the installation
time grows linearly with the number of operations, a result
consistent with prior efforts [19, 22]. However, unlike prior
work [19], the update time in Cedar includes changing the
fundamental operations executed instead of just the filter
and reduce granularities. Cedar is able to overcome the pro-
hibitively long hardware update times encountered in prior

16



Cedar: A Reconfigurable Data Plane Telemetry System Misa, 2020

50% 100% 150%

25%

50%

100%

200%

DDoS
H. Hitters

New TCP

Port S
can

DDoS
H. Hitters

New TCP

Port S
can

DDoS
H. Hitters

New TCP

Port S
can

Re
co

rd
s

Threshold:
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collector load.

adaptive telemetry systems [22], enabling temporal partition-
ing of possibly unrelated operations in consecutive epochs
as described in section 3.
To better understand the update time bottlenecks, we in-

strument Cedar to also report the time spent transporting
configuration data between switch agent and collector and
the time spent by the switch agent configuring hardware. As
shown in Figure H.3, we observe that the configuration time
is dominated by the switch agent configuring hardware. This
result is a product of the programming interface exposed
by the Broadcom SDK which forces us to write configura-
tion operation by operation and performs a wide range of
verification checks. However, the BroadScan configuration
memories may also be updated in one shot through a DMA-
accelerated interface. To understand the potential savings of
this acceleration, we also timed writing the entire BroadScan
configuration through DMA batchs. As shown on the right
in Figure H.3, and confirmed by other experiments at Broad-
com, this acceleration allows writing the entire configuration
in ∼30 ms, a nearly 4× improvement over the 131 ms time
reported in prior work [19].

We also examined how the complexity of a single query, in
terms of the number of filter table entries it requires, affects

the installation time. Our result shows that the effect of the
number of filters for individual operations has a negligible
impact (less than 6ms/operation) on the total reconfiguration
time.
Sensitivity of Resource Usage to Threshold. Due to the
iterative nature of our generic heavy hitters node, varying
the threshold may have an effect on the volume of reported
traffic—higher thresholds tend to drop regions of the search
space earlier than lower threshold leading to less records
exported. To understand this effect, we vary each of the
thresholds fixed above by ±50% and observe the effect on
the number of records returned. As shown in figure H.4, the
number of records returned varies by a factor of 2 for most
applications.
8.3 ASIC in the Control Loop
Telemetry systems that use switch ASICs must deal with the
issue of collecting results generated in hardware typically by
exporting this data to a centralized server. While prior efforts
typically require the switch’s CPU to read counter values and
send the results as reports to the central collector, systems
built on BroadScan can leverage the hardware’s ability to
directly inject telemetry report packets into the data plane,
bypassing the switch CPU. To illustrate the potential savings
of this hardware export method, we profiled the maximum
rate at which our SVK’s CPU could read telemetry reports
from the BroadScan hardware and forward it to our collector,
finding that the CPU could only achieve around 8K reports
per second. The BroadScan hardware, on the other hand,
easily scaled to over 20K reports per second. Admittedly, our
SVK ASIC is controlled by a low-power ARM Cortex A57
MPCore and amore powerful onboard processor would likely
increase this rate. Nonetheless, we argue that the ability
of the hardware to directly export telemetry reports can
significantly improve the efficiency of record export while
reducing the load on the switch’s CPU.
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